1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
39 #include "llvm/Transforms/InstCombine/InstCombiner.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 STATISTIC(NumAggregateReconstructionsSimplified,
51           "Number of aggregate reconstructions turned into reuse of the "
52           "original aggregate");
53 
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. If the extract index \p EI is a constant integer then
56 /// some operations may be cheap to scalarize.
57 ///
58 /// FIXME: It's possible to create more instructions than previously existed.
59 static bool cheapToScalarize(Value *V, Value *EI) {
60   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
61 
62   // If we can pick a scalar constant value out of a vector, that is free.
63   if (auto *C = dyn_cast<Constant>(V))
64     return CEI || C->getSplatValue();
65 
66   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
67     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
68     // Index needs to be lower than the minimum size of the vector, because
69     // for scalable vector, the vector size is known at run time.
70     return CEI->getValue().ult(EC.getKnownMinValue());
71   }
72 
73   // An insertelement to the same constant index as our extract will simplify
74   // to the scalar inserted element. An insertelement to a different constant
75   // index is irrelevant to our extract.
76   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
77     return CEI;
78 
79   if (match(V, m_OneUse(m_Load(m_Value()))))
80     return true;
81 
82   if (match(V, m_OneUse(m_UnOp())))
83     return true;
84 
85   Value *V0, *V1;
86   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
87     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
88       return true;
89 
90   CmpInst::Predicate UnusedPred;
91   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
92     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
93       return true;
94 
95   return false;
96 }
97 
98 // If we have a PHI node with a vector type that is only used to feed
99 // itself and be an operand of extractelement at a constant location,
100 // try to replace the PHI of the vector type with a PHI of a scalar type.
101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
102                                             PHINode *PN) {
103   SmallVector<Instruction *, 2> Extracts;
104   // The users we want the PHI to have are:
105   // 1) The EI ExtractElement (we already know this)
106   // 2) Possibly more ExtractElements with the same index.
107   // 3) Another operand, which will feed back into the PHI.
108   Instruction *PHIUser = nullptr;
109   for (auto U : PN->users()) {
110     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
111       if (EI.getIndexOperand() == EU->getIndexOperand())
112         Extracts.push_back(EU);
113       else
114         return nullptr;
115     } else if (!PHIUser) {
116       PHIUser = cast<Instruction>(U);
117     } else {
118       return nullptr;
119     }
120   }
121 
122   if (!PHIUser)
123     return nullptr;
124 
125   // Verify that this PHI user has one use, which is the PHI itself,
126   // and that it is a binary operation which is cheap to scalarize.
127   // otherwise return nullptr.
128   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
129       !(isa<BinaryOperator>(PHIUser)) ||
130       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
131     return nullptr;
132 
133   // Create a scalar PHI node that will replace the vector PHI node
134   // just before the current PHI node.
135   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
136       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
137   // Scalarize each PHI operand.
138   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
139     Value *PHIInVal = PN->getIncomingValue(i);
140     BasicBlock *inBB = PN->getIncomingBlock(i);
141     Value *Elt = EI.getIndexOperand();
142     // If the operand is the PHI induction variable:
143     if (PHIInVal == PHIUser) {
144       // Scalarize the binary operation. Its first operand is the
145       // scalar PHI, and the second operand is extracted from the other
146       // vector operand.
147       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
148       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
149       Value *Op = InsertNewInstWith(
150           ExtractElementInst::Create(B0->getOperand(opId), Elt,
151                                      B0->getOperand(opId)->getName() + ".Elt"),
152           *B0);
153       Value *newPHIUser = InsertNewInstWith(
154           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
155                                                 scalarPHI, Op, B0), *B0);
156       scalarPHI->addIncoming(newPHIUser, inBB);
157     } else {
158       // Scalarize PHI input:
159       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
160       // Insert the new instruction into the predecessor basic block.
161       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
162       BasicBlock::iterator InsertPos;
163       if (pos && !isa<PHINode>(pos)) {
164         InsertPos = ++pos->getIterator();
165       } else {
166         InsertPos = inBB->getFirstInsertionPt();
167       }
168 
169       InsertNewInstWith(newEI, *InsertPos);
170 
171       scalarPHI->addIncoming(newEI, inBB);
172     }
173   }
174 
175   for (auto E : Extracts)
176     replaceInstUsesWith(*E, scalarPHI);
177 
178   return &EI;
179 }
180 
181 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
182                                       InstCombiner::BuilderTy &Builder,
183                                       bool IsBigEndian) {
184   Value *X;
185   uint64_t ExtIndexC;
186   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
187       !X->getType()->isVectorTy() ||
188       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
189     return nullptr;
190 
191   // If this extractelement is using a bitcast from a vector of the same number
192   // of elements, see if we can find the source element from the source vector:
193   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
194   auto *SrcTy = cast<VectorType>(X->getType());
195   Type *DestTy = Ext.getType();
196   ElementCount NumSrcElts = SrcTy->getElementCount();
197   ElementCount NumElts =
198       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
199   if (NumSrcElts == NumElts)
200     if (Value *Elt = findScalarElement(X, ExtIndexC))
201       return new BitCastInst(Elt, DestTy);
202 
203   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
204          "Src and Dst must be the same sort of vector type");
205 
206   // If the source elements are wider than the destination, try to shift and
207   // truncate a subset of scalar bits of an insert op.
208   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
209     Value *Scalar;
210     uint64_t InsIndexC;
211     if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
212                               m_ConstantInt(InsIndexC))))
213       return nullptr;
214 
215     // The extract must be from the subset of vector elements that we inserted
216     // into. Example: if we inserted element 1 of a <2 x i64> and we are
217     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
218     // of elements 4-7 of the bitcasted vector.
219     unsigned NarrowingRatio =
220         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
221     if (ExtIndexC / NarrowingRatio != InsIndexC)
222       return nullptr;
223 
224     // We are extracting part of the original scalar. How that scalar is
225     // inserted into the vector depends on the endian-ness. Example:
226     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
227     //                                       +--+--+--+--+--+--+--+--+
228     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
229     // extelt <4 x i16> V', 3:               |                 |S2|S3|
230     //                                       +--+--+--+--+--+--+--+--+
231     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
232     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
233     // In this example, we must right-shift little-endian. Big-endian is just a
234     // truncate.
235     unsigned Chunk = ExtIndexC % NarrowingRatio;
236     if (IsBigEndian)
237       Chunk = NarrowingRatio - 1 - Chunk;
238 
239     // Bail out if this is an FP vector to FP vector sequence. That would take
240     // more instructions than we started with unless there is no shift, and it
241     // may not be handled as well in the backend.
242     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
243     bool NeedDestBitcast = DestTy->isFloatingPointTy();
244     if (NeedSrcBitcast && NeedDestBitcast)
245       return nullptr;
246 
247     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
248     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
249     unsigned ShAmt = Chunk * DestWidth;
250 
251     // TODO: This limitation is more strict than necessary. We could sum the
252     // number of new instructions and subtract the number eliminated to know if
253     // we can proceed.
254     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
255       if (NeedSrcBitcast || NeedDestBitcast)
256         return nullptr;
257 
258     if (NeedSrcBitcast) {
259       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
260       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
261     }
262 
263     if (ShAmt) {
264       // Bail out if we could end with more instructions than we started with.
265       if (!Ext.getVectorOperand()->hasOneUse())
266         return nullptr;
267       Scalar = Builder.CreateLShr(Scalar, ShAmt);
268     }
269 
270     if (NeedDestBitcast) {
271       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
272       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
273     }
274     return new TruncInst(Scalar, DestTy);
275   }
276 
277   return nullptr;
278 }
279 
280 /// Find elements of V demanded by UserInstr.
281 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
282   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
283 
284   // Conservatively assume that all elements are needed.
285   APInt UsedElts(APInt::getAllOnes(VWidth));
286 
287   switch (UserInstr->getOpcode()) {
288   case Instruction::ExtractElement: {
289     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
290     assert(EEI->getVectorOperand() == V);
291     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
292     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
293       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
294     }
295     break;
296   }
297   case Instruction::ShuffleVector: {
298     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
299     unsigned MaskNumElts =
300         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
301 
302     UsedElts = APInt(VWidth, 0);
303     for (unsigned i = 0; i < MaskNumElts; i++) {
304       unsigned MaskVal = Shuffle->getMaskValue(i);
305       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
306         continue;
307       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
308         UsedElts.setBit(MaskVal);
309       if (Shuffle->getOperand(1) == V &&
310           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
311         UsedElts.setBit(MaskVal - VWidth);
312     }
313     break;
314   }
315   default:
316     break;
317   }
318   return UsedElts;
319 }
320 
321 /// Find union of elements of V demanded by all its users.
322 /// If it is known by querying findDemandedEltsBySingleUser that
323 /// no user demands an element of V, then the corresponding bit
324 /// remains unset in the returned value.
325 static APInt findDemandedEltsByAllUsers(Value *V) {
326   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
327 
328   APInt UnionUsedElts(VWidth, 0);
329   for (const Use &U : V->uses()) {
330     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
331       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
332     } else {
333       UnionUsedElts = APInt::getAllOnes(VWidth);
334       break;
335     }
336 
337     if (UnionUsedElts.isAllOnes())
338       break;
339   }
340 
341   return UnionUsedElts;
342 }
343 
344 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
345   Value *SrcVec = EI.getVectorOperand();
346   Value *Index = EI.getIndexOperand();
347   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
348                                             SQ.getWithInstruction(&EI)))
349     return replaceInstUsesWith(EI, V);
350 
351   // If extracting a specified index from the vector, see if we can recursively
352   // find a previously computed scalar that was inserted into the vector.
353   auto *IndexC = dyn_cast<ConstantInt>(Index);
354   if (IndexC) {
355     ElementCount EC = EI.getVectorOperandType()->getElementCount();
356     unsigned NumElts = EC.getKnownMinValue();
357 
358     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
359       Intrinsic::ID IID = II->getIntrinsicID();
360       // Index needs to be lower than the minimum size of the vector, because
361       // for scalable vector, the vector size is known at run time.
362       if (IID == Intrinsic::experimental_stepvector &&
363           IndexC->getValue().ult(NumElts)) {
364         Type *Ty = EI.getType();
365         unsigned BitWidth = Ty->getIntegerBitWidth();
366         Value *Idx;
367         // Return index when its value does not exceed the allowed limit
368         // for the element type of the vector, otherwise return undefined.
369         if (IndexC->getValue().getActiveBits() <= BitWidth)
370           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
371         else
372           Idx = UndefValue::get(Ty);
373         return replaceInstUsesWith(EI, Idx);
374       }
375     }
376 
377     // InstSimplify should handle cases where the index is invalid.
378     // For fixed-length vector, it's invalid to extract out-of-range element.
379     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
380       return nullptr;
381 
382     // This instruction only demands the single element from the input vector.
383     // Skip for scalable type, the number of elements is unknown at
384     // compile-time.
385     if (!EC.isScalable() && NumElts != 1) {
386       // If the input vector has a single use, simplify it based on this use
387       // property.
388       if (SrcVec->hasOneUse()) {
389         APInt UndefElts(NumElts, 0);
390         APInt DemandedElts(NumElts, 0);
391         DemandedElts.setBit(IndexC->getZExtValue());
392         if (Value *V =
393                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
394           return replaceOperand(EI, 0, V);
395       } else {
396         // If the input vector has multiple uses, simplify it based on a union
397         // of all elements used.
398         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
399         if (!DemandedElts.isAllOnes()) {
400           APInt UndefElts(NumElts, 0);
401           if (Value *V = SimplifyDemandedVectorElts(
402                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
403                   true /* AllowMultipleUsers */)) {
404             if (V != SrcVec) {
405               SrcVec->replaceAllUsesWith(V);
406               return &EI;
407             }
408           }
409         }
410       }
411     }
412 
413     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
414       return I;
415 
416     // If there's a vector PHI feeding a scalar use through this extractelement
417     // instruction, try to scalarize the PHI.
418     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
419       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
420         return ScalarPHI;
421   }
422 
423   // TODO come up with a n-ary matcher that subsumes both unary and
424   // binary matchers.
425   UnaryOperator *UO;
426   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
427     // extelt (unop X), Index --> unop (extelt X, Index)
428     Value *X = UO->getOperand(0);
429     Value *E = Builder.CreateExtractElement(X, Index);
430     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
431   }
432 
433   BinaryOperator *BO;
434   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
435     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
436     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
437     Value *E0 = Builder.CreateExtractElement(X, Index);
438     Value *E1 = Builder.CreateExtractElement(Y, Index);
439     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
440   }
441 
442   Value *X, *Y;
443   CmpInst::Predicate Pred;
444   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
445       cheapToScalarize(SrcVec, Index)) {
446     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
447     Value *E0 = Builder.CreateExtractElement(X, Index);
448     Value *E1 = Builder.CreateExtractElement(Y, Index);
449     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
450   }
451 
452   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
453     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
454       // Extracting the inserted element?
455       if (IE->getOperand(2) == Index)
456         return replaceInstUsesWith(EI, IE->getOperand(1));
457       // If the inserted and extracted elements are constants, they must not
458       // be the same value, extract from the pre-inserted value instead.
459       if (isa<Constant>(IE->getOperand(2)) && IndexC)
460         return replaceOperand(EI, 0, IE->getOperand(0));
461     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
462       auto *VecType = cast<VectorType>(GEP->getType());
463       ElementCount EC = VecType->getElementCount();
464       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
465       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
466         // Find out why we have a vector result - these are a few examples:
467         //  1. We have a scalar pointer and a vector of indices, or
468         //  2. We have a vector of pointers and a scalar index, or
469         //  3. We have a vector of pointers and a vector of indices, etc.
470         // Here we only consider combining when there is exactly one vector
471         // operand, since the optimization is less obviously a win due to
472         // needing more than one extractelements.
473 
474         unsigned VectorOps =
475             llvm::count_if(GEP->operands(), [](const Value *V) {
476               return isa<VectorType>(V->getType());
477             });
478         if (VectorOps > 1)
479           return nullptr;
480         assert(VectorOps == 1 && "Expected exactly one vector GEP operand!");
481 
482         Value *NewPtr = GEP->getPointerOperand();
483         if (isa<VectorType>(NewPtr->getType()))
484           NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
485 
486         SmallVector<Value *> NewOps;
487         for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
488           Value *Op = GEP->getOperand(I);
489           if (isa<VectorType>(Op->getType()))
490             NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
491           else
492             NewOps.push_back(Op);
493         }
494 
495         GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
496             cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr,
497             NewOps);
498         NewGEP->setIsInBounds(GEP->isInBounds());
499         return NewGEP;
500       }
501       return nullptr;
502     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
503       // If this is extracting an element from a shufflevector, figure out where
504       // it came from and extract from the appropriate input element instead.
505       // Restrict the following transformation to fixed-length vector.
506       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
507         int SrcIdx =
508             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
509         Value *Src;
510         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
511                                 ->getNumElements();
512 
513         if (SrcIdx < 0)
514           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
515         if (SrcIdx < (int)LHSWidth)
516           Src = SVI->getOperand(0);
517         else {
518           SrcIdx -= LHSWidth;
519           Src = SVI->getOperand(1);
520         }
521         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
522         return ExtractElementInst::Create(
523             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
524       }
525     } else if (auto *CI = dyn_cast<CastInst>(I)) {
526       // Canonicalize extractelement(cast) -> cast(extractelement).
527       // Bitcasts can change the number of vector elements, and they cost
528       // nothing.
529       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
530         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
531         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
532       }
533     }
534   }
535   return nullptr;
536 }
537 
538 /// If V is a shuffle of values that ONLY returns elements from either LHS or
539 /// RHS, return the shuffle mask and true. Otherwise, return false.
540 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
541                                          SmallVectorImpl<int> &Mask) {
542   assert(LHS->getType() == RHS->getType() &&
543          "Invalid CollectSingleShuffleElements");
544   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
545 
546   if (match(V, m_Undef())) {
547     Mask.assign(NumElts, -1);
548     return true;
549   }
550 
551   if (V == LHS) {
552     for (unsigned i = 0; i != NumElts; ++i)
553       Mask.push_back(i);
554     return true;
555   }
556 
557   if (V == RHS) {
558     for (unsigned i = 0; i != NumElts; ++i)
559       Mask.push_back(i + NumElts);
560     return true;
561   }
562 
563   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
564     // If this is an insert of an extract from some other vector, include it.
565     Value *VecOp    = IEI->getOperand(0);
566     Value *ScalarOp = IEI->getOperand(1);
567     Value *IdxOp    = IEI->getOperand(2);
568 
569     if (!isa<ConstantInt>(IdxOp))
570       return false;
571     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
572 
573     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
574       // We can handle this if the vector we are inserting into is
575       // transitively ok.
576       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
577         // If so, update the mask to reflect the inserted undef.
578         Mask[InsertedIdx] = -1;
579         return true;
580       }
581     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
582       if (isa<ConstantInt>(EI->getOperand(1))) {
583         unsigned ExtractedIdx =
584         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
585         unsigned NumLHSElts =
586             cast<FixedVectorType>(LHS->getType())->getNumElements();
587 
588         // This must be extracting from either LHS or RHS.
589         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
590           // We can handle this if the vector we are inserting into is
591           // transitively ok.
592           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
593             // If so, update the mask to reflect the inserted value.
594             if (EI->getOperand(0) == LHS) {
595               Mask[InsertedIdx % NumElts] = ExtractedIdx;
596             } else {
597               assert(EI->getOperand(0) == RHS);
598               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
599             }
600             return true;
601           }
602         }
603       }
604     }
605   }
606 
607   return false;
608 }
609 
610 /// If we have insertion into a vector that is wider than the vector that we
611 /// are extracting from, try to widen the source vector to allow a single
612 /// shufflevector to replace one or more insert/extract pairs.
613 static void replaceExtractElements(InsertElementInst *InsElt,
614                                    ExtractElementInst *ExtElt,
615                                    InstCombinerImpl &IC) {
616   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
617   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
618   unsigned NumInsElts = InsVecType->getNumElements();
619   unsigned NumExtElts = ExtVecType->getNumElements();
620 
621   // The inserted-to vector must be wider than the extracted-from vector.
622   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
623       NumExtElts >= NumInsElts)
624     return;
625 
626   // Create a shuffle mask to widen the extended-from vector using poison
627   // values. The mask selects all of the values of the original vector followed
628   // by as many poison values as needed to create a vector of the same length
629   // as the inserted-to vector.
630   SmallVector<int, 16> ExtendMask;
631   for (unsigned i = 0; i < NumExtElts; ++i)
632     ExtendMask.push_back(i);
633   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
634     ExtendMask.push_back(-1);
635 
636   Value *ExtVecOp = ExtElt->getVectorOperand();
637   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
638   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
639                                    ? ExtVecOpInst->getParent()
640                                    : ExtElt->getParent();
641 
642   // TODO: This restriction matches the basic block check below when creating
643   // new extractelement instructions. If that limitation is removed, this one
644   // could also be removed. But for now, we just bail out to ensure that we
645   // will replace the extractelement instruction that is feeding our
646   // insertelement instruction. This allows the insertelement to then be
647   // replaced by a shufflevector. If the insertelement is not replaced, we can
648   // induce infinite looping because there's an optimization for extractelement
649   // that will delete our widening shuffle. This would trigger another attempt
650   // here to create that shuffle, and we spin forever.
651   if (InsertionBlock != InsElt->getParent())
652     return;
653 
654   // TODO: This restriction matches the check in visitInsertElementInst() and
655   // prevents an infinite loop caused by not turning the extract/insert pair
656   // into a shuffle. We really should not need either check, but we're lacking
657   // folds for shufflevectors because we're afraid to generate shuffle masks
658   // that the backend can't handle.
659   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
660     return;
661 
662   auto *WideVec =
663       new ShuffleVectorInst(ExtVecOp, PoisonValue::get(ExtVecType), ExtendMask);
664 
665   // Insert the new shuffle after the vector operand of the extract is defined
666   // (as long as it's not a PHI) or at the start of the basic block of the
667   // extract, so any subsequent extracts in the same basic block can use it.
668   // TODO: Insert before the earliest ExtractElementInst that is replaced.
669   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
670     WideVec->insertAfter(ExtVecOpInst);
671   else
672     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
673 
674   // Replace extracts from the original narrow vector with extracts from the new
675   // wide vector.
676   for (User *U : ExtVecOp->users()) {
677     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
678     if (!OldExt || OldExt->getParent() != WideVec->getParent())
679       continue;
680     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
681     NewExt->insertAfter(OldExt);
682     IC.replaceInstUsesWith(*OldExt, NewExt);
683   }
684 }
685 
686 /// We are building a shuffle to create V, which is a sequence of insertelement,
687 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
688 /// not rely on the second vector source. Return a std::pair containing the
689 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
690 /// parameter as required.
691 ///
692 /// Note: we intentionally don't try to fold earlier shuffles since they have
693 /// often been chosen carefully to be efficiently implementable on the target.
694 using ShuffleOps = std::pair<Value *, Value *>;
695 
696 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
697                                          Value *PermittedRHS,
698                                          InstCombinerImpl &IC) {
699   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
700   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
701 
702   if (match(V, m_Undef())) {
703     Mask.assign(NumElts, -1);
704     return std::make_pair(
705         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
706   }
707 
708   if (isa<ConstantAggregateZero>(V)) {
709     Mask.assign(NumElts, 0);
710     return std::make_pair(V, nullptr);
711   }
712 
713   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
714     // If this is an insert of an extract from some other vector, include it.
715     Value *VecOp    = IEI->getOperand(0);
716     Value *ScalarOp = IEI->getOperand(1);
717     Value *IdxOp    = IEI->getOperand(2);
718 
719     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
720       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
721         unsigned ExtractedIdx =
722           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
723         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
724 
725         // Either the extracted from or inserted into vector must be RHSVec,
726         // otherwise we'd end up with a shuffle of three inputs.
727         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
728           Value *RHS = EI->getOperand(0);
729           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
730           assert(LR.second == nullptr || LR.second == RHS);
731 
732           if (LR.first->getType() != RHS->getType()) {
733             // Although we are giving up for now, see if we can create extracts
734             // that match the inserts for another round of combining.
735             replaceExtractElements(IEI, EI, IC);
736 
737             // We tried our best, but we can't find anything compatible with RHS
738             // further up the chain. Return a trivial shuffle.
739             for (unsigned i = 0; i < NumElts; ++i)
740               Mask[i] = i;
741             return std::make_pair(V, nullptr);
742           }
743 
744           unsigned NumLHSElts =
745               cast<FixedVectorType>(RHS->getType())->getNumElements();
746           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
747           return std::make_pair(LR.first, RHS);
748         }
749 
750         if (VecOp == PermittedRHS) {
751           // We've gone as far as we can: anything on the other side of the
752           // extractelement will already have been converted into a shuffle.
753           unsigned NumLHSElts =
754               cast<FixedVectorType>(EI->getOperand(0)->getType())
755                   ->getNumElements();
756           for (unsigned i = 0; i != NumElts; ++i)
757             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
758           return std::make_pair(EI->getOperand(0), PermittedRHS);
759         }
760 
761         // If this insertelement is a chain that comes from exactly these two
762         // vectors, return the vector and the effective shuffle.
763         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
764             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
765                                          Mask))
766           return std::make_pair(EI->getOperand(0), PermittedRHS);
767       }
768     }
769   }
770 
771   // Otherwise, we can't do anything fancy. Return an identity vector.
772   for (unsigned i = 0; i != NumElts; ++i)
773     Mask.push_back(i);
774   return std::make_pair(V, nullptr);
775 }
776 
777 /// Look for chain of insertvalue's that fully define an aggregate, and trace
778 /// back the values inserted, see if they are all were extractvalue'd from
779 /// the same source aggregate from the exact same element indexes.
780 /// If they were, just reuse the source aggregate.
781 /// This potentially deals with PHI indirections.
782 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
783     InsertValueInst &OrigIVI) {
784   Type *AggTy = OrigIVI.getType();
785   unsigned NumAggElts;
786   switch (AggTy->getTypeID()) {
787   case Type::StructTyID:
788     NumAggElts = AggTy->getStructNumElements();
789     break;
790   case Type::ArrayTyID:
791     NumAggElts = AggTy->getArrayNumElements();
792     break;
793   default:
794     llvm_unreachable("Unhandled aggregate type?");
795   }
796 
797   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
798   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
799   // FIXME: any interesting patterns to be caught with larger limit?
800   assert(NumAggElts > 0 && "Aggregate should have elements.");
801   if (NumAggElts > 2)
802     return nullptr;
803 
804   static constexpr auto NotFound = None;
805   static constexpr auto FoundMismatch = nullptr;
806 
807   // Try to find a value of each element of an aggregate.
808   // FIXME: deal with more complex, not one-dimensional, aggregate types
809   SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
810 
811   // Do we know values for each element of the aggregate?
812   auto KnowAllElts = [&AggElts]() {
813     return all_of(AggElts,
814                   [](Optional<Instruction *> Elt) { return Elt != NotFound; });
815   };
816 
817   int Depth = 0;
818 
819   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
820   // every element being overwritten twice, which should never happen.
821   static const int DepthLimit = 2 * NumAggElts;
822 
823   // Recurse up the chain of `insertvalue` aggregate operands until either we've
824   // reconstructed full initializer or can't visit any more `insertvalue`'s.
825   for (InsertValueInst *CurrIVI = &OrigIVI;
826        Depth < DepthLimit && CurrIVI && !KnowAllElts();
827        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
828                        ++Depth) {
829     auto *InsertedValue =
830         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
831     if (!InsertedValue)
832       return nullptr; // Inserted value must be produced by an instruction.
833 
834     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
835 
836     // Don't bother with more than single-level aggregates.
837     if (Indices.size() != 1)
838       return nullptr; // FIXME: deal with more complex aggregates?
839 
840     // Now, we may have already previously recorded the value for this element
841     // of an aggregate. If we did, that means the CurrIVI will later be
842     // overwritten with the already-recorded value. But if not, let's record it!
843     Optional<Instruction *> &Elt = AggElts[Indices.front()];
844     Elt = Elt.getValueOr(InsertedValue);
845 
846     // FIXME: should we handle chain-terminating undef base operand?
847   }
848 
849   // Was that sufficient to deduce the full initializer for the aggregate?
850   if (!KnowAllElts())
851     return nullptr; // Give up then.
852 
853   // We now want to find the source[s] of the aggregate elements we've found.
854   // And with "source" we mean the original aggregate[s] from which
855   // the inserted elements were extracted. This may require PHI translation.
856 
857   enum class AggregateDescription {
858     /// When analyzing the value that was inserted into an aggregate, we did
859     /// not manage to find defining `extractvalue` instruction to analyze.
860     NotFound,
861     /// When analyzing the value that was inserted into an aggregate, we did
862     /// manage to find defining `extractvalue` instruction[s], and everything
863     /// matched perfectly - aggregate type, element insertion/extraction index.
864     Found,
865     /// When analyzing the value that was inserted into an aggregate, we did
866     /// manage to find defining `extractvalue` instruction, but there was
867     /// a mismatch: either the source type from which the extraction was didn't
868     /// match the aggregate type into which the insertion was,
869     /// or the extraction/insertion channels mismatched,
870     /// or different elements had different source aggregates.
871     FoundMismatch
872   };
873   auto Describe = [](Optional<Value *> SourceAggregate) {
874     if (SourceAggregate == NotFound)
875       return AggregateDescription::NotFound;
876     if (*SourceAggregate == FoundMismatch)
877       return AggregateDescription::FoundMismatch;
878     return AggregateDescription::Found;
879   };
880 
881   // Given the value \p Elt that was being inserted into element \p EltIdx of an
882   // aggregate AggTy, see if \p Elt was originally defined by an
883   // appropriate extractvalue (same element index, same aggregate type).
884   // If found, return the source aggregate from which the extraction was.
885   // If \p PredBB is provided, does PHI translation of an \p Elt first.
886   auto FindSourceAggregate =
887       [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
888           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
889     // For now(?), only deal with, at most, a single level of PHI indirection.
890     if (UseBB && PredBB)
891       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
892     // FIXME: deal with multiple levels of PHI indirection?
893 
894     // Did we find an extraction?
895     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
896     if (!EVI)
897       return NotFound;
898 
899     Value *SourceAggregate = EVI->getAggregateOperand();
900 
901     // Is the extraction from the same type into which the insertion was?
902     if (SourceAggregate->getType() != AggTy)
903       return FoundMismatch;
904     // And the element index doesn't change between extraction and insertion?
905     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
906       return FoundMismatch;
907 
908     return SourceAggregate; // AggregateDescription::Found
909   };
910 
911   // Given elements AggElts that were constructing an aggregate OrigIVI,
912   // see if we can find appropriate source aggregate for each of the elements,
913   // and see it's the same aggregate for each element. If so, return it.
914   auto FindCommonSourceAggregate =
915       [&](Optional<BasicBlock *> UseBB,
916           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
917     Optional<Value *> SourceAggregate;
918 
919     for (auto I : enumerate(AggElts)) {
920       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
921              "We don't store nullptr in SourceAggregate!");
922       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
923                  (I.index() != 0) &&
924              "SourceAggregate should be valid after the first element,");
925 
926       // For this element, is there a plausible source aggregate?
927       // FIXME: we could special-case undef element, IFF we know that in the
928       //        source aggregate said element isn't poison.
929       Optional<Value *> SourceAggregateForElement =
930           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
931 
932       // Okay, what have we found? Does that correlate with previous findings?
933 
934       // Regardless of whether or not we have previously found source
935       // aggregate for previous elements (if any), if we didn't find one for
936       // this element, passthrough whatever we have just found.
937       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
938         return SourceAggregateForElement;
939 
940       // Okay, we have found source aggregate for this element.
941       // Let's see what we already know from previous elements, if any.
942       switch (Describe(SourceAggregate)) {
943       case AggregateDescription::NotFound:
944         // This is apparently the first element that we have examined.
945         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
946         continue; // Great, now look at next element.
947       case AggregateDescription::Found:
948         // We have previously already successfully examined other elements.
949         // Is this the same source aggregate we've found for other elements?
950         if (*SourceAggregateForElement != *SourceAggregate)
951           return FoundMismatch;
952         continue; // Still the same aggregate, look at next element.
953       case AggregateDescription::FoundMismatch:
954         llvm_unreachable("Can't happen. We would have early-exited then.");
955       };
956     }
957 
958     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
959            "Must be a valid Value");
960     return *SourceAggregate;
961   };
962 
963   Optional<Value *> SourceAggregate;
964 
965   // Can we find the source aggregate without looking at predecessors?
966   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
967   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
968     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
969       return nullptr; // Conflicting source aggregates!
970     ++NumAggregateReconstructionsSimplified;
971     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
972   }
973 
974   // Okay, apparently we need to look at predecessors.
975 
976   // We should be smart about picking the "use" basic block, which will be the
977   // merge point for aggregate, where we'll insert the final PHI that will be
978   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
979   // We should look in which blocks each of the AggElts is being defined,
980   // they all should be defined in the same basic block.
981   BasicBlock *UseBB = nullptr;
982 
983   for (const Optional<Instruction *> &I : AggElts) {
984     BasicBlock *BB = (*I)->getParent();
985     // If it's the first instruction we've encountered, record the basic block.
986     if (!UseBB) {
987       UseBB = BB;
988       continue;
989     }
990     // Otherwise, this must be the same basic block we've seen previously.
991     if (UseBB != BB)
992       return nullptr;
993   }
994 
995   // If *all* of the elements are basic-block-independent, meaning they are
996   // either function arguments, or constant expressions, then if we didn't
997   // handle them without predecessor-aware handling, we won't handle them now.
998   if (!UseBB)
999     return nullptr;
1000 
1001   // If we didn't manage to find source aggregate without looking at
1002   // predecessors, and there are no predecessors to look at, then we're done.
1003   if (pred_empty(UseBB))
1004     return nullptr;
1005 
1006   // Arbitrary predecessor count limit.
1007   static const int PredCountLimit = 64;
1008 
1009   // Cache the (non-uniqified!) list of predecessors in a vector,
1010   // checking the limit at the same time for efficiency.
1011   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1012   for (BasicBlock *Pred : predecessors(UseBB)) {
1013     // Don't bother if there are too many predecessors.
1014     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1015       return nullptr;
1016     Preds.emplace_back(Pred);
1017   }
1018 
1019   // For each predecessor, what is the source aggregate,
1020   // from which all the elements were originally extracted from?
1021   // Note that we want for the map to have stable iteration order!
1022   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1023   for (BasicBlock *Pred : Preds) {
1024     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1025         SourceAggregates.insert({Pred, nullptr});
1026     // Did we already evaluate this predecessor?
1027     if (!IV.second)
1028       continue;
1029 
1030     // Let's hope that when coming from predecessor Pred, all elements of the
1031     // aggregate produced by OrigIVI must have been originally extracted from
1032     // the same aggregate. Is that so? Can we find said original aggregate?
1033     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1034     if (Describe(SourceAggregate) != AggregateDescription::Found)
1035       return nullptr; // Give up.
1036     IV.first->second = *SourceAggregate;
1037   }
1038 
1039   // All good! Now we just need to thread the source aggregates here.
1040   // Note that we have to insert the new PHI here, ourselves, because we can't
1041   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1042   // Note that the same block can be a predecessor more than once,
1043   // and we need to preserve that invariant for the PHI node.
1044   BuilderTy::InsertPointGuard Guard(Builder);
1045   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1046   auto *PHI =
1047       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1048   for (BasicBlock *Pred : Preds)
1049     PHI->addIncoming(SourceAggregates[Pred], Pred);
1050 
1051   ++NumAggregateReconstructionsSimplified;
1052   return replaceInstUsesWith(OrigIVI, PHI);
1053 }
1054 
1055 /// Try to find redundant insertvalue instructions, like the following ones:
1056 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1057 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1058 /// Here the second instruction inserts values at the same indices, as the
1059 /// first one, making the first one redundant.
1060 /// It should be transformed to:
1061 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1062 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1063   bool IsRedundant = false;
1064   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1065 
1066   // If there is a chain of insertvalue instructions (each of them except the
1067   // last one has only one use and it's another insertvalue insn from this
1068   // chain), check if any of the 'children' uses the same indices as the first
1069   // instruction. In this case, the first one is redundant.
1070   Value *V = &I;
1071   unsigned Depth = 0;
1072   while (V->hasOneUse() && Depth < 10) {
1073     User *U = V->user_back();
1074     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1075     if (!UserInsInst || U->getOperand(0) != V)
1076       break;
1077     if (UserInsInst->getIndices() == FirstIndices) {
1078       IsRedundant = true;
1079       break;
1080     }
1081     V = UserInsInst;
1082     Depth++;
1083   }
1084 
1085   if (IsRedundant)
1086     return replaceInstUsesWith(I, I.getOperand(0));
1087 
1088   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1089     return NewI;
1090 
1091   return nullptr;
1092 }
1093 
1094 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1095   // Can not analyze scalable type, the number of elements is not a compile-time
1096   // constant.
1097   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1098     return false;
1099 
1100   int MaskSize = Shuf.getShuffleMask().size();
1101   int VecSize =
1102       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1103 
1104   // A vector select does not change the size of the operands.
1105   if (MaskSize != VecSize)
1106     return false;
1107 
1108   // Each mask element must be undefined or choose a vector element from one of
1109   // the source operands without crossing vector lanes.
1110   for (int i = 0; i != MaskSize; ++i) {
1111     int Elt = Shuf.getMaskValue(i);
1112     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1113       return false;
1114   }
1115 
1116   return true;
1117 }
1118 
1119 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1120 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1121 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1122 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1123   // We are interested in the last insert in a chain. So if this insert has a
1124   // single user and that user is an insert, bail.
1125   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1126     return nullptr;
1127 
1128   VectorType *VecTy = InsElt.getType();
1129   // Can not handle scalable type, the number of elements is not a compile-time
1130   // constant.
1131   if (isa<ScalableVectorType>(VecTy))
1132     return nullptr;
1133   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1134 
1135   // Do not try to do this for a one-element vector, since that's a nop,
1136   // and will cause an inf-loop.
1137   if (NumElements == 1)
1138     return nullptr;
1139 
1140   Value *SplatVal = InsElt.getOperand(1);
1141   InsertElementInst *CurrIE = &InsElt;
1142   SmallBitVector ElementPresent(NumElements, false);
1143   InsertElementInst *FirstIE = nullptr;
1144 
1145   // Walk the chain backwards, keeping track of which indices we inserted into,
1146   // until we hit something that isn't an insert of the splatted value.
1147   while (CurrIE) {
1148     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1149     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1150       return nullptr;
1151 
1152     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1153     // Check none of the intermediate steps have any additional uses, except
1154     // for the root insertelement instruction, which can be re-used, if it
1155     // inserts at position 0.
1156     if (CurrIE != &InsElt &&
1157         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1158       return nullptr;
1159 
1160     ElementPresent[Idx->getZExtValue()] = true;
1161     FirstIE = CurrIE;
1162     CurrIE = NextIE;
1163   }
1164 
1165   // If this is just a single insertelement (not a sequence), we are done.
1166   if (FirstIE == &InsElt)
1167     return nullptr;
1168 
1169   // If we are not inserting into an undef vector, make sure we've seen an
1170   // insert into every element.
1171   // TODO: If the base vector is not undef, it might be better to create a splat
1172   //       and then a select-shuffle (blend) with the base vector.
1173   if (!match(FirstIE->getOperand(0), m_Undef()))
1174     if (!ElementPresent.all())
1175       return nullptr;
1176 
1177   // Create the insert + shuffle.
1178   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1179   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1180   Constant *Zero = ConstantInt::get(Int32Ty, 0);
1181   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1182     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1183 
1184   // Splat from element 0, but replace absent elements with undef in the mask.
1185   SmallVector<int, 16> Mask(NumElements, 0);
1186   for (unsigned i = 0; i != NumElements; ++i)
1187     if (!ElementPresent[i])
1188       Mask[i] = -1;
1189 
1190   return new ShuffleVectorInst(FirstIE, PoisonVec, Mask);
1191 }
1192 
1193 /// Try to fold an insert element into an existing splat shuffle by changing
1194 /// the shuffle's mask to include the index of this insert element.
1195 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1196   // Check if the vector operand of this insert is a canonical splat shuffle.
1197   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1198   if (!Shuf || !Shuf->isZeroEltSplat())
1199     return nullptr;
1200 
1201   // Bail out early if shuffle is scalable type. The number of elements in
1202   // shuffle mask is unknown at compile-time.
1203   if (isa<ScalableVectorType>(Shuf->getType()))
1204     return nullptr;
1205 
1206   // Check for a constant insertion index.
1207   uint64_t IdxC;
1208   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1209     return nullptr;
1210 
1211   // Check if the splat shuffle's input is the same as this insert's scalar op.
1212   Value *X = InsElt.getOperand(1);
1213   Value *Op0 = Shuf->getOperand(0);
1214   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1215     return nullptr;
1216 
1217   // Replace the shuffle mask element at the index of this insert with a zero.
1218   // For example:
1219   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
1220   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
1221   unsigned NumMaskElts =
1222       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1223   SmallVector<int, 16> NewMask(NumMaskElts);
1224   for (unsigned i = 0; i != NumMaskElts; ++i)
1225     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1226 
1227   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
1228 }
1229 
1230 /// Try to fold an extract+insert element into an existing identity shuffle by
1231 /// changing the shuffle's mask to include the index of this insert element.
1232 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1233   // Check if the vector operand of this insert is an identity shuffle.
1234   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1235   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1236       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1237     return nullptr;
1238 
1239   // Bail out early if shuffle is scalable type. The number of elements in
1240   // shuffle mask is unknown at compile-time.
1241   if (isa<ScalableVectorType>(Shuf->getType()))
1242     return nullptr;
1243 
1244   // Check for a constant insertion index.
1245   uint64_t IdxC;
1246   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1247     return nullptr;
1248 
1249   // Check if this insert's scalar op is extracted from the identity shuffle's
1250   // input vector.
1251   Value *Scalar = InsElt.getOperand(1);
1252   Value *X = Shuf->getOperand(0);
1253   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1254     return nullptr;
1255 
1256   // Replace the shuffle mask element at the index of this extract+insert with
1257   // that same index value.
1258   // For example:
1259   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1260   unsigned NumMaskElts =
1261       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1262   SmallVector<int, 16> NewMask(NumMaskElts);
1263   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1264   for (unsigned i = 0; i != NumMaskElts; ++i) {
1265     if (i != IdxC) {
1266       // All mask elements besides the inserted element remain the same.
1267       NewMask[i] = OldMask[i];
1268     } else if (OldMask[i] == (int)IdxC) {
1269       // If the mask element was already set, there's nothing to do
1270       // (demanded elements analysis may unset it later).
1271       return nullptr;
1272     } else {
1273       assert(OldMask[i] == UndefMaskElem &&
1274              "Unexpected shuffle mask element for identity shuffle");
1275       NewMask[i] = IdxC;
1276     }
1277   }
1278 
1279   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1280 }
1281 
1282 /// If we have an insertelement instruction feeding into another insertelement
1283 /// and the 2nd is inserting a constant into the vector, canonicalize that
1284 /// constant insertion before the insertion of a variable:
1285 ///
1286 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1287 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1288 ///
1289 /// This has the potential of eliminating the 2nd insertelement instruction
1290 /// via constant folding of the scalar constant into a vector constant.
1291 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1292                                      InstCombiner::BuilderTy &Builder) {
1293   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1294   if (!InsElt1 || !InsElt1->hasOneUse())
1295     return nullptr;
1296 
1297   Value *X, *Y;
1298   Constant *ScalarC;
1299   ConstantInt *IdxC1, *IdxC2;
1300   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1301       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1302       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1303       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1304       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1305     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1306     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1307   }
1308 
1309   return nullptr;
1310 }
1311 
1312 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1313 /// --> shufflevector X, CVec', Mask'
1314 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1315   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1316   // Bail out if the parent has more than one use. In that case, we'd be
1317   // replacing the insertelt with a shuffle, and that's not a clear win.
1318   if (!Inst || !Inst->hasOneUse())
1319     return nullptr;
1320   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1321     // The shuffle must have a constant vector operand. The insertelt must have
1322     // a constant scalar being inserted at a constant position in the vector.
1323     Constant *ShufConstVec, *InsEltScalar;
1324     uint64_t InsEltIndex;
1325     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1326         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1327         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1328       return nullptr;
1329 
1330     // Adding an element to an arbitrary shuffle could be expensive, but a
1331     // shuffle that selects elements from vectors without crossing lanes is
1332     // assumed cheap.
1333     // If we're just adding a constant into that shuffle, it will still be
1334     // cheap.
1335     if (!isShuffleEquivalentToSelect(*Shuf))
1336       return nullptr;
1337 
1338     // From the above 'select' check, we know that the mask has the same number
1339     // of elements as the vector input operands. We also know that each constant
1340     // input element is used in its lane and can not be used more than once by
1341     // the shuffle. Therefore, replace the constant in the shuffle's constant
1342     // vector with the insertelt constant. Replace the constant in the shuffle's
1343     // mask vector with the insertelt index plus the length of the vector
1344     // (because the constant vector operand of a shuffle is always the 2nd
1345     // operand).
1346     ArrayRef<int> Mask = Shuf->getShuffleMask();
1347     unsigned NumElts = Mask.size();
1348     SmallVector<Constant *, 16> NewShufElts(NumElts);
1349     SmallVector<int, 16> NewMaskElts(NumElts);
1350     for (unsigned I = 0; I != NumElts; ++I) {
1351       if (I == InsEltIndex) {
1352         NewShufElts[I] = InsEltScalar;
1353         NewMaskElts[I] = InsEltIndex + NumElts;
1354       } else {
1355         // Copy over the existing values.
1356         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1357         NewMaskElts[I] = Mask[I];
1358       }
1359     }
1360 
1361     // Create new operands for a shuffle that includes the constant of the
1362     // original insertelt. The old shuffle will be dead now.
1363     return new ShuffleVectorInst(Shuf->getOperand(0),
1364                                  ConstantVector::get(NewShufElts), NewMaskElts);
1365   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1366     // Transform sequences of insertelements ops with constant data/indexes into
1367     // a single shuffle op.
1368     // Can not handle scalable type, the number of elements needed to create
1369     // shuffle mask is not a compile-time constant.
1370     if (isa<ScalableVectorType>(InsElt.getType()))
1371       return nullptr;
1372     unsigned NumElts =
1373         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1374 
1375     uint64_t InsertIdx[2];
1376     Constant *Val[2];
1377     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1378         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1379         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1380         !match(IEI->getOperand(1), m_Constant(Val[1])))
1381       return nullptr;
1382     SmallVector<Constant *, 16> Values(NumElts);
1383     SmallVector<int, 16> Mask(NumElts);
1384     auto ValI = std::begin(Val);
1385     // Generate new constant vector and mask.
1386     // We have 2 values/masks from the insertelements instructions. Insert them
1387     // into new value/mask vectors.
1388     for (uint64_t I : InsertIdx) {
1389       if (!Values[I]) {
1390         Values[I] = *ValI;
1391         Mask[I] = NumElts + I;
1392       }
1393       ++ValI;
1394     }
1395     // Remaining values are filled with 'undef' values.
1396     for (unsigned I = 0; I < NumElts; ++I) {
1397       if (!Values[I]) {
1398         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1399         Mask[I] = I;
1400       }
1401     }
1402     // Create new operands for a shuffle that includes the constant of the
1403     // original insertelt.
1404     return new ShuffleVectorInst(IEI->getOperand(0),
1405                                  ConstantVector::get(Values), Mask);
1406   }
1407   return nullptr;
1408 }
1409 
1410 /// If both the base vector and the inserted element are extended from the same
1411 /// type, do the insert element in the narrow source type followed by extend.
1412 /// TODO: This can be extended to include other cast opcodes, but particularly
1413 ///       if we create a wider insertelement, make sure codegen is not harmed.
1414 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1415                                  InstCombiner::BuilderTy &Builder) {
1416   // We are creating a vector extend. If the original vector extend has another
1417   // use, that would mean we end up with 2 vector extends, so avoid that.
1418   // TODO: We could ease the use-clause to "if at least one op has one use"
1419   //       (assuming that the source types match - see next TODO comment).
1420   Value *Vec = InsElt.getOperand(0);
1421   if (!Vec->hasOneUse())
1422     return nullptr;
1423 
1424   Value *Scalar = InsElt.getOperand(1);
1425   Value *X, *Y;
1426   CastInst::CastOps CastOpcode;
1427   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1428     CastOpcode = Instruction::FPExt;
1429   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1430     CastOpcode = Instruction::SExt;
1431   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1432     CastOpcode = Instruction::ZExt;
1433   else
1434     return nullptr;
1435 
1436   // TODO: We can allow mismatched types by creating an intermediate cast.
1437   if (X->getType()->getScalarType() != Y->getType())
1438     return nullptr;
1439 
1440   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1441   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1442   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1443 }
1444 
1445 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1446   Value *VecOp    = IE.getOperand(0);
1447   Value *ScalarOp = IE.getOperand(1);
1448   Value *IdxOp    = IE.getOperand(2);
1449 
1450   if (auto *V = SimplifyInsertElementInst(
1451           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1452     return replaceInstUsesWith(IE, V);
1453 
1454   // If the scalar is bitcast and inserted into undef, do the insert in the
1455   // source type followed by bitcast.
1456   // TODO: Generalize for insert into any constant, not just undef?
1457   Value *ScalarSrc;
1458   if (match(VecOp, m_Undef()) &&
1459       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1460       (ScalarSrc->getType()->isIntegerTy() ||
1461        ScalarSrc->getType()->isFloatingPointTy())) {
1462     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1463     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1464     Type *ScalarTy = ScalarSrc->getType();
1465     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1466     UndefValue *NewUndef = UndefValue::get(VecTy);
1467     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1468     return new BitCastInst(NewInsElt, IE.getType());
1469   }
1470 
1471   // If the vector and scalar are both bitcast from the same element type, do
1472   // the insert in that source type followed by bitcast.
1473   Value *VecSrc;
1474   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1475       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1476       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1477       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1478       cast<VectorType>(VecSrc->getType())->getElementType() ==
1479           ScalarSrc->getType()) {
1480     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1481     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1482     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1483     return new BitCastInst(NewInsElt, IE.getType());
1484   }
1485 
1486   // If the inserted element was extracted from some other fixed-length vector
1487   // and both indexes are valid constants, try to turn this into a shuffle.
1488   // Can not handle scalable vector type, the number of elements needed to
1489   // create shuffle mask is not a compile-time constant.
1490   uint64_t InsertedIdx, ExtractedIdx;
1491   Value *ExtVecOp;
1492   if (isa<FixedVectorType>(IE.getType()) &&
1493       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1494       match(ScalarOp,
1495             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1496       isa<FixedVectorType>(ExtVecOp->getType()) &&
1497       ExtractedIdx <
1498           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1499     // TODO: Looking at the user(s) to determine if this insert is a
1500     // fold-to-shuffle opportunity does not match the usual instcombine
1501     // constraints. We should decide if the transform is worthy based only
1502     // on this instruction and its operands, but that may not work currently.
1503     //
1504     // Here, we are trying to avoid creating shuffles before reaching
1505     // the end of a chain of extract-insert pairs. This is complicated because
1506     // we do not generally form arbitrary shuffle masks in instcombine
1507     // (because those may codegen poorly), but collectShuffleElements() does
1508     // exactly that.
1509     //
1510     // The rules for determining what is an acceptable target-independent
1511     // shuffle mask are fuzzy because they evolve based on the backend's
1512     // capabilities and real-world impact.
1513     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1514       if (!Insert.hasOneUse())
1515         return true;
1516       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1517       if (!InsertUser)
1518         return true;
1519       return false;
1520     };
1521 
1522     // Try to form a shuffle from a chain of extract-insert ops.
1523     if (isShuffleRootCandidate(IE)) {
1524       SmallVector<int, 16> Mask;
1525       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1526 
1527       // The proposed shuffle may be trivial, in which case we shouldn't
1528       // perform the combine.
1529       if (LR.first != &IE && LR.second != &IE) {
1530         // We now have a shuffle of LHS, RHS, Mask.
1531         if (LR.second == nullptr)
1532           LR.second = UndefValue::get(LR.first->getType());
1533         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1534       }
1535     }
1536   }
1537 
1538   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1539     unsigned VWidth = VecTy->getNumElements();
1540     APInt UndefElts(VWidth, 0);
1541     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1542     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1543       if (V != &IE)
1544         return replaceInstUsesWith(IE, V);
1545       return &IE;
1546     }
1547   }
1548 
1549   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1550     return Shuf;
1551 
1552   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1553     return NewInsElt;
1554 
1555   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1556     return Broadcast;
1557 
1558   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1559     return Splat;
1560 
1561   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1562     return IdentityShuf;
1563 
1564   if (Instruction *Ext = narrowInsElt(IE, Builder))
1565     return Ext;
1566 
1567   return nullptr;
1568 }
1569 
1570 /// Return true if we can evaluate the specified expression tree if the vector
1571 /// elements were shuffled in a different order.
1572 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1573                                 unsigned Depth = 5) {
1574   // We can always reorder the elements of a constant.
1575   if (isa<Constant>(V))
1576     return true;
1577 
1578   // We won't reorder vector arguments. No IPO here.
1579   Instruction *I = dyn_cast<Instruction>(V);
1580   if (!I) return false;
1581 
1582   // Two users may expect different orders of the elements. Don't try it.
1583   if (!I->hasOneUse())
1584     return false;
1585 
1586   if (Depth == 0) return false;
1587 
1588   switch (I->getOpcode()) {
1589     case Instruction::UDiv:
1590     case Instruction::SDiv:
1591     case Instruction::URem:
1592     case Instruction::SRem:
1593       // Propagating an undefined shuffle mask element to integer div/rem is not
1594       // allowed because those opcodes can create immediate undefined behavior
1595       // from an undefined element in an operand.
1596       if (llvm::is_contained(Mask, -1))
1597         return false;
1598       LLVM_FALLTHROUGH;
1599     case Instruction::Add:
1600     case Instruction::FAdd:
1601     case Instruction::Sub:
1602     case Instruction::FSub:
1603     case Instruction::Mul:
1604     case Instruction::FMul:
1605     case Instruction::FDiv:
1606     case Instruction::FRem:
1607     case Instruction::Shl:
1608     case Instruction::LShr:
1609     case Instruction::AShr:
1610     case Instruction::And:
1611     case Instruction::Or:
1612     case Instruction::Xor:
1613     case Instruction::ICmp:
1614     case Instruction::FCmp:
1615     case Instruction::Trunc:
1616     case Instruction::ZExt:
1617     case Instruction::SExt:
1618     case Instruction::FPToUI:
1619     case Instruction::FPToSI:
1620     case Instruction::UIToFP:
1621     case Instruction::SIToFP:
1622     case Instruction::FPTrunc:
1623     case Instruction::FPExt:
1624     case Instruction::GetElementPtr: {
1625       // Bail out if we would create longer vector ops. We could allow creating
1626       // longer vector ops, but that may result in more expensive codegen.
1627       Type *ITy = I->getType();
1628       if (ITy->isVectorTy() &&
1629           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1630         return false;
1631       for (Value *Operand : I->operands()) {
1632         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1633           return false;
1634       }
1635       return true;
1636     }
1637     case Instruction::InsertElement: {
1638       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1639       if (!CI) return false;
1640       int ElementNumber = CI->getLimitedValue();
1641 
1642       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1643       // can't put an element into multiple indices.
1644       bool SeenOnce = false;
1645       for (int i = 0, e = Mask.size(); i != e; ++i) {
1646         if (Mask[i] == ElementNumber) {
1647           if (SeenOnce)
1648             return false;
1649           SeenOnce = true;
1650         }
1651       }
1652       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1653     }
1654   }
1655   return false;
1656 }
1657 
1658 /// Rebuild a new instruction just like 'I' but with the new operands given.
1659 /// In the event of type mismatch, the type of the operands is correct.
1660 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1661   // We don't want to use the IRBuilder here because we want the replacement
1662   // instructions to appear next to 'I', not the builder's insertion point.
1663   switch (I->getOpcode()) {
1664     case Instruction::Add:
1665     case Instruction::FAdd:
1666     case Instruction::Sub:
1667     case Instruction::FSub:
1668     case Instruction::Mul:
1669     case Instruction::FMul:
1670     case Instruction::UDiv:
1671     case Instruction::SDiv:
1672     case Instruction::FDiv:
1673     case Instruction::URem:
1674     case Instruction::SRem:
1675     case Instruction::FRem:
1676     case Instruction::Shl:
1677     case Instruction::LShr:
1678     case Instruction::AShr:
1679     case Instruction::And:
1680     case Instruction::Or:
1681     case Instruction::Xor: {
1682       BinaryOperator *BO = cast<BinaryOperator>(I);
1683       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1684       BinaryOperator *New =
1685           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1686                                  NewOps[0], NewOps[1], "", BO);
1687       if (isa<OverflowingBinaryOperator>(BO)) {
1688         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1689         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1690       }
1691       if (isa<PossiblyExactOperator>(BO)) {
1692         New->setIsExact(BO->isExact());
1693       }
1694       if (isa<FPMathOperator>(BO))
1695         New->copyFastMathFlags(I);
1696       return New;
1697     }
1698     case Instruction::ICmp:
1699       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1700       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1701                           NewOps[0], NewOps[1]);
1702     case Instruction::FCmp:
1703       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1704       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1705                           NewOps[0], NewOps[1]);
1706     case Instruction::Trunc:
1707     case Instruction::ZExt:
1708     case Instruction::SExt:
1709     case Instruction::FPToUI:
1710     case Instruction::FPToSI:
1711     case Instruction::UIToFP:
1712     case Instruction::SIToFP:
1713     case Instruction::FPTrunc:
1714     case Instruction::FPExt: {
1715       // It's possible that the mask has a different number of elements from
1716       // the original cast. We recompute the destination type to match the mask.
1717       Type *DestTy = VectorType::get(
1718           I->getType()->getScalarType(),
1719           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1720       assert(NewOps.size() == 1 && "cast with #ops != 1");
1721       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1722                               "", I);
1723     }
1724     case Instruction::GetElementPtr: {
1725       Value *Ptr = NewOps[0];
1726       ArrayRef<Value*> Idx = NewOps.slice(1);
1727       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1728           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1729       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1730       return GEP;
1731     }
1732   }
1733   llvm_unreachable("failed to rebuild vector instructions");
1734 }
1735 
1736 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1737   // Mask.size() does not need to be equal to the number of vector elements.
1738 
1739   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1740   Type *EltTy = V->getType()->getScalarType();
1741   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1742   if (match(V, m_Undef()))
1743     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1744 
1745   if (isa<ConstantAggregateZero>(V))
1746     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1747 
1748   if (Constant *C = dyn_cast<Constant>(V))
1749     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1750                                           Mask);
1751 
1752   Instruction *I = cast<Instruction>(V);
1753   switch (I->getOpcode()) {
1754     case Instruction::Add:
1755     case Instruction::FAdd:
1756     case Instruction::Sub:
1757     case Instruction::FSub:
1758     case Instruction::Mul:
1759     case Instruction::FMul:
1760     case Instruction::UDiv:
1761     case Instruction::SDiv:
1762     case Instruction::FDiv:
1763     case Instruction::URem:
1764     case Instruction::SRem:
1765     case Instruction::FRem:
1766     case Instruction::Shl:
1767     case Instruction::LShr:
1768     case Instruction::AShr:
1769     case Instruction::And:
1770     case Instruction::Or:
1771     case Instruction::Xor:
1772     case Instruction::ICmp:
1773     case Instruction::FCmp:
1774     case Instruction::Trunc:
1775     case Instruction::ZExt:
1776     case Instruction::SExt:
1777     case Instruction::FPToUI:
1778     case Instruction::FPToSI:
1779     case Instruction::UIToFP:
1780     case Instruction::SIToFP:
1781     case Instruction::FPTrunc:
1782     case Instruction::FPExt:
1783     case Instruction::Select:
1784     case Instruction::GetElementPtr: {
1785       SmallVector<Value*, 8> NewOps;
1786       bool NeedsRebuild =
1787           (Mask.size() !=
1788            cast<FixedVectorType>(I->getType())->getNumElements());
1789       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1790         Value *V;
1791         // Recursively call evaluateInDifferentElementOrder on vector arguments
1792         // as well. E.g. GetElementPtr may have scalar operands even if the
1793         // return value is a vector, so we need to examine the operand type.
1794         if (I->getOperand(i)->getType()->isVectorTy())
1795           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1796         else
1797           V = I->getOperand(i);
1798         NewOps.push_back(V);
1799         NeedsRebuild |= (V != I->getOperand(i));
1800       }
1801       if (NeedsRebuild) {
1802         return buildNew(I, NewOps);
1803       }
1804       return I;
1805     }
1806     case Instruction::InsertElement: {
1807       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1808 
1809       // The insertelement was inserting at Element. Figure out which element
1810       // that becomes after shuffling. The answer is guaranteed to be unique
1811       // by CanEvaluateShuffled.
1812       bool Found = false;
1813       int Index = 0;
1814       for (int e = Mask.size(); Index != e; ++Index) {
1815         if (Mask[Index] == Element) {
1816           Found = true;
1817           break;
1818         }
1819       }
1820 
1821       // If element is not in Mask, no need to handle the operand 1 (element to
1822       // be inserted). Just evaluate values in operand 0 according to Mask.
1823       if (!Found)
1824         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1825 
1826       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1827       return InsertElementInst::Create(V, I->getOperand(1),
1828                                        ConstantInt::get(I32Ty, Index), "", I);
1829     }
1830   }
1831   llvm_unreachable("failed to reorder elements of vector instruction!");
1832 }
1833 
1834 // Returns true if the shuffle is extracting a contiguous range of values from
1835 // LHS, for example:
1836 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1837 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1838 //   Shuffles to:  |EE|FF|GG|HH|
1839 //                 +--+--+--+--+
1840 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1841                                        ArrayRef<int> Mask) {
1842   unsigned LHSElems =
1843       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1844   unsigned MaskElems = Mask.size();
1845   unsigned BegIdx = Mask.front();
1846   unsigned EndIdx = Mask.back();
1847   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1848     return false;
1849   for (unsigned I = 0; I != MaskElems; ++I)
1850     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1851       return false;
1852   return true;
1853 }
1854 
1855 /// These are the ingredients in an alternate form binary operator as described
1856 /// below.
1857 struct BinopElts {
1858   BinaryOperator::BinaryOps Opcode;
1859   Value *Op0;
1860   Value *Op1;
1861   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1862             Value *V0 = nullptr, Value *V1 = nullptr) :
1863       Opcode(Opc), Op0(V0), Op1(V1) {}
1864   operator bool() const { return Opcode != 0; }
1865 };
1866 
1867 /// Binops may be transformed into binops with different opcodes and operands.
1868 /// Reverse the usual canonicalization to enable folds with the non-canonical
1869 /// form of the binop. If a transform is possible, return the elements of the
1870 /// new binop. If not, return invalid elements.
1871 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1872   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1873   Type *Ty = BO->getType();
1874   switch (BO->getOpcode()) {
1875     case Instruction::Shl: {
1876       // shl X, C --> mul X, (1 << C)
1877       Constant *C;
1878       if (match(BO1, m_Constant(C))) {
1879         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1880         return { Instruction::Mul, BO0, ShlOne };
1881       }
1882       break;
1883     }
1884     case Instruction::Or: {
1885       // or X, C --> add X, C (when X and C have no common bits set)
1886       const APInt *C;
1887       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1888         return { Instruction::Add, BO0, BO1 };
1889       break;
1890     }
1891     default:
1892       break;
1893   }
1894   return {};
1895 }
1896 
1897 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1898   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1899 
1900   // Are we shuffling together some value and that same value after it has been
1901   // modified by a binop with a constant?
1902   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1903   Constant *C;
1904   bool Op0IsBinop;
1905   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1906     Op0IsBinop = true;
1907   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1908     Op0IsBinop = false;
1909   else
1910     return nullptr;
1911 
1912   // The identity constant for a binop leaves a variable operand unchanged. For
1913   // a vector, this is a splat of something like 0, -1, or 1.
1914   // If there's no identity constant for this binop, we're done.
1915   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1916   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1917   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1918   if (!IdC)
1919     return nullptr;
1920 
1921   // Shuffle identity constants into the lanes that return the original value.
1922   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1923   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1924   // The existing binop constant vector remains in the same operand position.
1925   ArrayRef<int> Mask = Shuf.getShuffleMask();
1926   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1927                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1928 
1929   bool MightCreatePoisonOrUB =
1930       is_contained(Mask, UndefMaskElem) &&
1931       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1932   if (MightCreatePoisonOrUB)
1933     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1934 
1935   // shuf (bop X, C), X, M --> bop X, C'
1936   // shuf X, (bop X, C), M --> bop X, C'
1937   Value *X = Op0IsBinop ? Op1 : Op0;
1938   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1939   NewBO->copyIRFlags(BO);
1940 
1941   // An undef shuffle mask element may propagate as an undef constant element in
1942   // the new binop. That would produce poison where the original code might not.
1943   // If we already made a safe constant, then there's no danger.
1944   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1945     NewBO->dropPoisonGeneratingFlags();
1946   return NewBO;
1947 }
1948 
1949 /// If we have an insert of a scalar to a non-zero element of an undefined
1950 /// vector and then shuffle that value, that's the same as inserting to the zero
1951 /// element and shuffling. Splatting from the zero element is recognized as the
1952 /// canonical form of splat.
1953 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1954                                             InstCombiner::BuilderTy &Builder) {
1955   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1956   ArrayRef<int> Mask = Shuf.getShuffleMask();
1957   Value *X;
1958   uint64_t IndexC;
1959 
1960   // Match a shuffle that is a splat to a non-zero element.
1961   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1962                                        m_ConstantInt(IndexC)))) ||
1963       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1964     return nullptr;
1965 
1966   // Insert into element 0 of an undef vector.
1967   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1968   Constant *Zero = Builder.getInt32(0);
1969   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1970 
1971   // Splat from element 0. Any mask element that is undefined remains undefined.
1972   // For example:
1973   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1974   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1975   unsigned NumMaskElts =
1976       cast<FixedVectorType>(Shuf.getType())->getNumElements();
1977   SmallVector<int, 16> NewMask(NumMaskElts, 0);
1978   for (unsigned i = 0; i != NumMaskElts; ++i)
1979     if (Mask[i] == UndefMaskElem)
1980       NewMask[i] = Mask[i];
1981 
1982   return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1983 }
1984 
1985 /// Try to fold shuffles that are the equivalent of a vector select.
1986 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1987                                       InstCombiner::BuilderTy &Builder,
1988                                       const DataLayout &DL) {
1989   if (!Shuf.isSelect())
1990     return nullptr;
1991 
1992   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1993   // Commuting undef to operand 0 conflicts with another canonicalization.
1994   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
1995   if (!match(Shuf.getOperand(1), m_Undef()) &&
1996       Shuf.getMaskValue(0) >= (int)NumElts) {
1997     // TODO: Can we assert that both operands of a shuffle-select are not undef
1998     // (otherwise, it would have been folded by instsimplify?
1999     Shuf.commute();
2000     return &Shuf;
2001   }
2002 
2003   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
2004     return I;
2005 
2006   BinaryOperator *B0, *B1;
2007   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2008       !match(Shuf.getOperand(1), m_BinOp(B1)))
2009     return nullptr;
2010 
2011   Value *X, *Y;
2012   Constant *C0, *C1;
2013   bool ConstantsAreOp1;
2014   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
2015       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
2016     ConstantsAreOp1 = true;
2017   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2018            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2019     ConstantsAreOp1 = false;
2020   else
2021     return nullptr;
2022 
2023   // We need matching binops to fold the lanes together.
2024   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2025   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2026   bool DropNSW = false;
2027   if (ConstantsAreOp1 && Opc0 != Opc1) {
2028     // TODO: We drop "nsw" if shift is converted into multiply because it may
2029     // not be correct when the shift amount is BitWidth - 1. We could examine
2030     // each vector element to determine if it is safe to keep that flag.
2031     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2032       DropNSW = true;
2033     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2034       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2035       Opc0 = AltB0.Opcode;
2036       C0 = cast<Constant>(AltB0.Op1);
2037     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2038       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2039       Opc1 = AltB1.Opcode;
2040       C1 = cast<Constant>(AltB1.Op1);
2041     }
2042   }
2043 
2044   if (Opc0 != Opc1)
2045     return nullptr;
2046 
2047   // The opcodes must be the same. Use a new name to make that clear.
2048   BinaryOperator::BinaryOps BOpc = Opc0;
2049 
2050   // Select the constant elements needed for the single binop.
2051   ArrayRef<int> Mask = Shuf.getShuffleMask();
2052   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2053 
2054   // We are moving a binop after a shuffle. When a shuffle has an undefined
2055   // mask element, the result is undefined, but it is not poison or undefined
2056   // behavior. That is not necessarily true for div/rem/shift.
2057   bool MightCreatePoisonOrUB =
2058       is_contained(Mask, UndefMaskElem) &&
2059       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2060   if (MightCreatePoisonOrUB)
2061     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2062                                                        ConstantsAreOp1);
2063 
2064   Value *V;
2065   if (X == Y) {
2066     // Remove a binop and the shuffle by rearranging the constant:
2067     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2068     // shuffle (op C0, V), (op C1, V), M --> op C', V
2069     V = X;
2070   } else {
2071     // If there are 2 different variable operands, we must create a new shuffle
2072     // (select) first, so check uses to ensure that we don't end up with more
2073     // instructions than we started with.
2074     if (!B0->hasOneUse() && !B1->hasOneUse())
2075       return nullptr;
2076 
2077     // If we use the original shuffle mask and op1 is *variable*, we would be
2078     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2079     // poison. We do not have to guard against UB when *constants* are op1
2080     // because safe constants guarantee that we do not overflow sdiv/srem (and
2081     // there's no danger for other opcodes).
2082     // TODO: To allow this case, create a new shuffle mask with no undefs.
2083     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2084       return nullptr;
2085 
2086     // Note: In general, we do not create new shuffles in InstCombine because we
2087     // do not know if a target can lower an arbitrary shuffle optimally. In this
2088     // case, the shuffle uses the existing mask, so there is no additional risk.
2089 
2090     // Select the variable vectors first, then perform the binop:
2091     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2092     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2093     V = Builder.CreateShuffleVector(X, Y, Mask);
2094   }
2095 
2096   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
2097                                          BinaryOperator::Create(BOpc, NewC, V);
2098 
2099   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2100   // 1. If we changed an opcode, poison conditions might have changed.
2101   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2102   //    where the original code did not. But if we already made a safe constant,
2103   //    then there's no danger.
2104   NewBO->copyIRFlags(B0);
2105   NewBO->andIRFlags(B1);
2106   if (DropNSW)
2107     NewBO->setHasNoSignedWrap(false);
2108   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2109     NewBO->dropPoisonGeneratingFlags();
2110   return NewBO;
2111 }
2112 
2113 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2114 /// Example (little endian):
2115 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2116 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2117                                      bool IsBigEndian) {
2118   // This must be a bitcasted shuffle of 1 vector integer operand.
2119   Type *DestType = Shuf.getType();
2120   Value *X;
2121   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2122       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2123     return nullptr;
2124 
2125   // The source type must have the same number of elements as the shuffle,
2126   // and the source element type must be larger than the shuffle element type.
2127   Type *SrcType = X->getType();
2128   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2129       cast<FixedVectorType>(SrcType)->getNumElements() !=
2130           cast<FixedVectorType>(DestType)->getNumElements() ||
2131       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2132     return nullptr;
2133 
2134   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2135          "Expected a shuffle that decreases length");
2136 
2137   // Last, check that the mask chooses the correct low bits for each narrow
2138   // element in the result.
2139   uint64_t TruncRatio =
2140       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2141   ArrayRef<int> Mask = Shuf.getShuffleMask();
2142   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2143     if (Mask[i] == UndefMaskElem)
2144       continue;
2145     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2146     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2147     if (Mask[i] != (int)LSBIndex)
2148       return nullptr;
2149   }
2150 
2151   return new TruncInst(X, DestType);
2152 }
2153 
2154 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2155 /// narrowing (concatenating with undef and extracting back to the original
2156 /// length). This allows replacing the wide select with a narrow select.
2157 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2158                                        InstCombiner::BuilderTy &Builder) {
2159   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2160   // of the 1st vector operand of a shuffle.
2161   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2162     return nullptr;
2163 
2164   // The vector being shuffled must be a vector select that we can eliminate.
2165   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2166   Value *Cond, *X, *Y;
2167   if (!match(Shuf.getOperand(0),
2168              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2169     return nullptr;
2170 
2171   // We need a narrow condition value. It must be extended with undef elements
2172   // and have the same number of elements as this shuffle.
2173   unsigned NarrowNumElts =
2174       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2175   Value *NarrowCond;
2176   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2177       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2178           NarrowNumElts ||
2179       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2180     return nullptr;
2181 
2182   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2183   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2184   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2185   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2186   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2187 }
2188 
2189 /// Try to fold an extract subvector operation.
2190 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2191   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2192   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2193     return nullptr;
2194 
2195   // Check if we are extracting all bits of an inserted scalar:
2196   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2197   Value *X;
2198   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2199       X->getType()->getPrimitiveSizeInBits() ==
2200           Shuf.getType()->getPrimitiveSizeInBits())
2201     return new BitCastInst(X, Shuf.getType());
2202 
2203   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2204   Value *Y;
2205   ArrayRef<int> Mask;
2206   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2207     return nullptr;
2208 
2209   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2210   // then combining may result in worse codegen.
2211   if (!Op0->hasOneUse())
2212     return nullptr;
2213 
2214   // We are extracting a subvector from a shuffle. Remove excess elements from
2215   // the 1st shuffle mask to eliminate the extract.
2216   //
2217   // This transform is conservatively limited to identity extracts because we do
2218   // not allow arbitrary shuffle mask creation as a target-independent transform
2219   // (because we can't guarantee that will lower efficiently).
2220   //
2221   // If the extracting shuffle has an undef mask element, it transfers to the
2222   // new shuffle mask. Otherwise, copy the original mask element. Example:
2223   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2224   //   shuf X, Y, <C0, undef, C2, undef>
2225   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2226   SmallVector<int, 16> NewMask(NumElts);
2227   assert(NumElts < Mask.size() &&
2228          "Identity with extract must have less elements than its inputs");
2229 
2230   for (unsigned i = 0; i != NumElts; ++i) {
2231     int ExtractMaskElt = Shuf.getMaskValue(i);
2232     int MaskElt = Mask[i];
2233     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2234   }
2235   return new ShuffleVectorInst(X, Y, NewMask);
2236 }
2237 
2238 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2239 /// operand with the operand of an insertelement.
2240 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2241                                           InstCombinerImpl &IC) {
2242   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2243   SmallVector<int, 16> Mask;
2244   Shuf.getShuffleMask(Mask);
2245 
2246   // The shuffle must not change vector sizes.
2247   // TODO: This restriction could be removed if the insert has only one use
2248   //       (because the transform would require a new length-changing shuffle).
2249   int NumElts = Mask.size();
2250   if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements()))
2251     return nullptr;
2252 
2253   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2254   // not be able to handle it there if the insertelement has >1 use.
2255   // If the shuffle has an insertelement operand but does not choose the
2256   // inserted scalar element from that value, then we can replace that shuffle
2257   // operand with the source vector of the insertelement.
2258   Value *X;
2259   uint64_t IdxC;
2260   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2261     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2262     if (!is_contained(Mask, (int)IdxC))
2263       return IC.replaceOperand(Shuf, 0, X);
2264   }
2265   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2266     // Offset the index constant by the vector width because we are checking for
2267     // accesses to the 2nd vector input of the shuffle.
2268     IdxC += NumElts;
2269     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2270     if (!is_contained(Mask, (int)IdxC))
2271       return IC.replaceOperand(Shuf, 1, X);
2272   }
2273 
2274   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2275   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2276     // We need an insertelement with a constant index.
2277     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2278                                m_ConstantInt(IndexC))))
2279       return false;
2280 
2281     // Test the shuffle mask to see if it splices the inserted scalar into the
2282     // operand 1 vector of the shuffle.
2283     int NewInsIndex = -1;
2284     for (int i = 0; i != NumElts; ++i) {
2285       // Ignore undef mask elements.
2286       if (Mask[i] == -1)
2287         continue;
2288 
2289       // The shuffle takes elements of operand 1 without lane changes.
2290       if (Mask[i] == NumElts + i)
2291         continue;
2292 
2293       // The shuffle must choose the inserted scalar exactly once.
2294       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2295         return false;
2296 
2297       // The shuffle is placing the inserted scalar into element i.
2298       NewInsIndex = i;
2299     }
2300 
2301     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2302 
2303     // Index is updated to the potentially translated insertion lane.
2304     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2305     return true;
2306   };
2307 
2308   // If the shuffle is unnecessary, insert the scalar operand directly into
2309   // operand 1 of the shuffle. Example:
2310   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2311   Value *Scalar;
2312   ConstantInt *IndexC;
2313   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2314     return InsertElementInst::Create(V1, Scalar, IndexC);
2315 
2316   // Try again after commuting shuffle. Example:
2317   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2318   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2319   std::swap(V0, V1);
2320   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2321   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2322     return InsertElementInst::Create(V1, Scalar, IndexC);
2323 
2324   return nullptr;
2325 }
2326 
2327 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2328   // Match the operands as identity with padding (also known as concatenation
2329   // with undef) shuffles of the same source type. The backend is expected to
2330   // recreate these concatenations from a shuffle of narrow operands.
2331   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2332   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2333   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2334       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2335     return nullptr;
2336 
2337   // We limit this transform to power-of-2 types because we expect that the
2338   // backend can convert the simplified IR patterns to identical nodes as the
2339   // original IR.
2340   // TODO: If we can verify the same behavior for arbitrary types, the
2341   //       power-of-2 checks can be removed.
2342   Value *X = Shuffle0->getOperand(0);
2343   Value *Y = Shuffle1->getOperand(0);
2344   if (X->getType() != Y->getType() ||
2345       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2346       !isPowerOf2_32(
2347           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2348       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2349       match(X, m_Undef()) || match(Y, m_Undef()))
2350     return nullptr;
2351   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2352          match(Shuffle1->getOperand(1), m_Undef()) &&
2353          "Unexpected operand for identity shuffle");
2354 
2355   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2356   // operands directly by adjusting the shuffle mask to account for the narrower
2357   // types:
2358   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2359   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2360   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2361   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2362 
2363   ArrayRef<int> Mask = Shuf.getShuffleMask();
2364   SmallVector<int, 16> NewMask(Mask.size(), -1);
2365   for (int i = 0, e = Mask.size(); i != e; ++i) {
2366     if (Mask[i] == -1)
2367       continue;
2368 
2369     // If this shuffle is choosing an undef element from 1 of the sources, that
2370     // element is undef.
2371     if (Mask[i] < WideElts) {
2372       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2373         continue;
2374     } else {
2375       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2376         continue;
2377     }
2378 
2379     // If this shuffle is choosing from the 1st narrow op, the mask element is
2380     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2381     // element is offset down to adjust for the narrow vector widths.
2382     if (Mask[i] < WideElts) {
2383       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2384       NewMask[i] = Mask[i];
2385     } else {
2386       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2387       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2388     }
2389   }
2390   return new ShuffleVectorInst(X, Y, NewMask);
2391 }
2392 
2393 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2394   Value *LHS = SVI.getOperand(0);
2395   Value *RHS = SVI.getOperand(1);
2396   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2397   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2398                                           SVI.getType(), ShufQuery))
2399     return replaceInstUsesWith(SVI, V);
2400 
2401   // Bail out for scalable vectors
2402   if (isa<ScalableVectorType>(LHS->getType()))
2403     return nullptr;
2404 
2405   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2406   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2407 
2408   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2409   //
2410   // if X and Y are of the same (vector) type, and the element size is not
2411   // changed by the bitcasts, we can distribute the bitcasts through the
2412   // shuffle, hopefully reducing the number of instructions. We make sure that
2413   // at least one bitcast only has one use, so we don't *increase* the number of
2414   // instructions here.
2415   Value *X, *Y;
2416   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2417       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2418       X->getType()->getScalarSizeInBits() ==
2419           SVI.getType()->getScalarSizeInBits() &&
2420       (LHS->hasOneUse() || RHS->hasOneUse())) {
2421     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2422                                            SVI.getName() + ".uncasted");
2423     return new BitCastInst(V, SVI.getType());
2424   }
2425 
2426   ArrayRef<int> Mask = SVI.getShuffleMask();
2427   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2428 
2429   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2430   // simulated shuffle can simplify, then this shuffle is unnecessary:
2431   // shuf (bitcast X), undef, Mask --> bitcast X'
2432   // TODO: This could be extended to allow length-changing shuffles.
2433   //       The transform might also be obsoleted if we allowed canonicalization
2434   //       of bitcasted shuffles.
2435   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2436       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2437     // Try to create a scaled mask constant.
2438     auto *XType = cast<FixedVectorType>(X->getType());
2439     unsigned XNumElts = XType->getNumElements();
2440     SmallVector<int, 16> ScaledMask;
2441     if (XNumElts >= VWidth) {
2442       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2443       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2444     } else {
2445       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2446       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2447         ScaledMask.clear();
2448     }
2449     if (!ScaledMask.empty()) {
2450       // If the shuffled source vector simplifies, cast that value to this
2451       // shuffle's type.
2452       if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2453                                               ScaledMask, XType, ShufQuery))
2454         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2455     }
2456   }
2457 
2458   // shuffle x, x, mask --> shuffle x, undef, mask'
2459   if (LHS == RHS) {
2460     assert(!match(RHS, m_Undef()) &&
2461            "Shuffle with 2 undef ops not simplified?");
2462     // Remap any references to RHS to use LHS.
2463     SmallVector<int, 16> Elts;
2464     for (unsigned i = 0; i != VWidth; ++i) {
2465       // Propagate undef elements or force mask to LHS.
2466       if (Mask[i] < 0)
2467         Elts.push_back(UndefMaskElem);
2468       else
2469         Elts.push_back(Mask[i] % LHSWidth);
2470     }
2471     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
2472   }
2473 
2474   // shuffle undef, x, mask --> shuffle x, undef, mask'
2475   if (match(LHS, m_Undef())) {
2476     SVI.commute();
2477     return &SVI;
2478   }
2479 
2480   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2481     return I;
2482 
2483   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2484     return I;
2485 
2486   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2487     return I;
2488 
2489   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2490     return I;
2491 
2492   APInt UndefElts(VWidth, 0);
2493   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2494   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2495     if (V != &SVI)
2496       return replaceInstUsesWith(SVI, V);
2497     return &SVI;
2498   }
2499 
2500   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2501     return I;
2502 
2503   // These transforms have the potential to lose undef knowledge, so they are
2504   // intentionally placed after SimplifyDemandedVectorElts().
2505   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2506     return I;
2507   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2508     return I;
2509 
2510   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2511     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2512     return replaceInstUsesWith(SVI, V);
2513   }
2514 
2515   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2516   // a non-vector type. We can instead bitcast the original vector followed by
2517   // an extract of the desired element:
2518   //
2519   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2520   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2521   //   %1 = bitcast <4 x i8> %sroa to i32
2522   // Becomes:
2523   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2524   //   %ext = extractelement <4 x i32> %bc, i32 0
2525   //
2526   // If the shuffle is extracting a contiguous range of values from the input
2527   // vector then each use which is a bitcast of the extracted size can be
2528   // replaced. This will work if the vector types are compatible, and the begin
2529   // index is aligned to a value in the casted vector type. If the begin index
2530   // isn't aligned then we can shuffle the original vector (keeping the same
2531   // vector type) before extracting.
2532   //
2533   // This code will bail out if the target type is fundamentally incompatible
2534   // with vectors of the source type.
2535   //
2536   // Example of <16 x i8>, target type i32:
2537   // Index range [4,8):         v-----------v Will work.
2538   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2539   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2540   //     <4 x i32>: |           |           |           |           |
2541   //                +-----------+-----------+-----------+-----------+
2542   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2543   // Target type i40:           ^--------------^ Won't work, bail.
2544   bool MadeChange = false;
2545   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2546     Value *V = LHS;
2547     unsigned MaskElems = Mask.size();
2548     auto *SrcTy = cast<FixedVectorType>(V->getType());
2549     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2550     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2551     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2552     unsigned SrcNumElems = SrcTy->getNumElements();
2553     SmallVector<BitCastInst *, 8> BCs;
2554     DenseMap<Type *, Value *> NewBCs;
2555     for (User *U : SVI.users())
2556       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2557         if (!BC->use_empty())
2558           // Only visit bitcasts that weren't previously handled.
2559           BCs.push_back(BC);
2560     for (BitCastInst *BC : BCs) {
2561       unsigned BegIdx = Mask.front();
2562       Type *TgtTy = BC->getDestTy();
2563       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2564       if (!TgtElemBitWidth)
2565         continue;
2566       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2567       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2568       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2569       if (!VecBitWidthsEqual)
2570         continue;
2571       if (!VectorType::isValidElementType(TgtTy))
2572         continue;
2573       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2574       if (!BegIsAligned) {
2575         // Shuffle the input so [0,NumElements) contains the output, and
2576         // [NumElems,SrcNumElems) is undef.
2577         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2578         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2579           ShuffleMask[I] = Idx;
2580         V = Builder.CreateShuffleVector(V, ShuffleMask,
2581                                         SVI.getName() + ".extract");
2582         BegIdx = 0;
2583       }
2584       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2585       assert(SrcElemsPerTgtElem);
2586       BegIdx /= SrcElemsPerTgtElem;
2587       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2588       auto *NewBC =
2589           BCAlreadyExists
2590               ? NewBCs[CastSrcTy]
2591               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2592       if (!BCAlreadyExists)
2593         NewBCs[CastSrcTy] = NewBC;
2594       auto *Ext = Builder.CreateExtractElement(
2595           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2596       // The shufflevector isn't being replaced: the bitcast that used it
2597       // is. InstCombine will visit the newly-created instructions.
2598       replaceInstUsesWith(*BC, Ext);
2599       MadeChange = true;
2600     }
2601   }
2602 
2603   // If the LHS is a shufflevector itself, see if we can combine it with this
2604   // one without producing an unusual shuffle.
2605   // Cases that might be simplified:
2606   // 1.
2607   // x1=shuffle(v1,v2,mask1)
2608   //  x=shuffle(x1,undef,mask)
2609   //        ==>
2610   //  x=shuffle(v1,undef,newMask)
2611   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2612   // 2.
2613   // x1=shuffle(v1,undef,mask1)
2614   //  x=shuffle(x1,x2,mask)
2615   // where v1.size() == mask1.size()
2616   //        ==>
2617   //  x=shuffle(v1,x2,newMask)
2618   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2619   // 3.
2620   // x2=shuffle(v2,undef,mask2)
2621   //  x=shuffle(x1,x2,mask)
2622   // where v2.size() == mask2.size()
2623   //        ==>
2624   //  x=shuffle(x1,v2,newMask)
2625   // newMask[i] = (mask[i] < x1.size())
2626   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2627   // 4.
2628   // x1=shuffle(v1,undef,mask1)
2629   // x2=shuffle(v2,undef,mask2)
2630   //  x=shuffle(x1,x2,mask)
2631   // where v1.size() == v2.size()
2632   //        ==>
2633   //  x=shuffle(v1,v2,newMask)
2634   // newMask[i] = (mask[i] < x1.size())
2635   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2636   //
2637   // Here we are really conservative:
2638   // we are absolutely afraid of producing a shuffle mask not in the input
2639   // program, because the code gen may not be smart enough to turn a merged
2640   // shuffle into two specific shuffles: it may produce worse code.  As such,
2641   // we only merge two shuffles if the result is either a splat or one of the
2642   // input shuffle masks.  In this case, merging the shuffles just removes
2643   // one instruction, which we know is safe.  This is good for things like
2644   // turning: (splat(splat)) -> splat, or
2645   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2646   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2647   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2648   if (LHSShuffle)
2649     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2650       LHSShuffle = nullptr;
2651   if (RHSShuffle)
2652     if (!match(RHSShuffle->getOperand(1), m_Undef()))
2653       RHSShuffle = nullptr;
2654   if (!LHSShuffle && !RHSShuffle)
2655     return MadeChange ? &SVI : nullptr;
2656 
2657   Value* LHSOp0 = nullptr;
2658   Value* LHSOp1 = nullptr;
2659   Value* RHSOp0 = nullptr;
2660   unsigned LHSOp0Width = 0;
2661   unsigned RHSOp0Width = 0;
2662   if (LHSShuffle) {
2663     LHSOp0 = LHSShuffle->getOperand(0);
2664     LHSOp1 = LHSShuffle->getOperand(1);
2665     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2666   }
2667   if (RHSShuffle) {
2668     RHSOp0 = RHSShuffle->getOperand(0);
2669     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2670   }
2671   Value* newLHS = LHS;
2672   Value* newRHS = RHS;
2673   if (LHSShuffle) {
2674     // case 1
2675     if (match(RHS, m_Undef())) {
2676       newLHS = LHSOp0;
2677       newRHS = LHSOp1;
2678     }
2679     // case 2 or 4
2680     else if (LHSOp0Width == LHSWidth) {
2681       newLHS = LHSOp0;
2682     }
2683   }
2684   // case 3 or 4
2685   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2686     newRHS = RHSOp0;
2687   }
2688   // case 4
2689   if (LHSOp0 == RHSOp0) {
2690     newLHS = LHSOp0;
2691     newRHS = nullptr;
2692   }
2693 
2694   if (newLHS == LHS && newRHS == RHS)
2695     return MadeChange ? &SVI : nullptr;
2696 
2697   ArrayRef<int> LHSMask;
2698   ArrayRef<int> RHSMask;
2699   if (newLHS != LHS)
2700     LHSMask = LHSShuffle->getShuffleMask();
2701   if (RHSShuffle && newRHS != RHS)
2702     RHSMask = RHSShuffle->getShuffleMask();
2703 
2704   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2705   SmallVector<int, 16> newMask;
2706   bool isSplat = true;
2707   int SplatElt = -1;
2708   // Create a new mask for the new ShuffleVectorInst so that the new
2709   // ShuffleVectorInst is equivalent to the original one.
2710   for (unsigned i = 0; i < VWidth; ++i) {
2711     int eltMask;
2712     if (Mask[i] < 0) {
2713       // This element is an undef value.
2714       eltMask = -1;
2715     } else if (Mask[i] < (int)LHSWidth) {
2716       // This element is from left hand side vector operand.
2717       //
2718       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2719       // new mask value for the element.
2720       if (newLHS != LHS) {
2721         eltMask = LHSMask[Mask[i]];
2722         // If the value selected is an undef value, explicitly specify it
2723         // with a -1 mask value.
2724         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2725           eltMask = -1;
2726       } else
2727         eltMask = Mask[i];
2728     } else {
2729       // This element is from right hand side vector operand
2730       //
2731       // If the value selected is an undef value, explicitly specify it
2732       // with a -1 mask value. (case 1)
2733       if (match(RHS, m_Undef()))
2734         eltMask = -1;
2735       // If RHS is going to be replaced (case 3 or 4), calculate the
2736       // new mask value for the element.
2737       else if (newRHS != RHS) {
2738         eltMask = RHSMask[Mask[i]-LHSWidth];
2739         // If the value selected is an undef value, explicitly specify it
2740         // with a -1 mask value.
2741         if (eltMask >= (int)RHSOp0Width) {
2742           assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2743                  "should have been check above");
2744           eltMask = -1;
2745         }
2746       } else
2747         eltMask = Mask[i]-LHSWidth;
2748 
2749       // If LHS's width is changed, shift the mask value accordingly.
2750       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2751       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2752       // If newRHS == newLHS, we want to remap any references from newRHS to
2753       // newLHS so that we can properly identify splats that may occur due to
2754       // obfuscation across the two vectors.
2755       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2756         eltMask += newLHSWidth;
2757     }
2758 
2759     // Check if this could still be a splat.
2760     if (eltMask >= 0) {
2761       if (SplatElt >= 0 && SplatElt != eltMask)
2762         isSplat = false;
2763       SplatElt = eltMask;
2764     }
2765 
2766     newMask.push_back(eltMask);
2767   }
2768 
2769   // If the result mask is equal to one of the original shuffle masks,
2770   // or is a splat, do the replacement.
2771   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2772     if (!newRHS)
2773       newRHS = UndefValue::get(newLHS->getType());
2774     return new ShuffleVectorInst(newLHS, newRHS, newMask);
2775   }
2776 
2777   return MadeChange ? &SVI : nullptr;
2778 }
2779