1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
257   Value *SrcVec = EI.getVectorOperand();
258   Value *Index = EI.getIndexOperand();
259   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
260                                             SQ.getWithInstruction(&EI)))
261     return replaceInstUsesWith(EI, V);
262 
263   // If extracting a specified index from the vector, see if we can recursively
264   // find a previously computed scalar that was inserted into the vector.
265   auto *IndexC = dyn_cast<ConstantInt>(Index);
266   if (IndexC) {
267     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
268 
269     // InstSimplify should handle cases where the index is invalid.
270     if (!IndexC->getValue().ule(NumElts))
271       return nullptr;
272 
273     // This instruction only demands the single element from the input vector.
274     // If the input vector has a single use, simplify it based on this use
275     // property.
276     if (SrcVec->hasOneUse() && NumElts != 1) {
277       APInt UndefElts(NumElts, 0);
278       APInt DemandedElts(NumElts, 0);
279       DemandedElts.setBit(IndexC->getZExtValue());
280       if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
281                                                 UndefElts)) {
282         EI.setOperand(0, V);
283         return &EI;
284       }
285     }
286 
287     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
288       return I;
289 
290     // If there's a vector PHI feeding a scalar use through this extractelement
291     // instruction, try to scalarize the PHI.
292     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
293       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
294         return ScalarPHI;
295   }
296 
297   BinaryOperator *BO;
298   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
299     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
300     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
301     Value *E0 = Builder.CreateExtractElement(X, Index);
302     Value *E1 = Builder.CreateExtractElement(Y, Index);
303     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
304   }
305 
306   Value *X, *Y;
307   CmpInst::Predicate Pred;
308   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
309       cheapToScalarize(SrcVec, IndexC)) {
310     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
311     Value *E0 = Builder.CreateExtractElement(X, Index);
312     Value *E1 = Builder.CreateExtractElement(Y, Index);
313     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
314   }
315 
316   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
317     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
318       // Extracting the inserted element?
319       if (IE->getOperand(2) == Index)
320         return replaceInstUsesWith(EI, IE->getOperand(1));
321       // If the inserted and extracted elements are constants, they must not
322       // be the same value, extract from the pre-inserted value instead.
323       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
324         Worklist.AddValue(SrcVec);
325         EI.setOperand(0, IE->getOperand(0));
326         return &EI;
327       }
328     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
329       // If this is extracting an element from a shufflevector, figure out where
330       // it came from and extract from the appropriate input element instead.
331       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
332         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
333         Value *Src;
334         unsigned LHSWidth =
335           SVI->getOperand(0)->getType()->getVectorNumElements();
336 
337         if (SrcIdx < 0)
338           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
339         if (SrcIdx < (int)LHSWidth)
340           Src = SVI->getOperand(0);
341         else {
342           SrcIdx -= LHSWidth;
343           Src = SVI->getOperand(1);
344         }
345         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
346         return ExtractElementInst::Create(Src,
347                                           ConstantInt::get(Int32Ty,
348                                                            SrcIdx, false));
349       }
350     } else if (auto *CI = dyn_cast<CastInst>(I)) {
351       // Canonicalize extractelement(cast) -> cast(extractelement).
352       // Bitcasts can change the number of vector elements, and they cost
353       // nothing.
354       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
355         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
356         Worklist.AddValue(EE);
357         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
358       }
359     }
360   }
361   return nullptr;
362 }
363 
364 /// If V is a shuffle of values that ONLY returns elements from either LHS or
365 /// RHS, return the shuffle mask and true. Otherwise, return false.
366 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
367                                          SmallVectorImpl<Constant*> &Mask) {
368   assert(LHS->getType() == RHS->getType() &&
369          "Invalid CollectSingleShuffleElements");
370   unsigned NumElts = V->getType()->getVectorNumElements();
371 
372   if (isa<UndefValue>(V)) {
373     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374     return true;
375   }
376 
377   if (V == LHS) {
378     for (unsigned i = 0; i != NumElts; ++i)
379       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
380     return true;
381   }
382 
383   if (V == RHS) {
384     for (unsigned i = 0; i != NumElts; ++i)
385       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
386                                       i+NumElts));
387     return true;
388   }
389 
390   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
391     // If this is an insert of an extract from some other vector, include it.
392     Value *VecOp    = IEI->getOperand(0);
393     Value *ScalarOp = IEI->getOperand(1);
394     Value *IdxOp    = IEI->getOperand(2);
395 
396     if (!isa<ConstantInt>(IdxOp))
397       return false;
398     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
399 
400     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
401       // We can handle this if the vector we are inserting into is
402       // transitively ok.
403       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
404         // If so, update the mask to reflect the inserted undef.
405         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
406         return true;
407       }
408     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
409       if (isa<ConstantInt>(EI->getOperand(1))) {
410         unsigned ExtractedIdx =
411         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
412         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
413 
414         // This must be extracting from either LHS or RHS.
415         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
416           // We can handle this if the vector we are inserting into is
417           // transitively ok.
418           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
419             // If so, update the mask to reflect the inserted value.
420             if (EI->getOperand(0) == LHS) {
421               Mask[InsertedIdx % NumElts] =
422               ConstantInt::get(Type::getInt32Ty(V->getContext()),
423                                ExtractedIdx);
424             } else {
425               assert(EI->getOperand(0) == RHS);
426               Mask[InsertedIdx % NumElts] =
427               ConstantInt::get(Type::getInt32Ty(V->getContext()),
428                                ExtractedIdx + NumLHSElts);
429             }
430             return true;
431           }
432         }
433       }
434     }
435   }
436 
437   return false;
438 }
439 
440 /// If we have insertion into a vector that is wider than the vector that we
441 /// are extracting from, try to widen the source vector to allow a single
442 /// shufflevector to replace one or more insert/extract pairs.
443 static void replaceExtractElements(InsertElementInst *InsElt,
444                                    ExtractElementInst *ExtElt,
445                                    InstCombiner &IC) {
446   VectorType *InsVecType = InsElt->getType();
447   VectorType *ExtVecType = ExtElt->getVectorOperandType();
448   unsigned NumInsElts = InsVecType->getVectorNumElements();
449   unsigned NumExtElts = ExtVecType->getVectorNumElements();
450 
451   // The inserted-to vector must be wider than the extracted-from vector.
452   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
453       NumExtElts >= NumInsElts)
454     return;
455 
456   // Create a shuffle mask to widen the extended-from vector using undefined
457   // values. The mask selects all of the values of the original vector followed
458   // by as many undefined values as needed to create a vector of the same length
459   // as the inserted-to vector.
460   SmallVector<Constant *, 16> ExtendMask;
461   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
462   for (unsigned i = 0; i < NumExtElts; ++i)
463     ExtendMask.push_back(ConstantInt::get(IntType, i));
464   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
465     ExtendMask.push_back(UndefValue::get(IntType));
466 
467   Value *ExtVecOp = ExtElt->getVectorOperand();
468   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
469   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
470                                    ? ExtVecOpInst->getParent()
471                                    : ExtElt->getParent();
472 
473   // TODO: This restriction matches the basic block check below when creating
474   // new extractelement instructions. If that limitation is removed, this one
475   // could also be removed. But for now, we just bail out to ensure that we
476   // will replace the extractelement instruction that is feeding our
477   // insertelement instruction. This allows the insertelement to then be
478   // replaced by a shufflevector. If the insertelement is not replaced, we can
479   // induce infinite looping because there's an optimization for extractelement
480   // that will delete our widening shuffle. This would trigger another attempt
481   // here to create that shuffle, and we spin forever.
482   if (InsertionBlock != InsElt->getParent())
483     return;
484 
485   // TODO: This restriction matches the check in visitInsertElementInst() and
486   // prevents an infinite loop caused by not turning the extract/insert pair
487   // into a shuffle. We really should not need either check, but we're lacking
488   // folds for shufflevectors because we're afraid to generate shuffle masks
489   // that the backend can't handle.
490   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
491     return;
492 
493   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
494                                         ConstantVector::get(ExtendMask));
495 
496   // Insert the new shuffle after the vector operand of the extract is defined
497   // (as long as it's not a PHI) or at the start of the basic block of the
498   // extract, so any subsequent extracts in the same basic block can use it.
499   // TODO: Insert before the earliest ExtractElementInst that is replaced.
500   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
501     WideVec->insertAfter(ExtVecOpInst);
502   else
503     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
504 
505   // Replace extracts from the original narrow vector with extracts from the new
506   // wide vector.
507   for (User *U : ExtVecOp->users()) {
508     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
509     if (!OldExt || OldExt->getParent() != WideVec->getParent())
510       continue;
511     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
512     NewExt->insertAfter(OldExt);
513     IC.replaceInstUsesWith(*OldExt, NewExt);
514   }
515 }
516 
517 /// We are building a shuffle to create V, which is a sequence of insertelement,
518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
519 /// not rely on the second vector source. Return a std::pair containing the
520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
521 /// parameter as required.
522 ///
523 /// Note: we intentionally don't try to fold earlier shuffles since they have
524 /// often been chosen carefully to be efficiently implementable on the target.
525 using ShuffleOps = std::pair<Value *, Value *>;
526 
527 static ShuffleOps collectShuffleElements(Value *V,
528                                          SmallVectorImpl<Constant *> &Mask,
529                                          Value *PermittedRHS,
530                                          InstCombiner &IC) {
531   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
532   unsigned NumElts = V->getType()->getVectorNumElements();
533 
534   if (isa<UndefValue>(V)) {
535     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
536     return std::make_pair(
537         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
538   }
539 
540   if (isa<ConstantAggregateZero>(V)) {
541     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
542     return std::make_pair(V, nullptr);
543   }
544 
545   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
546     // If this is an insert of an extract from some other vector, include it.
547     Value *VecOp    = IEI->getOperand(0);
548     Value *ScalarOp = IEI->getOperand(1);
549     Value *IdxOp    = IEI->getOperand(2);
550 
551     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
552       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
553         unsigned ExtractedIdx =
554           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
555         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
556 
557         // Either the extracted from or inserted into vector must be RHSVec,
558         // otherwise we'd end up with a shuffle of three inputs.
559         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
560           Value *RHS = EI->getOperand(0);
561           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
562           assert(LR.second == nullptr || LR.second == RHS);
563 
564           if (LR.first->getType() != RHS->getType()) {
565             // Although we are giving up for now, see if we can create extracts
566             // that match the inserts for another round of combining.
567             replaceExtractElements(IEI, EI, IC);
568 
569             // We tried our best, but we can't find anything compatible with RHS
570             // further up the chain. Return a trivial shuffle.
571             for (unsigned i = 0; i < NumElts; ++i)
572               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
573             return std::make_pair(V, nullptr);
574           }
575 
576           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
577           Mask[InsertedIdx % NumElts] =
578             ConstantInt::get(Type::getInt32Ty(V->getContext()),
579                              NumLHSElts+ExtractedIdx);
580           return std::make_pair(LR.first, RHS);
581         }
582 
583         if (VecOp == PermittedRHS) {
584           // We've gone as far as we can: anything on the other side of the
585           // extractelement will already have been converted into a shuffle.
586           unsigned NumLHSElts =
587               EI->getOperand(0)->getType()->getVectorNumElements();
588           for (unsigned i = 0; i != NumElts; ++i)
589             Mask.push_back(ConstantInt::get(
590                 Type::getInt32Ty(V->getContext()),
591                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
592           return std::make_pair(EI->getOperand(0), PermittedRHS);
593         }
594 
595         // If this insertelement is a chain that comes from exactly these two
596         // vectors, return the vector and the effective shuffle.
597         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
598             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
599                                          Mask))
600           return std::make_pair(EI->getOperand(0), PermittedRHS);
601       }
602     }
603   }
604 
605   // Otherwise, we can't do anything fancy. Return an identity vector.
606   for (unsigned i = 0; i != NumElts; ++i)
607     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
608   return std::make_pair(V, nullptr);
609 }
610 
611 /// Try to find redundant insertvalue instructions, like the following ones:
612 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
613 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
614 /// Here the second instruction inserts values at the same indices, as the
615 /// first one, making the first one redundant.
616 /// It should be transformed to:
617 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
618 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
619   bool IsRedundant = false;
620   ArrayRef<unsigned int> FirstIndices = I.getIndices();
621 
622   // If there is a chain of insertvalue instructions (each of them except the
623   // last one has only one use and it's another insertvalue insn from this
624   // chain), check if any of the 'children' uses the same indices as the first
625   // instruction. In this case, the first one is redundant.
626   Value *V = &I;
627   unsigned Depth = 0;
628   while (V->hasOneUse() && Depth < 10) {
629     User *U = V->user_back();
630     auto UserInsInst = dyn_cast<InsertValueInst>(U);
631     if (!UserInsInst || U->getOperand(0) != V)
632       break;
633     if (UserInsInst->getIndices() == FirstIndices) {
634       IsRedundant = true;
635       break;
636     }
637     V = UserInsInst;
638     Depth++;
639   }
640 
641   if (IsRedundant)
642     return replaceInstUsesWith(I, I.getOperand(0));
643   return nullptr;
644 }
645 
646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
647   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
648   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
649 
650   // A vector select does not change the size of the operands.
651   if (MaskSize != VecSize)
652     return false;
653 
654   // Each mask element must be undefined or choose a vector element from one of
655   // the source operands without crossing vector lanes.
656   for (int i = 0; i != MaskSize; ++i) {
657     int Elt = Shuf.getMaskValue(i);
658     if (Elt != -1 && Elt != i && Elt != i + VecSize)
659       return false;
660   }
661 
662   return true;
663 }
664 
665 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
666 // splat. That is:
667 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
668 // shufflevector(insertelt(X, %k, 0), undef, zero)
669 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
670   // We are interested in the last insert in a chain. So, if this insert
671   // has a single user, and that user is an insert, bail.
672   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
673     return nullptr;
674 
675   VectorType *VT = cast<VectorType>(InsElt.getType());
676   int NumElements = VT->getNumElements();
677 
678   // Do not try to do this for a one-element vector, since that's a nop,
679   // and will cause an inf-loop.
680   if (NumElements == 1)
681     return nullptr;
682 
683   Value *SplatVal = InsElt.getOperand(1);
684   InsertElementInst *CurrIE = &InsElt;
685   SmallVector<bool, 16> ElementPresent(NumElements, false);
686   InsertElementInst *FirstIE = nullptr;
687 
688   // Walk the chain backwards, keeping track of which indices we inserted into,
689   // until we hit something that isn't an insert of the splatted value.
690   while (CurrIE) {
691     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
692     if (!Idx || CurrIE->getOperand(1) != SplatVal)
693       return nullptr;
694 
695     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
696     // Check none of the intermediate steps have any additional uses, except
697     // for the root insertelement instruction, which can be re-used, if it
698     // inserts at position 0.
699     if (CurrIE != &InsElt &&
700         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
701       return nullptr;
702 
703     ElementPresent[Idx->getZExtValue()] = true;
704     FirstIE = CurrIE;
705     CurrIE = NextIE;
706   }
707 
708   // Make sure we've seen an insert into every element.
709   if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
710     return nullptr;
711 
712   // All right, create the insert + shuffle.
713   Instruction *InsertFirst;
714   if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
715     InsertFirst = FirstIE;
716   else
717     InsertFirst = InsertElementInst::Create(
718         UndefValue::get(VT), SplatVal,
719         ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0),
720         "", &InsElt);
721 
722   Constant *ZeroMask = ConstantAggregateZero::get(
723       VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
724 
725   return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
726 }
727 
728 /// If we have an insertelement instruction feeding into another insertelement
729 /// and the 2nd is inserting a constant into the vector, canonicalize that
730 /// constant insertion before the insertion of a variable:
731 ///
732 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
733 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
734 ///
735 /// This has the potential of eliminating the 2nd insertelement instruction
736 /// via constant folding of the scalar constant into a vector constant.
737 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
738                                      InstCombiner::BuilderTy &Builder) {
739   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
740   if (!InsElt1 || !InsElt1->hasOneUse())
741     return nullptr;
742 
743   Value *X, *Y;
744   Constant *ScalarC;
745   ConstantInt *IdxC1, *IdxC2;
746   if (match(InsElt1->getOperand(0), m_Value(X)) &&
747       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
748       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
749       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
750       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
751     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
752     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
753   }
754 
755   return nullptr;
756 }
757 
758 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
759 /// --> shufflevector X, CVec', Mask'
760 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
761   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
762   // Bail out if the parent has more than one use. In that case, we'd be
763   // replacing the insertelt with a shuffle, and that's not a clear win.
764   if (!Inst || !Inst->hasOneUse())
765     return nullptr;
766   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
767     // The shuffle must have a constant vector operand. The insertelt must have
768     // a constant scalar being inserted at a constant position in the vector.
769     Constant *ShufConstVec, *InsEltScalar;
770     uint64_t InsEltIndex;
771     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
772         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
773         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
774       return nullptr;
775 
776     // Adding an element to an arbitrary shuffle could be expensive, but a
777     // shuffle that selects elements from vectors without crossing lanes is
778     // assumed cheap.
779     // If we're just adding a constant into that shuffle, it will still be
780     // cheap.
781     if (!isShuffleEquivalentToSelect(*Shuf))
782       return nullptr;
783 
784     // From the above 'select' check, we know that the mask has the same number
785     // of elements as the vector input operands. We also know that each constant
786     // input element is used in its lane and can not be used more than once by
787     // the shuffle. Therefore, replace the constant in the shuffle's constant
788     // vector with the insertelt constant. Replace the constant in the shuffle's
789     // mask vector with the insertelt index plus the length of the vector
790     // (because the constant vector operand of a shuffle is always the 2nd
791     // operand).
792     Constant *Mask = Shuf->getMask();
793     unsigned NumElts = Mask->getType()->getVectorNumElements();
794     SmallVector<Constant *, 16> NewShufElts(NumElts);
795     SmallVector<Constant *, 16> NewMaskElts(NumElts);
796     for (unsigned I = 0; I != NumElts; ++I) {
797       if (I == InsEltIndex) {
798         NewShufElts[I] = InsEltScalar;
799         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
800         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
801       } else {
802         // Copy over the existing values.
803         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
804         NewMaskElts[I] = Mask->getAggregateElement(I);
805       }
806     }
807 
808     // Create new operands for a shuffle that includes the constant of the
809     // original insertelt. The old shuffle will be dead now.
810     return new ShuffleVectorInst(Shuf->getOperand(0),
811                                  ConstantVector::get(NewShufElts),
812                                  ConstantVector::get(NewMaskElts));
813   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
814     // Transform sequences of insertelements ops with constant data/indexes into
815     // a single shuffle op.
816     unsigned NumElts = InsElt.getType()->getNumElements();
817 
818     uint64_t InsertIdx[2];
819     Constant *Val[2];
820     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
821         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
822         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
823         !match(IEI->getOperand(1), m_Constant(Val[1])))
824       return nullptr;
825     SmallVector<Constant *, 16> Values(NumElts);
826     SmallVector<Constant *, 16> Mask(NumElts);
827     auto ValI = std::begin(Val);
828     // Generate new constant vector and mask.
829     // We have 2 values/masks from the insertelements instructions. Insert them
830     // into new value/mask vectors.
831     for (uint64_t I : InsertIdx) {
832       if (!Values[I]) {
833         assert(!Mask[I]);
834         Values[I] = *ValI;
835         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
836                                    NumElts + I);
837       }
838       ++ValI;
839     }
840     // Remaining values are filled with 'undef' values.
841     for (unsigned I = 0; I < NumElts; ++I) {
842       if (!Values[I]) {
843         assert(!Mask[I]);
844         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
845         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
846       }
847     }
848     // Create new operands for a shuffle that includes the constant of the
849     // original insertelt.
850     return new ShuffleVectorInst(IEI->getOperand(0),
851                                  ConstantVector::get(Values),
852                                  ConstantVector::get(Mask));
853   }
854   return nullptr;
855 }
856 
857 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
858   Value *VecOp    = IE.getOperand(0);
859   Value *ScalarOp = IE.getOperand(1);
860   Value *IdxOp    = IE.getOperand(2);
861 
862   if (auto *V = SimplifyInsertElementInst(
863           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
864     return replaceInstUsesWith(IE, V);
865 
866   // If the vector and scalar are both bitcast from the same element type, do
867   // the insert in that source type followed by bitcast.
868   Value *VecSrc, *ScalarSrc;
869   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
870       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
871       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
872       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
873       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
874     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
875     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
876     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
877     return new BitCastInst(NewInsElt, IE.getType());
878   }
879 
880   // If the inserted element was extracted from some other vector and both
881   // indexes are valid constants, try to turn this into a shuffle.
882   uint64_t InsertedIdx, ExtractedIdx;
883   Value *ExtVecOp;
884   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
885       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
886                                        m_ConstantInt(ExtractedIdx))) &&
887       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
888     // TODO: Looking at the user(s) to determine if this insert is a
889     // fold-to-shuffle opportunity does not match the usual instcombine
890     // constraints. We should decide if the transform is worthy based only
891     // on this instruction and its operands, but that may not work currently.
892     //
893     // Here, we are trying to avoid creating shuffles before reaching
894     // the end of a chain of extract-insert pairs. This is complicated because
895     // we do not generally form arbitrary shuffle masks in instcombine
896     // (because those may codegen poorly), but collectShuffleElements() does
897     // exactly that.
898     //
899     // The rules for determining what is an acceptable target-independent
900     // shuffle mask are fuzzy because they evolve based on the backend's
901     // capabilities and real-world impact.
902     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
903       if (!Insert.hasOneUse())
904         return true;
905       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
906       if (!InsertUser)
907         return true;
908       return false;
909     };
910 
911     // Try to form a shuffle from a chain of extract-insert ops.
912     if (isShuffleRootCandidate(IE)) {
913       SmallVector<Constant*, 16> Mask;
914       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
915 
916       // The proposed shuffle may be trivial, in which case we shouldn't
917       // perform the combine.
918       if (LR.first != &IE && LR.second != &IE) {
919         // We now have a shuffle of LHS, RHS, Mask.
920         if (LR.second == nullptr)
921           LR.second = UndefValue::get(LR.first->getType());
922         return new ShuffleVectorInst(LR.first, LR.second,
923                                      ConstantVector::get(Mask));
924       }
925     }
926   }
927 
928   unsigned VWidth = VecOp->getType()->getVectorNumElements();
929   APInt UndefElts(VWidth, 0);
930   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
931   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
932     if (V != &IE)
933       return replaceInstUsesWith(IE, V);
934     return &IE;
935   }
936 
937   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
938     return Shuf;
939 
940   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
941     return NewInsElt;
942 
943   // Turn a sequence of inserts that broadcasts a scalar into a single
944   // insert + shufflevector.
945   if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
946     return Broadcast;
947 
948   return nullptr;
949 }
950 
951 /// Return true if we can evaluate the specified expression tree if the vector
952 /// elements were shuffled in a different order.
953 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
954                                 unsigned Depth = 5) {
955   // We can always reorder the elements of a constant.
956   if (isa<Constant>(V))
957     return true;
958 
959   // We won't reorder vector arguments. No IPO here.
960   Instruction *I = dyn_cast<Instruction>(V);
961   if (!I) return false;
962 
963   // Two users may expect different orders of the elements. Don't try it.
964   if (!I->hasOneUse())
965     return false;
966 
967   if (Depth == 0) return false;
968 
969   switch (I->getOpcode()) {
970     case Instruction::Add:
971     case Instruction::FAdd:
972     case Instruction::Sub:
973     case Instruction::FSub:
974     case Instruction::Mul:
975     case Instruction::FMul:
976     case Instruction::UDiv:
977     case Instruction::SDiv:
978     case Instruction::FDiv:
979     case Instruction::URem:
980     case Instruction::SRem:
981     case Instruction::FRem:
982     case Instruction::Shl:
983     case Instruction::LShr:
984     case Instruction::AShr:
985     case Instruction::And:
986     case Instruction::Or:
987     case Instruction::Xor:
988     case Instruction::ICmp:
989     case Instruction::FCmp:
990     case Instruction::Trunc:
991     case Instruction::ZExt:
992     case Instruction::SExt:
993     case Instruction::FPToUI:
994     case Instruction::FPToSI:
995     case Instruction::UIToFP:
996     case Instruction::SIToFP:
997     case Instruction::FPTrunc:
998     case Instruction::FPExt:
999     case Instruction::GetElementPtr: {
1000       // Bail out if we would create longer vector ops. We could allow creating
1001       // longer vector ops, but that may result in more expensive codegen. We
1002       // would also need to limit the transform to avoid undefined behavior for
1003       // integer div/rem.
1004       Type *ITy = I->getType();
1005       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1006         return false;
1007       for (Value *Operand : I->operands()) {
1008         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1009           return false;
1010       }
1011       return true;
1012     }
1013     case Instruction::InsertElement: {
1014       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1015       if (!CI) return false;
1016       int ElementNumber = CI->getLimitedValue();
1017 
1018       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1019       // can't put an element into multiple indices.
1020       bool SeenOnce = false;
1021       for (int i = 0, e = Mask.size(); i != e; ++i) {
1022         if (Mask[i] == ElementNumber) {
1023           if (SeenOnce)
1024             return false;
1025           SeenOnce = true;
1026         }
1027       }
1028       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1029     }
1030   }
1031   return false;
1032 }
1033 
1034 /// Rebuild a new instruction just like 'I' but with the new operands given.
1035 /// In the event of type mismatch, the type of the operands is correct.
1036 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1037   // We don't want to use the IRBuilder here because we want the replacement
1038   // instructions to appear next to 'I', not the builder's insertion point.
1039   switch (I->getOpcode()) {
1040     case Instruction::Add:
1041     case Instruction::FAdd:
1042     case Instruction::Sub:
1043     case Instruction::FSub:
1044     case Instruction::Mul:
1045     case Instruction::FMul:
1046     case Instruction::UDiv:
1047     case Instruction::SDiv:
1048     case Instruction::FDiv:
1049     case Instruction::URem:
1050     case Instruction::SRem:
1051     case Instruction::FRem:
1052     case Instruction::Shl:
1053     case Instruction::LShr:
1054     case Instruction::AShr:
1055     case Instruction::And:
1056     case Instruction::Or:
1057     case Instruction::Xor: {
1058       BinaryOperator *BO = cast<BinaryOperator>(I);
1059       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1060       BinaryOperator *New =
1061           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1062                                  NewOps[0], NewOps[1], "", BO);
1063       if (isa<OverflowingBinaryOperator>(BO)) {
1064         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1065         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1066       }
1067       if (isa<PossiblyExactOperator>(BO)) {
1068         New->setIsExact(BO->isExact());
1069       }
1070       if (isa<FPMathOperator>(BO))
1071         New->copyFastMathFlags(I);
1072       return New;
1073     }
1074     case Instruction::ICmp:
1075       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1076       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1077                           NewOps[0], NewOps[1]);
1078     case Instruction::FCmp:
1079       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1080       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1081                           NewOps[0], NewOps[1]);
1082     case Instruction::Trunc:
1083     case Instruction::ZExt:
1084     case Instruction::SExt:
1085     case Instruction::FPToUI:
1086     case Instruction::FPToSI:
1087     case Instruction::UIToFP:
1088     case Instruction::SIToFP:
1089     case Instruction::FPTrunc:
1090     case Instruction::FPExt: {
1091       // It's possible that the mask has a different number of elements from
1092       // the original cast. We recompute the destination type to match the mask.
1093       Type *DestTy =
1094           VectorType::get(I->getType()->getScalarType(),
1095                           NewOps[0]->getType()->getVectorNumElements());
1096       assert(NewOps.size() == 1 && "cast with #ops != 1");
1097       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1098                               "", I);
1099     }
1100     case Instruction::GetElementPtr: {
1101       Value *Ptr = NewOps[0];
1102       ArrayRef<Value*> Idx = NewOps.slice(1);
1103       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1104           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1105       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1106       return GEP;
1107     }
1108   }
1109   llvm_unreachable("failed to rebuild vector instructions");
1110 }
1111 
1112 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1113   // Mask.size() does not need to be equal to the number of vector elements.
1114 
1115   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1116   Type *EltTy = V->getType()->getScalarType();
1117   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1118   if (isa<UndefValue>(V))
1119     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1120 
1121   if (isa<ConstantAggregateZero>(V))
1122     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1123 
1124   if (Constant *C = dyn_cast<Constant>(V)) {
1125     SmallVector<Constant *, 16> MaskValues;
1126     for (int i = 0, e = Mask.size(); i != e; ++i) {
1127       if (Mask[i] == -1)
1128         MaskValues.push_back(UndefValue::get(I32Ty));
1129       else
1130         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1131     }
1132     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1133                                           ConstantVector::get(MaskValues));
1134   }
1135 
1136   Instruction *I = cast<Instruction>(V);
1137   switch (I->getOpcode()) {
1138     case Instruction::Add:
1139     case Instruction::FAdd:
1140     case Instruction::Sub:
1141     case Instruction::FSub:
1142     case Instruction::Mul:
1143     case Instruction::FMul:
1144     case Instruction::UDiv:
1145     case Instruction::SDiv:
1146     case Instruction::FDiv:
1147     case Instruction::URem:
1148     case Instruction::SRem:
1149     case Instruction::FRem:
1150     case Instruction::Shl:
1151     case Instruction::LShr:
1152     case Instruction::AShr:
1153     case Instruction::And:
1154     case Instruction::Or:
1155     case Instruction::Xor:
1156     case Instruction::ICmp:
1157     case Instruction::FCmp:
1158     case Instruction::Trunc:
1159     case Instruction::ZExt:
1160     case Instruction::SExt:
1161     case Instruction::FPToUI:
1162     case Instruction::FPToSI:
1163     case Instruction::UIToFP:
1164     case Instruction::SIToFP:
1165     case Instruction::FPTrunc:
1166     case Instruction::FPExt:
1167     case Instruction::Select:
1168     case Instruction::GetElementPtr: {
1169       SmallVector<Value*, 8> NewOps;
1170       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1171       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1172         Value *V;
1173         // Recursively call evaluateInDifferentElementOrder on vector arguments
1174         // as well. E.g. GetElementPtr may have scalar operands even if the
1175         // return value is a vector, so we need to examine the operand type.
1176         if (I->getOperand(i)->getType()->isVectorTy())
1177           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1178         else
1179           V = I->getOperand(i);
1180         NewOps.push_back(V);
1181         NeedsRebuild |= (V != I->getOperand(i));
1182       }
1183       if (NeedsRebuild) {
1184         return buildNew(I, NewOps);
1185       }
1186       return I;
1187     }
1188     case Instruction::InsertElement: {
1189       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1190 
1191       // The insertelement was inserting at Element. Figure out which element
1192       // that becomes after shuffling. The answer is guaranteed to be unique
1193       // by CanEvaluateShuffled.
1194       bool Found = false;
1195       int Index = 0;
1196       for (int e = Mask.size(); Index != e; ++Index) {
1197         if (Mask[Index] == Element) {
1198           Found = true;
1199           break;
1200         }
1201       }
1202 
1203       // If element is not in Mask, no need to handle the operand 1 (element to
1204       // be inserted). Just evaluate values in operand 0 according to Mask.
1205       if (!Found)
1206         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1207 
1208       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1209       return InsertElementInst::Create(V, I->getOperand(1),
1210                                        ConstantInt::get(I32Ty, Index), "", I);
1211     }
1212   }
1213   llvm_unreachable("failed to reorder elements of vector instruction!");
1214 }
1215 
1216 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1217                                   bool &isLHSID, bool &isRHSID) {
1218   isLHSID = isRHSID = true;
1219 
1220   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1221     if (Mask[i] < 0) continue;  // Ignore undef values.
1222     // Is this an identity shuffle of the LHS value?
1223     isLHSID &= (Mask[i] == (int)i);
1224 
1225     // Is this an identity shuffle of the RHS value?
1226     isRHSID &= (Mask[i]-e == i);
1227   }
1228 }
1229 
1230 // Returns true if the shuffle is extracting a contiguous range of values from
1231 // LHS, for example:
1232 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1233 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1234 //   Shuffles to:  |EE|FF|GG|HH|
1235 //                 +--+--+--+--+
1236 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1237                                        SmallVector<int, 16> &Mask) {
1238   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1239   unsigned MaskElems = Mask.size();
1240   unsigned BegIdx = Mask.front();
1241   unsigned EndIdx = Mask.back();
1242   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1243     return false;
1244   for (unsigned I = 0; I != MaskElems; ++I)
1245     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1246       return false;
1247   return true;
1248 }
1249 
1250 /// These are the ingredients in an alternate form binary operator as described
1251 /// below.
1252 struct BinopElts {
1253   BinaryOperator::BinaryOps Opcode;
1254   Value *Op0;
1255   Value *Op1;
1256   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1257             Value *V0 = nullptr, Value *V1 = nullptr) :
1258       Opcode(Opc), Op0(V0), Op1(V1) {}
1259   operator bool() const { return Opcode != 0; }
1260 };
1261 
1262 /// Binops may be transformed into binops with different opcodes and operands.
1263 /// Reverse the usual canonicalization to enable folds with the non-canonical
1264 /// form of the binop. If a transform is possible, return the elements of the
1265 /// new binop. If not, return invalid elements.
1266 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1267   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1268   Type *Ty = BO->getType();
1269   switch (BO->getOpcode()) {
1270     case Instruction::Shl: {
1271       // shl X, C --> mul X, (1 << C)
1272       Constant *C;
1273       if (match(BO1, m_Constant(C))) {
1274         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1275         return { Instruction::Mul, BO0, ShlOne };
1276       }
1277       break;
1278     }
1279     case Instruction::Or: {
1280       // or X, C --> add X, C (when X and C have no common bits set)
1281       const APInt *C;
1282       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1283         return { Instruction::Add, BO0, BO1 };
1284       break;
1285     }
1286     default:
1287       break;
1288   }
1289   return {};
1290 }
1291 
1292 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1293   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1294 
1295   // Are we shuffling together some value and that same value after it has been
1296   // modified by a binop with a constant?
1297   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1298   Constant *C;
1299   bool Op0IsBinop;
1300   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1301     Op0IsBinop = true;
1302   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1303     Op0IsBinop = false;
1304   else
1305     return nullptr;
1306 
1307   // The identity constant for a binop leaves a variable operand unchanged. For
1308   // a vector, this is a splat of something like 0, -1, or 1.
1309   // If there's no identity constant for this binop, we're done.
1310   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1311   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1312   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1313   if (!IdC)
1314     return nullptr;
1315 
1316   // Shuffle identity constants into the lanes that return the original value.
1317   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1318   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1319   // The existing binop constant vector remains in the same operand position.
1320   Constant *Mask = Shuf.getMask();
1321   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1322                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1323 
1324   bool MightCreatePoisonOrUB =
1325       Mask->containsUndefElement() &&
1326       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1327   if (MightCreatePoisonOrUB)
1328     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1329 
1330   // shuf (bop X, C), X, M --> bop X, C'
1331   // shuf X, (bop X, C), M --> bop X, C'
1332   Value *X = Op0IsBinop ? Op1 : Op0;
1333   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1334   NewBO->copyIRFlags(BO);
1335 
1336   // An undef shuffle mask element may propagate as an undef constant element in
1337   // the new binop. That would produce poison where the original code might not.
1338   // If we already made a safe constant, then there's no danger.
1339   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1340     NewBO->dropPoisonGeneratingFlags();
1341   return NewBO;
1342 }
1343 
1344 /// Try to fold shuffles that are the equivalent of a vector select.
1345 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1346                                       InstCombiner::BuilderTy &Builder,
1347                                       const DataLayout &DL) {
1348   if (!Shuf.isSelect())
1349     return nullptr;
1350 
1351   // Canonicalize to choose from operand 0 first.
1352   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1353   if (Shuf.getMaskValue(0) >= (int)NumElts) {
1354     // TODO: Can we assert that both operands of a shuffle-select are not undef
1355     // (otherwise, it would have been folded by instsimplify?
1356     Shuf.commute();
1357     return &Shuf;
1358   }
1359 
1360   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1361     return I;
1362 
1363   BinaryOperator *B0, *B1;
1364   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1365       !match(Shuf.getOperand(1), m_BinOp(B1)))
1366     return nullptr;
1367 
1368   Value *X, *Y;
1369   Constant *C0, *C1;
1370   bool ConstantsAreOp1;
1371   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1372       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1373     ConstantsAreOp1 = true;
1374   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1375            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1376     ConstantsAreOp1 = false;
1377   else
1378     return nullptr;
1379 
1380   // We need matching binops to fold the lanes together.
1381   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1382   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1383   bool DropNSW = false;
1384   if (ConstantsAreOp1 && Opc0 != Opc1) {
1385     // TODO: We drop "nsw" if shift is converted into multiply because it may
1386     // not be correct when the shift amount is BitWidth - 1. We could examine
1387     // each vector element to determine if it is safe to keep that flag.
1388     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1389       DropNSW = true;
1390     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1391       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1392       Opc0 = AltB0.Opcode;
1393       C0 = cast<Constant>(AltB0.Op1);
1394     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1395       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1396       Opc1 = AltB1.Opcode;
1397       C1 = cast<Constant>(AltB1.Op1);
1398     }
1399   }
1400 
1401   if (Opc0 != Opc1)
1402     return nullptr;
1403 
1404   // The opcodes must be the same. Use a new name to make that clear.
1405   BinaryOperator::BinaryOps BOpc = Opc0;
1406 
1407   // Select the constant elements needed for the single binop.
1408   Constant *Mask = Shuf.getMask();
1409   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1410 
1411   // We are moving a binop after a shuffle. When a shuffle has an undefined
1412   // mask element, the result is undefined, but it is not poison or undefined
1413   // behavior. That is not necessarily true for div/rem/shift.
1414   bool MightCreatePoisonOrUB =
1415       Mask->containsUndefElement() &&
1416       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1417   if (MightCreatePoisonOrUB)
1418     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1419 
1420   Value *V;
1421   if (X == Y) {
1422     // Remove a binop and the shuffle by rearranging the constant:
1423     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1424     // shuffle (op C0, V), (op C1, V), M --> op C', V
1425     V = X;
1426   } else {
1427     // If there are 2 different variable operands, we must create a new shuffle
1428     // (select) first, so check uses to ensure that we don't end up with more
1429     // instructions than we started with.
1430     if (!B0->hasOneUse() && !B1->hasOneUse())
1431       return nullptr;
1432 
1433     // If we use the original shuffle mask and op1 is *variable*, we would be
1434     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1435     // poison. We do not have to guard against UB when *constants* are op1
1436     // because safe constants guarantee that we do not overflow sdiv/srem (and
1437     // there's no danger for other opcodes).
1438     // TODO: To allow this case, create a new shuffle mask with no undefs.
1439     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1440       return nullptr;
1441 
1442     // Note: In general, we do not create new shuffles in InstCombine because we
1443     // do not know if a target can lower an arbitrary shuffle optimally. In this
1444     // case, the shuffle uses the existing mask, so there is no additional risk.
1445 
1446     // Select the variable vectors first, then perform the binop:
1447     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1448     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1449     V = Builder.CreateShuffleVector(X, Y, Mask);
1450   }
1451 
1452   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1453                                          BinaryOperator::Create(BOpc, NewC, V);
1454 
1455   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1456   // 1. If we changed an opcode, poison conditions might have changed.
1457   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1458   //    where the original code did not. But if we already made a safe constant,
1459   //    then there's no danger.
1460   NewBO->copyIRFlags(B0);
1461   NewBO->andIRFlags(B1);
1462   if (DropNSW)
1463     NewBO->setHasNoSignedWrap(false);
1464   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1465     NewBO->dropPoisonGeneratingFlags();
1466   return NewBO;
1467 }
1468 
1469 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1470 /// narrowing (concatenating with undef and extracting back to the original
1471 /// length). This allows replacing the wide select with a narrow select.
1472 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1473                                        InstCombiner::BuilderTy &Builder) {
1474   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1475   // of the 1st vector operand of a shuffle.
1476   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1477     return nullptr;
1478 
1479   // The vector being shuffled must be a vector select that we can eliminate.
1480   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1481   Value *Cond, *X, *Y;
1482   if (!match(Shuf.getOperand(0),
1483              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1484     return nullptr;
1485 
1486   // We need a narrow condition value. It must be extended with undef elements
1487   // and have the same number of elements as this shuffle.
1488   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1489   Value *NarrowCond;
1490   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1491                                             m_Constant()))) ||
1492       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1493       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1494     return nullptr;
1495 
1496   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1497   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1498   Value *Undef = UndefValue::get(X->getType());
1499   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1500   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1501   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1502 }
1503 
1504 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1505 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1506   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1507   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1508     return nullptr;
1509 
1510   Value *X, *Y;
1511   Constant *Mask;
1512   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1513     return nullptr;
1514 
1515   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1516   // then combining may result in worse codegen.
1517   if (!Op0->hasOneUse())
1518     return nullptr;
1519 
1520   // We are extracting a subvector from a shuffle. Remove excess elements from
1521   // the 1st shuffle mask to eliminate the extract.
1522   //
1523   // This transform is conservatively limited to identity extracts because we do
1524   // not allow arbitrary shuffle mask creation as a target-independent transform
1525   // (because we can't guarantee that will lower efficiently).
1526   //
1527   // If the extracting shuffle has an undef mask element, it transfers to the
1528   // new shuffle mask. Otherwise, copy the original mask element. Example:
1529   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1530   //   shuf X, Y, <C0, undef, C2, undef>
1531   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1532   SmallVector<Constant *, 16> NewMask(NumElts);
1533   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1534          "Identity with extract must have less elements than its inputs");
1535 
1536   for (unsigned i = 0; i != NumElts; ++i) {
1537     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1538     Constant *MaskElt = Mask->getAggregateElement(i);
1539     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1540   }
1541   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1542 }
1543 
1544 /// Try to replace a shuffle with an insertelement.
1545 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1546   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1547   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1548 
1549   // The shuffle must not change vector sizes.
1550   // TODO: This restriction could be removed if the insert has only one use
1551   //       (because the transform would require a new length-changing shuffle).
1552   int NumElts = Mask.size();
1553   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1554     return nullptr;
1555 
1556   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1557   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1558     // We need an insertelement with a constant index.
1559     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1560                                    m_ConstantInt(IndexC))))
1561       return false;
1562 
1563     // Test the shuffle mask to see if it splices the inserted scalar into the
1564     // operand 1 vector of the shuffle.
1565     int NewInsIndex = -1;
1566     for (int i = 0; i != NumElts; ++i) {
1567       // Ignore undef mask elements.
1568       if (Mask[i] == -1)
1569         continue;
1570 
1571       // The shuffle takes elements of operand 1 without lane changes.
1572       if (Mask[i] == NumElts + i)
1573         continue;
1574 
1575       // The shuffle must choose the inserted scalar exactly once.
1576       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1577         return false;
1578 
1579       // The shuffle is placing the inserted scalar into element i.
1580       NewInsIndex = i;
1581     }
1582 
1583     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1584 
1585     // Index is updated to the potentially translated insertion lane.
1586     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1587     return true;
1588   };
1589 
1590   // If the shuffle is unnecessary, insert the scalar operand directly into
1591   // operand 1 of the shuffle. Example:
1592   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1593   Value *Scalar;
1594   ConstantInt *IndexC;
1595   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1596     return InsertElementInst::Create(V1, Scalar, IndexC);
1597 
1598   // Try again after commuting shuffle. Example:
1599   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1600   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1601   std::swap(V0, V1);
1602   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1603   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1604     return InsertElementInst::Create(V1, Scalar, IndexC);
1605 
1606   return nullptr;
1607 }
1608 
1609 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1610   // Match the operands as identity with padding (also known as concatenation
1611   // with undef) shuffles of the same source type. The backend is expected to
1612   // recreate these concatenations from a shuffle of narrow operands.
1613   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1614   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1615   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1616       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1617     return nullptr;
1618 
1619   // We limit this transform to power-of-2 types because we expect that the
1620   // backend can convert the simplified IR patterns to identical nodes as the
1621   // original IR.
1622   // TODO: If we can verify the same behavior for arbitrary types, the
1623   //       power-of-2 checks can be removed.
1624   Value *X = Shuffle0->getOperand(0);
1625   Value *Y = Shuffle1->getOperand(0);
1626   if (X->getType() != Y->getType() ||
1627       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1628       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1629       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1630       isa<UndefValue>(X) || isa<UndefValue>(Y))
1631     return nullptr;
1632   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1633          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1634          "Unexpected operand for identity shuffle");
1635 
1636   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1637   // operands directly by adjusting the shuffle mask to account for the narrower
1638   // types:
1639   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1640   int NarrowElts = X->getType()->getVectorNumElements();
1641   int WideElts = Shuffle0->getType()->getVectorNumElements();
1642   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1643 
1644   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1645   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1646   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1647   for (int i = 0, e = Mask.size(); i != e; ++i) {
1648     if (Mask[i] == -1)
1649       continue;
1650 
1651     // If this shuffle is choosing an undef element from 1 of the sources, that
1652     // element is undef.
1653     if (Mask[i] < WideElts) {
1654       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1655         continue;
1656     } else {
1657       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1658         continue;
1659     }
1660 
1661     // If this shuffle is choosing from the 1st narrow op, the mask element is
1662     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1663     // element is offset down to adjust for the narrow vector widths.
1664     if (Mask[i] < WideElts) {
1665       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1666       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1667     } else {
1668       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1669       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1670     }
1671   }
1672   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1673 }
1674 
1675 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1676   Value *LHS = SVI.getOperand(0);
1677   Value *RHS = SVI.getOperand(1);
1678   if (auto *V = SimplifyShuffleVectorInst(
1679           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1680     return replaceInstUsesWith(SVI, V);
1681 
1682   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1683   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1684   unsigned VWidth = SVI.getType()->getVectorNumElements();
1685   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1686   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1687   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1688   if (LHS == RHS || isa<UndefValue>(LHS)) {
1689     // Remap any references to RHS to use LHS.
1690     SmallVector<Constant*, 16> Elts;
1691     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1692       if (Mask[i] < 0) {
1693         Elts.push_back(UndefValue::get(Int32Ty));
1694         continue;
1695       }
1696 
1697       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1698           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1699         Mask[i] = -1;     // Turn into undef.
1700         Elts.push_back(UndefValue::get(Int32Ty));
1701       } else {
1702         Mask[i] = Mask[i] % e;  // Force to LHS.
1703         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1704       }
1705     }
1706     SVI.setOperand(0, SVI.getOperand(1));
1707     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1708     SVI.setOperand(2, ConstantVector::get(Elts));
1709     return &SVI;
1710   }
1711 
1712   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1713     return I;
1714 
1715   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1716     return I;
1717 
1718   APInt UndefElts(VWidth, 0);
1719   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1720   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1721     if (V != &SVI)
1722       return replaceInstUsesWith(SVI, V);
1723     return &SVI;
1724   }
1725 
1726   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1727     return I;
1728 
1729   // These transforms have the potential to lose undef knowledge, so they are
1730   // intentionally placed after SimplifyDemandedVectorElts().
1731   if (Instruction *I = foldShuffleWithInsert(SVI))
1732     return I;
1733   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1734     return I;
1735 
1736   if (VWidth == LHSWidth) {
1737     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1738     bool isLHSID, isRHSID;
1739     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1740 
1741     // Eliminate identity shuffles.
1742     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1743     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1744   }
1745 
1746   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1747     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1748     return replaceInstUsesWith(SVI, V);
1749   }
1750 
1751   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1752   // a non-vector type. We can instead bitcast the original vector followed by
1753   // an extract of the desired element:
1754   //
1755   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1756   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1757   //   %1 = bitcast <4 x i8> %sroa to i32
1758   // Becomes:
1759   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1760   //   %ext = extractelement <4 x i32> %bc, i32 0
1761   //
1762   // If the shuffle is extracting a contiguous range of values from the input
1763   // vector then each use which is a bitcast of the extracted size can be
1764   // replaced. This will work if the vector types are compatible, and the begin
1765   // index is aligned to a value in the casted vector type. If the begin index
1766   // isn't aligned then we can shuffle the original vector (keeping the same
1767   // vector type) before extracting.
1768   //
1769   // This code will bail out if the target type is fundamentally incompatible
1770   // with vectors of the source type.
1771   //
1772   // Example of <16 x i8>, target type i32:
1773   // Index range [4,8):         v-----------v Will work.
1774   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1775   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1776   //     <4 x i32>: |           |           |           |           |
1777   //                +-----------+-----------+-----------+-----------+
1778   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1779   // Target type i40:           ^--------------^ Won't work, bail.
1780   bool MadeChange = false;
1781   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1782     Value *V = LHS;
1783     unsigned MaskElems = Mask.size();
1784     VectorType *SrcTy = cast<VectorType>(V->getType());
1785     unsigned VecBitWidth = SrcTy->getBitWidth();
1786     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1787     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1788     unsigned SrcNumElems = SrcTy->getNumElements();
1789     SmallVector<BitCastInst *, 8> BCs;
1790     DenseMap<Type *, Value *> NewBCs;
1791     for (User *U : SVI.users())
1792       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1793         if (!BC->use_empty())
1794           // Only visit bitcasts that weren't previously handled.
1795           BCs.push_back(BC);
1796     for (BitCastInst *BC : BCs) {
1797       unsigned BegIdx = Mask.front();
1798       Type *TgtTy = BC->getDestTy();
1799       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1800       if (!TgtElemBitWidth)
1801         continue;
1802       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1803       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1804       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1805       if (!VecBitWidthsEqual)
1806         continue;
1807       if (!VectorType::isValidElementType(TgtTy))
1808         continue;
1809       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1810       if (!BegIsAligned) {
1811         // Shuffle the input so [0,NumElements) contains the output, and
1812         // [NumElems,SrcNumElems) is undef.
1813         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1814                                                 UndefValue::get(Int32Ty));
1815         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1816           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1817         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1818                                         ConstantVector::get(ShuffleMask),
1819                                         SVI.getName() + ".extract");
1820         BegIdx = 0;
1821       }
1822       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1823       assert(SrcElemsPerTgtElem);
1824       BegIdx /= SrcElemsPerTgtElem;
1825       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1826       auto *NewBC =
1827           BCAlreadyExists
1828               ? NewBCs[CastSrcTy]
1829               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1830       if (!BCAlreadyExists)
1831         NewBCs[CastSrcTy] = NewBC;
1832       auto *Ext = Builder.CreateExtractElement(
1833           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1834       // The shufflevector isn't being replaced: the bitcast that used it
1835       // is. InstCombine will visit the newly-created instructions.
1836       replaceInstUsesWith(*BC, Ext);
1837       MadeChange = true;
1838     }
1839   }
1840 
1841   // If the LHS is a shufflevector itself, see if we can combine it with this
1842   // one without producing an unusual shuffle.
1843   // Cases that might be simplified:
1844   // 1.
1845   // x1=shuffle(v1,v2,mask1)
1846   //  x=shuffle(x1,undef,mask)
1847   //        ==>
1848   //  x=shuffle(v1,undef,newMask)
1849   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1850   // 2.
1851   // x1=shuffle(v1,undef,mask1)
1852   //  x=shuffle(x1,x2,mask)
1853   // where v1.size() == mask1.size()
1854   //        ==>
1855   //  x=shuffle(v1,x2,newMask)
1856   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1857   // 3.
1858   // x2=shuffle(v2,undef,mask2)
1859   //  x=shuffle(x1,x2,mask)
1860   // where v2.size() == mask2.size()
1861   //        ==>
1862   //  x=shuffle(x1,v2,newMask)
1863   // newMask[i] = (mask[i] < x1.size())
1864   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1865   // 4.
1866   // x1=shuffle(v1,undef,mask1)
1867   // x2=shuffle(v2,undef,mask2)
1868   //  x=shuffle(x1,x2,mask)
1869   // where v1.size() == v2.size()
1870   //        ==>
1871   //  x=shuffle(v1,v2,newMask)
1872   // newMask[i] = (mask[i] < x1.size())
1873   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1874   //
1875   // Here we are really conservative:
1876   // we are absolutely afraid of producing a shuffle mask not in the input
1877   // program, because the code gen may not be smart enough to turn a merged
1878   // shuffle into two specific shuffles: it may produce worse code.  As such,
1879   // we only merge two shuffles if the result is either a splat or one of the
1880   // input shuffle masks.  In this case, merging the shuffles just removes
1881   // one instruction, which we know is safe.  This is good for things like
1882   // turning: (splat(splat)) -> splat, or
1883   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1884   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1885   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1886   if (LHSShuffle)
1887     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1888       LHSShuffle = nullptr;
1889   if (RHSShuffle)
1890     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1891       RHSShuffle = nullptr;
1892   if (!LHSShuffle && !RHSShuffle)
1893     return MadeChange ? &SVI : nullptr;
1894 
1895   Value* LHSOp0 = nullptr;
1896   Value* LHSOp1 = nullptr;
1897   Value* RHSOp0 = nullptr;
1898   unsigned LHSOp0Width = 0;
1899   unsigned RHSOp0Width = 0;
1900   if (LHSShuffle) {
1901     LHSOp0 = LHSShuffle->getOperand(0);
1902     LHSOp1 = LHSShuffle->getOperand(1);
1903     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1904   }
1905   if (RHSShuffle) {
1906     RHSOp0 = RHSShuffle->getOperand(0);
1907     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1908   }
1909   Value* newLHS = LHS;
1910   Value* newRHS = RHS;
1911   if (LHSShuffle) {
1912     // case 1
1913     if (isa<UndefValue>(RHS)) {
1914       newLHS = LHSOp0;
1915       newRHS = LHSOp1;
1916     }
1917     // case 2 or 4
1918     else if (LHSOp0Width == LHSWidth) {
1919       newLHS = LHSOp0;
1920     }
1921   }
1922   // case 3 or 4
1923   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1924     newRHS = RHSOp0;
1925   }
1926   // case 4
1927   if (LHSOp0 == RHSOp0) {
1928     newLHS = LHSOp0;
1929     newRHS = nullptr;
1930   }
1931 
1932   if (newLHS == LHS && newRHS == RHS)
1933     return MadeChange ? &SVI : nullptr;
1934 
1935   SmallVector<int, 16> LHSMask;
1936   SmallVector<int, 16> RHSMask;
1937   if (newLHS != LHS)
1938     LHSMask = LHSShuffle->getShuffleMask();
1939   if (RHSShuffle && newRHS != RHS)
1940     RHSMask = RHSShuffle->getShuffleMask();
1941 
1942   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1943   SmallVector<int, 16> newMask;
1944   bool isSplat = true;
1945   int SplatElt = -1;
1946   // Create a new mask for the new ShuffleVectorInst so that the new
1947   // ShuffleVectorInst is equivalent to the original one.
1948   for (unsigned i = 0; i < VWidth; ++i) {
1949     int eltMask;
1950     if (Mask[i] < 0) {
1951       // This element is an undef value.
1952       eltMask = -1;
1953     } else if (Mask[i] < (int)LHSWidth) {
1954       // This element is from left hand side vector operand.
1955       //
1956       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1957       // new mask value for the element.
1958       if (newLHS != LHS) {
1959         eltMask = LHSMask[Mask[i]];
1960         // If the value selected is an undef value, explicitly specify it
1961         // with a -1 mask value.
1962         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1963           eltMask = -1;
1964       } else
1965         eltMask = Mask[i];
1966     } else {
1967       // This element is from right hand side vector operand
1968       //
1969       // If the value selected is an undef value, explicitly specify it
1970       // with a -1 mask value. (case 1)
1971       if (isa<UndefValue>(RHS))
1972         eltMask = -1;
1973       // If RHS is going to be replaced (case 3 or 4), calculate the
1974       // new mask value for the element.
1975       else if (newRHS != RHS) {
1976         eltMask = RHSMask[Mask[i]-LHSWidth];
1977         // If the value selected is an undef value, explicitly specify it
1978         // with a -1 mask value.
1979         if (eltMask >= (int)RHSOp0Width) {
1980           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1981                  && "should have been check above");
1982           eltMask = -1;
1983         }
1984       } else
1985         eltMask = Mask[i]-LHSWidth;
1986 
1987       // If LHS's width is changed, shift the mask value accordingly.
1988       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
1989       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1990       // If newRHS == newLHS, we want to remap any references from newRHS to
1991       // newLHS so that we can properly identify splats that may occur due to
1992       // obfuscation across the two vectors.
1993       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1994         eltMask += newLHSWidth;
1995     }
1996 
1997     // Check if this could still be a splat.
1998     if (eltMask >= 0) {
1999       if (SplatElt >= 0 && SplatElt != eltMask)
2000         isSplat = false;
2001       SplatElt = eltMask;
2002     }
2003 
2004     newMask.push_back(eltMask);
2005   }
2006 
2007   // If the result mask is equal to one of the original shuffle masks,
2008   // or is a splat, do the replacement.
2009   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2010     SmallVector<Constant*, 16> Elts;
2011     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2012       if (newMask[i] < 0) {
2013         Elts.push_back(UndefValue::get(Int32Ty));
2014       } else {
2015         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2016       }
2017     }
2018     if (!newRHS)
2019       newRHS = UndefValue::get(newLHS->getType());
2020     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2021   }
2022 
2023   // If the result mask is an identity, replace uses of this instruction with
2024   // corresponding argument.
2025   bool isLHSID, isRHSID;
2026   recognizeIdentityMask(newMask, isLHSID, isRHSID);
2027   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
2028   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
2029 
2030   return MadeChange ? &SVI : nullptr;
2031 }
2032