1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/User.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <iterator> 40 #include <utility> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "instcombine" 46 47 /// Return true if the value is cheaper to scalarize than it is to leave as a 48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 49 /// one known element from a vector constant. 50 /// 51 /// FIXME: It's possible to create more instructions than previously existed. 52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 53 // If we can pick a scalar constant value out of a vector, that is free. 54 if (auto *C = dyn_cast<Constant>(V)) 55 return IsConstantExtractIndex || C->getSplatValue(); 56 57 // An insertelement to the same constant index as our extract will simplify 58 // to the scalar inserted element. An insertelement to a different constant 59 // index is irrelevant to our extract. 60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 61 return IsConstantExtractIndex; 62 63 if (match(V, m_OneUse(m_Load(m_Value())))) 64 return true; 65 66 Value *V0, *V1; 67 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 68 if (cheapToScalarize(V0, IsConstantExtractIndex) || 69 cheapToScalarize(V1, IsConstantExtractIndex)) 70 return true; 71 72 CmpInst::Predicate UnusedPred; 73 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 74 if (cheapToScalarize(V0, IsConstantExtractIndex) || 75 cheapToScalarize(V1, IsConstantExtractIndex)) 76 return true; 77 78 return false; 79 } 80 81 // If we have a PHI node with a vector type that is only used to feed 82 // itself and be an operand of extractelement at a constant location, 83 // try to replace the PHI of the vector type with a PHI of a scalar type. 84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 85 SmallVector<Instruction *, 2> Extracts; 86 // The users we want the PHI to have are: 87 // 1) The EI ExtractElement (we already know this) 88 // 2) Possibly more ExtractElements with the same index. 89 // 3) Another operand, which will feed back into the PHI. 90 Instruction *PHIUser = nullptr; 91 for (auto U : PN->users()) { 92 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 93 if (EI.getIndexOperand() == EU->getIndexOperand()) 94 Extracts.push_back(EU); 95 else 96 return nullptr; 97 } else if (!PHIUser) { 98 PHIUser = cast<Instruction>(U); 99 } else { 100 return nullptr; 101 } 102 } 103 104 if (!PHIUser) 105 return nullptr; 106 107 // Verify that this PHI user has one use, which is the PHI itself, 108 // and that it is a binary operation which is cheap to scalarize. 109 // otherwise return nullptr. 110 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 111 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 112 return nullptr; 113 114 // Create a scalar PHI node that will replace the vector PHI node 115 // just before the current PHI node. 116 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 117 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 118 // Scalarize each PHI operand. 119 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 120 Value *PHIInVal = PN->getIncomingValue(i); 121 BasicBlock *inBB = PN->getIncomingBlock(i); 122 Value *Elt = EI.getIndexOperand(); 123 // If the operand is the PHI induction variable: 124 if (PHIInVal == PHIUser) { 125 // Scalarize the binary operation. Its first operand is the 126 // scalar PHI, and the second operand is extracted from the other 127 // vector operand. 128 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 129 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 130 Value *Op = InsertNewInstWith( 131 ExtractElementInst::Create(B0->getOperand(opId), Elt, 132 B0->getOperand(opId)->getName() + ".Elt"), 133 *B0); 134 Value *newPHIUser = InsertNewInstWith( 135 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 136 scalarPHI, Op, B0), *B0); 137 scalarPHI->addIncoming(newPHIUser, inBB); 138 } else { 139 // Scalarize PHI input: 140 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 141 // Insert the new instruction into the predecessor basic block. 142 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 143 BasicBlock::iterator InsertPos; 144 if (pos && !isa<PHINode>(pos)) { 145 InsertPos = ++pos->getIterator(); 146 } else { 147 InsertPos = inBB->getFirstInsertionPt(); 148 } 149 150 InsertNewInstWith(newEI, *InsertPos); 151 152 scalarPHI->addIncoming(newEI, inBB); 153 } 154 } 155 156 for (auto E : Extracts) 157 replaceInstUsesWith(*E, scalarPHI); 158 159 return &EI; 160 } 161 162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 163 InstCombiner::BuilderTy &Builder, 164 bool IsBigEndian) { 165 Value *X; 166 uint64_t ExtIndexC; 167 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 168 !X->getType()->isVectorTy() || 169 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 170 return nullptr; 171 172 // If this extractelement is using a bitcast from a vector of the same number 173 // of elements, see if we can find the source element from the source vector: 174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 175 Type *SrcTy = X->getType(); 176 Type *DestTy = Ext.getType(); 177 unsigned NumSrcElts = SrcTy->getVectorNumElements(); 178 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 179 if (NumSrcElts == NumElts) 180 if (Value *Elt = findScalarElement(X, ExtIndexC)) 181 return new BitCastInst(Elt, DestTy); 182 183 // If the source elements are wider than the destination, try to shift and 184 // truncate a subset of scalar bits of an insert op. 185 if (NumSrcElts < NumElts) { 186 Value *Scalar; 187 uint64_t InsIndexC; 188 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 189 m_ConstantInt(InsIndexC)))) 190 return nullptr; 191 192 // The extract must be from the subset of vector elements that we inserted 193 // into. Example: if we inserted element 1 of a <2 x i64> and we are 194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 195 // of elements 4-7 of the bitcasted vector. 196 unsigned NarrowingRatio = NumElts / NumSrcElts; 197 if (ExtIndexC / NarrowingRatio != InsIndexC) 198 return nullptr; 199 200 // We are extracting part of the original scalar. How that scalar is 201 // inserted into the vector depends on the endian-ness. Example: 202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 203 // +--+--+--+--+--+--+--+--+ 204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 205 // extelt <4 x i16> V', 3: | |S2|S3| 206 // +--+--+--+--+--+--+--+--+ 207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 209 // In this example, we must right-shift little-endian. Big-endian is just a 210 // truncate. 211 unsigned Chunk = ExtIndexC % NarrowingRatio; 212 if (IsBigEndian) 213 Chunk = NarrowingRatio - 1 - Chunk; 214 215 // Bail out if this is an FP vector to FP vector sequence. That would take 216 // more instructions than we started with unless there is no shift, and it 217 // may not be handled as well in the backend. 218 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 219 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 220 if (NeedSrcBitcast && NeedDestBitcast) 221 return nullptr; 222 223 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 224 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 225 unsigned ShAmt = Chunk * DestWidth; 226 227 // TODO: This limitation is more strict than necessary. We could sum the 228 // number of new instructions and subtract the number eliminated to know if 229 // we can proceed. 230 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 231 if (NeedSrcBitcast || NeedDestBitcast) 232 return nullptr; 233 234 if (NeedSrcBitcast) { 235 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 236 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 237 } 238 239 if (ShAmt) { 240 // Bail out if we could end with more instructions than we started with. 241 if (!Ext.getVectorOperand()->hasOneUse()) 242 return nullptr; 243 Scalar = Builder.CreateLShr(Scalar, ShAmt); 244 } 245 246 if (NeedDestBitcast) { 247 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 248 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 249 } 250 return new TruncInst(Scalar, DestTy); 251 } 252 253 return nullptr; 254 } 255 256 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 257 Value *SrcVec = EI.getVectorOperand(); 258 Value *Index = EI.getIndexOperand(); 259 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 260 SQ.getWithInstruction(&EI))) 261 return replaceInstUsesWith(EI, V); 262 263 // If extracting a specified index from the vector, see if we can recursively 264 // find a previously computed scalar that was inserted into the vector. 265 auto *IndexC = dyn_cast<ConstantInt>(Index); 266 if (IndexC) { 267 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 268 269 // InstSimplify should handle cases where the index is invalid. 270 if (!IndexC->getValue().ule(NumElts)) 271 return nullptr; 272 273 // This instruction only demands the single element from the input vector. 274 // If the input vector has a single use, simplify it based on this use 275 // property. 276 if (SrcVec->hasOneUse() && NumElts != 1) { 277 APInt UndefElts(NumElts, 0); 278 APInt DemandedElts(NumElts, 0); 279 DemandedElts.setBit(IndexC->getZExtValue()); 280 if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts, 281 UndefElts)) { 282 EI.setOperand(0, V); 283 return &EI; 284 } 285 } 286 287 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 288 return I; 289 290 // If there's a vector PHI feeding a scalar use through this extractelement 291 // instruction, try to scalarize the PHI. 292 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 293 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 294 return ScalarPHI; 295 } 296 297 BinaryOperator *BO; 298 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 299 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 300 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 301 Value *E0 = Builder.CreateExtractElement(X, Index); 302 Value *E1 = Builder.CreateExtractElement(Y, Index); 303 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 304 } 305 306 Value *X, *Y; 307 CmpInst::Predicate Pred; 308 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 309 cheapToScalarize(SrcVec, IndexC)) { 310 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 311 Value *E0 = Builder.CreateExtractElement(X, Index); 312 Value *E1 = Builder.CreateExtractElement(Y, Index); 313 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 314 } 315 316 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 317 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 318 // Extracting the inserted element? 319 if (IE->getOperand(2) == Index) 320 return replaceInstUsesWith(EI, IE->getOperand(1)); 321 // If the inserted and extracted elements are constants, they must not 322 // be the same value, extract from the pre-inserted value instead. 323 if (isa<Constant>(IE->getOperand(2)) && IndexC) { 324 Worklist.AddValue(SrcVec); 325 EI.setOperand(0, IE->getOperand(0)); 326 return &EI; 327 } 328 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 329 // If this is extracting an element from a shufflevector, figure out where 330 // it came from and extract from the appropriate input element instead. 331 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 332 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 333 Value *Src; 334 unsigned LHSWidth = 335 SVI->getOperand(0)->getType()->getVectorNumElements(); 336 337 if (SrcIdx < 0) 338 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 339 if (SrcIdx < (int)LHSWidth) 340 Src = SVI->getOperand(0); 341 else { 342 SrcIdx -= LHSWidth; 343 Src = SVI->getOperand(1); 344 } 345 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 346 return ExtractElementInst::Create(Src, 347 ConstantInt::get(Int32Ty, 348 SrcIdx, false)); 349 } 350 } else if (auto *CI = dyn_cast<CastInst>(I)) { 351 // Canonicalize extractelement(cast) -> cast(extractelement). 352 // Bitcasts can change the number of vector elements, and they cost 353 // nothing. 354 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 355 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 356 Worklist.AddValue(EE); 357 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 358 } 359 } 360 } 361 return nullptr; 362 } 363 364 /// If V is a shuffle of values that ONLY returns elements from either LHS or 365 /// RHS, return the shuffle mask and true. Otherwise, return false. 366 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 367 SmallVectorImpl<Constant*> &Mask) { 368 assert(LHS->getType() == RHS->getType() && 369 "Invalid CollectSingleShuffleElements"); 370 unsigned NumElts = V->getType()->getVectorNumElements(); 371 372 if (isa<UndefValue>(V)) { 373 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 374 return true; 375 } 376 377 if (V == LHS) { 378 for (unsigned i = 0; i != NumElts; ++i) 379 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 380 return true; 381 } 382 383 if (V == RHS) { 384 for (unsigned i = 0; i != NumElts; ++i) 385 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 386 i+NumElts)); 387 return true; 388 } 389 390 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 391 // If this is an insert of an extract from some other vector, include it. 392 Value *VecOp = IEI->getOperand(0); 393 Value *ScalarOp = IEI->getOperand(1); 394 Value *IdxOp = IEI->getOperand(2); 395 396 if (!isa<ConstantInt>(IdxOp)) 397 return false; 398 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 399 400 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 401 // We can handle this if the vector we are inserting into is 402 // transitively ok. 403 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 404 // If so, update the mask to reflect the inserted undef. 405 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 406 return true; 407 } 408 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 409 if (isa<ConstantInt>(EI->getOperand(1))) { 410 unsigned ExtractedIdx = 411 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 412 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 413 414 // This must be extracting from either LHS or RHS. 415 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 416 // We can handle this if the vector we are inserting into is 417 // transitively ok. 418 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 419 // If so, update the mask to reflect the inserted value. 420 if (EI->getOperand(0) == LHS) { 421 Mask[InsertedIdx % NumElts] = 422 ConstantInt::get(Type::getInt32Ty(V->getContext()), 423 ExtractedIdx); 424 } else { 425 assert(EI->getOperand(0) == RHS); 426 Mask[InsertedIdx % NumElts] = 427 ConstantInt::get(Type::getInt32Ty(V->getContext()), 428 ExtractedIdx + NumLHSElts); 429 } 430 return true; 431 } 432 } 433 } 434 } 435 } 436 437 return false; 438 } 439 440 /// If we have insertion into a vector that is wider than the vector that we 441 /// are extracting from, try to widen the source vector to allow a single 442 /// shufflevector to replace one or more insert/extract pairs. 443 static void replaceExtractElements(InsertElementInst *InsElt, 444 ExtractElementInst *ExtElt, 445 InstCombiner &IC) { 446 VectorType *InsVecType = InsElt->getType(); 447 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 448 unsigned NumInsElts = InsVecType->getVectorNumElements(); 449 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 450 451 // The inserted-to vector must be wider than the extracted-from vector. 452 if (InsVecType->getElementType() != ExtVecType->getElementType() || 453 NumExtElts >= NumInsElts) 454 return; 455 456 // Create a shuffle mask to widen the extended-from vector using undefined 457 // values. The mask selects all of the values of the original vector followed 458 // by as many undefined values as needed to create a vector of the same length 459 // as the inserted-to vector. 460 SmallVector<Constant *, 16> ExtendMask; 461 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 462 for (unsigned i = 0; i < NumExtElts; ++i) 463 ExtendMask.push_back(ConstantInt::get(IntType, i)); 464 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 465 ExtendMask.push_back(UndefValue::get(IntType)); 466 467 Value *ExtVecOp = ExtElt->getVectorOperand(); 468 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 469 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 470 ? ExtVecOpInst->getParent() 471 : ExtElt->getParent(); 472 473 // TODO: This restriction matches the basic block check below when creating 474 // new extractelement instructions. If that limitation is removed, this one 475 // could also be removed. But for now, we just bail out to ensure that we 476 // will replace the extractelement instruction that is feeding our 477 // insertelement instruction. This allows the insertelement to then be 478 // replaced by a shufflevector. If the insertelement is not replaced, we can 479 // induce infinite looping because there's an optimization for extractelement 480 // that will delete our widening shuffle. This would trigger another attempt 481 // here to create that shuffle, and we spin forever. 482 if (InsertionBlock != InsElt->getParent()) 483 return; 484 485 // TODO: This restriction matches the check in visitInsertElementInst() and 486 // prevents an infinite loop caused by not turning the extract/insert pair 487 // into a shuffle. We really should not need either check, but we're lacking 488 // folds for shufflevectors because we're afraid to generate shuffle masks 489 // that the backend can't handle. 490 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 491 return; 492 493 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 494 ConstantVector::get(ExtendMask)); 495 496 // Insert the new shuffle after the vector operand of the extract is defined 497 // (as long as it's not a PHI) or at the start of the basic block of the 498 // extract, so any subsequent extracts in the same basic block can use it. 499 // TODO: Insert before the earliest ExtractElementInst that is replaced. 500 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 501 WideVec->insertAfter(ExtVecOpInst); 502 else 503 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 504 505 // Replace extracts from the original narrow vector with extracts from the new 506 // wide vector. 507 for (User *U : ExtVecOp->users()) { 508 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 509 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 510 continue; 511 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 512 NewExt->insertAfter(OldExt); 513 IC.replaceInstUsesWith(*OldExt, NewExt); 514 } 515 } 516 517 /// We are building a shuffle to create V, which is a sequence of insertelement, 518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 519 /// not rely on the second vector source. Return a std::pair containing the 520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 521 /// parameter as required. 522 /// 523 /// Note: we intentionally don't try to fold earlier shuffles since they have 524 /// often been chosen carefully to be efficiently implementable on the target. 525 using ShuffleOps = std::pair<Value *, Value *>; 526 527 static ShuffleOps collectShuffleElements(Value *V, 528 SmallVectorImpl<Constant *> &Mask, 529 Value *PermittedRHS, 530 InstCombiner &IC) { 531 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 532 unsigned NumElts = V->getType()->getVectorNumElements(); 533 534 if (isa<UndefValue>(V)) { 535 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 536 return std::make_pair( 537 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 538 } 539 540 if (isa<ConstantAggregateZero>(V)) { 541 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 542 return std::make_pair(V, nullptr); 543 } 544 545 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 546 // If this is an insert of an extract from some other vector, include it. 547 Value *VecOp = IEI->getOperand(0); 548 Value *ScalarOp = IEI->getOperand(1); 549 Value *IdxOp = IEI->getOperand(2); 550 551 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 552 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 553 unsigned ExtractedIdx = 554 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 555 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 556 557 // Either the extracted from or inserted into vector must be RHSVec, 558 // otherwise we'd end up with a shuffle of three inputs. 559 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 560 Value *RHS = EI->getOperand(0); 561 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 562 assert(LR.second == nullptr || LR.second == RHS); 563 564 if (LR.first->getType() != RHS->getType()) { 565 // Although we are giving up for now, see if we can create extracts 566 // that match the inserts for another round of combining. 567 replaceExtractElements(IEI, EI, IC); 568 569 // We tried our best, but we can't find anything compatible with RHS 570 // further up the chain. Return a trivial shuffle. 571 for (unsigned i = 0; i < NumElts; ++i) 572 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 573 return std::make_pair(V, nullptr); 574 } 575 576 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 577 Mask[InsertedIdx % NumElts] = 578 ConstantInt::get(Type::getInt32Ty(V->getContext()), 579 NumLHSElts+ExtractedIdx); 580 return std::make_pair(LR.first, RHS); 581 } 582 583 if (VecOp == PermittedRHS) { 584 // We've gone as far as we can: anything on the other side of the 585 // extractelement will already have been converted into a shuffle. 586 unsigned NumLHSElts = 587 EI->getOperand(0)->getType()->getVectorNumElements(); 588 for (unsigned i = 0; i != NumElts; ++i) 589 Mask.push_back(ConstantInt::get( 590 Type::getInt32Ty(V->getContext()), 591 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 592 return std::make_pair(EI->getOperand(0), PermittedRHS); 593 } 594 595 // If this insertelement is a chain that comes from exactly these two 596 // vectors, return the vector and the effective shuffle. 597 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 598 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 599 Mask)) 600 return std::make_pair(EI->getOperand(0), PermittedRHS); 601 } 602 } 603 } 604 605 // Otherwise, we can't do anything fancy. Return an identity vector. 606 for (unsigned i = 0; i != NumElts; ++i) 607 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 608 return std::make_pair(V, nullptr); 609 } 610 611 /// Try to find redundant insertvalue instructions, like the following ones: 612 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 613 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 614 /// Here the second instruction inserts values at the same indices, as the 615 /// first one, making the first one redundant. 616 /// It should be transformed to: 617 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 618 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 619 bool IsRedundant = false; 620 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 621 622 // If there is a chain of insertvalue instructions (each of them except the 623 // last one has only one use and it's another insertvalue insn from this 624 // chain), check if any of the 'children' uses the same indices as the first 625 // instruction. In this case, the first one is redundant. 626 Value *V = &I; 627 unsigned Depth = 0; 628 while (V->hasOneUse() && Depth < 10) { 629 User *U = V->user_back(); 630 auto UserInsInst = dyn_cast<InsertValueInst>(U); 631 if (!UserInsInst || U->getOperand(0) != V) 632 break; 633 if (UserInsInst->getIndices() == FirstIndices) { 634 IsRedundant = true; 635 break; 636 } 637 V = UserInsInst; 638 Depth++; 639 } 640 641 if (IsRedundant) 642 return replaceInstUsesWith(I, I.getOperand(0)); 643 return nullptr; 644 } 645 646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 647 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 648 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 649 650 // A vector select does not change the size of the operands. 651 if (MaskSize != VecSize) 652 return false; 653 654 // Each mask element must be undefined or choose a vector element from one of 655 // the source operands without crossing vector lanes. 656 for (int i = 0; i != MaskSize; ++i) { 657 int Elt = Shuf.getMaskValue(i); 658 if (Elt != -1 && Elt != i && Elt != i + VecSize) 659 return false; 660 } 661 662 return true; 663 } 664 665 // Turn a chain of inserts that splats a value into a canonical insert + shuffle 666 // splat. That is: 667 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 668 // shufflevector(insertelt(X, %k, 0), undef, zero) 669 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) { 670 // We are interested in the last insert in a chain. So, if this insert 671 // has a single user, and that user is an insert, bail. 672 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 673 return nullptr; 674 675 VectorType *VT = cast<VectorType>(InsElt.getType()); 676 int NumElements = VT->getNumElements(); 677 678 // Do not try to do this for a one-element vector, since that's a nop, 679 // and will cause an inf-loop. 680 if (NumElements == 1) 681 return nullptr; 682 683 Value *SplatVal = InsElt.getOperand(1); 684 InsertElementInst *CurrIE = &InsElt; 685 SmallVector<bool, 16> ElementPresent(NumElements, false); 686 InsertElementInst *FirstIE = nullptr; 687 688 // Walk the chain backwards, keeping track of which indices we inserted into, 689 // until we hit something that isn't an insert of the splatted value. 690 while (CurrIE) { 691 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 692 if (!Idx || CurrIE->getOperand(1) != SplatVal) 693 return nullptr; 694 695 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 696 // Check none of the intermediate steps have any additional uses, except 697 // for the root insertelement instruction, which can be re-used, if it 698 // inserts at position 0. 699 if (CurrIE != &InsElt && 700 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 701 return nullptr; 702 703 ElementPresent[Idx->getZExtValue()] = true; 704 FirstIE = CurrIE; 705 CurrIE = NextIE; 706 } 707 708 // Make sure we've seen an insert into every element. 709 if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; })) 710 return nullptr; 711 712 // All right, create the insert + shuffle. 713 Instruction *InsertFirst; 714 if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 715 InsertFirst = FirstIE; 716 else 717 InsertFirst = InsertElementInst::Create( 718 UndefValue::get(VT), SplatVal, 719 ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), 720 "", &InsElt); 721 722 Constant *ZeroMask = ConstantAggregateZero::get( 723 VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements)); 724 725 return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask); 726 } 727 728 /// If we have an insertelement instruction feeding into another insertelement 729 /// and the 2nd is inserting a constant into the vector, canonicalize that 730 /// constant insertion before the insertion of a variable: 731 /// 732 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 733 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 734 /// 735 /// This has the potential of eliminating the 2nd insertelement instruction 736 /// via constant folding of the scalar constant into a vector constant. 737 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 738 InstCombiner::BuilderTy &Builder) { 739 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 740 if (!InsElt1 || !InsElt1->hasOneUse()) 741 return nullptr; 742 743 Value *X, *Y; 744 Constant *ScalarC; 745 ConstantInt *IdxC1, *IdxC2; 746 if (match(InsElt1->getOperand(0), m_Value(X)) && 747 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 748 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 749 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 750 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 751 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 752 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 753 } 754 755 return nullptr; 756 } 757 758 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 759 /// --> shufflevector X, CVec', Mask' 760 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 761 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 762 // Bail out if the parent has more than one use. In that case, we'd be 763 // replacing the insertelt with a shuffle, and that's not a clear win. 764 if (!Inst || !Inst->hasOneUse()) 765 return nullptr; 766 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 767 // The shuffle must have a constant vector operand. The insertelt must have 768 // a constant scalar being inserted at a constant position in the vector. 769 Constant *ShufConstVec, *InsEltScalar; 770 uint64_t InsEltIndex; 771 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 772 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 773 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 774 return nullptr; 775 776 // Adding an element to an arbitrary shuffle could be expensive, but a 777 // shuffle that selects elements from vectors without crossing lanes is 778 // assumed cheap. 779 // If we're just adding a constant into that shuffle, it will still be 780 // cheap. 781 if (!isShuffleEquivalentToSelect(*Shuf)) 782 return nullptr; 783 784 // From the above 'select' check, we know that the mask has the same number 785 // of elements as the vector input operands. We also know that each constant 786 // input element is used in its lane and can not be used more than once by 787 // the shuffle. Therefore, replace the constant in the shuffle's constant 788 // vector with the insertelt constant. Replace the constant in the shuffle's 789 // mask vector with the insertelt index plus the length of the vector 790 // (because the constant vector operand of a shuffle is always the 2nd 791 // operand). 792 Constant *Mask = Shuf->getMask(); 793 unsigned NumElts = Mask->getType()->getVectorNumElements(); 794 SmallVector<Constant *, 16> NewShufElts(NumElts); 795 SmallVector<Constant *, 16> NewMaskElts(NumElts); 796 for (unsigned I = 0; I != NumElts; ++I) { 797 if (I == InsEltIndex) { 798 NewShufElts[I] = InsEltScalar; 799 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 800 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 801 } else { 802 // Copy over the existing values. 803 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 804 NewMaskElts[I] = Mask->getAggregateElement(I); 805 } 806 } 807 808 // Create new operands for a shuffle that includes the constant of the 809 // original insertelt. The old shuffle will be dead now. 810 return new ShuffleVectorInst(Shuf->getOperand(0), 811 ConstantVector::get(NewShufElts), 812 ConstantVector::get(NewMaskElts)); 813 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 814 // Transform sequences of insertelements ops with constant data/indexes into 815 // a single shuffle op. 816 unsigned NumElts = InsElt.getType()->getNumElements(); 817 818 uint64_t InsertIdx[2]; 819 Constant *Val[2]; 820 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 821 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 822 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 823 !match(IEI->getOperand(1), m_Constant(Val[1]))) 824 return nullptr; 825 SmallVector<Constant *, 16> Values(NumElts); 826 SmallVector<Constant *, 16> Mask(NumElts); 827 auto ValI = std::begin(Val); 828 // Generate new constant vector and mask. 829 // We have 2 values/masks from the insertelements instructions. Insert them 830 // into new value/mask vectors. 831 for (uint64_t I : InsertIdx) { 832 if (!Values[I]) { 833 assert(!Mask[I]); 834 Values[I] = *ValI; 835 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 836 NumElts + I); 837 } 838 ++ValI; 839 } 840 // Remaining values are filled with 'undef' values. 841 for (unsigned I = 0; I < NumElts; ++I) { 842 if (!Values[I]) { 843 assert(!Mask[I]); 844 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 845 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 846 } 847 } 848 // Create new operands for a shuffle that includes the constant of the 849 // original insertelt. 850 return new ShuffleVectorInst(IEI->getOperand(0), 851 ConstantVector::get(Values), 852 ConstantVector::get(Mask)); 853 } 854 return nullptr; 855 } 856 857 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 858 Value *VecOp = IE.getOperand(0); 859 Value *ScalarOp = IE.getOperand(1); 860 Value *IdxOp = IE.getOperand(2); 861 862 if (auto *V = SimplifyInsertElementInst( 863 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 864 return replaceInstUsesWith(IE, V); 865 866 // If the vector and scalar are both bitcast from the same element type, do 867 // the insert in that source type followed by bitcast. 868 Value *VecSrc, *ScalarSrc; 869 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 870 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 871 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 872 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 873 VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) { 874 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 875 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 876 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 877 return new BitCastInst(NewInsElt, IE.getType()); 878 } 879 880 // If the inserted element was extracted from some other vector and both 881 // indexes are valid constants, try to turn this into a shuffle. 882 uint64_t InsertedIdx, ExtractedIdx; 883 Value *ExtVecOp; 884 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 885 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), 886 m_ConstantInt(ExtractedIdx))) && 887 ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) { 888 // TODO: Looking at the user(s) to determine if this insert is a 889 // fold-to-shuffle opportunity does not match the usual instcombine 890 // constraints. We should decide if the transform is worthy based only 891 // on this instruction and its operands, but that may not work currently. 892 // 893 // Here, we are trying to avoid creating shuffles before reaching 894 // the end of a chain of extract-insert pairs. This is complicated because 895 // we do not generally form arbitrary shuffle masks in instcombine 896 // (because those may codegen poorly), but collectShuffleElements() does 897 // exactly that. 898 // 899 // The rules for determining what is an acceptable target-independent 900 // shuffle mask are fuzzy because they evolve based on the backend's 901 // capabilities and real-world impact. 902 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 903 if (!Insert.hasOneUse()) 904 return true; 905 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 906 if (!InsertUser) 907 return true; 908 return false; 909 }; 910 911 // Try to form a shuffle from a chain of extract-insert ops. 912 if (isShuffleRootCandidate(IE)) { 913 SmallVector<Constant*, 16> Mask; 914 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 915 916 // The proposed shuffle may be trivial, in which case we shouldn't 917 // perform the combine. 918 if (LR.first != &IE && LR.second != &IE) { 919 // We now have a shuffle of LHS, RHS, Mask. 920 if (LR.second == nullptr) 921 LR.second = UndefValue::get(LR.first->getType()); 922 return new ShuffleVectorInst(LR.first, LR.second, 923 ConstantVector::get(Mask)); 924 } 925 } 926 } 927 928 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 929 APInt UndefElts(VWidth, 0); 930 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 931 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 932 if (V != &IE) 933 return replaceInstUsesWith(IE, V); 934 return &IE; 935 } 936 937 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 938 return Shuf; 939 940 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 941 return NewInsElt; 942 943 // Turn a sequence of inserts that broadcasts a scalar into a single 944 // insert + shufflevector. 945 if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE)) 946 return Broadcast; 947 948 return nullptr; 949 } 950 951 /// Return true if we can evaluate the specified expression tree if the vector 952 /// elements were shuffled in a different order. 953 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 954 unsigned Depth = 5) { 955 // We can always reorder the elements of a constant. 956 if (isa<Constant>(V)) 957 return true; 958 959 // We won't reorder vector arguments. No IPO here. 960 Instruction *I = dyn_cast<Instruction>(V); 961 if (!I) return false; 962 963 // Two users may expect different orders of the elements. Don't try it. 964 if (!I->hasOneUse()) 965 return false; 966 967 if (Depth == 0) return false; 968 969 switch (I->getOpcode()) { 970 case Instruction::Add: 971 case Instruction::FAdd: 972 case Instruction::Sub: 973 case Instruction::FSub: 974 case Instruction::Mul: 975 case Instruction::FMul: 976 case Instruction::UDiv: 977 case Instruction::SDiv: 978 case Instruction::FDiv: 979 case Instruction::URem: 980 case Instruction::SRem: 981 case Instruction::FRem: 982 case Instruction::Shl: 983 case Instruction::LShr: 984 case Instruction::AShr: 985 case Instruction::And: 986 case Instruction::Or: 987 case Instruction::Xor: 988 case Instruction::ICmp: 989 case Instruction::FCmp: 990 case Instruction::Trunc: 991 case Instruction::ZExt: 992 case Instruction::SExt: 993 case Instruction::FPToUI: 994 case Instruction::FPToSI: 995 case Instruction::UIToFP: 996 case Instruction::SIToFP: 997 case Instruction::FPTrunc: 998 case Instruction::FPExt: 999 case Instruction::GetElementPtr: { 1000 // Bail out if we would create longer vector ops. We could allow creating 1001 // longer vector ops, but that may result in more expensive codegen. We 1002 // would also need to limit the transform to avoid undefined behavior for 1003 // integer div/rem. 1004 Type *ITy = I->getType(); 1005 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) 1006 return false; 1007 for (Value *Operand : I->operands()) { 1008 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1009 return false; 1010 } 1011 return true; 1012 } 1013 case Instruction::InsertElement: { 1014 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1015 if (!CI) return false; 1016 int ElementNumber = CI->getLimitedValue(); 1017 1018 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1019 // can't put an element into multiple indices. 1020 bool SeenOnce = false; 1021 for (int i = 0, e = Mask.size(); i != e; ++i) { 1022 if (Mask[i] == ElementNumber) { 1023 if (SeenOnce) 1024 return false; 1025 SeenOnce = true; 1026 } 1027 } 1028 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1029 } 1030 } 1031 return false; 1032 } 1033 1034 /// Rebuild a new instruction just like 'I' but with the new operands given. 1035 /// In the event of type mismatch, the type of the operands is correct. 1036 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1037 // We don't want to use the IRBuilder here because we want the replacement 1038 // instructions to appear next to 'I', not the builder's insertion point. 1039 switch (I->getOpcode()) { 1040 case Instruction::Add: 1041 case Instruction::FAdd: 1042 case Instruction::Sub: 1043 case Instruction::FSub: 1044 case Instruction::Mul: 1045 case Instruction::FMul: 1046 case Instruction::UDiv: 1047 case Instruction::SDiv: 1048 case Instruction::FDiv: 1049 case Instruction::URem: 1050 case Instruction::SRem: 1051 case Instruction::FRem: 1052 case Instruction::Shl: 1053 case Instruction::LShr: 1054 case Instruction::AShr: 1055 case Instruction::And: 1056 case Instruction::Or: 1057 case Instruction::Xor: { 1058 BinaryOperator *BO = cast<BinaryOperator>(I); 1059 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1060 BinaryOperator *New = 1061 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1062 NewOps[0], NewOps[1], "", BO); 1063 if (isa<OverflowingBinaryOperator>(BO)) { 1064 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1065 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1066 } 1067 if (isa<PossiblyExactOperator>(BO)) { 1068 New->setIsExact(BO->isExact()); 1069 } 1070 if (isa<FPMathOperator>(BO)) 1071 New->copyFastMathFlags(I); 1072 return New; 1073 } 1074 case Instruction::ICmp: 1075 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1076 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1077 NewOps[0], NewOps[1]); 1078 case Instruction::FCmp: 1079 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1080 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1081 NewOps[0], NewOps[1]); 1082 case Instruction::Trunc: 1083 case Instruction::ZExt: 1084 case Instruction::SExt: 1085 case Instruction::FPToUI: 1086 case Instruction::FPToSI: 1087 case Instruction::UIToFP: 1088 case Instruction::SIToFP: 1089 case Instruction::FPTrunc: 1090 case Instruction::FPExt: { 1091 // It's possible that the mask has a different number of elements from 1092 // the original cast. We recompute the destination type to match the mask. 1093 Type *DestTy = 1094 VectorType::get(I->getType()->getScalarType(), 1095 NewOps[0]->getType()->getVectorNumElements()); 1096 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1097 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1098 "", I); 1099 } 1100 case Instruction::GetElementPtr: { 1101 Value *Ptr = NewOps[0]; 1102 ArrayRef<Value*> Idx = NewOps.slice(1); 1103 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1104 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1105 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1106 return GEP; 1107 } 1108 } 1109 llvm_unreachable("failed to rebuild vector instructions"); 1110 } 1111 1112 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1113 // Mask.size() does not need to be equal to the number of vector elements. 1114 1115 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1116 Type *EltTy = V->getType()->getScalarType(); 1117 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1118 if (isa<UndefValue>(V)) 1119 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1120 1121 if (isa<ConstantAggregateZero>(V)) 1122 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1123 1124 if (Constant *C = dyn_cast<Constant>(V)) { 1125 SmallVector<Constant *, 16> MaskValues; 1126 for (int i = 0, e = Mask.size(); i != e; ++i) { 1127 if (Mask[i] == -1) 1128 MaskValues.push_back(UndefValue::get(I32Ty)); 1129 else 1130 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i])); 1131 } 1132 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1133 ConstantVector::get(MaskValues)); 1134 } 1135 1136 Instruction *I = cast<Instruction>(V); 1137 switch (I->getOpcode()) { 1138 case Instruction::Add: 1139 case Instruction::FAdd: 1140 case Instruction::Sub: 1141 case Instruction::FSub: 1142 case Instruction::Mul: 1143 case Instruction::FMul: 1144 case Instruction::UDiv: 1145 case Instruction::SDiv: 1146 case Instruction::FDiv: 1147 case Instruction::URem: 1148 case Instruction::SRem: 1149 case Instruction::FRem: 1150 case Instruction::Shl: 1151 case Instruction::LShr: 1152 case Instruction::AShr: 1153 case Instruction::And: 1154 case Instruction::Or: 1155 case Instruction::Xor: 1156 case Instruction::ICmp: 1157 case Instruction::FCmp: 1158 case Instruction::Trunc: 1159 case Instruction::ZExt: 1160 case Instruction::SExt: 1161 case Instruction::FPToUI: 1162 case Instruction::FPToSI: 1163 case Instruction::UIToFP: 1164 case Instruction::SIToFP: 1165 case Instruction::FPTrunc: 1166 case Instruction::FPExt: 1167 case Instruction::Select: 1168 case Instruction::GetElementPtr: { 1169 SmallVector<Value*, 8> NewOps; 1170 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1171 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1172 Value *V; 1173 // Recursively call evaluateInDifferentElementOrder on vector arguments 1174 // as well. E.g. GetElementPtr may have scalar operands even if the 1175 // return value is a vector, so we need to examine the operand type. 1176 if (I->getOperand(i)->getType()->isVectorTy()) 1177 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1178 else 1179 V = I->getOperand(i); 1180 NewOps.push_back(V); 1181 NeedsRebuild |= (V != I->getOperand(i)); 1182 } 1183 if (NeedsRebuild) { 1184 return buildNew(I, NewOps); 1185 } 1186 return I; 1187 } 1188 case Instruction::InsertElement: { 1189 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1190 1191 // The insertelement was inserting at Element. Figure out which element 1192 // that becomes after shuffling. The answer is guaranteed to be unique 1193 // by CanEvaluateShuffled. 1194 bool Found = false; 1195 int Index = 0; 1196 for (int e = Mask.size(); Index != e; ++Index) { 1197 if (Mask[Index] == Element) { 1198 Found = true; 1199 break; 1200 } 1201 } 1202 1203 // If element is not in Mask, no need to handle the operand 1 (element to 1204 // be inserted). Just evaluate values in operand 0 according to Mask. 1205 if (!Found) 1206 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1207 1208 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1209 return InsertElementInst::Create(V, I->getOperand(1), 1210 ConstantInt::get(I32Ty, Index), "", I); 1211 } 1212 } 1213 llvm_unreachable("failed to reorder elements of vector instruction!"); 1214 } 1215 1216 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 1217 bool &isLHSID, bool &isRHSID) { 1218 isLHSID = isRHSID = true; 1219 1220 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1221 if (Mask[i] < 0) continue; // Ignore undef values. 1222 // Is this an identity shuffle of the LHS value? 1223 isLHSID &= (Mask[i] == (int)i); 1224 1225 // Is this an identity shuffle of the RHS value? 1226 isRHSID &= (Mask[i]-e == i); 1227 } 1228 } 1229 1230 // Returns true if the shuffle is extracting a contiguous range of values from 1231 // LHS, for example: 1232 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1233 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1234 // Shuffles to: |EE|FF|GG|HH| 1235 // +--+--+--+--+ 1236 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1237 SmallVector<int, 16> &Mask) { 1238 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1239 unsigned MaskElems = Mask.size(); 1240 unsigned BegIdx = Mask.front(); 1241 unsigned EndIdx = Mask.back(); 1242 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1243 return false; 1244 for (unsigned I = 0; I != MaskElems; ++I) 1245 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1246 return false; 1247 return true; 1248 } 1249 1250 /// These are the ingredients in an alternate form binary operator as described 1251 /// below. 1252 struct BinopElts { 1253 BinaryOperator::BinaryOps Opcode; 1254 Value *Op0; 1255 Value *Op1; 1256 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1257 Value *V0 = nullptr, Value *V1 = nullptr) : 1258 Opcode(Opc), Op0(V0), Op1(V1) {} 1259 operator bool() const { return Opcode != 0; } 1260 }; 1261 1262 /// Binops may be transformed into binops with different opcodes and operands. 1263 /// Reverse the usual canonicalization to enable folds with the non-canonical 1264 /// form of the binop. If a transform is possible, return the elements of the 1265 /// new binop. If not, return invalid elements. 1266 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1267 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1268 Type *Ty = BO->getType(); 1269 switch (BO->getOpcode()) { 1270 case Instruction::Shl: { 1271 // shl X, C --> mul X, (1 << C) 1272 Constant *C; 1273 if (match(BO1, m_Constant(C))) { 1274 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1275 return { Instruction::Mul, BO0, ShlOne }; 1276 } 1277 break; 1278 } 1279 case Instruction::Or: { 1280 // or X, C --> add X, C (when X and C have no common bits set) 1281 const APInt *C; 1282 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1283 return { Instruction::Add, BO0, BO1 }; 1284 break; 1285 } 1286 default: 1287 break; 1288 } 1289 return {}; 1290 } 1291 1292 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1293 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1294 1295 // Are we shuffling together some value and that same value after it has been 1296 // modified by a binop with a constant? 1297 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1298 Constant *C; 1299 bool Op0IsBinop; 1300 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1301 Op0IsBinop = true; 1302 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1303 Op0IsBinop = false; 1304 else 1305 return nullptr; 1306 1307 // The identity constant for a binop leaves a variable operand unchanged. For 1308 // a vector, this is a splat of something like 0, -1, or 1. 1309 // If there's no identity constant for this binop, we're done. 1310 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1311 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1312 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1313 if (!IdC) 1314 return nullptr; 1315 1316 // Shuffle identity constants into the lanes that return the original value. 1317 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1318 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1319 // The existing binop constant vector remains in the same operand position. 1320 Constant *Mask = Shuf.getMask(); 1321 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1322 ConstantExpr::getShuffleVector(IdC, C, Mask); 1323 1324 bool MightCreatePoisonOrUB = 1325 Mask->containsUndefElement() && 1326 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1327 if (MightCreatePoisonOrUB) 1328 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1329 1330 // shuf (bop X, C), X, M --> bop X, C' 1331 // shuf X, (bop X, C), M --> bop X, C' 1332 Value *X = Op0IsBinop ? Op1 : Op0; 1333 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1334 NewBO->copyIRFlags(BO); 1335 1336 // An undef shuffle mask element may propagate as an undef constant element in 1337 // the new binop. That would produce poison where the original code might not. 1338 // If we already made a safe constant, then there's no danger. 1339 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1340 NewBO->dropPoisonGeneratingFlags(); 1341 return NewBO; 1342 } 1343 1344 /// Try to fold shuffles that are the equivalent of a vector select. 1345 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1346 InstCombiner::BuilderTy &Builder, 1347 const DataLayout &DL) { 1348 if (!Shuf.isSelect()) 1349 return nullptr; 1350 1351 // Canonicalize to choose from operand 0 first. 1352 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1353 if (Shuf.getMaskValue(0) >= (int)NumElts) { 1354 // TODO: Can we assert that both operands of a shuffle-select are not undef 1355 // (otherwise, it would have been folded by instsimplify? 1356 Shuf.commute(); 1357 return &Shuf; 1358 } 1359 1360 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1361 return I; 1362 1363 BinaryOperator *B0, *B1; 1364 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1365 !match(Shuf.getOperand(1), m_BinOp(B1))) 1366 return nullptr; 1367 1368 Value *X, *Y; 1369 Constant *C0, *C1; 1370 bool ConstantsAreOp1; 1371 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1372 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1373 ConstantsAreOp1 = true; 1374 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1375 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1376 ConstantsAreOp1 = false; 1377 else 1378 return nullptr; 1379 1380 // We need matching binops to fold the lanes together. 1381 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1382 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1383 bool DropNSW = false; 1384 if (ConstantsAreOp1 && Opc0 != Opc1) { 1385 // TODO: We drop "nsw" if shift is converted into multiply because it may 1386 // not be correct when the shift amount is BitWidth - 1. We could examine 1387 // each vector element to determine if it is safe to keep that flag. 1388 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1389 DropNSW = true; 1390 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1391 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1392 Opc0 = AltB0.Opcode; 1393 C0 = cast<Constant>(AltB0.Op1); 1394 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1395 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1396 Opc1 = AltB1.Opcode; 1397 C1 = cast<Constant>(AltB1.Op1); 1398 } 1399 } 1400 1401 if (Opc0 != Opc1) 1402 return nullptr; 1403 1404 // The opcodes must be the same. Use a new name to make that clear. 1405 BinaryOperator::BinaryOps BOpc = Opc0; 1406 1407 // Select the constant elements needed for the single binop. 1408 Constant *Mask = Shuf.getMask(); 1409 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1410 1411 // We are moving a binop after a shuffle. When a shuffle has an undefined 1412 // mask element, the result is undefined, but it is not poison or undefined 1413 // behavior. That is not necessarily true for div/rem/shift. 1414 bool MightCreatePoisonOrUB = 1415 Mask->containsUndefElement() && 1416 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1417 if (MightCreatePoisonOrUB) 1418 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1419 1420 Value *V; 1421 if (X == Y) { 1422 // Remove a binop and the shuffle by rearranging the constant: 1423 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1424 // shuffle (op C0, V), (op C1, V), M --> op C', V 1425 V = X; 1426 } else { 1427 // If there are 2 different variable operands, we must create a new shuffle 1428 // (select) first, so check uses to ensure that we don't end up with more 1429 // instructions than we started with. 1430 if (!B0->hasOneUse() && !B1->hasOneUse()) 1431 return nullptr; 1432 1433 // If we use the original shuffle mask and op1 is *variable*, we would be 1434 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1435 // poison. We do not have to guard against UB when *constants* are op1 1436 // because safe constants guarantee that we do not overflow sdiv/srem (and 1437 // there's no danger for other opcodes). 1438 // TODO: To allow this case, create a new shuffle mask with no undefs. 1439 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1440 return nullptr; 1441 1442 // Note: In general, we do not create new shuffles in InstCombine because we 1443 // do not know if a target can lower an arbitrary shuffle optimally. In this 1444 // case, the shuffle uses the existing mask, so there is no additional risk. 1445 1446 // Select the variable vectors first, then perform the binop: 1447 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1448 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1449 V = Builder.CreateShuffleVector(X, Y, Mask); 1450 } 1451 1452 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1453 BinaryOperator::Create(BOpc, NewC, V); 1454 1455 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1456 // 1. If we changed an opcode, poison conditions might have changed. 1457 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1458 // where the original code did not. But if we already made a safe constant, 1459 // then there's no danger. 1460 NewBO->copyIRFlags(B0); 1461 NewBO->andIRFlags(B1); 1462 if (DropNSW) 1463 NewBO->setHasNoSignedWrap(false); 1464 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1465 NewBO->dropPoisonGeneratingFlags(); 1466 return NewBO; 1467 } 1468 1469 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1470 /// narrowing (concatenating with undef and extracting back to the original 1471 /// length). This allows replacing the wide select with a narrow select. 1472 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1473 InstCombiner::BuilderTy &Builder) { 1474 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1475 // of the 1st vector operand of a shuffle. 1476 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1477 return nullptr; 1478 1479 // The vector being shuffled must be a vector select that we can eliminate. 1480 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1481 Value *Cond, *X, *Y; 1482 if (!match(Shuf.getOperand(0), 1483 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1484 return nullptr; 1485 1486 // We need a narrow condition value. It must be extended with undef elements 1487 // and have the same number of elements as this shuffle. 1488 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); 1489 Value *NarrowCond; 1490 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(), 1491 m_Constant()))) || 1492 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || 1493 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1494 return nullptr; 1495 1496 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1497 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1498 Value *Undef = UndefValue::get(X->getType()); 1499 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask()); 1500 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask()); 1501 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1502 } 1503 1504 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1505 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1506 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1507 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1508 return nullptr; 1509 1510 Value *X, *Y; 1511 Constant *Mask; 1512 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask)))) 1513 return nullptr; 1514 1515 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1516 // then combining may result in worse codegen. 1517 if (!Op0->hasOneUse()) 1518 return nullptr; 1519 1520 // We are extracting a subvector from a shuffle. Remove excess elements from 1521 // the 1st shuffle mask to eliminate the extract. 1522 // 1523 // This transform is conservatively limited to identity extracts because we do 1524 // not allow arbitrary shuffle mask creation as a target-independent transform 1525 // (because we can't guarantee that will lower efficiently). 1526 // 1527 // If the extracting shuffle has an undef mask element, it transfers to the 1528 // new shuffle mask. Otherwise, copy the original mask element. Example: 1529 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1530 // shuf X, Y, <C0, undef, C2, undef> 1531 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1532 SmallVector<Constant *, 16> NewMask(NumElts); 1533 assert(NumElts < Mask->getType()->getVectorNumElements() && 1534 "Identity with extract must have less elements than its inputs"); 1535 1536 for (unsigned i = 0; i != NumElts; ++i) { 1537 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i); 1538 Constant *MaskElt = Mask->getAggregateElement(i); 1539 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt; 1540 } 1541 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1542 } 1543 1544 /// Try to replace a shuffle with an insertelement. 1545 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) { 1546 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1547 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1548 1549 // The shuffle must not change vector sizes. 1550 // TODO: This restriction could be removed if the insert has only one use 1551 // (because the transform would require a new length-changing shuffle). 1552 int NumElts = Mask.size(); 1553 if (NumElts != (int)(V0->getType()->getVectorNumElements())) 1554 return nullptr; 1555 1556 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1557 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1558 // We need an insertelement with a constant index. 1559 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1560 m_ConstantInt(IndexC)))) 1561 return false; 1562 1563 // Test the shuffle mask to see if it splices the inserted scalar into the 1564 // operand 1 vector of the shuffle. 1565 int NewInsIndex = -1; 1566 for (int i = 0; i != NumElts; ++i) { 1567 // Ignore undef mask elements. 1568 if (Mask[i] == -1) 1569 continue; 1570 1571 // The shuffle takes elements of operand 1 without lane changes. 1572 if (Mask[i] == NumElts + i) 1573 continue; 1574 1575 // The shuffle must choose the inserted scalar exactly once. 1576 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1577 return false; 1578 1579 // The shuffle is placing the inserted scalar into element i. 1580 NewInsIndex = i; 1581 } 1582 1583 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1584 1585 // Index is updated to the potentially translated insertion lane. 1586 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1587 return true; 1588 }; 1589 1590 // If the shuffle is unnecessary, insert the scalar operand directly into 1591 // operand 1 of the shuffle. Example: 1592 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1593 Value *Scalar; 1594 ConstantInt *IndexC; 1595 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1596 return InsertElementInst::Create(V1, Scalar, IndexC); 1597 1598 // Try again after commuting shuffle. Example: 1599 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1600 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1601 std::swap(V0, V1); 1602 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1603 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1604 return InsertElementInst::Create(V1, Scalar, IndexC); 1605 1606 return nullptr; 1607 } 1608 1609 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1610 // Match the operands as identity with padding (also known as concatenation 1611 // with undef) shuffles of the same source type. The backend is expected to 1612 // recreate these concatenations from a shuffle of narrow operands. 1613 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1614 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1615 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1616 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1617 return nullptr; 1618 1619 // We limit this transform to power-of-2 types because we expect that the 1620 // backend can convert the simplified IR patterns to identical nodes as the 1621 // original IR. 1622 // TODO: If we can verify the same behavior for arbitrary types, the 1623 // power-of-2 checks can be removed. 1624 Value *X = Shuffle0->getOperand(0); 1625 Value *Y = Shuffle1->getOperand(0); 1626 if (X->getType() != Y->getType() || 1627 !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) || 1628 !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) || 1629 !isPowerOf2_32(X->getType()->getVectorNumElements()) || 1630 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1631 return nullptr; 1632 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1633 isa<UndefValue>(Shuffle1->getOperand(1)) && 1634 "Unexpected operand for identity shuffle"); 1635 1636 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1637 // operands directly by adjusting the shuffle mask to account for the narrower 1638 // types: 1639 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1640 int NarrowElts = X->getType()->getVectorNumElements(); 1641 int WideElts = Shuffle0->getType()->getVectorNumElements(); 1642 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1643 1644 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); 1645 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1646 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); 1647 for (int i = 0, e = Mask.size(); i != e; ++i) { 1648 if (Mask[i] == -1) 1649 continue; 1650 1651 // If this shuffle is choosing an undef element from 1 of the sources, that 1652 // element is undef. 1653 if (Mask[i] < WideElts) { 1654 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1655 continue; 1656 } else { 1657 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1658 continue; 1659 } 1660 1661 // If this shuffle is choosing from the 1st narrow op, the mask element is 1662 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1663 // element is offset down to adjust for the narrow vector widths. 1664 if (Mask[i] < WideElts) { 1665 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1666 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); 1667 } else { 1668 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1669 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); 1670 } 1671 } 1672 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1673 } 1674 1675 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1676 Value *LHS = SVI.getOperand(0); 1677 Value *RHS = SVI.getOperand(1); 1678 if (auto *V = SimplifyShuffleVectorInst( 1679 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) 1680 return replaceInstUsesWith(SVI, V); 1681 1682 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 1683 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 1684 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1685 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1686 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1687 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1688 if (LHS == RHS || isa<UndefValue>(LHS)) { 1689 // Remap any references to RHS to use LHS. 1690 SmallVector<Constant*, 16> Elts; 1691 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 1692 if (Mask[i] < 0) { 1693 Elts.push_back(UndefValue::get(Int32Ty)); 1694 continue; 1695 } 1696 1697 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 1698 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 1699 Mask[i] = -1; // Turn into undef. 1700 Elts.push_back(UndefValue::get(Int32Ty)); 1701 } else { 1702 Mask[i] = Mask[i] % e; // Force to LHS. 1703 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 1704 } 1705 } 1706 SVI.setOperand(0, SVI.getOperand(1)); 1707 SVI.setOperand(1, UndefValue::get(RHS->getType())); 1708 SVI.setOperand(2, ConstantVector::get(Elts)); 1709 return &SVI; 1710 } 1711 1712 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 1713 return I; 1714 1715 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 1716 return I; 1717 1718 APInt UndefElts(VWidth, 0); 1719 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1720 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1721 if (V != &SVI) 1722 return replaceInstUsesWith(SVI, V); 1723 return &SVI; 1724 } 1725 1726 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 1727 return I; 1728 1729 // These transforms have the potential to lose undef knowledge, so they are 1730 // intentionally placed after SimplifyDemandedVectorElts(). 1731 if (Instruction *I = foldShuffleWithInsert(SVI)) 1732 return I; 1733 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 1734 return I; 1735 1736 if (VWidth == LHSWidth) { 1737 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 1738 bool isLHSID, isRHSID; 1739 recognizeIdentityMask(Mask, isLHSID, isRHSID); 1740 1741 // Eliminate identity shuffles. 1742 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 1743 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 1744 } 1745 1746 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 1747 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 1748 return replaceInstUsesWith(SVI, V); 1749 } 1750 1751 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1752 // a non-vector type. We can instead bitcast the original vector followed by 1753 // an extract of the desired element: 1754 // 1755 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1756 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1757 // %1 = bitcast <4 x i8> %sroa to i32 1758 // Becomes: 1759 // %bc = bitcast <16 x i8> %in to <4 x i32> 1760 // %ext = extractelement <4 x i32> %bc, i32 0 1761 // 1762 // If the shuffle is extracting a contiguous range of values from the input 1763 // vector then each use which is a bitcast of the extracted size can be 1764 // replaced. This will work if the vector types are compatible, and the begin 1765 // index is aligned to a value in the casted vector type. If the begin index 1766 // isn't aligned then we can shuffle the original vector (keeping the same 1767 // vector type) before extracting. 1768 // 1769 // This code will bail out if the target type is fundamentally incompatible 1770 // with vectors of the source type. 1771 // 1772 // Example of <16 x i8>, target type i32: 1773 // Index range [4,8): v-----------v Will work. 1774 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1775 // <16 x i8>: | | | | | | | | | | | | | | | | | 1776 // <4 x i32>: | | | | | 1777 // +-----------+-----------+-----------+-----------+ 1778 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1779 // Target type i40: ^--------------^ Won't work, bail. 1780 bool MadeChange = false; 1781 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1782 Value *V = LHS; 1783 unsigned MaskElems = Mask.size(); 1784 VectorType *SrcTy = cast<VectorType>(V->getType()); 1785 unsigned VecBitWidth = SrcTy->getBitWidth(); 1786 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1787 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1788 unsigned SrcNumElems = SrcTy->getNumElements(); 1789 SmallVector<BitCastInst *, 8> BCs; 1790 DenseMap<Type *, Value *> NewBCs; 1791 for (User *U : SVI.users()) 1792 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1793 if (!BC->use_empty()) 1794 // Only visit bitcasts that weren't previously handled. 1795 BCs.push_back(BC); 1796 for (BitCastInst *BC : BCs) { 1797 unsigned BegIdx = Mask.front(); 1798 Type *TgtTy = BC->getDestTy(); 1799 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 1800 if (!TgtElemBitWidth) 1801 continue; 1802 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 1803 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 1804 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 1805 if (!VecBitWidthsEqual) 1806 continue; 1807 if (!VectorType::isValidElementType(TgtTy)) 1808 continue; 1809 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 1810 if (!BegIsAligned) { 1811 // Shuffle the input so [0,NumElements) contains the output, and 1812 // [NumElems,SrcNumElems) is undef. 1813 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 1814 UndefValue::get(Int32Ty)); 1815 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 1816 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 1817 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 1818 ConstantVector::get(ShuffleMask), 1819 SVI.getName() + ".extract"); 1820 BegIdx = 0; 1821 } 1822 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 1823 assert(SrcElemsPerTgtElem); 1824 BegIdx /= SrcElemsPerTgtElem; 1825 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 1826 auto *NewBC = 1827 BCAlreadyExists 1828 ? NewBCs[CastSrcTy] 1829 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 1830 if (!BCAlreadyExists) 1831 NewBCs[CastSrcTy] = NewBC; 1832 auto *Ext = Builder.CreateExtractElement( 1833 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 1834 // The shufflevector isn't being replaced: the bitcast that used it 1835 // is. InstCombine will visit the newly-created instructions. 1836 replaceInstUsesWith(*BC, Ext); 1837 MadeChange = true; 1838 } 1839 } 1840 1841 // If the LHS is a shufflevector itself, see if we can combine it with this 1842 // one without producing an unusual shuffle. 1843 // Cases that might be simplified: 1844 // 1. 1845 // x1=shuffle(v1,v2,mask1) 1846 // x=shuffle(x1,undef,mask) 1847 // ==> 1848 // x=shuffle(v1,undef,newMask) 1849 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1850 // 2. 1851 // x1=shuffle(v1,undef,mask1) 1852 // x=shuffle(x1,x2,mask) 1853 // where v1.size() == mask1.size() 1854 // ==> 1855 // x=shuffle(v1,x2,newMask) 1856 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1857 // 3. 1858 // x2=shuffle(v2,undef,mask2) 1859 // x=shuffle(x1,x2,mask) 1860 // where v2.size() == mask2.size() 1861 // ==> 1862 // x=shuffle(x1,v2,newMask) 1863 // newMask[i] = (mask[i] < x1.size()) 1864 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1865 // 4. 1866 // x1=shuffle(v1,undef,mask1) 1867 // x2=shuffle(v2,undef,mask2) 1868 // x=shuffle(x1,x2,mask) 1869 // where v1.size() == v2.size() 1870 // ==> 1871 // x=shuffle(v1,v2,newMask) 1872 // newMask[i] = (mask[i] < x1.size()) 1873 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1874 // 1875 // Here we are really conservative: 1876 // we are absolutely afraid of producing a shuffle mask not in the input 1877 // program, because the code gen may not be smart enough to turn a merged 1878 // shuffle into two specific shuffles: it may produce worse code. As such, 1879 // we only merge two shuffles if the result is either a splat or one of the 1880 // input shuffle masks. In this case, merging the shuffles just removes 1881 // one instruction, which we know is safe. This is good for things like 1882 // turning: (splat(splat)) -> splat, or 1883 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1884 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1885 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1886 if (LHSShuffle) 1887 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1888 LHSShuffle = nullptr; 1889 if (RHSShuffle) 1890 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1891 RHSShuffle = nullptr; 1892 if (!LHSShuffle && !RHSShuffle) 1893 return MadeChange ? &SVI : nullptr; 1894 1895 Value* LHSOp0 = nullptr; 1896 Value* LHSOp1 = nullptr; 1897 Value* RHSOp0 = nullptr; 1898 unsigned LHSOp0Width = 0; 1899 unsigned RHSOp0Width = 0; 1900 if (LHSShuffle) { 1901 LHSOp0 = LHSShuffle->getOperand(0); 1902 LHSOp1 = LHSShuffle->getOperand(1); 1903 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 1904 } 1905 if (RHSShuffle) { 1906 RHSOp0 = RHSShuffle->getOperand(0); 1907 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 1908 } 1909 Value* newLHS = LHS; 1910 Value* newRHS = RHS; 1911 if (LHSShuffle) { 1912 // case 1 1913 if (isa<UndefValue>(RHS)) { 1914 newLHS = LHSOp0; 1915 newRHS = LHSOp1; 1916 } 1917 // case 2 or 4 1918 else if (LHSOp0Width == LHSWidth) { 1919 newLHS = LHSOp0; 1920 } 1921 } 1922 // case 3 or 4 1923 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1924 newRHS = RHSOp0; 1925 } 1926 // case 4 1927 if (LHSOp0 == RHSOp0) { 1928 newLHS = LHSOp0; 1929 newRHS = nullptr; 1930 } 1931 1932 if (newLHS == LHS && newRHS == RHS) 1933 return MadeChange ? &SVI : nullptr; 1934 1935 SmallVector<int, 16> LHSMask; 1936 SmallVector<int, 16> RHSMask; 1937 if (newLHS != LHS) 1938 LHSMask = LHSShuffle->getShuffleMask(); 1939 if (RHSShuffle && newRHS != RHS) 1940 RHSMask = RHSShuffle->getShuffleMask(); 1941 1942 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1943 SmallVector<int, 16> newMask; 1944 bool isSplat = true; 1945 int SplatElt = -1; 1946 // Create a new mask for the new ShuffleVectorInst so that the new 1947 // ShuffleVectorInst is equivalent to the original one. 1948 for (unsigned i = 0; i < VWidth; ++i) { 1949 int eltMask; 1950 if (Mask[i] < 0) { 1951 // This element is an undef value. 1952 eltMask = -1; 1953 } else if (Mask[i] < (int)LHSWidth) { 1954 // This element is from left hand side vector operand. 1955 // 1956 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1957 // new mask value for the element. 1958 if (newLHS != LHS) { 1959 eltMask = LHSMask[Mask[i]]; 1960 // If the value selected is an undef value, explicitly specify it 1961 // with a -1 mask value. 1962 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1963 eltMask = -1; 1964 } else 1965 eltMask = Mask[i]; 1966 } else { 1967 // This element is from right hand side vector operand 1968 // 1969 // If the value selected is an undef value, explicitly specify it 1970 // with a -1 mask value. (case 1) 1971 if (isa<UndefValue>(RHS)) 1972 eltMask = -1; 1973 // If RHS is going to be replaced (case 3 or 4), calculate the 1974 // new mask value for the element. 1975 else if (newRHS != RHS) { 1976 eltMask = RHSMask[Mask[i]-LHSWidth]; 1977 // If the value selected is an undef value, explicitly specify it 1978 // with a -1 mask value. 1979 if (eltMask >= (int)RHSOp0Width) { 1980 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1981 && "should have been check above"); 1982 eltMask = -1; 1983 } 1984 } else 1985 eltMask = Mask[i]-LHSWidth; 1986 1987 // If LHS's width is changed, shift the mask value accordingly. 1988 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 1989 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1990 // If newRHS == newLHS, we want to remap any references from newRHS to 1991 // newLHS so that we can properly identify splats that may occur due to 1992 // obfuscation across the two vectors. 1993 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1994 eltMask += newLHSWidth; 1995 } 1996 1997 // Check if this could still be a splat. 1998 if (eltMask >= 0) { 1999 if (SplatElt >= 0 && SplatElt != eltMask) 2000 isSplat = false; 2001 SplatElt = eltMask; 2002 } 2003 2004 newMask.push_back(eltMask); 2005 } 2006 2007 // If the result mask is equal to one of the original shuffle masks, 2008 // or is a splat, do the replacement. 2009 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2010 SmallVector<Constant*, 16> Elts; 2011 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2012 if (newMask[i] < 0) { 2013 Elts.push_back(UndefValue::get(Int32Ty)); 2014 } else { 2015 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2016 } 2017 } 2018 if (!newRHS) 2019 newRHS = UndefValue::get(newLHS->getType()); 2020 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2021 } 2022 2023 // If the result mask is an identity, replace uses of this instruction with 2024 // corresponding argument. 2025 bool isLHSID, isRHSID; 2026 recognizeIdentityMask(newMask, isLHSID, isRHSID); 2027 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); 2028 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); 2029 2030 return MadeChange ? &SVI : nullptr; 2031 } 2032