1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Return true if the value is cheaper to scalarize than it is to leave as a 26 /// vector operation. isConstant indicates whether we're extracting one known 27 /// element. If false we're extracting a variable index. 28 static bool cheapToScalarize(Value *V, bool isConstant) { 29 if (Constant *C = dyn_cast<Constant>(V)) { 30 if (isConstant) return true; 31 32 // If all elts are the same, we can extract it and use any of the values. 33 if (Constant *Op0 = C->getAggregateElement(0U)) { 34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; 35 ++i) 36 if (C->getAggregateElement(i) != Op0) 37 return false; 38 return true; 39 } 40 } 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (!I) return false; 43 44 // Insert element gets simplified to the inserted element or is deleted if 45 // this is constant idx extract element and its a constant idx insertelt. 46 if (I->getOpcode() == Instruction::InsertElement && isConstant && 47 isa<ConstantInt>(I->getOperand(2))) 48 return true; 49 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 50 return true; 51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 52 if (BO->hasOneUse() && 53 (cheapToScalarize(BO->getOperand(0), isConstant) || 54 cheapToScalarize(BO->getOperand(1), isConstant))) 55 return true; 56 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 57 if (CI->hasOneUse() && 58 (cheapToScalarize(CI->getOperand(0), isConstant) || 59 cheapToScalarize(CI->getOperand(1), isConstant))) 60 return true; 61 62 return false; 63 } 64 65 // If we have a PHI node with a vector type that is only used to feed 66 // itself and be an operand of extractelement at a constant location, 67 // try to replace the PHI of the vector type with a PHI of a scalar type. 68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 69 SmallVector<Instruction *, 2> Extracts; 70 // The users we want the PHI to have are: 71 // 1) The EI ExtractElement (we already know this) 72 // 2) Possibly more ExtractElements with the same index. 73 // 3) Another operand, which will feed back into the PHI. 74 Instruction *PHIUser = nullptr; 75 for (auto U : PN->users()) { 76 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 77 if (EI.getIndexOperand() == EU->getIndexOperand()) 78 Extracts.push_back(EU); 79 else 80 return nullptr; 81 } else if (!PHIUser) { 82 PHIUser = cast<Instruction>(U); 83 } else { 84 return nullptr; 85 } 86 } 87 88 if (!PHIUser) 89 return nullptr; 90 91 // Verify that this PHI user has one use, which is the PHI itself, 92 // and that it is a binary operation which is cheap to scalarize. 93 // otherwise return NULL. 94 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 95 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 96 return nullptr; 97 98 // Create a scalar PHI node that will replace the vector PHI node 99 // just before the current PHI node. 100 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 101 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 102 // Scalarize each PHI operand. 103 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 104 Value *PHIInVal = PN->getIncomingValue(i); 105 BasicBlock *inBB = PN->getIncomingBlock(i); 106 Value *Elt = EI.getIndexOperand(); 107 // If the operand is the PHI induction variable: 108 if (PHIInVal == PHIUser) { 109 // Scalarize the binary operation. Its first operand is the 110 // scalar PHI, and the second operand is extracted from the other 111 // vector operand. 112 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 113 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 114 Value *Op = InsertNewInstWith( 115 ExtractElementInst::Create(B0->getOperand(opId), Elt, 116 B0->getOperand(opId)->getName() + ".Elt"), 117 *B0); 118 Value *newPHIUser = InsertNewInstWith( 119 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 120 scalarPHI, Op, B0), *B0); 121 scalarPHI->addIncoming(newPHIUser, inBB); 122 } else { 123 // Scalarize PHI input: 124 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 125 // Insert the new instruction into the predecessor basic block. 126 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 127 BasicBlock::iterator InsertPos; 128 if (pos && !isa<PHINode>(pos)) { 129 InsertPos = ++pos->getIterator(); 130 } else { 131 InsertPos = inBB->getFirstInsertionPt(); 132 } 133 134 InsertNewInstWith(newEI, *InsertPos); 135 136 scalarPHI->addIncoming(newEI, inBB); 137 } 138 } 139 140 for (auto E : Extracts) 141 replaceInstUsesWith(*E, scalarPHI); 142 143 return &EI; 144 } 145 146 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 147 if (Value *V = SimplifyExtractElementInst(EI.getVectorOperand(), 148 EI.getIndexOperand(), 149 SQ.getWithInstruction(&EI))) 150 return replaceInstUsesWith(EI, V); 151 152 // If vector val is constant with all elements the same, replace EI with 153 // that element. We handle a known element # below. 154 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) 155 if (cheapToScalarize(C, false)) 156 return replaceInstUsesWith(EI, C->getAggregateElement(0U)); 157 158 // If extracting a specified index from the vector, see if we can recursively 159 // find a previously computed scalar that was inserted into the vector. 160 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { 161 unsigned IndexVal = IdxC->getZExtValue(); 162 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); 163 164 // InstSimplify handles cases where the index is invalid. 165 assert(IndexVal < VectorWidth); 166 167 // This instruction only demands the single element from the input vector. 168 // If the input vector has a single use, simplify it based on this use 169 // property. 170 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { 171 APInt UndefElts(VectorWidth, 0); 172 APInt DemandedMask(VectorWidth, 0); 173 DemandedMask.setBit(IndexVal); 174 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, 175 UndefElts)) { 176 EI.setOperand(0, V); 177 return &EI; 178 } 179 } 180 181 // If this extractelement is directly using a bitcast from a vector of 182 // the same number of elements, see if we can find the source element from 183 // it. In this case, we will end up needing to bitcast the scalars. 184 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { 185 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) 186 if (VT->getNumElements() == VectorWidth) 187 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) 188 return new BitCastInst(Elt, EI.getType()); 189 } 190 191 // If there's a vector PHI feeding a scalar use through this extractelement 192 // instruction, try to scalarize the PHI. 193 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { 194 Instruction *scalarPHI = scalarizePHI(EI, PN); 195 if (scalarPHI) 196 return scalarPHI; 197 } 198 } 199 200 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { 201 // Push extractelement into predecessor operation if legal and 202 // profitable to do so. 203 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 204 if (I->hasOneUse() && 205 cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { 206 Value *newEI0 = 207 Builder.CreateExtractElement(BO->getOperand(0), EI.getOperand(1), 208 EI.getName()+".lhs"); 209 Value *newEI1 = 210 Builder.CreateExtractElement(BO->getOperand(1), EI.getOperand(1), 211 EI.getName()+".rhs"); 212 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), 213 newEI0, newEI1, BO); 214 } 215 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { 216 // Extracting the inserted element? 217 if (IE->getOperand(2) == EI.getOperand(1)) 218 return replaceInstUsesWith(EI, IE->getOperand(1)); 219 // If the inserted and extracted elements are constants, they must not 220 // be the same value, extract from the pre-inserted value instead. 221 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { 222 Worklist.AddValue(EI.getOperand(0)); 223 EI.setOperand(0, IE->getOperand(0)); 224 return &EI; 225 } 226 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 227 // If this is extracting an element from a shufflevector, figure out where 228 // it came from and extract from the appropriate input element instead. 229 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { 230 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 231 Value *Src; 232 unsigned LHSWidth = 233 SVI->getOperand(0)->getType()->getVectorNumElements(); 234 235 if (SrcIdx < 0) 236 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 237 if (SrcIdx < (int)LHSWidth) 238 Src = SVI->getOperand(0); 239 else { 240 SrcIdx -= LHSWidth; 241 Src = SVI->getOperand(1); 242 } 243 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 244 return ExtractElementInst::Create(Src, 245 ConstantInt::get(Int32Ty, 246 SrcIdx, false)); 247 } 248 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 249 // Canonicalize extractelement(cast) -> cast(extractelement). 250 // Bitcasts can change the number of vector elements, and they cost 251 // nothing. 252 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 253 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), 254 EI.getIndexOperand()); 255 Worklist.AddValue(EE); 256 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 257 } 258 } 259 } 260 return nullptr; 261 } 262 263 /// If V is a shuffle of values that ONLY returns elements from either LHS or 264 /// RHS, return the shuffle mask and true. Otherwise, return false. 265 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 266 SmallVectorImpl<Constant*> &Mask) { 267 assert(LHS->getType() == RHS->getType() && 268 "Invalid CollectSingleShuffleElements"); 269 unsigned NumElts = V->getType()->getVectorNumElements(); 270 271 if (isa<UndefValue>(V)) { 272 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 273 return true; 274 } 275 276 if (V == LHS) { 277 for (unsigned i = 0; i != NumElts; ++i) 278 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 279 return true; 280 } 281 282 if (V == RHS) { 283 for (unsigned i = 0; i != NumElts; ++i) 284 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 285 i+NumElts)); 286 return true; 287 } 288 289 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 290 // If this is an insert of an extract from some other vector, include it. 291 Value *VecOp = IEI->getOperand(0); 292 Value *ScalarOp = IEI->getOperand(1); 293 Value *IdxOp = IEI->getOperand(2); 294 295 if (!isa<ConstantInt>(IdxOp)) 296 return false; 297 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 298 299 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 300 // We can handle this if the vector we are inserting into is 301 // transitively ok. 302 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 303 // If so, update the mask to reflect the inserted undef. 304 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 305 return true; 306 } 307 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 308 if (isa<ConstantInt>(EI->getOperand(1))) { 309 unsigned ExtractedIdx = 310 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 311 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 312 313 // This must be extracting from either LHS or RHS. 314 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 315 // We can handle this if the vector we are inserting into is 316 // transitively ok. 317 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 318 // If so, update the mask to reflect the inserted value. 319 if (EI->getOperand(0) == LHS) { 320 Mask[InsertedIdx % NumElts] = 321 ConstantInt::get(Type::getInt32Ty(V->getContext()), 322 ExtractedIdx); 323 } else { 324 assert(EI->getOperand(0) == RHS); 325 Mask[InsertedIdx % NumElts] = 326 ConstantInt::get(Type::getInt32Ty(V->getContext()), 327 ExtractedIdx + NumLHSElts); 328 } 329 return true; 330 } 331 } 332 } 333 } 334 } 335 336 return false; 337 } 338 339 /// If we have insertion into a vector that is wider than the vector that we 340 /// are extracting from, try to widen the source vector to allow a single 341 /// shufflevector to replace one or more insert/extract pairs. 342 static void replaceExtractElements(InsertElementInst *InsElt, 343 ExtractElementInst *ExtElt, 344 InstCombiner &IC) { 345 VectorType *InsVecType = InsElt->getType(); 346 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 347 unsigned NumInsElts = InsVecType->getVectorNumElements(); 348 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 349 350 // The inserted-to vector must be wider than the extracted-from vector. 351 if (InsVecType->getElementType() != ExtVecType->getElementType() || 352 NumExtElts >= NumInsElts) 353 return; 354 355 // Create a shuffle mask to widen the extended-from vector using undefined 356 // values. The mask selects all of the values of the original vector followed 357 // by as many undefined values as needed to create a vector of the same length 358 // as the inserted-to vector. 359 SmallVector<Constant *, 16> ExtendMask; 360 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 361 for (unsigned i = 0; i < NumExtElts; ++i) 362 ExtendMask.push_back(ConstantInt::get(IntType, i)); 363 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 364 ExtendMask.push_back(UndefValue::get(IntType)); 365 366 Value *ExtVecOp = ExtElt->getVectorOperand(); 367 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 368 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 369 ? ExtVecOpInst->getParent() 370 : ExtElt->getParent(); 371 372 // TODO: This restriction matches the basic block check below when creating 373 // new extractelement instructions. If that limitation is removed, this one 374 // could also be removed. But for now, we just bail out to ensure that we 375 // will replace the extractelement instruction that is feeding our 376 // insertelement instruction. This allows the insertelement to then be 377 // replaced by a shufflevector. If the insertelement is not replaced, we can 378 // induce infinite looping because there's an optimization for extractelement 379 // that will delete our widening shuffle. This would trigger another attempt 380 // here to create that shuffle, and we spin forever. 381 if (InsertionBlock != InsElt->getParent()) 382 return; 383 384 // TODO: This restriction matches the check in visitInsertElementInst() and 385 // prevents an infinite loop caused by not turning the extract/insert pair 386 // into a shuffle. We really should not need either check, but we're lacking 387 // folds for shufflevectors because we're afraid to generate shuffle masks 388 // that the backend can't handle. 389 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 390 return; 391 392 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 393 ConstantVector::get(ExtendMask)); 394 395 // Insert the new shuffle after the vector operand of the extract is defined 396 // (as long as it's not a PHI) or at the start of the basic block of the 397 // extract, so any subsequent extracts in the same basic block can use it. 398 // TODO: Insert before the earliest ExtractElementInst that is replaced. 399 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 400 WideVec->insertAfter(ExtVecOpInst); 401 else 402 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 403 404 // Replace extracts from the original narrow vector with extracts from the new 405 // wide vector. 406 for (User *U : ExtVecOp->users()) { 407 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 408 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 409 continue; 410 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 411 NewExt->insertAfter(OldExt); 412 IC.replaceInstUsesWith(*OldExt, NewExt); 413 } 414 } 415 416 /// We are building a shuffle to create V, which is a sequence of insertelement, 417 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 418 /// not rely on the second vector source. Return a std::pair containing the 419 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 420 /// parameter as required. 421 /// 422 /// Note: we intentionally don't try to fold earlier shuffles since they have 423 /// often been chosen carefully to be efficiently implementable on the target. 424 typedef std::pair<Value *, Value *> ShuffleOps; 425 426 static ShuffleOps collectShuffleElements(Value *V, 427 SmallVectorImpl<Constant *> &Mask, 428 Value *PermittedRHS, 429 InstCombiner &IC) { 430 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 431 unsigned NumElts = V->getType()->getVectorNumElements(); 432 433 if (isa<UndefValue>(V)) { 434 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 435 return std::make_pair( 436 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 437 } 438 439 if (isa<ConstantAggregateZero>(V)) { 440 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 441 return std::make_pair(V, nullptr); 442 } 443 444 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 445 // If this is an insert of an extract from some other vector, include it. 446 Value *VecOp = IEI->getOperand(0); 447 Value *ScalarOp = IEI->getOperand(1); 448 Value *IdxOp = IEI->getOperand(2); 449 450 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 451 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 452 unsigned ExtractedIdx = 453 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 454 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 455 456 // Either the extracted from or inserted into vector must be RHSVec, 457 // otherwise we'd end up with a shuffle of three inputs. 458 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 459 Value *RHS = EI->getOperand(0); 460 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 461 assert(LR.second == nullptr || LR.second == RHS); 462 463 if (LR.first->getType() != RHS->getType()) { 464 // Although we are giving up for now, see if we can create extracts 465 // that match the inserts for another round of combining. 466 replaceExtractElements(IEI, EI, IC); 467 468 // We tried our best, but we can't find anything compatible with RHS 469 // further up the chain. Return a trivial shuffle. 470 for (unsigned i = 0; i < NumElts; ++i) 471 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 472 return std::make_pair(V, nullptr); 473 } 474 475 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 476 Mask[InsertedIdx % NumElts] = 477 ConstantInt::get(Type::getInt32Ty(V->getContext()), 478 NumLHSElts+ExtractedIdx); 479 return std::make_pair(LR.first, RHS); 480 } 481 482 if (VecOp == PermittedRHS) { 483 // We've gone as far as we can: anything on the other side of the 484 // extractelement will already have been converted into a shuffle. 485 unsigned NumLHSElts = 486 EI->getOperand(0)->getType()->getVectorNumElements(); 487 for (unsigned i = 0; i != NumElts; ++i) 488 Mask.push_back(ConstantInt::get( 489 Type::getInt32Ty(V->getContext()), 490 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 491 return std::make_pair(EI->getOperand(0), PermittedRHS); 492 } 493 494 // If this insertelement is a chain that comes from exactly these two 495 // vectors, return the vector and the effective shuffle. 496 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 497 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 498 Mask)) 499 return std::make_pair(EI->getOperand(0), PermittedRHS); 500 } 501 } 502 } 503 504 // Otherwise, we can't do anything fancy. Return an identity vector. 505 for (unsigned i = 0; i != NumElts; ++i) 506 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 507 return std::make_pair(V, nullptr); 508 } 509 510 /// Try to find redundant insertvalue instructions, like the following ones: 511 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 512 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 513 /// Here the second instruction inserts values at the same indices, as the 514 /// first one, making the first one redundant. 515 /// It should be transformed to: 516 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 517 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 518 bool IsRedundant = false; 519 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 520 521 // If there is a chain of insertvalue instructions (each of them except the 522 // last one has only one use and it's another insertvalue insn from this 523 // chain), check if any of the 'children' uses the same indices as the first 524 // instruction. In this case, the first one is redundant. 525 Value *V = &I; 526 unsigned Depth = 0; 527 while (V->hasOneUse() && Depth < 10) { 528 User *U = V->user_back(); 529 auto UserInsInst = dyn_cast<InsertValueInst>(U); 530 if (!UserInsInst || U->getOperand(0) != V) 531 break; 532 if (UserInsInst->getIndices() == FirstIndices) { 533 IsRedundant = true; 534 break; 535 } 536 V = UserInsInst; 537 Depth++; 538 } 539 540 if (IsRedundant) 541 return replaceInstUsesWith(I, I.getOperand(0)); 542 return nullptr; 543 } 544 545 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 546 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 547 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 548 549 // A vector select does not change the size of the operands. 550 if (MaskSize != VecSize) 551 return false; 552 553 // Each mask element must be undefined or choose a vector element from one of 554 // the source operands without crossing vector lanes. 555 for (int i = 0; i != MaskSize; ++i) { 556 int Elt = Shuf.getMaskValue(i); 557 if (Elt != -1 && Elt != i && Elt != i + VecSize) 558 return false; 559 } 560 561 return true; 562 } 563 564 // Turn a chain of inserts that splats a value into a canonical insert + shuffle 565 // splat. That is: 566 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 567 // shufflevector(insertelt(X, %k, 0), undef, zero) 568 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) { 569 // We are interested in the last insert in a chain. So, if this insert 570 // has a single user, and that user is an insert, bail. 571 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 572 return nullptr; 573 574 VectorType *VT = cast<VectorType>(InsElt.getType()); 575 int NumElements = VT->getNumElements(); 576 577 // Do not try to do this for a one-element vector, since that's a nop, 578 // and will cause an inf-loop. 579 if (NumElements == 1) 580 return nullptr; 581 582 Value *SplatVal = InsElt.getOperand(1); 583 InsertElementInst *CurrIE = &InsElt; 584 SmallVector<bool, 16> ElementPresent(NumElements, false); 585 InsertElementInst *FirstIE = nullptr; 586 587 // Walk the chain backwards, keeping track of which indices we inserted into, 588 // until we hit something that isn't an insert of the splatted value. 589 while (CurrIE) { 590 ConstantInt *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 591 if (!Idx || CurrIE->getOperand(1) != SplatVal) 592 return nullptr; 593 594 InsertElementInst *NextIE = 595 dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 596 // Check none of the intermediate steps have any additional uses, except 597 // for the root insertelement instruction, which can be re-used, if it 598 // inserts at position 0. 599 if (CurrIE != &InsElt && 600 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 601 return nullptr; 602 603 ElementPresent[Idx->getZExtValue()] = true; 604 FirstIE = CurrIE; 605 CurrIE = NextIE; 606 } 607 608 // Make sure we've seen an insert into every element. 609 if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; })) 610 return nullptr; 611 612 // All right, create the insert + shuffle. 613 Instruction *InsertFirst; 614 if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 615 InsertFirst = FirstIE; 616 else 617 InsertFirst = InsertElementInst::Create( 618 UndefValue::get(VT), SplatVal, 619 ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), 620 "", &InsElt); 621 622 Constant *ZeroMask = ConstantAggregateZero::get( 623 VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements)); 624 625 return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask); 626 } 627 628 /// If we have an insertelement instruction feeding into another insertelement 629 /// and the 2nd is inserting a constant into the vector, canonicalize that 630 /// constant insertion before the insertion of a variable: 631 /// 632 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 633 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 634 /// 635 /// This has the potential of eliminating the 2nd insertelement instruction 636 /// via constant folding of the scalar constant into a vector constant. 637 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 638 InstCombiner::BuilderTy &Builder) { 639 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 640 if (!InsElt1 || !InsElt1->hasOneUse()) 641 return nullptr; 642 643 Value *X, *Y; 644 Constant *ScalarC; 645 ConstantInt *IdxC1, *IdxC2; 646 if (match(InsElt1->getOperand(0), m_Value(X)) && 647 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 648 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 649 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 650 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 651 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 652 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 653 } 654 655 return nullptr; 656 } 657 658 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 659 /// --> shufflevector X, CVec', Mask' 660 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 661 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 662 // Bail out if the parent has more than one use. In that case, we'd be 663 // replacing the insertelt with a shuffle, and that's not a clear win. 664 if (!Inst || !Inst->hasOneUse()) 665 return nullptr; 666 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 667 // The shuffle must have a constant vector operand. The insertelt must have 668 // a constant scalar being inserted at a constant position in the vector. 669 Constant *ShufConstVec, *InsEltScalar; 670 uint64_t InsEltIndex; 671 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 672 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 673 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 674 return nullptr; 675 676 // Adding an element to an arbitrary shuffle could be expensive, but a 677 // shuffle that selects elements from vectors without crossing lanes is 678 // assumed cheap. 679 // If we're just adding a constant into that shuffle, it will still be 680 // cheap. 681 if (!isShuffleEquivalentToSelect(*Shuf)) 682 return nullptr; 683 684 // From the above 'select' check, we know that the mask has the same number 685 // of elements as the vector input operands. We also know that each constant 686 // input element is used in its lane and can not be used more than once by 687 // the shuffle. Therefore, replace the constant in the shuffle's constant 688 // vector with the insertelt constant. Replace the constant in the shuffle's 689 // mask vector with the insertelt index plus the length of the vector 690 // (because the constant vector operand of a shuffle is always the 2nd 691 // operand). 692 Constant *Mask = Shuf->getMask(); 693 unsigned NumElts = Mask->getType()->getVectorNumElements(); 694 SmallVector<Constant *, 16> NewShufElts(NumElts); 695 SmallVector<Constant *, 16> NewMaskElts(NumElts); 696 for (unsigned I = 0; I != NumElts; ++I) { 697 if (I == InsEltIndex) { 698 NewShufElts[I] = InsEltScalar; 699 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 700 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 701 } else { 702 // Copy over the existing values. 703 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 704 NewMaskElts[I] = Mask->getAggregateElement(I); 705 } 706 } 707 708 // Create new operands for a shuffle that includes the constant of the 709 // original insertelt. The old shuffle will be dead now. 710 return new ShuffleVectorInst(Shuf->getOperand(0), 711 ConstantVector::get(NewShufElts), 712 ConstantVector::get(NewMaskElts)); 713 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 714 // Transform sequences of insertelements ops with constant data/indexes into 715 // a single shuffle op. 716 unsigned NumElts = InsElt.getType()->getNumElements(); 717 718 uint64_t InsertIdx[2]; 719 Constant *Val[2]; 720 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 721 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 722 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 723 !match(IEI->getOperand(1), m_Constant(Val[1]))) 724 return nullptr; 725 SmallVector<Constant *, 16> Values(NumElts); 726 SmallVector<Constant *, 16> Mask(NumElts); 727 auto ValI = std::begin(Val); 728 // Generate new constant vector and mask. 729 // We have 2 values/masks from the insertelements instructions. Insert them 730 // into new value/mask vectors. 731 for (uint64_t I : InsertIdx) { 732 if (!Values[I]) { 733 assert(!Mask[I]); 734 Values[I] = *ValI; 735 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 736 NumElts + I); 737 } 738 ++ValI; 739 } 740 // Remaining values are filled with 'undef' values. 741 for (unsigned I = 0; I < NumElts; ++I) { 742 if (!Values[I]) { 743 assert(!Mask[I]); 744 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 745 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 746 } 747 } 748 // Create new operands for a shuffle that includes the constant of the 749 // original insertelt. 750 return new ShuffleVectorInst(IEI->getOperand(0), 751 ConstantVector::get(Values), 752 ConstantVector::get(Mask)); 753 } 754 return nullptr; 755 } 756 757 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 758 Value *VecOp = IE.getOperand(0); 759 Value *ScalarOp = IE.getOperand(1); 760 Value *IdxOp = IE.getOperand(2); 761 762 // Inserting an undef or into an undefined place, remove this. 763 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 764 replaceInstUsesWith(IE, VecOp); 765 766 // If the inserted element was extracted from some other vector, and if the 767 // indexes are constant, try to turn this into a shufflevector operation. 768 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 769 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 770 unsigned NumInsertVectorElts = IE.getType()->getNumElements(); 771 unsigned NumExtractVectorElts = 772 EI->getOperand(0)->getType()->getVectorNumElements(); 773 unsigned ExtractedIdx = 774 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 775 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 776 777 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. 778 return replaceInstUsesWith(IE, VecOp); 779 780 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. 781 return replaceInstUsesWith(IE, UndefValue::get(IE.getType())); 782 783 // If we are extracting a value from a vector, then inserting it right 784 // back into the same place, just use the input vector. 785 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) 786 return replaceInstUsesWith(IE, VecOp); 787 788 // If this insertelement isn't used by some other insertelement, turn it 789 // (and any insertelements it points to), into one big shuffle. 790 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { 791 SmallVector<Constant*, 16> Mask; 792 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 793 794 // The proposed shuffle may be trivial, in which case we shouldn't 795 // perform the combine. 796 if (LR.first != &IE && LR.second != &IE) { 797 // We now have a shuffle of LHS, RHS, Mask. 798 if (LR.second == nullptr) 799 LR.second = UndefValue::get(LR.first->getType()); 800 return new ShuffleVectorInst(LR.first, LR.second, 801 ConstantVector::get(Mask)); 802 } 803 } 804 } 805 } 806 807 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 808 APInt UndefElts(VWidth, 0); 809 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 810 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 811 if (V != &IE) 812 return replaceInstUsesWith(IE, V); 813 return &IE; 814 } 815 816 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 817 return Shuf; 818 819 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 820 return NewInsElt; 821 822 // Turn a sequence of inserts that broadcasts a scalar into a single 823 // insert + shufflevector. 824 if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE)) 825 return Broadcast; 826 827 return nullptr; 828 } 829 830 /// Return true if we can evaluate the specified expression tree if the vector 831 /// elements were shuffled in a different order. 832 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, 833 unsigned Depth = 5) { 834 // We can always reorder the elements of a constant. 835 if (isa<Constant>(V)) 836 return true; 837 838 // We won't reorder vector arguments. No IPO here. 839 Instruction *I = dyn_cast<Instruction>(V); 840 if (!I) return false; 841 842 // Two users may expect different orders of the elements. Don't try it. 843 if (!I->hasOneUse()) 844 return false; 845 846 if (Depth == 0) return false; 847 848 switch (I->getOpcode()) { 849 case Instruction::Add: 850 case Instruction::FAdd: 851 case Instruction::Sub: 852 case Instruction::FSub: 853 case Instruction::Mul: 854 case Instruction::FMul: 855 case Instruction::UDiv: 856 case Instruction::SDiv: 857 case Instruction::FDiv: 858 case Instruction::URem: 859 case Instruction::SRem: 860 case Instruction::FRem: 861 case Instruction::Shl: 862 case Instruction::LShr: 863 case Instruction::AShr: 864 case Instruction::And: 865 case Instruction::Or: 866 case Instruction::Xor: 867 case Instruction::ICmp: 868 case Instruction::FCmp: 869 case Instruction::Trunc: 870 case Instruction::ZExt: 871 case Instruction::SExt: 872 case Instruction::FPToUI: 873 case Instruction::FPToSI: 874 case Instruction::UIToFP: 875 case Instruction::SIToFP: 876 case Instruction::FPTrunc: 877 case Instruction::FPExt: 878 case Instruction::GetElementPtr: { 879 for (Value *Operand : I->operands()) { 880 if (!CanEvaluateShuffled(Operand, Mask, Depth-1)) 881 return false; 882 } 883 return true; 884 } 885 case Instruction::InsertElement: { 886 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 887 if (!CI) return false; 888 int ElementNumber = CI->getLimitedValue(); 889 890 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 891 // can't put an element into multiple indices. 892 bool SeenOnce = false; 893 for (int i = 0, e = Mask.size(); i != e; ++i) { 894 if (Mask[i] == ElementNumber) { 895 if (SeenOnce) 896 return false; 897 SeenOnce = true; 898 } 899 } 900 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); 901 } 902 } 903 return false; 904 } 905 906 /// Rebuild a new instruction just like 'I' but with the new operands given. 907 /// In the event of type mismatch, the type of the operands is correct. 908 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 909 // We don't want to use the IRBuilder here because we want the replacement 910 // instructions to appear next to 'I', not the builder's insertion point. 911 switch (I->getOpcode()) { 912 case Instruction::Add: 913 case Instruction::FAdd: 914 case Instruction::Sub: 915 case Instruction::FSub: 916 case Instruction::Mul: 917 case Instruction::FMul: 918 case Instruction::UDiv: 919 case Instruction::SDiv: 920 case Instruction::FDiv: 921 case Instruction::URem: 922 case Instruction::SRem: 923 case Instruction::FRem: 924 case Instruction::Shl: 925 case Instruction::LShr: 926 case Instruction::AShr: 927 case Instruction::And: 928 case Instruction::Or: 929 case Instruction::Xor: { 930 BinaryOperator *BO = cast<BinaryOperator>(I); 931 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 932 BinaryOperator *New = 933 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 934 NewOps[0], NewOps[1], "", BO); 935 if (isa<OverflowingBinaryOperator>(BO)) { 936 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 937 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 938 } 939 if (isa<PossiblyExactOperator>(BO)) { 940 New->setIsExact(BO->isExact()); 941 } 942 if (isa<FPMathOperator>(BO)) 943 New->copyFastMathFlags(I); 944 return New; 945 } 946 case Instruction::ICmp: 947 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 948 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 949 NewOps[0], NewOps[1]); 950 case Instruction::FCmp: 951 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 952 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 953 NewOps[0], NewOps[1]); 954 case Instruction::Trunc: 955 case Instruction::ZExt: 956 case Instruction::SExt: 957 case Instruction::FPToUI: 958 case Instruction::FPToSI: 959 case Instruction::UIToFP: 960 case Instruction::SIToFP: 961 case Instruction::FPTrunc: 962 case Instruction::FPExt: { 963 // It's possible that the mask has a different number of elements from 964 // the original cast. We recompute the destination type to match the mask. 965 Type *DestTy = 966 VectorType::get(I->getType()->getScalarType(), 967 NewOps[0]->getType()->getVectorNumElements()); 968 assert(NewOps.size() == 1 && "cast with #ops != 1"); 969 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 970 "", I); 971 } 972 case Instruction::GetElementPtr: { 973 Value *Ptr = NewOps[0]; 974 ArrayRef<Value*> Idx = NewOps.slice(1); 975 GetElementPtrInst *GEP = GetElementPtrInst::Create( 976 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 977 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 978 return GEP; 979 } 980 } 981 llvm_unreachable("failed to rebuild vector instructions"); 982 } 983 984 Value * 985 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 986 // Mask.size() does not need to be equal to the number of vector elements. 987 988 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 989 if (isa<UndefValue>(V)) { 990 return UndefValue::get(VectorType::get(V->getType()->getScalarType(), 991 Mask.size())); 992 } 993 if (isa<ConstantAggregateZero>(V)) { 994 return ConstantAggregateZero::get( 995 VectorType::get(V->getType()->getScalarType(), 996 Mask.size())); 997 } 998 if (Constant *C = dyn_cast<Constant>(V)) { 999 SmallVector<Constant *, 16> MaskValues; 1000 for (int i = 0, e = Mask.size(); i != e; ++i) { 1001 if (Mask[i] == -1) 1002 MaskValues.push_back(UndefValue::get(Builder.getInt32Ty())); 1003 else 1004 MaskValues.push_back(Builder.getInt32(Mask[i])); 1005 } 1006 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1007 ConstantVector::get(MaskValues)); 1008 } 1009 1010 Instruction *I = cast<Instruction>(V); 1011 switch (I->getOpcode()) { 1012 case Instruction::Add: 1013 case Instruction::FAdd: 1014 case Instruction::Sub: 1015 case Instruction::FSub: 1016 case Instruction::Mul: 1017 case Instruction::FMul: 1018 case Instruction::UDiv: 1019 case Instruction::SDiv: 1020 case Instruction::FDiv: 1021 case Instruction::URem: 1022 case Instruction::SRem: 1023 case Instruction::FRem: 1024 case Instruction::Shl: 1025 case Instruction::LShr: 1026 case Instruction::AShr: 1027 case Instruction::And: 1028 case Instruction::Or: 1029 case Instruction::Xor: 1030 case Instruction::ICmp: 1031 case Instruction::FCmp: 1032 case Instruction::Trunc: 1033 case Instruction::ZExt: 1034 case Instruction::SExt: 1035 case Instruction::FPToUI: 1036 case Instruction::FPToSI: 1037 case Instruction::UIToFP: 1038 case Instruction::SIToFP: 1039 case Instruction::FPTrunc: 1040 case Instruction::FPExt: 1041 case Instruction::Select: 1042 case Instruction::GetElementPtr: { 1043 SmallVector<Value*, 8> NewOps; 1044 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1045 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1046 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); 1047 NewOps.push_back(V); 1048 NeedsRebuild |= (V != I->getOperand(i)); 1049 } 1050 if (NeedsRebuild) { 1051 return buildNew(I, NewOps); 1052 } 1053 return I; 1054 } 1055 case Instruction::InsertElement: { 1056 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1057 1058 // The insertelement was inserting at Element. Figure out which element 1059 // that becomes after shuffling. The answer is guaranteed to be unique 1060 // by CanEvaluateShuffled. 1061 bool Found = false; 1062 int Index = 0; 1063 for (int e = Mask.size(); Index != e; ++Index) { 1064 if (Mask[Index] == Element) { 1065 Found = true; 1066 break; 1067 } 1068 } 1069 1070 // If element is not in Mask, no need to handle the operand 1 (element to 1071 // be inserted). Just evaluate values in operand 0 according to Mask. 1072 if (!Found) 1073 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 1074 1075 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 1076 return InsertElementInst::Create(V, I->getOperand(1), 1077 Builder.getInt32(Index), "", I); 1078 } 1079 } 1080 llvm_unreachable("failed to reorder elements of vector instruction!"); 1081 } 1082 1083 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 1084 bool &isLHSID, bool &isRHSID) { 1085 isLHSID = isRHSID = true; 1086 1087 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1088 if (Mask[i] < 0) continue; // Ignore undef values. 1089 // Is this an identity shuffle of the LHS value? 1090 isLHSID &= (Mask[i] == (int)i); 1091 1092 // Is this an identity shuffle of the RHS value? 1093 isRHSID &= (Mask[i]-e == i); 1094 } 1095 } 1096 1097 // Returns true if the shuffle is extracting a contiguous range of values from 1098 // LHS, for example: 1099 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1100 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1101 // Shuffles to: |EE|FF|GG|HH| 1102 // +--+--+--+--+ 1103 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1104 SmallVector<int, 16> &Mask) { 1105 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1106 unsigned MaskElems = Mask.size(); 1107 unsigned BegIdx = Mask.front(); 1108 unsigned EndIdx = Mask.back(); 1109 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1110 return false; 1111 for (unsigned I = 0; I != MaskElems; ++I) 1112 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1113 return false; 1114 return true; 1115 } 1116 1117 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1118 Value *LHS = SVI.getOperand(0); 1119 Value *RHS = SVI.getOperand(1); 1120 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1121 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1122 1123 if (auto *V = SimplifyShuffleVectorInst( 1124 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) 1125 return replaceInstUsesWith(SVI, V); 1126 1127 bool MadeChange = false; 1128 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1129 1130 APInt UndefElts(VWidth, 0); 1131 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1132 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1133 if (V != &SVI) 1134 return replaceInstUsesWith(SVI, V); 1135 return &SVI; 1136 } 1137 1138 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1139 1140 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 1141 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 1142 if (LHS == RHS || isa<UndefValue>(LHS)) { 1143 if (isa<UndefValue>(LHS) && LHS == RHS) { 1144 // shuffle(undef,undef,mask) -> undef. 1145 Value *Result = (VWidth == LHSWidth) 1146 ? LHS : UndefValue::get(SVI.getType()); 1147 return replaceInstUsesWith(SVI, Result); 1148 } 1149 1150 // Remap any references to RHS to use LHS. 1151 SmallVector<Constant*, 16> Elts; 1152 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 1153 if (Mask[i] < 0) { 1154 Elts.push_back(UndefValue::get(Int32Ty)); 1155 continue; 1156 } 1157 1158 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 1159 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 1160 Mask[i] = -1; // Turn into undef. 1161 Elts.push_back(UndefValue::get(Int32Ty)); 1162 } else { 1163 Mask[i] = Mask[i] % e; // Force to LHS. 1164 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 1165 } 1166 } 1167 SVI.setOperand(0, SVI.getOperand(1)); 1168 SVI.setOperand(1, UndefValue::get(RHS->getType())); 1169 SVI.setOperand(2, ConstantVector::get(Elts)); 1170 LHS = SVI.getOperand(0); 1171 RHS = SVI.getOperand(1); 1172 MadeChange = true; 1173 } 1174 1175 if (VWidth == LHSWidth) { 1176 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 1177 bool isLHSID, isRHSID; 1178 recognizeIdentityMask(Mask, isLHSID, isRHSID); 1179 1180 // Eliminate identity shuffles. 1181 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 1182 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 1183 } 1184 1185 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { 1186 Value *V = EvaluateInDifferentElementOrder(LHS, Mask); 1187 return replaceInstUsesWith(SVI, V); 1188 } 1189 1190 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1191 // a non-vector type. We can instead bitcast the original vector followed by 1192 // an extract of the desired element: 1193 // 1194 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1195 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1196 // %1 = bitcast <4 x i8> %sroa to i32 1197 // Becomes: 1198 // %bc = bitcast <16 x i8> %in to <4 x i32> 1199 // %ext = extractelement <4 x i32> %bc, i32 0 1200 // 1201 // If the shuffle is extracting a contiguous range of values from the input 1202 // vector then each use which is a bitcast of the extracted size can be 1203 // replaced. This will work if the vector types are compatible, and the begin 1204 // index is aligned to a value in the casted vector type. If the begin index 1205 // isn't aligned then we can shuffle the original vector (keeping the same 1206 // vector type) before extracting. 1207 // 1208 // This code will bail out if the target type is fundamentally incompatible 1209 // with vectors of the source type. 1210 // 1211 // Example of <16 x i8>, target type i32: 1212 // Index range [4,8): v-----------v Will work. 1213 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1214 // <16 x i8>: | | | | | | | | | | | | | | | | | 1215 // <4 x i32>: | | | | | 1216 // +-----------+-----------+-----------+-----------+ 1217 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1218 // Target type i40: ^--------------^ Won't work, bail. 1219 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1220 Value *V = LHS; 1221 unsigned MaskElems = Mask.size(); 1222 VectorType *SrcTy = cast<VectorType>(V->getType()); 1223 unsigned VecBitWidth = SrcTy->getBitWidth(); 1224 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1225 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1226 unsigned SrcNumElems = SrcTy->getNumElements(); 1227 SmallVector<BitCastInst *, 8> BCs; 1228 DenseMap<Type *, Value *> NewBCs; 1229 for (User *U : SVI.users()) 1230 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1231 if (!BC->use_empty()) 1232 // Only visit bitcasts that weren't previously handled. 1233 BCs.push_back(BC); 1234 for (BitCastInst *BC : BCs) { 1235 unsigned BegIdx = Mask.front(); 1236 Type *TgtTy = BC->getDestTy(); 1237 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 1238 if (!TgtElemBitWidth) 1239 continue; 1240 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 1241 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 1242 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 1243 if (!VecBitWidthsEqual) 1244 continue; 1245 if (!VectorType::isValidElementType(TgtTy)) 1246 continue; 1247 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 1248 if (!BegIsAligned) { 1249 // Shuffle the input so [0,NumElements) contains the output, and 1250 // [NumElems,SrcNumElems) is undef. 1251 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 1252 UndefValue::get(Int32Ty)); 1253 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 1254 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 1255 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 1256 ConstantVector::get(ShuffleMask), 1257 SVI.getName() + ".extract"); 1258 BegIdx = 0; 1259 } 1260 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 1261 assert(SrcElemsPerTgtElem); 1262 BegIdx /= SrcElemsPerTgtElem; 1263 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 1264 auto *NewBC = 1265 BCAlreadyExists 1266 ? NewBCs[CastSrcTy] 1267 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 1268 if (!BCAlreadyExists) 1269 NewBCs[CastSrcTy] = NewBC; 1270 auto *Ext = Builder.CreateExtractElement( 1271 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 1272 // The shufflevector isn't being replaced: the bitcast that used it 1273 // is. InstCombine will visit the newly-created instructions. 1274 replaceInstUsesWith(*BC, Ext); 1275 MadeChange = true; 1276 } 1277 } 1278 1279 // If the LHS is a shufflevector itself, see if we can combine it with this 1280 // one without producing an unusual shuffle. 1281 // Cases that might be simplified: 1282 // 1. 1283 // x1=shuffle(v1,v2,mask1) 1284 // x=shuffle(x1,undef,mask) 1285 // ==> 1286 // x=shuffle(v1,undef,newMask) 1287 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1288 // 2. 1289 // x1=shuffle(v1,undef,mask1) 1290 // x=shuffle(x1,x2,mask) 1291 // where v1.size() == mask1.size() 1292 // ==> 1293 // x=shuffle(v1,x2,newMask) 1294 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1295 // 3. 1296 // x2=shuffle(v2,undef,mask2) 1297 // x=shuffle(x1,x2,mask) 1298 // where v2.size() == mask2.size() 1299 // ==> 1300 // x=shuffle(x1,v2,newMask) 1301 // newMask[i] = (mask[i] < x1.size()) 1302 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1303 // 4. 1304 // x1=shuffle(v1,undef,mask1) 1305 // x2=shuffle(v2,undef,mask2) 1306 // x=shuffle(x1,x2,mask) 1307 // where v1.size() == v2.size() 1308 // ==> 1309 // x=shuffle(v1,v2,newMask) 1310 // newMask[i] = (mask[i] < x1.size()) 1311 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1312 // 1313 // Here we are really conservative: 1314 // we are absolutely afraid of producing a shuffle mask not in the input 1315 // program, because the code gen may not be smart enough to turn a merged 1316 // shuffle into two specific shuffles: it may produce worse code. As such, 1317 // we only merge two shuffles if the result is either a splat or one of the 1318 // input shuffle masks. In this case, merging the shuffles just removes 1319 // one instruction, which we know is safe. This is good for things like 1320 // turning: (splat(splat)) -> splat, or 1321 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1322 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1323 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1324 if (LHSShuffle) 1325 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1326 LHSShuffle = nullptr; 1327 if (RHSShuffle) 1328 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1329 RHSShuffle = nullptr; 1330 if (!LHSShuffle && !RHSShuffle) 1331 return MadeChange ? &SVI : nullptr; 1332 1333 Value* LHSOp0 = nullptr; 1334 Value* LHSOp1 = nullptr; 1335 Value* RHSOp0 = nullptr; 1336 unsigned LHSOp0Width = 0; 1337 unsigned RHSOp0Width = 0; 1338 if (LHSShuffle) { 1339 LHSOp0 = LHSShuffle->getOperand(0); 1340 LHSOp1 = LHSShuffle->getOperand(1); 1341 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 1342 } 1343 if (RHSShuffle) { 1344 RHSOp0 = RHSShuffle->getOperand(0); 1345 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 1346 } 1347 Value* newLHS = LHS; 1348 Value* newRHS = RHS; 1349 if (LHSShuffle) { 1350 // case 1 1351 if (isa<UndefValue>(RHS)) { 1352 newLHS = LHSOp0; 1353 newRHS = LHSOp1; 1354 } 1355 // case 2 or 4 1356 else if (LHSOp0Width == LHSWidth) { 1357 newLHS = LHSOp0; 1358 } 1359 } 1360 // case 3 or 4 1361 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1362 newRHS = RHSOp0; 1363 } 1364 // case 4 1365 if (LHSOp0 == RHSOp0) { 1366 newLHS = LHSOp0; 1367 newRHS = nullptr; 1368 } 1369 1370 if (newLHS == LHS && newRHS == RHS) 1371 return MadeChange ? &SVI : nullptr; 1372 1373 SmallVector<int, 16> LHSMask; 1374 SmallVector<int, 16> RHSMask; 1375 if (newLHS != LHS) 1376 LHSMask = LHSShuffle->getShuffleMask(); 1377 if (RHSShuffle && newRHS != RHS) 1378 RHSMask = RHSShuffle->getShuffleMask(); 1379 1380 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1381 SmallVector<int, 16> newMask; 1382 bool isSplat = true; 1383 int SplatElt = -1; 1384 // Create a new mask for the new ShuffleVectorInst so that the new 1385 // ShuffleVectorInst is equivalent to the original one. 1386 for (unsigned i = 0; i < VWidth; ++i) { 1387 int eltMask; 1388 if (Mask[i] < 0) { 1389 // This element is an undef value. 1390 eltMask = -1; 1391 } else if (Mask[i] < (int)LHSWidth) { 1392 // This element is from left hand side vector operand. 1393 // 1394 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1395 // new mask value for the element. 1396 if (newLHS != LHS) { 1397 eltMask = LHSMask[Mask[i]]; 1398 // If the value selected is an undef value, explicitly specify it 1399 // with a -1 mask value. 1400 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1401 eltMask = -1; 1402 } else 1403 eltMask = Mask[i]; 1404 } else { 1405 // This element is from right hand side vector operand 1406 // 1407 // If the value selected is an undef value, explicitly specify it 1408 // with a -1 mask value. (case 1) 1409 if (isa<UndefValue>(RHS)) 1410 eltMask = -1; 1411 // If RHS is going to be replaced (case 3 or 4), calculate the 1412 // new mask value for the element. 1413 else if (newRHS != RHS) { 1414 eltMask = RHSMask[Mask[i]-LHSWidth]; 1415 // If the value selected is an undef value, explicitly specify it 1416 // with a -1 mask value. 1417 if (eltMask >= (int)RHSOp0Width) { 1418 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1419 && "should have been check above"); 1420 eltMask = -1; 1421 } 1422 } else 1423 eltMask = Mask[i]-LHSWidth; 1424 1425 // If LHS's width is changed, shift the mask value accordingly. 1426 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any 1427 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1428 // If newRHS == newLHS, we want to remap any references from newRHS to 1429 // newLHS so that we can properly identify splats that may occur due to 1430 // obfuscation across the two vectors. 1431 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1432 eltMask += newLHSWidth; 1433 } 1434 1435 // Check if this could still be a splat. 1436 if (eltMask >= 0) { 1437 if (SplatElt >= 0 && SplatElt != eltMask) 1438 isSplat = false; 1439 SplatElt = eltMask; 1440 } 1441 1442 newMask.push_back(eltMask); 1443 } 1444 1445 // If the result mask is equal to one of the original shuffle masks, 1446 // or is a splat, do the replacement. 1447 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 1448 SmallVector<Constant*, 16> Elts; 1449 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1450 if (newMask[i] < 0) { 1451 Elts.push_back(UndefValue::get(Int32Ty)); 1452 } else { 1453 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1454 } 1455 } 1456 if (!newRHS) 1457 newRHS = UndefValue::get(newLHS->getType()); 1458 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1459 } 1460 1461 // If the result mask is an identity, replace uses of this instruction with 1462 // corresponding argument. 1463 bool isLHSID, isRHSID; 1464 recognizeIdentityMask(newMask, isLHSID, isRHSID); 1465 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); 1466 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); 1467 1468 return MadeChange ? &SVI : nullptr; 1469 } 1470