1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   if (match(V, m_OneUse(m_UnOp())))
67     return true;
68 
69   Value *V0, *V1;
70   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
71     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
72         cheapToScalarize(V1, IsConstantExtractIndex))
73       return true;
74 
75   CmpInst::Predicate UnusedPred;
76   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
77     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
78         cheapToScalarize(V1, IsConstantExtractIndex))
79       return true;
80 
81   return false;
82 }
83 
84 // If we have a PHI node with a vector type that is only used to feed
85 // itself and be an operand of extractelement at a constant location,
86 // try to replace the PHI of the vector type with a PHI of a scalar type.
87 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
88   SmallVector<Instruction *, 2> Extracts;
89   // The users we want the PHI to have are:
90   // 1) The EI ExtractElement (we already know this)
91   // 2) Possibly more ExtractElements with the same index.
92   // 3) Another operand, which will feed back into the PHI.
93   Instruction *PHIUser = nullptr;
94   for (auto U : PN->users()) {
95     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
96       if (EI.getIndexOperand() == EU->getIndexOperand())
97         Extracts.push_back(EU);
98       else
99         return nullptr;
100     } else if (!PHIUser) {
101       PHIUser = cast<Instruction>(U);
102     } else {
103       return nullptr;
104     }
105   }
106 
107   if (!PHIUser)
108     return nullptr;
109 
110   // Verify that this PHI user has one use, which is the PHI itself,
111   // and that it is a binary operation which is cheap to scalarize.
112   // otherwise return nullptr.
113   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
114       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
115     return nullptr;
116 
117   // Create a scalar PHI node that will replace the vector PHI node
118   // just before the current PHI node.
119   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
120       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
121   // Scalarize each PHI operand.
122   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
123     Value *PHIInVal = PN->getIncomingValue(i);
124     BasicBlock *inBB = PN->getIncomingBlock(i);
125     Value *Elt = EI.getIndexOperand();
126     // If the operand is the PHI induction variable:
127     if (PHIInVal == PHIUser) {
128       // Scalarize the binary operation. Its first operand is the
129       // scalar PHI, and the second operand is extracted from the other
130       // vector operand.
131       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
132       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
133       Value *Op = InsertNewInstWith(
134           ExtractElementInst::Create(B0->getOperand(opId), Elt,
135                                      B0->getOperand(opId)->getName() + ".Elt"),
136           *B0);
137       Value *newPHIUser = InsertNewInstWith(
138           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
139                                                 scalarPHI, Op, B0), *B0);
140       scalarPHI->addIncoming(newPHIUser, inBB);
141     } else {
142       // Scalarize PHI input:
143       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
144       // Insert the new instruction into the predecessor basic block.
145       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
146       BasicBlock::iterator InsertPos;
147       if (pos && !isa<PHINode>(pos)) {
148         InsertPos = ++pos->getIterator();
149       } else {
150         InsertPos = inBB->getFirstInsertionPt();
151       }
152 
153       InsertNewInstWith(newEI, *InsertPos);
154 
155       scalarPHI->addIncoming(newEI, inBB);
156     }
157   }
158 
159   for (auto E : Extracts)
160     replaceInstUsesWith(*E, scalarPHI);
161 
162   return &EI;
163 }
164 
165 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
166                                       InstCombiner::BuilderTy &Builder,
167                                       bool IsBigEndian) {
168   Value *X;
169   uint64_t ExtIndexC;
170   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
171       !X->getType()->isVectorTy() ||
172       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
173     return nullptr;
174 
175   // If this extractelement is using a bitcast from a vector of the same number
176   // of elements, see if we can find the source element from the source vector:
177   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
178   Type *SrcTy = X->getType();
179   Type *DestTy = Ext.getType();
180   unsigned NumSrcElts = SrcTy->getVectorNumElements();
181   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
182   if (NumSrcElts == NumElts)
183     if (Value *Elt = findScalarElement(X, ExtIndexC))
184       return new BitCastInst(Elt, DestTy);
185 
186   // If the source elements are wider than the destination, try to shift and
187   // truncate a subset of scalar bits of an insert op.
188   if (NumSrcElts < NumElts) {
189     Value *Scalar;
190     uint64_t InsIndexC;
191     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
192                                   m_ConstantInt(InsIndexC))))
193       return nullptr;
194 
195     // The extract must be from the subset of vector elements that we inserted
196     // into. Example: if we inserted element 1 of a <2 x i64> and we are
197     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
198     // of elements 4-7 of the bitcasted vector.
199     unsigned NarrowingRatio = NumElts / NumSrcElts;
200     if (ExtIndexC / NarrowingRatio != InsIndexC)
201       return nullptr;
202 
203     // We are extracting part of the original scalar. How that scalar is
204     // inserted into the vector depends on the endian-ness. Example:
205     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
206     //                                       +--+--+--+--+--+--+--+--+
207     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
208     // extelt <4 x i16> V', 3:               |                 |S2|S3|
209     //                                       +--+--+--+--+--+--+--+--+
210     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
211     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
212     // In this example, we must right-shift little-endian. Big-endian is just a
213     // truncate.
214     unsigned Chunk = ExtIndexC % NarrowingRatio;
215     if (IsBigEndian)
216       Chunk = NarrowingRatio - 1 - Chunk;
217 
218     // Bail out if this is an FP vector to FP vector sequence. That would take
219     // more instructions than we started with unless there is no shift, and it
220     // may not be handled as well in the backend.
221     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
222     bool NeedDestBitcast = DestTy->isFloatingPointTy();
223     if (NeedSrcBitcast && NeedDestBitcast)
224       return nullptr;
225 
226     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
227     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
228     unsigned ShAmt = Chunk * DestWidth;
229 
230     // TODO: This limitation is more strict than necessary. We could sum the
231     // number of new instructions and subtract the number eliminated to know if
232     // we can proceed.
233     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
234       if (NeedSrcBitcast || NeedDestBitcast)
235         return nullptr;
236 
237     if (NeedSrcBitcast) {
238       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
239       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
240     }
241 
242     if (ShAmt) {
243       // Bail out if we could end with more instructions than we started with.
244       if (!Ext.getVectorOperand()->hasOneUse())
245         return nullptr;
246       Scalar = Builder.CreateLShr(Scalar, ShAmt);
247     }
248 
249     if (NeedDestBitcast) {
250       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
251       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
252     }
253     return new TruncInst(Scalar, DestTy);
254   }
255 
256   return nullptr;
257 }
258 
259 /// Find elements of V demanded by UserInstr.
260 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
261   unsigned VWidth = V->getType()->getVectorNumElements();
262 
263   // Conservatively assume that all elements are needed.
264   APInt UsedElts(APInt::getAllOnesValue(VWidth));
265 
266   switch (UserInstr->getOpcode()) {
267   case Instruction::ExtractElement: {
268     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
269     assert(EEI->getVectorOperand() == V);
270     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
271     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
272       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
273     }
274     break;
275   }
276   case Instruction::ShuffleVector: {
277     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
278     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
279 
280     UsedElts = APInt(VWidth, 0);
281     for (unsigned i = 0; i < MaskNumElts; i++) {
282       unsigned MaskVal = Shuffle->getMaskValue(i);
283       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
284         continue;
285       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
286         UsedElts.setBit(MaskVal);
287       if (Shuffle->getOperand(1) == V &&
288           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
289         UsedElts.setBit(MaskVal - VWidth);
290     }
291     break;
292   }
293   default:
294     break;
295   }
296   return UsedElts;
297 }
298 
299 /// Find union of elements of V demanded by all its users.
300 /// If it is known by querying findDemandedEltsBySingleUser that
301 /// no user demands an element of V, then the corresponding bit
302 /// remains unset in the returned value.
303 static APInt findDemandedEltsByAllUsers(Value *V) {
304   unsigned VWidth = V->getType()->getVectorNumElements();
305 
306   APInt UnionUsedElts(VWidth, 0);
307   for (const Use &U : V->uses()) {
308     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
309       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
310     } else {
311       UnionUsedElts = APInt::getAllOnesValue(VWidth);
312       break;
313     }
314 
315     if (UnionUsedElts.isAllOnesValue())
316       break;
317   }
318 
319   return UnionUsedElts;
320 }
321 
322 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
323   Value *SrcVec = EI.getVectorOperand();
324   Value *Index = EI.getIndexOperand();
325   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
326                                             SQ.getWithInstruction(&EI)))
327     return replaceInstUsesWith(EI, V);
328 
329   // If extracting a specified index from the vector, see if we can recursively
330   // find a previously computed scalar that was inserted into the vector.
331   auto *IndexC = dyn_cast<ConstantInt>(Index);
332   if (IndexC) {
333     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
334 
335     // InstSimplify should handle cases where the index is invalid.
336     if (!IndexC->getValue().ule(NumElts))
337       return nullptr;
338 
339     // This instruction only demands the single element from the input vector.
340     if (NumElts != 1) {
341       // If the input vector has a single use, simplify it based on this use
342       // property.
343       if (SrcVec->hasOneUse()) {
344         APInt UndefElts(NumElts, 0);
345         APInt DemandedElts(NumElts, 0);
346         DemandedElts.setBit(IndexC->getZExtValue());
347         if (Value *V =
348                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
349           EI.setOperand(0, V);
350           return &EI;
351         }
352       } else {
353         // If the input vector has multiple uses, simplify it based on a union
354         // of all elements used.
355         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
356         if (!DemandedElts.isAllOnesValue()) {
357           APInt UndefElts(NumElts, 0);
358           if (Value *V = SimplifyDemandedVectorElts(
359                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
360                   true /* AllowMultipleUsers */)) {
361             if (V != SrcVec) {
362               SrcVec->replaceAllUsesWith(V);
363               return &EI;
364             }
365           }
366         }
367       }
368     }
369     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
370       return I;
371 
372     // If there's a vector PHI feeding a scalar use through this extractelement
373     // instruction, try to scalarize the PHI.
374     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
375       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
376         return ScalarPHI;
377   }
378 
379   // TODO come up with a n-ary matcher that subsumes both unary and
380   // binary matchers.
381   UnaryOperator *UO;
382   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
383     // extelt (unop X), Index --> unop (extelt X, Index)
384     Value *X = UO->getOperand(0);
385     Value *E = Builder.CreateExtractElement(X, Index);
386     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
387   }
388 
389   BinaryOperator *BO;
390   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
391     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
392     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
393     Value *E0 = Builder.CreateExtractElement(X, Index);
394     Value *E1 = Builder.CreateExtractElement(Y, Index);
395     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
396   }
397 
398   Value *X, *Y;
399   CmpInst::Predicate Pred;
400   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
401       cheapToScalarize(SrcVec, IndexC)) {
402     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
403     Value *E0 = Builder.CreateExtractElement(X, Index);
404     Value *E1 = Builder.CreateExtractElement(Y, Index);
405     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
406   }
407 
408   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
409     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
410       // Extracting the inserted element?
411       if (IE->getOperand(2) == Index)
412         return replaceInstUsesWith(EI, IE->getOperand(1));
413       // If the inserted and extracted elements are constants, they must not
414       // be the same value, extract from the pre-inserted value instead.
415       if (isa<Constant>(IE->getOperand(2)) && IndexC)
416         return replaceOperand(EI, 0, IE->getOperand(0));
417     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
418       // If this is extracting an element from a shufflevector, figure out where
419       // it came from and extract from the appropriate input element instead.
420       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
421         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
422         Value *Src;
423         unsigned LHSWidth =
424           SVI->getOperand(0)->getType()->getVectorNumElements();
425 
426         if (SrcIdx < 0)
427           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
428         if (SrcIdx < (int)LHSWidth)
429           Src = SVI->getOperand(0);
430         else {
431           SrcIdx -= LHSWidth;
432           Src = SVI->getOperand(1);
433         }
434         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
435         return ExtractElementInst::Create(Src,
436                                           ConstantInt::get(Int32Ty,
437                                                            SrcIdx, false));
438       }
439     } else if (auto *CI = dyn_cast<CastInst>(I)) {
440       // Canonicalize extractelement(cast) -> cast(extractelement).
441       // Bitcasts can change the number of vector elements, and they cost
442       // nothing.
443       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
444         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
445         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
446       }
447     }
448   }
449   return nullptr;
450 }
451 
452 /// If V is a shuffle of values that ONLY returns elements from either LHS or
453 /// RHS, return the shuffle mask and true. Otherwise, return false.
454 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
455                                          SmallVectorImpl<Constant*> &Mask) {
456   assert(LHS->getType() == RHS->getType() &&
457          "Invalid CollectSingleShuffleElements");
458   unsigned NumElts = V->getType()->getVectorNumElements();
459 
460   if (isa<UndefValue>(V)) {
461     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
462     return true;
463   }
464 
465   if (V == LHS) {
466     for (unsigned i = 0; i != NumElts; ++i)
467       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
468     return true;
469   }
470 
471   if (V == RHS) {
472     for (unsigned i = 0; i != NumElts; ++i)
473       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
474                                       i+NumElts));
475     return true;
476   }
477 
478   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
479     // If this is an insert of an extract from some other vector, include it.
480     Value *VecOp    = IEI->getOperand(0);
481     Value *ScalarOp = IEI->getOperand(1);
482     Value *IdxOp    = IEI->getOperand(2);
483 
484     if (!isa<ConstantInt>(IdxOp))
485       return false;
486     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
487 
488     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
489       // We can handle this if the vector we are inserting into is
490       // transitively ok.
491       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
492         // If so, update the mask to reflect the inserted undef.
493         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
494         return true;
495       }
496     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
497       if (isa<ConstantInt>(EI->getOperand(1))) {
498         unsigned ExtractedIdx =
499         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
500         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
501 
502         // This must be extracting from either LHS or RHS.
503         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
504           // We can handle this if the vector we are inserting into is
505           // transitively ok.
506           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
507             // If so, update the mask to reflect the inserted value.
508             if (EI->getOperand(0) == LHS) {
509               Mask[InsertedIdx % NumElts] =
510               ConstantInt::get(Type::getInt32Ty(V->getContext()),
511                                ExtractedIdx);
512             } else {
513               assert(EI->getOperand(0) == RHS);
514               Mask[InsertedIdx % NumElts] =
515               ConstantInt::get(Type::getInt32Ty(V->getContext()),
516                                ExtractedIdx + NumLHSElts);
517             }
518             return true;
519           }
520         }
521       }
522     }
523   }
524 
525   return false;
526 }
527 
528 /// If we have insertion into a vector that is wider than the vector that we
529 /// are extracting from, try to widen the source vector to allow a single
530 /// shufflevector to replace one or more insert/extract pairs.
531 static void replaceExtractElements(InsertElementInst *InsElt,
532                                    ExtractElementInst *ExtElt,
533                                    InstCombiner &IC) {
534   VectorType *InsVecType = InsElt->getType();
535   VectorType *ExtVecType = ExtElt->getVectorOperandType();
536   unsigned NumInsElts = InsVecType->getVectorNumElements();
537   unsigned NumExtElts = ExtVecType->getVectorNumElements();
538 
539   // The inserted-to vector must be wider than the extracted-from vector.
540   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
541       NumExtElts >= NumInsElts)
542     return;
543 
544   // Create a shuffle mask to widen the extended-from vector using undefined
545   // values. The mask selects all of the values of the original vector followed
546   // by as many undefined values as needed to create a vector of the same length
547   // as the inserted-to vector.
548   SmallVector<Constant *, 16> ExtendMask;
549   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
550   for (unsigned i = 0; i < NumExtElts; ++i)
551     ExtendMask.push_back(ConstantInt::get(IntType, i));
552   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
553     ExtendMask.push_back(UndefValue::get(IntType));
554 
555   Value *ExtVecOp = ExtElt->getVectorOperand();
556   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
557   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
558                                    ? ExtVecOpInst->getParent()
559                                    : ExtElt->getParent();
560 
561   // TODO: This restriction matches the basic block check below when creating
562   // new extractelement instructions. If that limitation is removed, this one
563   // could also be removed. But for now, we just bail out to ensure that we
564   // will replace the extractelement instruction that is feeding our
565   // insertelement instruction. This allows the insertelement to then be
566   // replaced by a shufflevector. If the insertelement is not replaced, we can
567   // induce infinite looping because there's an optimization for extractelement
568   // that will delete our widening shuffle. This would trigger another attempt
569   // here to create that shuffle, and we spin forever.
570   if (InsertionBlock != InsElt->getParent())
571     return;
572 
573   // TODO: This restriction matches the check in visitInsertElementInst() and
574   // prevents an infinite loop caused by not turning the extract/insert pair
575   // into a shuffle. We really should not need either check, but we're lacking
576   // folds for shufflevectors because we're afraid to generate shuffle masks
577   // that the backend can't handle.
578   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
579     return;
580 
581   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
582                                         ConstantVector::get(ExtendMask));
583 
584   // Insert the new shuffle after the vector operand of the extract is defined
585   // (as long as it's not a PHI) or at the start of the basic block of the
586   // extract, so any subsequent extracts in the same basic block can use it.
587   // TODO: Insert before the earliest ExtractElementInst that is replaced.
588   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
589     WideVec->insertAfter(ExtVecOpInst);
590   else
591     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
592 
593   // Replace extracts from the original narrow vector with extracts from the new
594   // wide vector.
595   for (User *U : ExtVecOp->users()) {
596     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
597     if (!OldExt || OldExt->getParent() != WideVec->getParent())
598       continue;
599     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
600     NewExt->insertAfter(OldExt);
601     IC.replaceInstUsesWith(*OldExt, NewExt);
602   }
603 }
604 
605 /// We are building a shuffle to create V, which is a sequence of insertelement,
606 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
607 /// not rely on the second vector source. Return a std::pair containing the
608 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
609 /// parameter as required.
610 ///
611 /// Note: we intentionally don't try to fold earlier shuffles since they have
612 /// often been chosen carefully to be efficiently implementable on the target.
613 using ShuffleOps = std::pair<Value *, Value *>;
614 
615 static ShuffleOps collectShuffleElements(Value *V,
616                                          SmallVectorImpl<Constant *> &Mask,
617                                          Value *PermittedRHS,
618                                          InstCombiner &IC) {
619   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
620   unsigned NumElts = V->getType()->getVectorNumElements();
621 
622   if (isa<UndefValue>(V)) {
623     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
624     return std::make_pair(
625         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
626   }
627 
628   if (isa<ConstantAggregateZero>(V)) {
629     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
630     return std::make_pair(V, nullptr);
631   }
632 
633   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
634     // If this is an insert of an extract from some other vector, include it.
635     Value *VecOp    = IEI->getOperand(0);
636     Value *ScalarOp = IEI->getOperand(1);
637     Value *IdxOp    = IEI->getOperand(2);
638 
639     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
640       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
641         unsigned ExtractedIdx =
642           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
643         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
644 
645         // Either the extracted from or inserted into vector must be RHSVec,
646         // otherwise we'd end up with a shuffle of three inputs.
647         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
648           Value *RHS = EI->getOperand(0);
649           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
650           assert(LR.second == nullptr || LR.second == RHS);
651 
652           if (LR.first->getType() != RHS->getType()) {
653             // Although we are giving up for now, see if we can create extracts
654             // that match the inserts for another round of combining.
655             replaceExtractElements(IEI, EI, IC);
656 
657             // We tried our best, but we can't find anything compatible with RHS
658             // further up the chain. Return a trivial shuffle.
659             for (unsigned i = 0; i < NumElts; ++i)
660               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
661             return std::make_pair(V, nullptr);
662           }
663 
664           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
665           Mask[InsertedIdx % NumElts] =
666             ConstantInt::get(Type::getInt32Ty(V->getContext()),
667                              NumLHSElts+ExtractedIdx);
668           return std::make_pair(LR.first, RHS);
669         }
670 
671         if (VecOp == PermittedRHS) {
672           // We've gone as far as we can: anything on the other side of the
673           // extractelement will already have been converted into a shuffle.
674           unsigned NumLHSElts =
675               EI->getOperand(0)->getType()->getVectorNumElements();
676           for (unsigned i = 0; i != NumElts; ++i)
677             Mask.push_back(ConstantInt::get(
678                 Type::getInt32Ty(V->getContext()),
679                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
680           return std::make_pair(EI->getOperand(0), PermittedRHS);
681         }
682 
683         // If this insertelement is a chain that comes from exactly these two
684         // vectors, return the vector and the effective shuffle.
685         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
686             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
687                                          Mask))
688           return std::make_pair(EI->getOperand(0), PermittedRHS);
689       }
690     }
691   }
692 
693   // Otherwise, we can't do anything fancy. Return an identity vector.
694   for (unsigned i = 0; i != NumElts; ++i)
695     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
696   return std::make_pair(V, nullptr);
697 }
698 
699 /// Try to find redundant insertvalue instructions, like the following ones:
700 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
701 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
702 /// Here the second instruction inserts values at the same indices, as the
703 /// first one, making the first one redundant.
704 /// It should be transformed to:
705 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
706 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
707   bool IsRedundant = false;
708   ArrayRef<unsigned int> FirstIndices = I.getIndices();
709 
710   // If there is a chain of insertvalue instructions (each of them except the
711   // last one has only one use and it's another insertvalue insn from this
712   // chain), check if any of the 'children' uses the same indices as the first
713   // instruction. In this case, the first one is redundant.
714   Value *V = &I;
715   unsigned Depth = 0;
716   while (V->hasOneUse() && Depth < 10) {
717     User *U = V->user_back();
718     auto UserInsInst = dyn_cast<InsertValueInst>(U);
719     if (!UserInsInst || U->getOperand(0) != V)
720       break;
721     if (UserInsInst->getIndices() == FirstIndices) {
722       IsRedundant = true;
723       break;
724     }
725     V = UserInsInst;
726     Depth++;
727   }
728 
729   if (IsRedundant)
730     return replaceInstUsesWith(I, I.getOperand(0));
731   return nullptr;
732 }
733 
734 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
735   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
736   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
737 
738   // A vector select does not change the size of the operands.
739   if (MaskSize != VecSize)
740     return false;
741 
742   // Each mask element must be undefined or choose a vector element from one of
743   // the source operands without crossing vector lanes.
744   for (int i = 0; i != MaskSize; ++i) {
745     int Elt = Shuf.getMaskValue(i);
746     if (Elt != -1 && Elt != i && Elt != i + VecSize)
747       return false;
748   }
749 
750   return true;
751 }
752 
753 /// Turn a chain of inserts that splats a value into an insert + shuffle:
754 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
755 /// shufflevector(insertelt(X, %k, 0), undef, zero)
756 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
757   // We are interested in the last insert in a chain. So if this insert has a
758   // single user and that user is an insert, bail.
759   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
760     return nullptr;
761 
762   auto *VecTy = cast<VectorType>(InsElt.getType());
763   unsigned NumElements = VecTy->getNumElements();
764 
765   // Do not try to do this for a one-element vector, since that's a nop,
766   // and will cause an inf-loop.
767   if (NumElements == 1)
768     return nullptr;
769 
770   Value *SplatVal = InsElt.getOperand(1);
771   InsertElementInst *CurrIE = &InsElt;
772   SmallVector<bool, 16> ElementPresent(NumElements, false);
773   InsertElementInst *FirstIE = nullptr;
774 
775   // Walk the chain backwards, keeping track of which indices we inserted into,
776   // until we hit something that isn't an insert of the splatted value.
777   while (CurrIE) {
778     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
779     if (!Idx || CurrIE->getOperand(1) != SplatVal)
780       return nullptr;
781 
782     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
783     // Check none of the intermediate steps have any additional uses, except
784     // for the root insertelement instruction, which can be re-used, if it
785     // inserts at position 0.
786     if (CurrIE != &InsElt &&
787         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
788       return nullptr;
789 
790     ElementPresent[Idx->getZExtValue()] = true;
791     FirstIE = CurrIE;
792     CurrIE = NextIE;
793   }
794 
795   // If this is just a single insertelement (not a sequence), we are done.
796   if (FirstIE == &InsElt)
797     return nullptr;
798 
799   // If we are not inserting into an undef vector, make sure we've seen an
800   // insert into every element.
801   // TODO: If the base vector is not undef, it might be better to create a splat
802   //       and then a select-shuffle (blend) with the base vector.
803   if (!isa<UndefValue>(FirstIE->getOperand(0)))
804     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
805       return nullptr;
806 
807   // Create the insert + shuffle.
808   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
809   UndefValue *UndefVec = UndefValue::get(VecTy);
810   Constant *Zero = ConstantInt::get(Int32Ty, 0);
811   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
812     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
813 
814   // Splat from element 0, but replace absent elements with undef in the mask.
815   SmallVector<Constant *, 16> Mask(NumElements, Zero);
816   for (unsigned i = 0; i != NumElements; ++i)
817     if (!ElementPresent[i])
818       Mask[i] = UndefValue::get(Int32Ty);
819 
820   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
821 }
822 
823 /// Try to fold an insert element into an existing splat shuffle by changing
824 /// the shuffle's mask to include the index of this insert element.
825 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
826   // Check if the vector operand of this insert is a canonical splat shuffle.
827   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
828   if (!Shuf || !Shuf->isZeroEltSplat())
829     return nullptr;
830 
831   // Check for a constant insertion index.
832   uint64_t IdxC;
833   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
834     return nullptr;
835 
836   // Check if the splat shuffle's input is the same as this insert's scalar op.
837   Value *X = InsElt.getOperand(1);
838   Value *Op0 = Shuf->getOperand(0);
839   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
840     return nullptr;
841 
842   // Replace the shuffle mask element at the index of this insert with a zero.
843   // For example:
844   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
845   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
846   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
847   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
848   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
849   Constant *Zero = ConstantInt::getNullValue(I32Ty);
850   for (unsigned i = 0; i != NumMaskElts; ++i)
851     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
852 
853   Constant *NewMask = ConstantVector::get(NewMaskVec);
854   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
855 }
856 
857 /// Try to fold an extract+insert element into an existing identity shuffle by
858 /// changing the shuffle's mask to include the index of this insert element.
859 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
860   // Check if the vector operand of this insert is an identity shuffle.
861   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
862   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
863       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
864     return nullptr;
865 
866   // Check for a constant insertion index.
867   uint64_t IdxC;
868   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
869     return nullptr;
870 
871   // Check if this insert's scalar op is extracted from the identity shuffle's
872   // input vector.
873   Value *Scalar = InsElt.getOperand(1);
874   Value *X = Shuf->getOperand(0);
875   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
876     return nullptr;
877 
878   // Replace the shuffle mask element at the index of this extract+insert with
879   // that same index value.
880   // For example:
881   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
882   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
883   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
884   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
885   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
886   Constant *OldMask = Shuf->getMask();
887   for (unsigned i = 0; i != NumMaskElts; ++i) {
888     if (i != IdxC) {
889       // All mask elements besides the inserted element remain the same.
890       NewMaskVec[i] = OldMask->getAggregateElement(i);
891     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
892       // If the mask element was already set, there's nothing to do
893       // (demanded elements analysis may unset it later).
894       return nullptr;
895     } else {
896       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
897              "Unexpected shuffle mask element for identity shuffle");
898       NewMaskVec[i] = NewMaskEltC;
899     }
900   }
901 
902   Constant *NewMask = ConstantVector::get(NewMaskVec);
903   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
904 }
905 
906 /// If we have an insertelement instruction feeding into another insertelement
907 /// and the 2nd is inserting a constant into the vector, canonicalize that
908 /// constant insertion before the insertion of a variable:
909 ///
910 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
911 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
912 ///
913 /// This has the potential of eliminating the 2nd insertelement instruction
914 /// via constant folding of the scalar constant into a vector constant.
915 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
916                                      InstCombiner::BuilderTy &Builder) {
917   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
918   if (!InsElt1 || !InsElt1->hasOneUse())
919     return nullptr;
920 
921   Value *X, *Y;
922   Constant *ScalarC;
923   ConstantInt *IdxC1, *IdxC2;
924   if (match(InsElt1->getOperand(0), m_Value(X)) &&
925       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
926       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
927       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
928       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
929     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
930     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
931   }
932 
933   return nullptr;
934 }
935 
936 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
937 /// --> shufflevector X, CVec', Mask'
938 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
939   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
940   // Bail out if the parent has more than one use. In that case, we'd be
941   // replacing the insertelt with a shuffle, and that's not a clear win.
942   if (!Inst || !Inst->hasOneUse())
943     return nullptr;
944   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
945     // The shuffle must have a constant vector operand. The insertelt must have
946     // a constant scalar being inserted at a constant position in the vector.
947     Constant *ShufConstVec, *InsEltScalar;
948     uint64_t InsEltIndex;
949     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
950         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
951         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
952       return nullptr;
953 
954     // Adding an element to an arbitrary shuffle could be expensive, but a
955     // shuffle that selects elements from vectors without crossing lanes is
956     // assumed cheap.
957     // If we're just adding a constant into that shuffle, it will still be
958     // cheap.
959     if (!isShuffleEquivalentToSelect(*Shuf))
960       return nullptr;
961 
962     // From the above 'select' check, we know that the mask has the same number
963     // of elements as the vector input operands. We also know that each constant
964     // input element is used in its lane and can not be used more than once by
965     // the shuffle. Therefore, replace the constant in the shuffle's constant
966     // vector with the insertelt constant. Replace the constant in the shuffle's
967     // mask vector with the insertelt index plus the length of the vector
968     // (because the constant vector operand of a shuffle is always the 2nd
969     // operand).
970     Constant *Mask = Shuf->getMask();
971     unsigned NumElts = Mask->getType()->getVectorNumElements();
972     SmallVector<Constant *, 16> NewShufElts(NumElts);
973     SmallVector<Constant *, 16> NewMaskElts(NumElts);
974     for (unsigned I = 0; I != NumElts; ++I) {
975       if (I == InsEltIndex) {
976         NewShufElts[I] = InsEltScalar;
977         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
978         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
979       } else {
980         // Copy over the existing values.
981         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
982         NewMaskElts[I] = Mask->getAggregateElement(I);
983       }
984     }
985 
986     // Create new operands for a shuffle that includes the constant of the
987     // original insertelt. The old shuffle will be dead now.
988     return new ShuffleVectorInst(Shuf->getOperand(0),
989                                  ConstantVector::get(NewShufElts),
990                                  ConstantVector::get(NewMaskElts));
991   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
992     // Transform sequences of insertelements ops with constant data/indexes into
993     // a single shuffle op.
994     unsigned NumElts = InsElt.getType()->getNumElements();
995 
996     uint64_t InsertIdx[2];
997     Constant *Val[2];
998     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
999         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1000         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1001         !match(IEI->getOperand(1), m_Constant(Val[1])))
1002       return nullptr;
1003     SmallVector<Constant *, 16> Values(NumElts);
1004     SmallVector<Constant *, 16> Mask(NumElts);
1005     auto ValI = std::begin(Val);
1006     // Generate new constant vector and mask.
1007     // We have 2 values/masks from the insertelements instructions. Insert them
1008     // into new value/mask vectors.
1009     for (uint64_t I : InsertIdx) {
1010       if (!Values[I]) {
1011         assert(!Mask[I]);
1012         Values[I] = *ValI;
1013         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1014                                    NumElts + I);
1015       }
1016       ++ValI;
1017     }
1018     // Remaining values are filled with 'undef' values.
1019     for (unsigned I = 0; I < NumElts; ++I) {
1020       if (!Values[I]) {
1021         assert(!Mask[I]);
1022         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1023         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1024       }
1025     }
1026     // Create new operands for a shuffle that includes the constant of the
1027     // original insertelt.
1028     return new ShuffleVectorInst(IEI->getOperand(0),
1029                                  ConstantVector::get(Values),
1030                                  ConstantVector::get(Mask));
1031   }
1032   return nullptr;
1033 }
1034 
1035 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1036   Value *VecOp    = IE.getOperand(0);
1037   Value *ScalarOp = IE.getOperand(1);
1038   Value *IdxOp    = IE.getOperand(2);
1039 
1040   if (auto *V = SimplifyInsertElementInst(
1041           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1042     return replaceInstUsesWith(IE, V);
1043 
1044   // If the vector and scalar are both bitcast from the same element type, do
1045   // the insert in that source type followed by bitcast.
1046   Value *VecSrc, *ScalarSrc;
1047   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1048       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1049       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1050       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1051       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1052     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1053     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1054     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1055     return new BitCastInst(NewInsElt, IE.getType());
1056   }
1057 
1058   // If the inserted element was extracted from some other vector and both
1059   // indexes are valid constants, try to turn this into a shuffle.
1060   uint64_t InsertedIdx, ExtractedIdx;
1061   Value *ExtVecOp;
1062   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1063       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1064                                        m_ConstantInt(ExtractedIdx))) &&
1065       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1066     // TODO: Looking at the user(s) to determine if this insert is a
1067     // fold-to-shuffle opportunity does not match the usual instcombine
1068     // constraints. We should decide if the transform is worthy based only
1069     // on this instruction and its operands, but that may not work currently.
1070     //
1071     // Here, we are trying to avoid creating shuffles before reaching
1072     // the end of a chain of extract-insert pairs. This is complicated because
1073     // we do not generally form arbitrary shuffle masks in instcombine
1074     // (because those may codegen poorly), but collectShuffleElements() does
1075     // exactly that.
1076     //
1077     // The rules for determining what is an acceptable target-independent
1078     // shuffle mask are fuzzy because they evolve based on the backend's
1079     // capabilities and real-world impact.
1080     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1081       if (!Insert.hasOneUse())
1082         return true;
1083       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1084       if (!InsertUser)
1085         return true;
1086       return false;
1087     };
1088 
1089     // Try to form a shuffle from a chain of extract-insert ops.
1090     if (isShuffleRootCandidate(IE)) {
1091       SmallVector<Constant*, 16> Mask;
1092       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1093 
1094       // The proposed shuffle may be trivial, in which case we shouldn't
1095       // perform the combine.
1096       if (LR.first != &IE && LR.second != &IE) {
1097         // We now have a shuffle of LHS, RHS, Mask.
1098         if (LR.second == nullptr)
1099           LR.second = UndefValue::get(LR.first->getType());
1100         return new ShuffleVectorInst(LR.first, LR.second,
1101                                      ConstantVector::get(Mask));
1102       }
1103     }
1104   }
1105 
1106   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1107   APInt UndefElts(VWidth, 0);
1108   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1109   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1110     if (V != &IE)
1111       return replaceInstUsesWith(IE, V);
1112     return &IE;
1113   }
1114 
1115   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1116     return Shuf;
1117 
1118   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1119     return NewInsElt;
1120 
1121   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1122     return Broadcast;
1123 
1124   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1125     return Splat;
1126 
1127   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1128     return IdentityShuf;
1129 
1130   return nullptr;
1131 }
1132 
1133 /// Return true if we can evaluate the specified expression tree if the vector
1134 /// elements were shuffled in a different order.
1135 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1136                                 unsigned Depth = 5) {
1137   // We can always reorder the elements of a constant.
1138   if (isa<Constant>(V))
1139     return true;
1140 
1141   // We won't reorder vector arguments. No IPO here.
1142   Instruction *I = dyn_cast<Instruction>(V);
1143   if (!I) return false;
1144 
1145   // Two users may expect different orders of the elements. Don't try it.
1146   if (!I->hasOneUse())
1147     return false;
1148 
1149   if (Depth == 0) return false;
1150 
1151   switch (I->getOpcode()) {
1152     case Instruction::UDiv:
1153     case Instruction::SDiv:
1154     case Instruction::URem:
1155     case Instruction::SRem:
1156       // Propagating an undefined shuffle mask element to integer div/rem is not
1157       // allowed because those opcodes can create immediate undefined behavior
1158       // from an undefined element in an operand.
1159       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1160         return false;
1161       LLVM_FALLTHROUGH;
1162     case Instruction::Add:
1163     case Instruction::FAdd:
1164     case Instruction::Sub:
1165     case Instruction::FSub:
1166     case Instruction::Mul:
1167     case Instruction::FMul:
1168     case Instruction::FDiv:
1169     case Instruction::FRem:
1170     case Instruction::Shl:
1171     case Instruction::LShr:
1172     case Instruction::AShr:
1173     case Instruction::And:
1174     case Instruction::Or:
1175     case Instruction::Xor:
1176     case Instruction::ICmp:
1177     case Instruction::FCmp:
1178     case Instruction::Trunc:
1179     case Instruction::ZExt:
1180     case Instruction::SExt:
1181     case Instruction::FPToUI:
1182     case Instruction::FPToSI:
1183     case Instruction::UIToFP:
1184     case Instruction::SIToFP:
1185     case Instruction::FPTrunc:
1186     case Instruction::FPExt:
1187     case Instruction::GetElementPtr: {
1188       // Bail out if we would create longer vector ops. We could allow creating
1189       // longer vector ops, but that may result in more expensive codegen.
1190       Type *ITy = I->getType();
1191       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1192         return false;
1193       for (Value *Operand : I->operands()) {
1194         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1195           return false;
1196       }
1197       return true;
1198     }
1199     case Instruction::InsertElement: {
1200       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1201       if (!CI) return false;
1202       int ElementNumber = CI->getLimitedValue();
1203 
1204       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1205       // can't put an element into multiple indices.
1206       bool SeenOnce = false;
1207       for (int i = 0, e = Mask.size(); i != e; ++i) {
1208         if (Mask[i] == ElementNumber) {
1209           if (SeenOnce)
1210             return false;
1211           SeenOnce = true;
1212         }
1213       }
1214       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1215     }
1216   }
1217   return false;
1218 }
1219 
1220 /// Rebuild a new instruction just like 'I' but with the new operands given.
1221 /// In the event of type mismatch, the type of the operands is correct.
1222 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1223   // We don't want to use the IRBuilder here because we want the replacement
1224   // instructions to appear next to 'I', not the builder's insertion point.
1225   switch (I->getOpcode()) {
1226     case Instruction::Add:
1227     case Instruction::FAdd:
1228     case Instruction::Sub:
1229     case Instruction::FSub:
1230     case Instruction::Mul:
1231     case Instruction::FMul:
1232     case Instruction::UDiv:
1233     case Instruction::SDiv:
1234     case Instruction::FDiv:
1235     case Instruction::URem:
1236     case Instruction::SRem:
1237     case Instruction::FRem:
1238     case Instruction::Shl:
1239     case Instruction::LShr:
1240     case Instruction::AShr:
1241     case Instruction::And:
1242     case Instruction::Or:
1243     case Instruction::Xor: {
1244       BinaryOperator *BO = cast<BinaryOperator>(I);
1245       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1246       BinaryOperator *New =
1247           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1248                                  NewOps[0], NewOps[1], "", BO);
1249       if (isa<OverflowingBinaryOperator>(BO)) {
1250         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1251         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1252       }
1253       if (isa<PossiblyExactOperator>(BO)) {
1254         New->setIsExact(BO->isExact());
1255       }
1256       if (isa<FPMathOperator>(BO))
1257         New->copyFastMathFlags(I);
1258       return New;
1259     }
1260     case Instruction::ICmp:
1261       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1262       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1263                           NewOps[0], NewOps[1]);
1264     case Instruction::FCmp:
1265       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1266       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1267                           NewOps[0], NewOps[1]);
1268     case Instruction::Trunc:
1269     case Instruction::ZExt:
1270     case Instruction::SExt:
1271     case Instruction::FPToUI:
1272     case Instruction::FPToSI:
1273     case Instruction::UIToFP:
1274     case Instruction::SIToFP:
1275     case Instruction::FPTrunc:
1276     case Instruction::FPExt: {
1277       // It's possible that the mask has a different number of elements from
1278       // the original cast. We recompute the destination type to match the mask.
1279       Type *DestTy =
1280           VectorType::get(I->getType()->getScalarType(),
1281                           NewOps[0]->getType()->getVectorNumElements());
1282       assert(NewOps.size() == 1 && "cast with #ops != 1");
1283       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1284                               "", I);
1285     }
1286     case Instruction::GetElementPtr: {
1287       Value *Ptr = NewOps[0];
1288       ArrayRef<Value*> Idx = NewOps.slice(1);
1289       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1290           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1291       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1292       return GEP;
1293     }
1294   }
1295   llvm_unreachable("failed to rebuild vector instructions");
1296 }
1297 
1298 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1299   // Mask.size() does not need to be equal to the number of vector elements.
1300 
1301   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1302   Type *EltTy = V->getType()->getScalarType();
1303   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1304   if (isa<UndefValue>(V))
1305     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1306 
1307   if (isa<ConstantAggregateZero>(V))
1308     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1309 
1310   if (Constant *C = dyn_cast<Constant>(V)) {
1311     SmallVector<Constant *, 16> MaskValues;
1312     for (int i = 0, e = Mask.size(); i != e; ++i) {
1313       if (Mask[i] == -1)
1314         MaskValues.push_back(UndefValue::get(I32Ty));
1315       else
1316         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1317     }
1318     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1319                                           ConstantVector::get(MaskValues));
1320   }
1321 
1322   Instruction *I = cast<Instruction>(V);
1323   switch (I->getOpcode()) {
1324     case Instruction::Add:
1325     case Instruction::FAdd:
1326     case Instruction::Sub:
1327     case Instruction::FSub:
1328     case Instruction::Mul:
1329     case Instruction::FMul:
1330     case Instruction::UDiv:
1331     case Instruction::SDiv:
1332     case Instruction::FDiv:
1333     case Instruction::URem:
1334     case Instruction::SRem:
1335     case Instruction::FRem:
1336     case Instruction::Shl:
1337     case Instruction::LShr:
1338     case Instruction::AShr:
1339     case Instruction::And:
1340     case Instruction::Or:
1341     case Instruction::Xor:
1342     case Instruction::ICmp:
1343     case Instruction::FCmp:
1344     case Instruction::Trunc:
1345     case Instruction::ZExt:
1346     case Instruction::SExt:
1347     case Instruction::FPToUI:
1348     case Instruction::FPToSI:
1349     case Instruction::UIToFP:
1350     case Instruction::SIToFP:
1351     case Instruction::FPTrunc:
1352     case Instruction::FPExt:
1353     case Instruction::Select:
1354     case Instruction::GetElementPtr: {
1355       SmallVector<Value*, 8> NewOps;
1356       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1357       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1358         Value *V;
1359         // Recursively call evaluateInDifferentElementOrder on vector arguments
1360         // as well. E.g. GetElementPtr may have scalar operands even if the
1361         // return value is a vector, so we need to examine the operand type.
1362         if (I->getOperand(i)->getType()->isVectorTy())
1363           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1364         else
1365           V = I->getOperand(i);
1366         NewOps.push_back(V);
1367         NeedsRebuild |= (V != I->getOperand(i));
1368       }
1369       if (NeedsRebuild) {
1370         return buildNew(I, NewOps);
1371       }
1372       return I;
1373     }
1374     case Instruction::InsertElement: {
1375       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1376 
1377       // The insertelement was inserting at Element. Figure out which element
1378       // that becomes after shuffling. The answer is guaranteed to be unique
1379       // by CanEvaluateShuffled.
1380       bool Found = false;
1381       int Index = 0;
1382       for (int e = Mask.size(); Index != e; ++Index) {
1383         if (Mask[Index] == Element) {
1384           Found = true;
1385           break;
1386         }
1387       }
1388 
1389       // If element is not in Mask, no need to handle the operand 1 (element to
1390       // be inserted). Just evaluate values in operand 0 according to Mask.
1391       if (!Found)
1392         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1393 
1394       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1395       return InsertElementInst::Create(V, I->getOperand(1),
1396                                        ConstantInt::get(I32Ty, Index), "", I);
1397     }
1398   }
1399   llvm_unreachable("failed to reorder elements of vector instruction!");
1400 }
1401 
1402 // Returns true if the shuffle is extracting a contiguous range of values from
1403 // LHS, for example:
1404 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1405 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1406 //   Shuffles to:  |EE|FF|GG|HH|
1407 //                 +--+--+--+--+
1408 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1409                                        SmallVector<int, 16> &Mask) {
1410   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1411   unsigned MaskElems = Mask.size();
1412   unsigned BegIdx = Mask.front();
1413   unsigned EndIdx = Mask.back();
1414   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1415     return false;
1416   for (unsigned I = 0; I != MaskElems; ++I)
1417     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1418       return false;
1419   return true;
1420 }
1421 
1422 /// These are the ingredients in an alternate form binary operator as described
1423 /// below.
1424 struct BinopElts {
1425   BinaryOperator::BinaryOps Opcode;
1426   Value *Op0;
1427   Value *Op1;
1428   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1429             Value *V0 = nullptr, Value *V1 = nullptr) :
1430       Opcode(Opc), Op0(V0), Op1(V1) {}
1431   operator bool() const { return Opcode != 0; }
1432 };
1433 
1434 /// Binops may be transformed into binops with different opcodes and operands.
1435 /// Reverse the usual canonicalization to enable folds with the non-canonical
1436 /// form of the binop. If a transform is possible, return the elements of the
1437 /// new binop. If not, return invalid elements.
1438 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1439   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1440   Type *Ty = BO->getType();
1441   switch (BO->getOpcode()) {
1442     case Instruction::Shl: {
1443       // shl X, C --> mul X, (1 << C)
1444       Constant *C;
1445       if (match(BO1, m_Constant(C))) {
1446         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1447         return { Instruction::Mul, BO0, ShlOne };
1448       }
1449       break;
1450     }
1451     case Instruction::Or: {
1452       // or X, C --> add X, C (when X and C have no common bits set)
1453       const APInt *C;
1454       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1455         return { Instruction::Add, BO0, BO1 };
1456       break;
1457     }
1458     default:
1459       break;
1460   }
1461   return {};
1462 }
1463 
1464 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1465   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1466 
1467   // Are we shuffling together some value and that same value after it has been
1468   // modified by a binop with a constant?
1469   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1470   Constant *C;
1471   bool Op0IsBinop;
1472   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1473     Op0IsBinop = true;
1474   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1475     Op0IsBinop = false;
1476   else
1477     return nullptr;
1478 
1479   // The identity constant for a binop leaves a variable operand unchanged. For
1480   // a vector, this is a splat of something like 0, -1, or 1.
1481   // If there's no identity constant for this binop, we're done.
1482   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1483   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1484   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1485   if (!IdC)
1486     return nullptr;
1487 
1488   // Shuffle identity constants into the lanes that return the original value.
1489   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1490   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1491   // The existing binop constant vector remains in the same operand position.
1492   Constant *Mask = Shuf.getMask();
1493   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1494                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1495 
1496   bool MightCreatePoisonOrUB =
1497       Mask->containsUndefElement() &&
1498       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1499   if (MightCreatePoisonOrUB)
1500     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1501 
1502   // shuf (bop X, C), X, M --> bop X, C'
1503   // shuf X, (bop X, C), M --> bop X, C'
1504   Value *X = Op0IsBinop ? Op1 : Op0;
1505   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1506   NewBO->copyIRFlags(BO);
1507 
1508   // An undef shuffle mask element may propagate as an undef constant element in
1509   // the new binop. That would produce poison where the original code might not.
1510   // If we already made a safe constant, then there's no danger.
1511   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1512     NewBO->dropPoisonGeneratingFlags();
1513   return NewBO;
1514 }
1515 
1516 /// If we have an insert of a scalar to a non-zero element of an undefined
1517 /// vector and then shuffle that value, that's the same as inserting to the zero
1518 /// element and shuffling. Splatting from the zero element is recognized as the
1519 /// canonical form of splat.
1520 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1521                                             InstCombiner::BuilderTy &Builder) {
1522   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1523   Constant *Mask = Shuf.getMask();
1524   Value *X;
1525   uint64_t IndexC;
1526 
1527   // Match a shuffle that is a splat to a non-zero element.
1528   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1529                                            m_ConstantInt(IndexC)))) ||
1530       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1531     return nullptr;
1532 
1533   // Insert into element 0 of an undef vector.
1534   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1535   Constant *Zero = Builder.getInt32(0);
1536   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1537 
1538   // Splat from element 0. Any mask element that is undefined remains undefined.
1539   // For example:
1540   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1541   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1542   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1543   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1544   for (unsigned i = 0; i != NumMaskElts; ++i)
1545     if (isa<UndefValue>(Mask->getAggregateElement(i)))
1546       NewMask[i] = Mask->getAggregateElement(i);
1547 
1548   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1549 }
1550 
1551 /// Try to fold shuffles that are the equivalent of a vector select.
1552 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1553                                       InstCombiner::BuilderTy &Builder,
1554                                       const DataLayout &DL) {
1555   if (!Shuf.isSelect())
1556     return nullptr;
1557 
1558   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1559   // Commuting undef to operand 0 conflicts with another canonicalization.
1560   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1561   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1562       Shuf.getMaskValue(0) >= (int)NumElts) {
1563     // TODO: Can we assert that both operands of a shuffle-select are not undef
1564     // (otherwise, it would have been folded by instsimplify?
1565     Shuf.commute();
1566     return &Shuf;
1567   }
1568 
1569   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1570     return I;
1571 
1572   BinaryOperator *B0, *B1;
1573   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1574       !match(Shuf.getOperand(1), m_BinOp(B1)))
1575     return nullptr;
1576 
1577   Value *X, *Y;
1578   Constant *C0, *C1;
1579   bool ConstantsAreOp1;
1580   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1581       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1582     ConstantsAreOp1 = true;
1583   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1584            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1585     ConstantsAreOp1 = false;
1586   else
1587     return nullptr;
1588 
1589   // We need matching binops to fold the lanes together.
1590   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1591   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1592   bool DropNSW = false;
1593   if (ConstantsAreOp1 && Opc0 != Opc1) {
1594     // TODO: We drop "nsw" if shift is converted into multiply because it may
1595     // not be correct when the shift amount is BitWidth - 1. We could examine
1596     // each vector element to determine if it is safe to keep that flag.
1597     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1598       DropNSW = true;
1599     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1600       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1601       Opc0 = AltB0.Opcode;
1602       C0 = cast<Constant>(AltB0.Op1);
1603     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1604       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1605       Opc1 = AltB1.Opcode;
1606       C1 = cast<Constant>(AltB1.Op1);
1607     }
1608   }
1609 
1610   if (Opc0 != Opc1)
1611     return nullptr;
1612 
1613   // The opcodes must be the same. Use a new name to make that clear.
1614   BinaryOperator::BinaryOps BOpc = Opc0;
1615 
1616   // Select the constant elements needed for the single binop.
1617   Constant *Mask = Shuf.getMask();
1618   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1619 
1620   // We are moving a binop after a shuffle. When a shuffle has an undefined
1621   // mask element, the result is undefined, but it is not poison or undefined
1622   // behavior. That is not necessarily true for div/rem/shift.
1623   bool MightCreatePoisonOrUB =
1624       Mask->containsUndefElement() &&
1625       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1626   if (MightCreatePoisonOrUB)
1627     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1628 
1629   Value *V;
1630   if (X == Y) {
1631     // Remove a binop and the shuffle by rearranging the constant:
1632     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1633     // shuffle (op C0, V), (op C1, V), M --> op C', V
1634     V = X;
1635   } else {
1636     // If there are 2 different variable operands, we must create a new shuffle
1637     // (select) first, so check uses to ensure that we don't end up with more
1638     // instructions than we started with.
1639     if (!B0->hasOneUse() && !B1->hasOneUse())
1640       return nullptr;
1641 
1642     // If we use the original shuffle mask and op1 is *variable*, we would be
1643     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1644     // poison. We do not have to guard against UB when *constants* are op1
1645     // because safe constants guarantee that we do not overflow sdiv/srem (and
1646     // there's no danger for other opcodes).
1647     // TODO: To allow this case, create a new shuffle mask with no undefs.
1648     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1649       return nullptr;
1650 
1651     // Note: In general, we do not create new shuffles in InstCombine because we
1652     // do not know if a target can lower an arbitrary shuffle optimally. In this
1653     // case, the shuffle uses the existing mask, so there is no additional risk.
1654 
1655     // Select the variable vectors first, then perform the binop:
1656     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1657     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1658     V = Builder.CreateShuffleVector(X, Y, Mask);
1659   }
1660 
1661   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1662                                          BinaryOperator::Create(BOpc, NewC, V);
1663 
1664   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1665   // 1. If we changed an opcode, poison conditions might have changed.
1666   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1667   //    where the original code did not. But if we already made a safe constant,
1668   //    then there's no danger.
1669   NewBO->copyIRFlags(B0);
1670   NewBO->andIRFlags(B1);
1671   if (DropNSW)
1672     NewBO->setHasNoSignedWrap(false);
1673   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1674     NewBO->dropPoisonGeneratingFlags();
1675   return NewBO;
1676 }
1677 
1678 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1679 /// narrowing (concatenating with undef and extracting back to the original
1680 /// length). This allows replacing the wide select with a narrow select.
1681 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1682                                        InstCombiner::BuilderTy &Builder) {
1683   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1684   // of the 1st vector operand of a shuffle.
1685   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1686     return nullptr;
1687 
1688   // The vector being shuffled must be a vector select that we can eliminate.
1689   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1690   Value *Cond, *X, *Y;
1691   if (!match(Shuf.getOperand(0),
1692              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1693     return nullptr;
1694 
1695   // We need a narrow condition value. It must be extended with undef elements
1696   // and have the same number of elements as this shuffle.
1697   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1698   Value *NarrowCond;
1699   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1700                                             m_Constant()))) ||
1701       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1702       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1703     return nullptr;
1704 
1705   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1706   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1707   Value *Undef = UndefValue::get(X->getType());
1708   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1709   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1710   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1711 }
1712 
1713 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1714 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1715   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1716   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1717     return nullptr;
1718 
1719   Value *X, *Y;
1720   Constant *Mask;
1721   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1722     return nullptr;
1723 
1724   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1725   // then combining may result in worse codegen.
1726   if (!Op0->hasOneUse())
1727     return nullptr;
1728 
1729   // We are extracting a subvector from a shuffle. Remove excess elements from
1730   // the 1st shuffle mask to eliminate the extract.
1731   //
1732   // This transform is conservatively limited to identity extracts because we do
1733   // not allow arbitrary shuffle mask creation as a target-independent transform
1734   // (because we can't guarantee that will lower efficiently).
1735   //
1736   // If the extracting shuffle has an undef mask element, it transfers to the
1737   // new shuffle mask. Otherwise, copy the original mask element. Example:
1738   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1739   //   shuf X, Y, <C0, undef, C2, undef>
1740   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1741   SmallVector<Constant *, 16> NewMask(NumElts);
1742   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1743          "Identity with extract must have less elements than its inputs");
1744 
1745   for (unsigned i = 0; i != NumElts; ++i) {
1746     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1747     Constant *MaskElt = Mask->getAggregateElement(i);
1748     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1749   }
1750   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1751 }
1752 
1753 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
1754 /// operand with the operand of an insertelement.
1755 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
1756                                           InstCombiner &IC) {
1757   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1758   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1759 
1760   // The shuffle must not change vector sizes.
1761   // TODO: This restriction could be removed if the insert has only one use
1762   //       (because the transform would require a new length-changing shuffle).
1763   int NumElts = Mask.size();
1764   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1765     return nullptr;
1766 
1767   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1768   // not be able to handle it there if the insertelement has >1 use.
1769   // If the shuffle has an insertelement operand but does not choose the
1770   // inserted scalar element from that value, then we can replace that shuffle
1771   // operand with the source vector of the insertelement.
1772   Value *X;
1773   uint64_t IdxC;
1774   if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1775     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1776     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1777       return IC.replaceOperand(Shuf, 0, X);
1778   }
1779   if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1780     // Offset the index constant by the vector width because we are checking for
1781     // accesses to the 2nd vector input of the shuffle.
1782     IdxC += NumElts;
1783     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1784     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1785       return IC.replaceOperand(Shuf, 1, X);
1786   }
1787 
1788   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1789   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1790     // We need an insertelement with a constant index.
1791     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1792                                    m_ConstantInt(IndexC))))
1793       return false;
1794 
1795     // Test the shuffle mask to see if it splices the inserted scalar into the
1796     // operand 1 vector of the shuffle.
1797     int NewInsIndex = -1;
1798     for (int i = 0; i != NumElts; ++i) {
1799       // Ignore undef mask elements.
1800       if (Mask[i] == -1)
1801         continue;
1802 
1803       // The shuffle takes elements of operand 1 without lane changes.
1804       if (Mask[i] == NumElts + i)
1805         continue;
1806 
1807       // The shuffle must choose the inserted scalar exactly once.
1808       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1809         return false;
1810 
1811       // The shuffle is placing the inserted scalar into element i.
1812       NewInsIndex = i;
1813     }
1814 
1815     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1816 
1817     // Index is updated to the potentially translated insertion lane.
1818     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1819     return true;
1820   };
1821 
1822   // If the shuffle is unnecessary, insert the scalar operand directly into
1823   // operand 1 of the shuffle. Example:
1824   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1825   Value *Scalar;
1826   ConstantInt *IndexC;
1827   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1828     return InsertElementInst::Create(V1, Scalar, IndexC);
1829 
1830   // Try again after commuting shuffle. Example:
1831   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1832   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1833   std::swap(V0, V1);
1834   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1835   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1836     return InsertElementInst::Create(V1, Scalar, IndexC);
1837 
1838   return nullptr;
1839 }
1840 
1841 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1842   // Match the operands as identity with padding (also known as concatenation
1843   // with undef) shuffles of the same source type. The backend is expected to
1844   // recreate these concatenations from a shuffle of narrow operands.
1845   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1846   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1847   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1848       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1849     return nullptr;
1850 
1851   // We limit this transform to power-of-2 types because we expect that the
1852   // backend can convert the simplified IR patterns to identical nodes as the
1853   // original IR.
1854   // TODO: If we can verify the same behavior for arbitrary types, the
1855   //       power-of-2 checks can be removed.
1856   Value *X = Shuffle0->getOperand(0);
1857   Value *Y = Shuffle1->getOperand(0);
1858   if (X->getType() != Y->getType() ||
1859       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1860       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1861       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1862       isa<UndefValue>(X) || isa<UndefValue>(Y))
1863     return nullptr;
1864   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1865          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1866          "Unexpected operand for identity shuffle");
1867 
1868   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1869   // operands directly by adjusting the shuffle mask to account for the narrower
1870   // types:
1871   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1872   int NarrowElts = X->getType()->getVectorNumElements();
1873   int WideElts = Shuffle0->getType()->getVectorNumElements();
1874   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1875 
1876   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1877   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1878   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1879   for (int i = 0, e = Mask.size(); i != e; ++i) {
1880     if (Mask[i] == -1)
1881       continue;
1882 
1883     // If this shuffle is choosing an undef element from 1 of the sources, that
1884     // element is undef.
1885     if (Mask[i] < WideElts) {
1886       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1887         continue;
1888     } else {
1889       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1890         continue;
1891     }
1892 
1893     // If this shuffle is choosing from the 1st narrow op, the mask element is
1894     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1895     // element is offset down to adjust for the narrow vector widths.
1896     if (Mask[i] < WideElts) {
1897       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1898       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1899     } else {
1900       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1901       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1902     }
1903   }
1904   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1905 }
1906 
1907 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1908   Value *LHS = SVI.getOperand(0);
1909   Value *RHS = SVI.getOperand(1);
1910   if (auto *V = SimplifyShuffleVectorInst(
1911           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1912     return replaceInstUsesWith(SVI, V);
1913 
1914   // shuffle x, x, mask --> shuffle x, undef, mask'
1915   unsigned VWidth = SVI.getType()->getVectorNumElements();
1916   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1917   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1918   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1919   if (LHS == RHS) {
1920     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
1921     // Remap any references to RHS to use LHS.
1922     SmallVector<Constant*, 16> Elts;
1923     for (unsigned i = 0; i != VWidth; ++i) {
1924       // Propagate undef elements or force mask to LHS.
1925       if (Mask[i] < 0)
1926         Elts.push_back(UndefValue::get(Int32Ty));
1927       else
1928         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth));
1929     }
1930     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()),
1931                                  ConstantVector::get(Elts));
1932   }
1933 
1934   // shuffle undef, x, mask --> shuffle x, undef, mask'
1935   if (isa<UndefValue>(LHS)) {
1936     SVI.commute();
1937     return &SVI;
1938   }
1939 
1940   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1941     return I;
1942 
1943   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1944     return I;
1945 
1946   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1947     return I;
1948 
1949   APInt UndefElts(VWidth, 0);
1950   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1951   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1952     if (V != &SVI)
1953       return replaceInstUsesWith(SVI, V);
1954     return &SVI;
1955   }
1956 
1957   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1958     return I;
1959 
1960   // These transforms have the potential to lose undef knowledge, so they are
1961   // intentionally placed after SimplifyDemandedVectorElts().
1962   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
1963     return I;
1964   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1965     return I;
1966 
1967   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1968     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1969     return replaceInstUsesWith(SVI, V);
1970   }
1971 
1972   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1973   // a non-vector type. We can instead bitcast the original vector followed by
1974   // an extract of the desired element:
1975   //
1976   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1977   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1978   //   %1 = bitcast <4 x i8> %sroa to i32
1979   // Becomes:
1980   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1981   //   %ext = extractelement <4 x i32> %bc, i32 0
1982   //
1983   // If the shuffle is extracting a contiguous range of values from the input
1984   // vector then each use which is a bitcast of the extracted size can be
1985   // replaced. This will work if the vector types are compatible, and the begin
1986   // index is aligned to a value in the casted vector type. If the begin index
1987   // isn't aligned then we can shuffle the original vector (keeping the same
1988   // vector type) before extracting.
1989   //
1990   // This code will bail out if the target type is fundamentally incompatible
1991   // with vectors of the source type.
1992   //
1993   // Example of <16 x i8>, target type i32:
1994   // Index range [4,8):         v-----------v Will work.
1995   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1996   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1997   //     <4 x i32>: |           |           |           |           |
1998   //                +-----------+-----------+-----------+-----------+
1999   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2000   // Target type i40:           ^--------------^ Won't work, bail.
2001   bool MadeChange = false;
2002   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2003     Value *V = LHS;
2004     unsigned MaskElems = Mask.size();
2005     VectorType *SrcTy = cast<VectorType>(V->getType());
2006     unsigned VecBitWidth = SrcTy->getBitWidth();
2007     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2008     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2009     unsigned SrcNumElems = SrcTy->getNumElements();
2010     SmallVector<BitCastInst *, 8> BCs;
2011     DenseMap<Type *, Value *> NewBCs;
2012     for (User *U : SVI.users())
2013       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2014         if (!BC->use_empty())
2015           // Only visit bitcasts that weren't previously handled.
2016           BCs.push_back(BC);
2017     for (BitCastInst *BC : BCs) {
2018       unsigned BegIdx = Mask.front();
2019       Type *TgtTy = BC->getDestTy();
2020       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2021       if (!TgtElemBitWidth)
2022         continue;
2023       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2024       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2025       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2026       if (!VecBitWidthsEqual)
2027         continue;
2028       if (!VectorType::isValidElementType(TgtTy))
2029         continue;
2030       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2031       if (!BegIsAligned) {
2032         // Shuffle the input so [0,NumElements) contains the output, and
2033         // [NumElems,SrcNumElems) is undef.
2034         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2035                                                 UndefValue::get(Int32Ty));
2036         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2037           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2038         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2039                                         ConstantVector::get(ShuffleMask),
2040                                         SVI.getName() + ".extract");
2041         BegIdx = 0;
2042       }
2043       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2044       assert(SrcElemsPerTgtElem);
2045       BegIdx /= SrcElemsPerTgtElem;
2046       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2047       auto *NewBC =
2048           BCAlreadyExists
2049               ? NewBCs[CastSrcTy]
2050               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2051       if (!BCAlreadyExists)
2052         NewBCs[CastSrcTy] = NewBC;
2053       auto *Ext = Builder.CreateExtractElement(
2054           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2055       // The shufflevector isn't being replaced: the bitcast that used it
2056       // is. InstCombine will visit the newly-created instructions.
2057       replaceInstUsesWith(*BC, Ext);
2058       MadeChange = true;
2059     }
2060   }
2061 
2062   // If the LHS is a shufflevector itself, see if we can combine it with this
2063   // one without producing an unusual shuffle.
2064   // Cases that might be simplified:
2065   // 1.
2066   // x1=shuffle(v1,v2,mask1)
2067   //  x=shuffle(x1,undef,mask)
2068   //        ==>
2069   //  x=shuffle(v1,undef,newMask)
2070   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2071   // 2.
2072   // x1=shuffle(v1,undef,mask1)
2073   //  x=shuffle(x1,x2,mask)
2074   // where v1.size() == mask1.size()
2075   //        ==>
2076   //  x=shuffle(v1,x2,newMask)
2077   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2078   // 3.
2079   // x2=shuffle(v2,undef,mask2)
2080   //  x=shuffle(x1,x2,mask)
2081   // where v2.size() == mask2.size()
2082   //        ==>
2083   //  x=shuffle(x1,v2,newMask)
2084   // newMask[i] = (mask[i] < x1.size())
2085   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2086   // 4.
2087   // x1=shuffle(v1,undef,mask1)
2088   // x2=shuffle(v2,undef,mask2)
2089   //  x=shuffle(x1,x2,mask)
2090   // where v1.size() == v2.size()
2091   //        ==>
2092   //  x=shuffle(v1,v2,newMask)
2093   // newMask[i] = (mask[i] < x1.size())
2094   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2095   //
2096   // Here we are really conservative:
2097   // we are absolutely afraid of producing a shuffle mask not in the input
2098   // program, because the code gen may not be smart enough to turn a merged
2099   // shuffle into two specific shuffles: it may produce worse code.  As such,
2100   // we only merge two shuffles if the result is either a splat or one of the
2101   // input shuffle masks.  In this case, merging the shuffles just removes
2102   // one instruction, which we know is safe.  This is good for things like
2103   // turning: (splat(splat)) -> splat, or
2104   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2105   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2106   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2107   if (LHSShuffle)
2108     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2109       LHSShuffle = nullptr;
2110   if (RHSShuffle)
2111     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2112       RHSShuffle = nullptr;
2113   if (!LHSShuffle && !RHSShuffle)
2114     return MadeChange ? &SVI : nullptr;
2115 
2116   Value* LHSOp0 = nullptr;
2117   Value* LHSOp1 = nullptr;
2118   Value* RHSOp0 = nullptr;
2119   unsigned LHSOp0Width = 0;
2120   unsigned RHSOp0Width = 0;
2121   if (LHSShuffle) {
2122     LHSOp0 = LHSShuffle->getOperand(0);
2123     LHSOp1 = LHSShuffle->getOperand(1);
2124     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2125   }
2126   if (RHSShuffle) {
2127     RHSOp0 = RHSShuffle->getOperand(0);
2128     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2129   }
2130   Value* newLHS = LHS;
2131   Value* newRHS = RHS;
2132   if (LHSShuffle) {
2133     // case 1
2134     if (isa<UndefValue>(RHS)) {
2135       newLHS = LHSOp0;
2136       newRHS = LHSOp1;
2137     }
2138     // case 2 or 4
2139     else if (LHSOp0Width == LHSWidth) {
2140       newLHS = LHSOp0;
2141     }
2142   }
2143   // case 3 or 4
2144   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2145     newRHS = RHSOp0;
2146   }
2147   // case 4
2148   if (LHSOp0 == RHSOp0) {
2149     newLHS = LHSOp0;
2150     newRHS = nullptr;
2151   }
2152 
2153   if (newLHS == LHS && newRHS == RHS)
2154     return MadeChange ? &SVI : nullptr;
2155 
2156   SmallVector<int, 16> LHSMask;
2157   SmallVector<int, 16> RHSMask;
2158   if (newLHS != LHS)
2159     LHSMask = LHSShuffle->getShuffleMask();
2160   if (RHSShuffle && newRHS != RHS)
2161     RHSMask = RHSShuffle->getShuffleMask();
2162 
2163   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2164   SmallVector<int, 16> newMask;
2165   bool isSplat = true;
2166   int SplatElt = -1;
2167   // Create a new mask for the new ShuffleVectorInst so that the new
2168   // ShuffleVectorInst is equivalent to the original one.
2169   for (unsigned i = 0; i < VWidth; ++i) {
2170     int eltMask;
2171     if (Mask[i] < 0) {
2172       // This element is an undef value.
2173       eltMask = -1;
2174     } else if (Mask[i] < (int)LHSWidth) {
2175       // This element is from left hand side vector operand.
2176       //
2177       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2178       // new mask value for the element.
2179       if (newLHS != LHS) {
2180         eltMask = LHSMask[Mask[i]];
2181         // If the value selected is an undef value, explicitly specify it
2182         // with a -1 mask value.
2183         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2184           eltMask = -1;
2185       } else
2186         eltMask = Mask[i];
2187     } else {
2188       // This element is from right hand side vector operand
2189       //
2190       // If the value selected is an undef value, explicitly specify it
2191       // with a -1 mask value. (case 1)
2192       if (isa<UndefValue>(RHS))
2193         eltMask = -1;
2194       // If RHS is going to be replaced (case 3 or 4), calculate the
2195       // new mask value for the element.
2196       else if (newRHS != RHS) {
2197         eltMask = RHSMask[Mask[i]-LHSWidth];
2198         // If the value selected is an undef value, explicitly specify it
2199         // with a -1 mask value.
2200         if (eltMask >= (int)RHSOp0Width) {
2201           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2202                  && "should have been check above");
2203           eltMask = -1;
2204         }
2205       } else
2206         eltMask = Mask[i]-LHSWidth;
2207 
2208       // If LHS's width is changed, shift the mask value accordingly.
2209       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2210       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2211       // If newRHS == newLHS, we want to remap any references from newRHS to
2212       // newLHS so that we can properly identify splats that may occur due to
2213       // obfuscation across the two vectors.
2214       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2215         eltMask += newLHSWidth;
2216     }
2217 
2218     // Check if this could still be a splat.
2219     if (eltMask >= 0) {
2220       if (SplatElt >= 0 && SplatElt != eltMask)
2221         isSplat = false;
2222       SplatElt = eltMask;
2223     }
2224 
2225     newMask.push_back(eltMask);
2226   }
2227 
2228   // If the result mask is equal to one of the original shuffle masks,
2229   // or is a splat, do the replacement.
2230   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2231     SmallVector<Constant*, 16> Elts;
2232     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2233       if (newMask[i] < 0) {
2234         Elts.push_back(UndefValue::get(Int32Ty));
2235       } else {
2236         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2237       }
2238     }
2239     if (!newRHS)
2240       newRHS = UndefValue::get(newLHS->getType());
2241     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2242   }
2243 
2244   return MadeChange ? &SVI : nullptr;
2245 }
2246