1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 /// Find elements of V demanded by UserInstr.
257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
258   unsigned VWidth = V->getType()->getVectorNumElements();
259 
260   // Conservatively assume that all elements are needed.
261   APInt UsedElts(APInt::getAllOnesValue(VWidth));
262 
263   switch (UserInstr->getOpcode()) {
264   case Instruction::ExtractElement: {
265     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
266     assert(EEI->getVectorOperand() == V);
267     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
268     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
269       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
270     }
271     break;
272   }
273   case Instruction::ShuffleVector: {
274     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
275     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
276 
277     UsedElts = APInt(VWidth, 0);
278     for (unsigned i = 0; i < MaskNumElts; i++) {
279       unsigned MaskVal = Shuffle->getMaskValue(i);
280       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
281         continue;
282       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
283         UsedElts.setBit(MaskVal);
284       if (Shuffle->getOperand(1) == V &&
285           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
286         UsedElts.setBit(MaskVal - VWidth);
287     }
288     break;
289   }
290   default:
291     break;
292   }
293   return UsedElts;
294 }
295 
296 /// Find union of elements of V demanded by all its users.
297 /// If it is known by querying findDemandedEltsBySingleUser that
298 /// no user demands an element of V, then the corresponding bit
299 /// remains unset in the returned value.
300 static APInt findDemandedEltsByAllUsers(Value *V) {
301   unsigned VWidth = V->getType()->getVectorNumElements();
302 
303   APInt UnionUsedElts(VWidth, 0);
304   for (const Use &U : V->uses()) {
305     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
306       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
307     } else {
308       UnionUsedElts = APInt::getAllOnesValue(VWidth);
309       break;
310     }
311 
312     if (UnionUsedElts.isAllOnesValue())
313       break;
314   }
315 
316   return UnionUsedElts;
317 }
318 
319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
320   Value *SrcVec = EI.getVectorOperand();
321   Value *Index = EI.getIndexOperand();
322   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
323                                             SQ.getWithInstruction(&EI)))
324     return replaceInstUsesWith(EI, V);
325 
326   // If extracting a specified index from the vector, see if we can recursively
327   // find a previously computed scalar that was inserted into the vector.
328   auto *IndexC = dyn_cast<ConstantInt>(Index);
329   if (IndexC) {
330     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
331 
332     // InstSimplify should handle cases where the index is invalid.
333     if (!IndexC->getValue().ule(NumElts))
334       return nullptr;
335 
336     // This instruction only demands the single element from the input vector.
337     if (NumElts != 1) {
338       // If the input vector has a single use, simplify it based on this use
339       // property.
340       if (SrcVec->hasOneUse()) {
341         APInt UndefElts(NumElts, 0);
342         APInt DemandedElts(NumElts, 0);
343         DemandedElts.setBit(IndexC->getZExtValue());
344         if (Value *V =
345                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
346           EI.setOperand(0, V);
347           return &EI;
348         }
349       } else {
350         // If the input vector has multiple uses, simplify it based on a union
351         // of all elements used.
352         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
353         if (!DemandedElts.isAllOnesValue()) {
354           APInt UndefElts(NumElts, 0);
355           if (Value *V = SimplifyDemandedVectorElts(
356                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
357                   true /* AllowMultipleUsers */)) {
358             if (V != SrcVec) {
359               SrcVec->replaceAllUsesWith(V);
360               return &EI;
361             }
362           }
363         }
364       }
365     }
366     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
367       return I;
368 
369     // If there's a vector PHI feeding a scalar use through this extractelement
370     // instruction, try to scalarize the PHI.
371     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
372       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
373         return ScalarPHI;
374   }
375 
376   BinaryOperator *BO;
377   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
378     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
380     Value *E0 = Builder.CreateExtractElement(X, Index);
381     Value *E1 = Builder.CreateExtractElement(Y, Index);
382     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
383   }
384 
385   Value *X, *Y;
386   CmpInst::Predicate Pred;
387   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
388       cheapToScalarize(SrcVec, IndexC)) {
389     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390     Value *E0 = Builder.CreateExtractElement(X, Index);
391     Value *E1 = Builder.CreateExtractElement(Y, Index);
392     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
393   }
394 
395   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
396     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
397       // Extracting the inserted element?
398       if (IE->getOperand(2) == Index)
399         return replaceInstUsesWith(EI, IE->getOperand(1));
400       // If the inserted and extracted elements are constants, they must not
401       // be the same value, extract from the pre-inserted value instead.
402       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
403         Worklist.AddValue(SrcVec);
404         EI.setOperand(0, IE->getOperand(0));
405         return &EI;
406       }
407     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
408       // If this is extracting an element from a shufflevector, figure out where
409       // it came from and extract from the appropriate input element instead.
410       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
411         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
412         Value *Src;
413         unsigned LHSWidth =
414           SVI->getOperand(0)->getType()->getVectorNumElements();
415 
416         if (SrcIdx < 0)
417           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
418         if (SrcIdx < (int)LHSWidth)
419           Src = SVI->getOperand(0);
420         else {
421           SrcIdx -= LHSWidth;
422           Src = SVI->getOperand(1);
423         }
424         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
425         return ExtractElementInst::Create(Src,
426                                           ConstantInt::get(Int32Ty,
427                                                            SrcIdx, false));
428       }
429     } else if (auto *CI = dyn_cast<CastInst>(I)) {
430       // Canonicalize extractelement(cast) -> cast(extractelement).
431       // Bitcasts can change the number of vector elements, and they cost
432       // nothing.
433       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
434         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
435         Worklist.AddValue(EE);
436         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
437       }
438 
439       // If the input is a bitcast from x86_mmx, turn into a single bitcast from
440       // the mmx type to the scalar type.
441       if (CI->getOpcode() == Instruction::BitCast &&
442           EI.getVectorOperandType()->getNumElements() == 1 &&
443           CI->getOperand(0)->getType()->isX86_MMXTy())
444         return new BitCastInst(CI->getOperand(0), EI.getType());
445     }
446   }
447   return nullptr;
448 }
449 
450 /// If V is a shuffle of values that ONLY returns elements from either LHS or
451 /// RHS, return the shuffle mask and true. Otherwise, return false.
452 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
453                                          SmallVectorImpl<Constant*> &Mask) {
454   assert(LHS->getType() == RHS->getType() &&
455          "Invalid CollectSingleShuffleElements");
456   unsigned NumElts = V->getType()->getVectorNumElements();
457 
458   if (isa<UndefValue>(V)) {
459     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
460     return true;
461   }
462 
463   if (V == LHS) {
464     for (unsigned i = 0; i != NumElts; ++i)
465       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
466     return true;
467   }
468 
469   if (V == RHS) {
470     for (unsigned i = 0; i != NumElts; ++i)
471       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
472                                       i+NumElts));
473     return true;
474   }
475 
476   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
477     // If this is an insert of an extract from some other vector, include it.
478     Value *VecOp    = IEI->getOperand(0);
479     Value *ScalarOp = IEI->getOperand(1);
480     Value *IdxOp    = IEI->getOperand(2);
481 
482     if (!isa<ConstantInt>(IdxOp))
483       return false;
484     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
485 
486     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
487       // We can handle this if the vector we are inserting into is
488       // transitively ok.
489       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
490         // If so, update the mask to reflect the inserted undef.
491         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
492         return true;
493       }
494     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
495       if (isa<ConstantInt>(EI->getOperand(1))) {
496         unsigned ExtractedIdx =
497         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
498         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
499 
500         // This must be extracting from either LHS or RHS.
501         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
502           // We can handle this if the vector we are inserting into is
503           // transitively ok.
504           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
505             // If so, update the mask to reflect the inserted value.
506             if (EI->getOperand(0) == LHS) {
507               Mask[InsertedIdx % NumElts] =
508               ConstantInt::get(Type::getInt32Ty(V->getContext()),
509                                ExtractedIdx);
510             } else {
511               assert(EI->getOperand(0) == RHS);
512               Mask[InsertedIdx % NumElts] =
513               ConstantInt::get(Type::getInt32Ty(V->getContext()),
514                                ExtractedIdx + NumLHSElts);
515             }
516             return true;
517           }
518         }
519       }
520     }
521   }
522 
523   return false;
524 }
525 
526 /// If we have insertion into a vector that is wider than the vector that we
527 /// are extracting from, try to widen the source vector to allow a single
528 /// shufflevector to replace one or more insert/extract pairs.
529 static void replaceExtractElements(InsertElementInst *InsElt,
530                                    ExtractElementInst *ExtElt,
531                                    InstCombiner &IC) {
532   VectorType *InsVecType = InsElt->getType();
533   VectorType *ExtVecType = ExtElt->getVectorOperandType();
534   unsigned NumInsElts = InsVecType->getVectorNumElements();
535   unsigned NumExtElts = ExtVecType->getVectorNumElements();
536 
537   // The inserted-to vector must be wider than the extracted-from vector.
538   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
539       NumExtElts >= NumInsElts)
540     return;
541 
542   // Create a shuffle mask to widen the extended-from vector using undefined
543   // values. The mask selects all of the values of the original vector followed
544   // by as many undefined values as needed to create a vector of the same length
545   // as the inserted-to vector.
546   SmallVector<Constant *, 16> ExtendMask;
547   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
548   for (unsigned i = 0; i < NumExtElts; ++i)
549     ExtendMask.push_back(ConstantInt::get(IntType, i));
550   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
551     ExtendMask.push_back(UndefValue::get(IntType));
552 
553   Value *ExtVecOp = ExtElt->getVectorOperand();
554   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
555   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
556                                    ? ExtVecOpInst->getParent()
557                                    : ExtElt->getParent();
558 
559   // TODO: This restriction matches the basic block check below when creating
560   // new extractelement instructions. If that limitation is removed, this one
561   // could also be removed. But for now, we just bail out to ensure that we
562   // will replace the extractelement instruction that is feeding our
563   // insertelement instruction. This allows the insertelement to then be
564   // replaced by a shufflevector. If the insertelement is not replaced, we can
565   // induce infinite looping because there's an optimization for extractelement
566   // that will delete our widening shuffle. This would trigger another attempt
567   // here to create that shuffle, and we spin forever.
568   if (InsertionBlock != InsElt->getParent())
569     return;
570 
571   // TODO: This restriction matches the check in visitInsertElementInst() and
572   // prevents an infinite loop caused by not turning the extract/insert pair
573   // into a shuffle. We really should not need either check, but we're lacking
574   // folds for shufflevectors because we're afraid to generate shuffle masks
575   // that the backend can't handle.
576   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
577     return;
578 
579   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
580                                         ConstantVector::get(ExtendMask));
581 
582   // Insert the new shuffle after the vector operand of the extract is defined
583   // (as long as it's not a PHI) or at the start of the basic block of the
584   // extract, so any subsequent extracts in the same basic block can use it.
585   // TODO: Insert before the earliest ExtractElementInst that is replaced.
586   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
587     WideVec->insertAfter(ExtVecOpInst);
588   else
589     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
590 
591   // Replace extracts from the original narrow vector with extracts from the new
592   // wide vector.
593   for (User *U : ExtVecOp->users()) {
594     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
595     if (!OldExt || OldExt->getParent() != WideVec->getParent())
596       continue;
597     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
598     NewExt->insertAfter(OldExt);
599     IC.replaceInstUsesWith(*OldExt, NewExt);
600   }
601 }
602 
603 /// We are building a shuffle to create V, which is a sequence of insertelement,
604 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
605 /// not rely on the second vector source. Return a std::pair containing the
606 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
607 /// parameter as required.
608 ///
609 /// Note: we intentionally don't try to fold earlier shuffles since they have
610 /// often been chosen carefully to be efficiently implementable on the target.
611 using ShuffleOps = std::pair<Value *, Value *>;
612 
613 static ShuffleOps collectShuffleElements(Value *V,
614                                          SmallVectorImpl<Constant *> &Mask,
615                                          Value *PermittedRHS,
616                                          InstCombiner &IC) {
617   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
618   unsigned NumElts = V->getType()->getVectorNumElements();
619 
620   if (isa<UndefValue>(V)) {
621     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
622     return std::make_pair(
623         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
624   }
625 
626   if (isa<ConstantAggregateZero>(V)) {
627     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
628     return std::make_pair(V, nullptr);
629   }
630 
631   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
632     // If this is an insert of an extract from some other vector, include it.
633     Value *VecOp    = IEI->getOperand(0);
634     Value *ScalarOp = IEI->getOperand(1);
635     Value *IdxOp    = IEI->getOperand(2);
636 
637     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
638       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
639         unsigned ExtractedIdx =
640           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
641         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
642 
643         // Either the extracted from or inserted into vector must be RHSVec,
644         // otherwise we'd end up with a shuffle of three inputs.
645         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
646           Value *RHS = EI->getOperand(0);
647           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
648           assert(LR.second == nullptr || LR.second == RHS);
649 
650           if (LR.first->getType() != RHS->getType()) {
651             // Although we are giving up for now, see if we can create extracts
652             // that match the inserts for another round of combining.
653             replaceExtractElements(IEI, EI, IC);
654 
655             // We tried our best, but we can't find anything compatible with RHS
656             // further up the chain. Return a trivial shuffle.
657             for (unsigned i = 0; i < NumElts; ++i)
658               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
659             return std::make_pair(V, nullptr);
660           }
661 
662           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
663           Mask[InsertedIdx % NumElts] =
664             ConstantInt::get(Type::getInt32Ty(V->getContext()),
665                              NumLHSElts+ExtractedIdx);
666           return std::make_pair(LR.first, RHS);
667         }
668 
669         if (VecOp == PermittedRHS) {
670           // We've gone as far as we can: anything on the other side of the
671           // extractelement will already have been converted into a shuffle.
672           unsigned NumLHSElts =
673               EI->getOperand(0)->getType()->getVectorNumElements();
674           for (unsigned i = 0; i != NumElts; ++i)
675             Mask.push_back(ConstantInt::get(
676                 Type::getInt32Ty(V->getContext()),
677                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
678           return std::make_pair(EI->getOperand(0), PermittedRHS);
679         }
680 
681         // If this insertelement is a chain that comes from exactly these two
682         // vectors, return the vector and the effective shuffle.
683         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
684             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
685                                          Mask))
686           return std::make_pair(EI->getOperand(0), PermittedRHS);
687       }
688     }
689   }
690 
691   // Otherwise, we can't do anything fancy. Return an identity vector.
692   for (unsigned i = 0; i != NumElts; ++i)
693     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
694   return std::make_pair(V, nullptr);
695 }
696 
697 /// Try to find redundant insertvalue instructions, like the following ones:
698 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
699 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
700 /// Here the second instruction inserts values at the same indices, as the
701 /// first one, making the first one redundant.
702 /// It should be transformed to:
703 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
704 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
705   bool IsRedundant = false;
706   ArrayRef<unsigned int> FirstIndices = I.getIndices();
707 
708   // If there is a chain of insertvalue instructions (each of them except the
709   // last one has only one use and it's another insertvalue insn from this
710   // chain), check if any of the 'children' uses the same indices as the first
711   // instruction. In this case, the first one is redundant.
712   Value *V = &I;
713   unsigned Depth = 0;
714   while (V->hasOneUse() && Depth < 10) {
715     User *U = V->user_back();
716     auto UserInsInst = dyn_cast<InsertValueInst>(U);
717     if (!UserInsInst || U->getOperand(0) != V)
718       break;
719     if (UserInsInst->getIndices() == FirstIndices) {
720       IsRedundant = true;
721       break;
722     }
723     V = UserInsInst;
724     Depth++;
725   }
726 
727   if (IsRedundant)
728     return replaceInstUsesWith(I, I.getOperand(0));
729   return nullptr;
730 }
731 
732 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
733   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
734   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
735 
736   // A vector select does not change the size of the operands.
737   if (MaskSize != VecSize)
738     return false;
739 
740   // Each mask element must be undefined or choose a vector element from one of
741   // the source operands without crossing vector lanes.
742   for (int i = 0; i != MaskSize; ++i) {
743     int Elt = Shuf.getMaskValue(i);
744     if (Elt != -1 && Elt != i && Elt != i + VecSize)
745       return false;
746   }
747 
748   return true;
749 }
750 
751 /// Turn a chain of inserts that splats a value into an insert + shuffle:
752 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
753 /// shufflevector(insertelt(X, %k, 0), undef, zero)
754 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
755   // We are interested in the last insert in a chain. So if this insert has a
756   // single user and that user is an insert, bail.
757   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
758     return nullptr;
759 
760   auto *VecTy = cast<VectorType>(InsElt.getType());
761   unsigned NumElements = VecTy->getNumElements();
762 
763   // Do not try to do this for a one-element vector, since that's a nop,
764   // and will cause an inf-loop.
765   if (NumElements == 1)
766     return nullptr;
767 
768   Value *SplatVal = InsElt.getOperand(1);
769   InsertElementInst *CurrIE = &InsElt;
770   SmallVector<bool, 16> ElementPresent(NumElements, false);
771   InsertElementInst *FirstIE = nullptr;
772 
773   // Walk the chain backwards, keeping track of which indices we inserted into,
774   // until we hit something that isn't an insert of the splatted value.
775   while (CurrIE) {
776     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
777     if (!Idx || CurrIE->getOperand(1) != SplatVal)
778       return nullptr;
779 
780     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
781     // Check none of the intermediate steps have any additional uses, except
782     // for the root insertelement instruction, which can be re-used, if it
783     // inserts at position 0.
784     if (CurrIE != &InsElt &&
785         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
786       return nullptr;
787 
788     ElementPresent[Idx->getZExtValue()] = true;
789     FirstIE = CurrIE;
790     CurrIE = NextIE;
791   }
792 
793   // If this is just a single insertelement (not a sequence), we are done.
794   if (FirstIE == &InsElt)
795     return nullptr;
796 
797   // If we are not inserting into an undef vector, make sure we've seen an
798   // insert into every element.
799   // TODO: If the base vector is not undef, it might be better to create a splat
800   //       and then a select-shuffle (blend) with the base vector.
801   if (!isa<UndefValue>(FirstIE->getOperand(0)))
802     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
803       return nullptr;
804 
805   // Create the insert + shuffle.
806   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
807   UndefValue *UndefVec = UndefValue::get(VecTy);
808   Constant *Zero = ConstantInt::get(Int32Ty, 0);
809   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
810     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
811 
812   // Splat from element 0, but replace absent elements with undef in the mask.
813   SmallVector<Constant *, 16> Mask(NumElements, Zero);
814   for (unsigned i = 0; i != NumElements; ++i)
815     if (!ElementPresent[i])
816       Mask[i] = UndefValue::get(Int32Ty);
817 
818   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
819 }
820 
821 /// Try to fold an insert element into an existing splat shuffle by changing
822 /// the shuffle's mask to include the index of this insert element.
823 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
824   // Check if the vector operand of this insert is a canonical splat shuffle.
825   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
826   if (!Shuf || !Shuf->isZeroEltSplat())
827     return nullptr;
828 
829   // Check for a constant insertion index.
830   uint64_t IdxC;
831   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
832     return nullptr;
833 
834   // Check if the splat shuffle's input is the same as this insert's scalar op.
835   Value *X = InsElt.getOperand(1);
836   Value *Op0 = Shuf->getOperand(0);
837   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
838     return nullptr;
839 
840   // Replace the shuffle mask element at the index of this insert with a zero.
841   // For example:
842   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
843   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
844   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
845   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
846   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
847   Constant *Zero = ConstantInt::getNullValue(I32Ty);
848   for (unsigned i = 0; i != NumMaskElts; ++i)
849     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
850 
851   Constant *NewMask = ConstantVector::get(NewMaskVec);
852   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
853 }
854 
855 /// Try to fold an extract+insert element into an existing identity shuffle by
856 /// changing the shuffle's mask to include the index of this insert element.
857 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
858   // Check if the vector operand of this insert is an identity shuffle.
859   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
860   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
861       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
862     return nullptr;
863 
864   // Check for a constant insertion index.
865   uint64_t IdxC;
866   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
867     return nullptr;
868 
869   // Check if this insert's scalar op is extracted from the identity shuffle's
870   // input vector.
871   Value *Scalar = InsElt.getOperand(1);
872   Value *X = Shuf->getOperand(0);
873   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
874     return nullptr;
875 
876   // Replace the shuffle mask element at the index of this extract+insert with
877   // that same index value.
878   // For example:
879   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
880   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
881   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
882   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
883   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
884   Constant *OldMask = Shuf->getMask();
885   for (unsigned i = 0; i != NumMaskElts; ++i) {
886     if (i != IdxC) {
887       // All mask elements besides the inserted element remain the same.
888       NewMaskVec[i] = OldMask->getAggregateElement(i);
889     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
890       // If the mask element was already set, there's nothing to do
891       // (demanded elements analysis may unset it later).
892       return nullptr;
893     } else {
894       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
895              "Unexpected shuffle mask element for identity shuffle");
896       NewMaskVec[i] = NewMaskEltC;
897     }
898   }
899 
900   Constant *NewMask = ConstantVector::get(NewMaskVec);
901   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
902 }
903 
904 /// If we have an insertelement instruction feeding into another insertelement
905 /// and the 2nd is inserting a constant into the vector, canonicalize that
906 /// constant insertion before the insertion of a variable:
907 ///
908 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
909 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
910 ///
911 /// This has the potential of eliminating the 2nd insertelement instruction
912 /// via constant folding of the scalar constant into a vector constant.
913 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
914                                      InstCombiner::BuilderTy &Builder) {
915   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
916   if (!InsElt1 || !InsElt1->hasOneUse())
917     return nullptr;
918 
919   Value *X, *Y;
920   Constant *ScalarC;
921   ConstantInt *IdxC1, *IdxC2;
922   if (match(InsElt1->getOperand(0), m_Value(X)) &&
923       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
924       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
925       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
926       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
927     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
928     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
929   }
930 
931   return nullptr;
932 }
933 
934 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
935 /// --> shufflevector X, CVec', Mask'
936 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
937   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
938   // Bail out if the parent has more than one use. In that case, we'd be
939   // replacing the insertelt with a shuffle, and that's not a clear win.
940   if (!Inst || !Inst->hasOneUse())
941     return nullptr;
942   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
943     // The shuffle must have a constant vector operand. The insertelt must have
944     // a constant scalar being inserted at a constant position in the vector.
945     Constant *ShufConstVec, *InsEltScalar;
946     uint64_t InsEltIndex;
947     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
948         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
949         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
950       return nullptr;
951 
952     // Adding an element to an arbitrary shuffle could be expensive, but a
953     // shuffle that selects elements from vectors without crossing lanes is
954     // assumed cheap.
955     // If we're just adding a constant into that shuffle, it will still be
956     // cheap.
957     if (!isShuffleEquivalentToSelect(*Shuf))
958       return nullptr;
959 
960     // From the above 'select' check, we know that the mask has the same number
961     // of elements as the vector input operands. We also know that each constant
962     // input element is used in its lane and can not be used more than once by
963     // the shuffle. Therefore, replace the constant in the shuffle's constant
964     // vector with the insertelt constant. Replace the constant in the shuffle's
965     // mask vector with the insertelt index plus the length of the vector
966     // (because the constant vector operand of a shuffle is always the 2nd
967     // operand).
968     Constant *Mask = Shuf->getMask();
969     unsigned NumElts = Mask->getType()->getVectorNumElements();
970     SmallVector<Constant *, 16> NewShufElts(NumElts);
971     SmallVector<Constant *, 16> NewMaskElts(NumElts);
972     for (unsigned I = 0; I != NumElts; ++I) {
973       if (I == InsEltIndex) {
974         NewShufElts[I] = InsEltScalar;
975         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
976         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
977       } else {
978         // Copy over the existing values.
979         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
980         NewMaskElts[I] = Mask->getAggregateElement(I);
981       }
982     }
983 
984     // Create new operands for a shuffle that includes the constant of the
985     // original insertelt. The old shuffle will be dead now.
986     return new ShuffleVectorInst(Shuf->getOperand(0),
987                                  ConstantVector::get(NewShufElts),
988                                  ConstantVector::get(NewMaskElts));
989   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
990     // Transform sequences of insertelements ops with constant data/indexes into
991     // a single shuffle op.
992     unsigned NumElts = InsElt.getType()->getNumElements();
993 
994     uint64_t InsertIdx[2];
995     Constant *Val[2];
996     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
997         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
998         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
999         !match(IEI->getOperand(1), m_Constant(Val[1])))
1000       return nullptr;
1001     SmallVector<Constant *, 16> Values(NumElts);
1002     SmallVector<Constant *, 16> Mask(NumElts);
1003     auto ValI = std::begin(Val);
1004     // Generate new constant vector and mask.
1005     // We have 2 values/masks from the insertelements instructions. Insert them
1006     // into new value/mask vectors.
1007     for (uint64_t I : InsertIdx) {
1008       if (!Values[I]) {
1009         assert(!Mask[I]);
1010         Values[I] = *ValI;
1011         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1012                                    NumElts + I);
1013       }
1014       ++ValI;
1015     }
1016     // Remaining values are filled with 'undef' values.
1017     for (unsigned I = 0; I < NumElts; ++I) {
1018       if (!Values[I]) {
1019         assert(!Mask[I]);
1020         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1021         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1022       }
1023     }
1024     // Create new operands for a shuffle that includes the constant of the
1025     // original insertelt.
1026     return new ShuffleVectorInst(IEI->getOperand(0),
1027                                  ConstantVector::get(Values),
1028                                  ConstantVector::get(Mask));
1029   }
1030   return nullptr;
1031 }
1032 
1033 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1034   Value *VecOp    = IE.getOperand(0);
1035   Value *ScalarOp = IE.getOperand(1);
1036   Value *IdxOp    = IE.getOperand(2);
1037 
1038   if (auto *V = SimplifyInsertElementInst(
1039           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1040     return replaceInstUsesWith(IE, V);
1041 
1042   // If the vector and scalar are both bitcast from the same element type, do
1043   // the insert in that source type followed by bitcast.
1044   Value *VecSrc, *ScalarSrc;
1045   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1046       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1047       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1048       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1049       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1050     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1051     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1052     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1053     return new BitCastInst(NewInsElt, IE.getType());
1054   }
1055 
1056   // If the inserted element was extracted from some other vector and both
1057   // indexes are valid constants, try to turn this into a shuffle.
1058   uint64_t InsertedIdx, ExtractedIdx;
1059   Value *ExtVecOp;
1060   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1061       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1062                                        m_ConstantInt(ExtractedIdx))) &&
1063       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1064     // TODO: Looking at the user(s) to determine if this insert is a
1065     // fold-to-shuffle opportunity does not match the usual instcombine
1066     // constraints. We should decide if the transform is worthy based only
1067     // on this instruction and its operands, but that may not work currently.
1068     //
1069     // Here, we are trying to avoid creating shuffles before reaching
1070     // the end of a chain of extract-insert pairs. This is complicated because
1071     // we do not generally form arbitrary shuffle masks in instcombine
1072     // (because those may codegen poorly), but collectShuffleElements() does
1073     // exactly that.
1074     //
1075     // The rules for determining what is an acceptable target-independent
1076     // shuffle mask are fuzzy because they evolve based on the backend's
1077     // capabilities and real-world impact.
1078     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1079       if (!Insert.hasOneUse())
1080         return true;
1081       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1082       if (!InsertUser)
1083         return true;
1084       return false;
1085     };
1086 
1087     // Try to form a shuffle from a chain of extract-insert ops.
1088     if (isShuffleRootCandidate(IE)) {
1089       SmallVector<Constant*, 16> Mask;
1090       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1091 
1092       // The proposed shuffle may be trivial, in which case we shouldn't
1093       // perform the combine.
1094       if (LR.first != &IE && LR.second != &IE) {
1095         // We now have a shuffle of LHS, RHS, Mask.
1096         if (LR.second == nullptr)
1097           LR.second = UndefValue::get(LR.first->getType());
1098         return new ShuffleVectorInst(LR.first, LR.second,
1099                                      ConstantVector::get(Mask));
1100       }
1101     }
1102   }
1103 
1104   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1105   APInt UndefElts(VWidth, 0);
1106   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1107   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1108     if (V != &IE)
1109       return replaceInstUsesWith(IE, V);
1110     return &IE;
1111   }
1112 
1113   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1114     return Shuf;
1115 
1116   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1117     return NewInsElt;
1118 
1119   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1120     return Broadcast;
1121 
1122   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1123     return Splat;
1124 
1125   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1126     return IdentityShuf;
1127 
1128   return nullptr;
1129 }
1130 
1131 /// Return true if we can evaluate the specified expression tree if the vector
1132 /// elements were shuffled in a different order.
1133 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1134                                 unsigned Depth = 5) {
1135   // We can always reorder the elements of a constant.
1136   if (isa<Constant>(V))
1137     return true;
1138 
1139   // We won't reorder vector arguments. No IPO here.
1140   Instruction *I = dyn_cast<Instruction>(V);
1141   if (!I) return false;
1142 
1143   // Two users may expect different orders of the elements. Don't try it.
1144   if (!I->hasOneUse())
1145     return false;
1146 
1147   if (Depth == 0) return false;
1148 
1149   switch (I->getOpcode()) {
1150     case Instruction::UDiv:
1151     case Instruction::SDiv:
1152     case Instruction::URem:
1153     case Instruction::SRem:
1154       // Propagating an undefined shuffle mask element to integer div/rem is not
1155       // allowed because those opcodes can create immediate undefined behavior
1156       // from an undefined element in an operand.
1157       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1158         return false;
1159       LLVM_FALLTHROUGH;
1160     case Instruction::Add:
1161     case Instruction::FAdd:
1162     case Instruction::Sub:
1163     case Instruction::FSub:
1164     case Instruction::Mul:
1165     case Instruction::FMul:
1166     case Instruction::FDiv:
1167     case Instruction::FRem:
1168     case Instruction::Shl:
1169     case Instruction::LShr:
1170     case Instruction::AShr:
1171     case Instruction::And:
1172     case Instruction::Or:
1173     case Instruction::Xor:
1174     case Instruction::ICmp:
1175     case Instruction::FCmp:
1176     case Instruction::Trunc:
1177     case Instruction::ZExt:
1178     case Instruction::SExt:
1179     case Instruction::FPToUI:
1180     case Instruction::FPToSI:
1181     case Instruction::UIToFP:
1182     case Instruction::SIToFP:
1183     case Instruction::FPTrunc:
1184     case Instruction::FPExt:
1185     case Instruction::GetElementPtr: {
1186       // Bail out if we would create longer vector ops. We could allow creating
1187       // longer vector ops, but that may result in more expensive codegen.
1188       Type *ITy = I->getType();
1189       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1190         return false;
1191       for (Value *Operand : I->operands()) {
1192         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1193           return false;
1194       }
1195       return true;
1196     }
1197     case Instruction::InsertElement: {
1198       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1199       if (!CI) return false;
1200       int ElementNumber = CI->getLimitedValue();
1201 
1202       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1203       // can't put an element into multiple indices.
1204       bool SeenOnce = false;
1205       for (int i = 0, e = Mask.size(); i != e; ++i) {
1206         if (Mask[i] == ElementNumber) {
1207           if (SeenOnce)
1208             return false;
1209           SeenOnce = true;
1210         }
1211       }
1212       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1213     }
1214   }
1215   return false;
1216 }
1217 
1218 /// Rebuild a new instruction just like 'I' but with the new operands given.
1219 /// In the event of type mismatch, the type of the operands is correct.
1220 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1221   // We don't want to use the IRBuilder here because we want the replacement
1222   // instructions to appear next to 'I', not the builder's insertion point.
1223   switch (I->getOpcode()) {
1224     case Instruction::Add:
1225     case Instruction::FAdd:
1226     case Instruction::Sub:
1227     case Instruction::FSub:
1228     case Instruction::Mul:
1229     case Instruction::FMul:
1230     case Instruction::UDiv:
1231     case Instruction::SDiv:
1232     case Instruction::FDiv:
1233     case Instruction::URem:
1234     case Instruction::SRem:
1235     case Instruction::FRem:
1236     case Instruction::Shl:
1237     case Instruction::LShr:
1238     case Instruction::AShr:
1239     case Instruction::And:
1240     case Instruction::Or:
1241     case Instruction::Xor: {
1242       BinaryOperator *BO = cast<BinaryOperator>(I);
1243       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1244       BinaryOperator *New =
1245           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1246                                  NewOps[0], NewOps[1], "", BO);
1247       if (isa<OverflowingBinaryOperator>(BO)) {
1248         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1249         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1250       }
1251       if (isa<PossiblyExactOperator>(BO)) {
1252         New->setIsExact(BO->isExact());
1253       }
1254       if (isa<FPMathOperator>(BO))
1255         New->copyFastMathFlags(I);
1256       return New;
1257     }
1258     case Instruction::ICmp:
1259       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1260       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1261                           NewOps[0], NewOps[1]);
1262     case Instruction::FCmp:
1263       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1264       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1265                           NewOps[0], NewOps[1]);
1266     case Instruction::Trunc:
1267     case Instruction::ZExt:
1268     case Instruction::SExt:
1269     case Instruction::FPToUI:
1270     case Instruction::FPToSI:
1271     case Instruction::UIToFP:
1272     case Instruction::SIToFP:
1273     case Instruction::FPTrunc:
1274     case Instruction::FPExt: {
1275       // It's possible that the mask has a different number of elements from
1276       // the original cast. We recompute the destination type to match the mask.
1277       Type *DestTy =
1278           VectorType::get(I->getType()->getScalarType(),
1279                           NewOps[0]->getType()->getVectorNumElements());
1280       assert(NewOps.size() == 1 && "cast with #ops != 1");
1281       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1282                               "", I);
1283     }
1284     case Instruction::GetElementPtr: {
1285       Value *Ptr = NewOps[0];
1286       ArrayRef<Value*> Idx = NewOps.slice(1);
1287       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1288           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1289       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1290       return GEP;
1291     }
1292   }
1293   llvm_unreachable("failed to rebuild vector instructions");
1294 }
1295 
1296 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1297   // Mask.size() does not need to be equal to the number of vector elements.
1298 
1299   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1300   Type *EltTy = V->getType()->getScalarType();
1301   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1302   if (isa<UndefValue>(V))
1303     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1304 
1305   if (isa<ConstantAggregateZero>(V))
1306     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1307 
1308   if (Constant *C = dyn_cast<Constant>(V)) {
1309     SmallVector<Constant *, 16> MaskValues;
1310     for (int i = 0, e = Mask.size(); i != e; ++i) {
1311       if (Mask[i] == -1)
1312         MaskValues.push_back(UndefValue::get(I32Ty));
1313       else
1314         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1315     }
1316     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1317                                           ConstantVector::get(MaskValues));
1318   }
1319 
1320   Instruction *I = cast<Instruction>(V);
1321   switch (I->getOpcode()) {
1322     case Instruction::Add:
1323     case Instruction::FAdd:
1324     case Instruction::Sub:
1325     case Instruction::FSub:
1326     case Instruction::Mul:
1327     case Instruction::FMul:
1328     case Instruction::UDiv:
1329     case Instruction::SDiv:
1330     case Instruction::FDiv:
1331     case Instruction::URem:
1332     case Instruction::SRem:
1333     case Instruction::FRem:
1334     case Instruction::Shl:
1335     case Instruction::LShr:
1336     case Instruction::AShr:
1337     case Instruction::And:
1338     case Instruction::Or:
1339     case Instruction::Xor:
1340     case Instruction::ICmp:
1341     case Instruction::FCmp:
1342     case Instruction::Trunc:
1343     case Instruction::ZExt:
1344     case Instruction::SExt:
1345     case Instruction::FPToUI:
1346     case Instruction::FPToSI:
1347     case Instruction::UIToFP:
1348     case Instruction::SIToFP:
1349     case Instruction::FPTrunc:
1350     case Instruction::FPExt:
1351     case Instruction::Select:
1352     case Instruction::GetElementPtr: {
1353       SmallVector<Value*, 8> NewOps;
1354       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1355       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1356         Value *V;
1357         // Recursively call evaluateInDifferentElementOrder on vector arguments
1358         // as well. E.g. GetElementPtr may have scalar operands even if the
1359         // return value is a vector, so we need to examine the operand type.
1360         if (I->getOperand(i)->getType()->isVectorTy())
1361           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1362         else
1363           V = I->getOperand(i);
1364         NewOps.push_back(V);
1365         NeedsRebuild |= (V != I->getOperand(i));
1366       }
1367       if (NeedsRebuild) {
1368         return buildNew(I, NewOps);
1369       }
1370       return I;
1371     }
1372     case Instruction::InsertElement: {
1373       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1374 
1375       // The insertelement was inserting at Element. Figure out which element
1376       // that becomes after shuffling. The answer is guaranteed to be unique
1377       // by CanEvaluateShuffled.
1378       bool Found = false;
1379       int Index = 0;
1380       for (int e = Mask.size(); Index != e; ++Index) {
1381         if (Mask[Index] == Element) {
1382           Found = true;
1383           break;
1384         }
1385       }
1386 
1387       // If element is not in Mask, no need to handle the operand 1 (element to
1388       // be inserted). Just evaluate values in operand 0 according to Mask.
1389       if (!Found)
1390         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1391 
1392       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1393       return InsertElementInst::Create(V, I->getOperand(1),
1394                                        ConstantInt::get(I32Ty, Index), "", I);
1395     }
1396   }
1397   llvm_unreachable("failed to reorder elements of vector instruction!");
1398 }
1399 
1400 // Returns true if the shuffle is extracting a contiguous range of values from
1401 // LHS, for example:
1402 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1403 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1404 //   Shuffles to:  |EE|FF|GG|HH|
1405 //                 +--+--+--+--+
1406 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1407                                        SmallVector<int, 16> &Mask) {
1408   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1409   unsigned MaskElems = Mask.size();
1410   unsigned BegIdx = Mask.front();
1411   unsigned EndIdx = Mask.back();
1412   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1413     return false;
1414   for (unsigned I = 0; I != MaskElems; ++I)
1415     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1416       return false;
1417   return true;
1418 }
1419 
1420 /// These are the ingredients in an alternate form binary operator as described
1421 /// below.
1422 struct BinopElts {
1423   BinaryOperator::BinaryOps Opcode;
1424   Value *Op0;
1425   Value *Op1;
1426   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1427             Value *V0 = nullptr, Value *V1 = nullptr) :
1428       Opcode(Opc), Op0(V0), Op1(V1) {}
1429   operator bool() const { return Opcode != 0; }
1430 };
1431 
1432 /// Binops may be transformed into binops with different opcodes and operands.
1433 /// Reverse the usual canonicalization to enable folds with the non-canonical
1434 /// form of the binop. If a transform is possible, return the elements of the
1435 /// new binop. If not, return invalid elements.
1436 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1437   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1438   Type *Ty = BO->getType();
1439   switch (BO->getOpcode()) {
1440     case Instruction::Shl: {
1441       // shl X, C --> mul X, (1 << C)
1442       Constant *C;
1443       if (match(BO1, m_Constant(C))) {
1444         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1445         return { Instruction::Mul, BO0, ShlOne };
1446       }
1447       break;
1448     }
1449     case Instruction::Or: {
1450       // or X, C --> add X, C (when X and C have no common bits set)
1451       const APInt *C;
1452       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1453         return { Instruction::Add, BO0, BO1 };
1454       break;
1455     }
1456     default:
1457       break;
1458   }
1459   return {};
1460 }
1461 
1462 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1463   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1464 
1465   // Are we shuffling together some value and that same value after it has been
1466   // modified by a binop with a constant?
1467   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1468   Constant *C;
1469   bool Op0IsBinop;
1470   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1471     Op0IsBinop = true;
1472   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1473     Op0IsBinop = false;
1474   else
1475     return nullptr;
1476 
1477   // The identity constant for a binop leaves a variable operand unchanged. For
1478   // a vector, this is a splat of something like 0, -1, or 1.
1479   // If there's no identity constant for this binop, we're done.
1480   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1481   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1482   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1483   if (!IdC)
1484     return nullptr;
1485 
1486   // Shuffle identity constants into the lanes that return the original value.
1487   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1488   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1489   // The existing binop constant vector remains in the same operand position.
1490   Constant *Mask = Shuf.getMask();
1491   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1492                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1493 
1494   bool MightCreatePoisonOrUB =
1495       Mask->containsUndefElement() &&
1496       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1497   if (MightCreatePoisonOrUB)
1498     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1499 
1500   // shuf (bop X, C), X, M --> bop X, C'
1501   // shuf X, (bop X, C), M --> bop X, C'
1502   Value *X = Op0IsBinop ? Op1 : Op0;
1503   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1504   NewBO->copyIRFlags(BO);
1505 
1506   // An undef shuffle mask element may propagate as an undef constant element in
1507   // the new binop. That would produce poison where the original code might not.
1508   // If we already made a safe constant, then there's no danger.
1509   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1510     NewBO->dropPoisonGeneratingFlags();
1511   return NewBO;
1512 }
1513 
1514 /// If we have an insert of a scalar to a non-zero element of an undefined
1515 /// vector and then shuffle that value, that's the same as inserting to the zero
1516 /// element and shuffling. Splatting from the zero element is recognized as the
1517 /// canonical form of splat.
1518 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1519                                             InstCombiner::BuilderTy &Builder) {
1520   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1521   Constant *Mask = Shuf.getMask();
1522   Value *X;
1523   uint64_t IndexC;
1524 
1525   // Match a shuffle that is a splat to a non-zero element.
1526   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1527                                            m_ConstantInt(IndexC)))) ||
1528       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1529     return nullptr;
1530 
1531   // Insert into element 0 of an undef vector.
1532   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1533   Constant *Zero = Builder.getInt32(0);
1534   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1535 
1536   // Splat from element 0. Any mask element that is undefined remains undefined.
1537   // For example:
1538   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1539   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1540   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1541   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1542   for (unsigned i = 0; i != NumMaskElts; ++i)
1543     if (isa<UndefValue>(Mask->getAggregateElement(i)))
1544       NewMask[i] = Mask->getAggregateElement(i);
1545 
1546   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1547 }
1548 
1549 /// Try to fold shuffles that are the equivalent of a vector select.
1550 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1551                                       InstCombiner::BuilderTy &Builder,
1552                                       const DataLayout &DL) {
1553   if (!Shuf.isSelect())
1554     return nullptr;
1555 
1556   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1557   // Commuting undef to operand 0 conflicts with another canonicalization.
1558   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1559   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1560       Shuf.getMaskValue(0) >= (int)NumElts) {
1561     // TODO: Can we assert that both operands of a shuffle-select are not undef
1562     // (otherwise, it would have been folded by instsimplify?
1563     Shuf.commute();
1564     return &Shuf;
1565   }
1566 
1567   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1568     return I;
1569 
1570   BinaryOperator *B0, *B1;
1571   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1572       !match(Shuf.getOperand(1), m_BinOp(B1)))
1573     return nullptr;
1574 
1575   Value *X, *Y;
1576   Constant *C0, *C1;
1577   bool ConstantsAreOp1;
1578   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1579       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1580     ConstantsAreOp1 = true;
1581   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1582            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1583     ConstantsAreOp1 = false;
1584   else
1585     return nullptr;
1586 
1587   // We need matching binops to fold the lanes together.
1588   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1589   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1590   bool DropNSW = false;
1591   if (ConstantsAreOp1 && Opc0 != Opc1) {
1592     // TODO: We drop "nsw" if shift is converted into multiply because it may
1593     // not be correct when the shift amount is BitWidth - 1. We could examine
1594     // each vector element to determine if it is safe to keep that flag.
1595     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1596       DropNSW = true;
1597     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1598       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1599       Opc0 = AltB0.Opcode;
1600       C0 = cast<Constant>(AltB0.Op1);
1601     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1602       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1603       Opc1 = AltB1.Opcode;
1604       C1 = cast<Constant>(AltB1.Op1);
1605     }
1606   }
1607 
1608   if (Opc0 != Opc1)
1609     return nullptr;
1610 
1611   // The opcodes must be the same. Use a new name to make that clear.
1612   BinaryOperator::BinaryOps BOpc = Opc0;
1613 
1614   // Select the constant elements needed for the single binop.
1615   Constant *Mask = Shuf.getMask();
1616   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1617 
1618   // We are moving a binop after a shuffle. When a shuffle has an undefined
1619   // mask element, the result is undefined, but it is not poison or undefined
1620   // behavior. That is not necessarily true for div/rem/shift.
1621   bool MightCreatePoisonOrUB =
1622       Mask->containsUndefElement() &&
1623       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1624   if (MightCreatePoisonOrUB)
1625     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1626 
1627   Value *V;
1628   if (X == Y) {
1629     // Remove a binop and the shuffle by rearranging the constant:
1630     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1631     // shuffle (op C0, V), (op C1, V), M --> op C', V
1632     V = X;
1633   } else {
1634     // If there are 2 different variable operands, we must create a new shuffle
1635     // (select) first, so check uses to ensure that we don't end up with more
1636     // instructions than we started with.
1637     if (!B0->hasOneUse() && !B1->hasOneUse())
1638       return nullptr;
1639 
1640     // If we use the original shuffle mask and op1 is *variable*, we would be
1641     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1642     // poison. We do not have to guard against UB when *constants* are op1
1643     // because safe constants guarantee that we do not overflow sdiv/srem (and
1644     // there's no danger for other opcodes).
1645     // TODO: To allow this case, create a new shuffle mask with no undefs.
1646     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1647       return nullptr;
1648 
1649     // Note: In general, we do not create new shuffles in InstCombine because we
1650     // do not know if a target can lower an arbitrary shuffle optimally. In this
1651     // case, the shuffle uses the existing mask, so there is no additional risk.
1652 
1653     // Select the variable vectors first, then perform the binop:
1654     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1655     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1656     V = Builder.CreateShuffleVector(X, Y, Mask);
1657   }
1658 
1659   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1660                                          BinaryOperator::Create(BOpc, NewC, V);
1661 
1662   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1663   // 1. If we changed an opcode, poison conditions might have changed.
1664   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1665   //    where the original code did not. But if we already made a safe constant,
1666   //    then there's no danger.
1667   NewBO->copyIRFlags(B0);
1668   NewBO->andIRFlags(B1);
1669   if (DropNSW)
1670     NewBO->setHasNoSignedWrap(false);
1671   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1672     NewBO->dropPoisonGeneratingFlags();
1673   return NewBO;
1674 }
1675 
1676 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1677 /// narrowing (concatenating with undef and extracting back to the original
1678 /// length). This allows replacing the wide select with a narrow select.
1679 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1680                                        InstCombiner::BuilderTy &Builder) {
1681   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1682   // of the 1st vector operand of a shuffle.
1683   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1684     return nullptr;
1685 
1686   // The vector being shuffled must be a vector select that we can eliminate.
1687   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1688   Value *Cond, *X, *Y;
1689   if (!match(Shuf.getOperand(0),
1690              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1691     return nullptr;
1692 
1693   // We need a narrow condition value. It must be extended with undef elements
1694   // and have the same number of elements as this shuffle.
1695   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1696   Value *NarrowCond;
1697   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1698                                             m_Constant()))) ||
1699       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1700       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1701     return nullptr;
1702 
1703   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1704   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1705   Value *Undef = UndefValue::get(X->getType());
1706   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1707   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1708   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1709 }
1710 
1711 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1712 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1713   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1714   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1715     return nullptr;
1716 
1717   Value *X, *Y;
1718   Constant *Mask;
1719   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1720     return nullptr;
1721 
1722   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1723   // then combining may result in worse codegen.
1724   if (!Op0->hasOneUse())
1725     return nullptr;
1726 
1727   // We are extracting a subvector from a shuffle. Remove excess elements from
1728   // the 1st shuffle mask to eliminate the extract.
1729   //
1730   // This transform is conservatively limited to identity extracts because we do
1731   // not allow arbitrary shuffle mask creation as a target-independent transform
1732   // (because we can't guarantee that will lower efficiently).
1733   //
1734   // If the extracting shuffle has an undef mask element, it transfers to the
1735   // new shuffle mask. Otherwise, copy the original mask element. Example:
1736   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1737   //   shuf X, Y, <C0, undef, C2, undef>
1738   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1739   SmallVector<Constant *, 16> NewMask(NumElts);
1740   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1741          "Identity with extract must have less elements than its inputs");
1742 
1743   for (unsigned i = 0; i != NumElts; ++i) {
1744     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1745     Constant *MaskElt = Mask->getAggregateElement(i);
1746     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1747   }
1748   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1749 }
1750 
1751 /// Try to replace a shuffle with an insertelement.
1752 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1753   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1754   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1755 
1756   // The shuffle must not change vector sizes.
1757   // TODO: This restriction could be removed if the insert has only one use
1758   //       (because the transform would require a new length-changing shuffle).
1759   int NumElts = Mask.size();
1760   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1761     return nullptr;
1762 
1763   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1764   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1765     // We need an insertelement with a constant index.
1766     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1767                                    m_ConstantInt(IndexC))))
1768       return false;
1769 
1770     // Test the shuffle mask to see if it splices the inserted scalar into the
1771     // operand 1 vector of the shuffle.
1772     int NewInsIndex = -1;
1773     for (int i = 0; i != NumElts; ++i) {
1774       // Ignore undef mask elements.
1775       if (Mask[i] == -1)
1776         continue;
1777 
1778       // The shuffle takes elements of operand 1 without lane changes.
1779       if (Mask[i] == NumElts + i)
1780         continue;
1781 
1782       // The shuffle must choose the inserted scalar exactly once.
1783       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1784         return false;
1785 
1786       // The shuffle is placing the inserted scalar into element i.
1787       NewInsIndex = i;
1788     }
1789 
1790     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1791 
1792     // Index is updated to the potentially translated insertion lane.
1793     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1794     return true;
1795   };
1796 
1797   // If the shuffle is unnecessary, insert the scalar operand directly into
1798   // operand 1 of the shuffle. Example:
1799   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1800   Value *Scalar;
1801   ConstantInt *IndexC;
1802   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1803     return InsertElementInst::Create(V1, Scalar, IndexC);
1804 
1805   // Try again after commuting shuffle. Example:
1806   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1807   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1808   std::swap(V0, V1);
1809   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1810   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1811     return InsertElementInst::Create(V1, Scalar, IndexC);
1812 
1813   return nullptr;
1814 }
1815 
1816 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1817   // Match the operands as identity with padding (also known as concatenation
1818   // with undef) shuffles of the same source type. The backend is expected to
1819   // recreate these concatenations from a shuffle of narrow operands.
1820   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1821   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1822   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1823       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1824     return nullptr;
1825 
1826   // We limit this transform to power-of-2 types because we expect that the
1827   // backend can convert the simplified IR patterns to identical nodes as the
1828   // original IR.
1829   // TODO: If we can verify the same behavior for arbitrary types, the
1830   //       power-of-2 checks can be removed.
1831   Value *X = Shuffle0->getOperand(0);
1832   Value *Y = Shuffle1->getOperand(0);
1833   if (X->getType() != Y->getType() ||
1834       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1835       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1836       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1837       isa<UndefValue>(X) || isa<UndefValue>(Y))
1838     return nullptr;
1839   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1840          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1841          "Unexpected operand for identity shuffle");
1842 
1843   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1844   // operands directly by adjusting the shuffle mask to account for the narrower
1845   // types:
1846   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1847   int NarrowElts = X->getType()->getVectorNumElements();
1848   int WideElts = Shuffle0->getType()->getVectorNumElements();
1849   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1850 
1851   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1852   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1853   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1854   for (int i = 0, e = Mask.size(); i != e; ++i) {
1855     if (Mask[i] == -1)
1856       continue;
1857 
1858     // If this shuffle is choosing an undef element from 1 of the sources, that
1859     // element is undef.
1860     if (Mask[i] < WideElts) {
1861       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1862         continue;
1863     } else {
1864       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1865         continue;
1866     }
1867 
1868     // If this shuffle is choosing from the 1st narrow op, the mask element is
1869     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1870     // element is offset down to adjust for the narrow vector widths.
1871     if (Mask[i] < WideElts) {
1872       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1873       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1874     } else {
1875       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1876       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1877     }
1878   }
1879   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1880 }
1881 
1882 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1883   Value *LHS = SVI.getOperand(0);
1884   Value *RHS = SVI.getOperand(1);
1885   if (auto *V = SimplifyShuffleVectorInst(
1886           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1887     return replaceInstUsesWith(SVI, V);
1888 
1889   // shuffle x, x, mask --> shuffle x, undef, mask'
1890   unsigned VWidth = SVI.getType()->getVectorNumElements();
1891   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1892   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1893   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1894   if (LHS == RHS) {
1895     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
1896     // Remap any references to RHS to use LHS.
1897     SmallVector<Constant*, 16> Elts;
1898     for (unsigned i = 0; i != VWidth; ++i) {
1899       // Propagate undef elements or force mask to LHS.
1900       if (Mask[i] < 0)
1901         Elts.push_back(UndefValue::get(Int32Ty));
1902       else
1903         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth));
1904     }
1905     SVI.setOperand(0, SVI.getOperand(1));
1906     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1907     SVI.setOperand(2, ConstantVector::get(Elts));
1908     return &SVI;
1909   }
1910 
1911   // shuffle undef, x, mask --> shuffle x, undef, mask'
1912   if (isa<UndefValue>(LHS)) {
1913     SVI.commute();
1914     return &SVI;
1915   }
1916 
1917   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1918     return I;
1919 
1920   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1921     return I;
1922 
1923   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1924     return I;
1925 
1926   APInt UndefElts(VWidth, 0);
1927   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1928   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1929     if (V != &SVI)
1930       return replaceInstUsesWith(SVI, V);
1931     return &SVI;
1932   }
1933 
1934   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1935     return I;
1936 
1937   // These transforms have the potential to lose undef knowledge, so they are
1938   // intentionally placed after SimplifyDemandedVectorElts().
1939   if (Instruction *I = foldShuffleWithInsert(SVI))
1940     return I;
1941   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1942     return I;
1943 
1944   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1945     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1946     return replaceInstUsesWith(SVI, V);
1947   }
1948 
1949   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1950   // a non-vector type. We can instead bitcast the original vector followed by
1951   // an extract of the desired element:
1952   //
1953   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1954   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1955   //   %1 = bitcast <4 x i8> %sroa to i32
1956   // Becomes:
1957   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1958   //   %ext = extractelement <4 x i32> %bc, i32 0
1959   //
1960   // If the shuffle is extracting a contiguous range of values from the input
1961   // vector then each use which is a bitcast of the extracted size can be
1962   // replaced. This will work if the vector types are compatible, and the begin
1963   // index is aligned to a value in the casted vector type. If the begin index
1964   // isn't aligned then we can shuffle the original vector (keeping the same
1965   // vector type) before extracting.
1966   //
1967   // This code will bail out if the target type is fundamentally incompatible
1968   // with vectors of the source type.
1969   //
1970   // Example of <16 x i8>, target type i32:
1971   // Index range [4,8):         v-----------v Will work.
1972   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1973   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1974   //     <4 x i32>: |           |           |           |           |
1975   //                +-----------+-----------+-----------+-----------+
1976   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1977   // Target type i40:           ^--------------^ Won't work, bail.
1978   bool MadeChange = false;
1979   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1980     Value *V = LHS;
1981     unsigned MaskElems = Mask.size();
1982     VectorType *SrcTy = cast<VectorType>(V->getType());
1983     unsigned VecBitWidth = SrcTy->getBitWidth();
1984     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1985     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1986     unsigned SrcNumElems = SrcTy->getNumElements();
1987     SmallVector<BitCastInst *, 8> BCs;
1988     DenseMap<Type *, Value *> NewBCs;
1989     for (User *U : SVI.users())
1990       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1991         if (!BC->use_empty())
1992           // Only visit bitcasts that weren't previously handled.
1993           BCs.push_back(BC);
1994     for (BitCastInst *BC : BCs) {
1995       unsigned BegIdx = Mask.front();
1996       Type *TgtTy = BC->getDestTy();
1997       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1998       if (!TgtElemBitWidth)
1999         continue;
2000       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2001       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2002       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2003       if (!VecBitWidthsEqual)
2004         continue;
2005       if (!VectorType::isValidElementType(TgtTy))
2006         continue;
2007       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2008       if (!BegIsAligned) {
2009         // Shuffle the input so [0,NumElements) contains the output, and
2010         // [NumElems,SrcNumElems) is undef.
2011         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2012                                                 UndefValue::get(Int32Ty));
2013         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2014           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2015         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2016                                         ConstantVector::get(ShuffleMask),
2017                                         SVI.getName() + ".extract");
2018         BegIdx = 0;
2019       }
2020       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2021       assert(SrcElemsPerTgtElem);
2022       BegIdx /= SrcElemsPerTgtElem;
2023       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2024       auto *NewBC =
2025           BCAlreadyExists
2026               ? NewBCs[CastSrcTy]
2027               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2028       if (!BCAlreadyExists)
2029         NewBCs[CastSrcTy] = NewBC;
2030       auto *Ext = Builder.CreateExtractElement(
2031           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2032       // The shufflevector isn't being replaced: the bitcast that used it
2033       // is. InstCombine will visit the newly-created instructions.
2034       replaceInstUsesWith(*BC, Ext);
2035       MadeChange = true;
2036     }
2037   }
2038 
2039   // If the LHS is a shufflevector itself, see if we can combine it with this
2040   // one without producing an unusual shuffle.
2041   // Cases that might be simplified:
2042   // 1.
2043   // x1=shuffle(v1,v2,mask1)
2044   //  x=shuffle(x1,undef,mask)
2045   //        ==>
2046   //  x=shuffle(v1,undef,newMask)
2047   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2048   // 2.
2049   // x1=shuffle(v1,undef,mask1)
2050   //  x=shuffle(x1,x2,mask)
2051   // where v1.size() == mask1.size()
2052   //        ==>
2053   //  x=shuffle(v1,x2,newMask)
2054   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2055   // 3.
2056   // x2=shuffle(v2,undef,mask2)
2057   //  x=shuffle(x1,x2,mask)
2058   // where v2.size() == mask2.size()
2059   //        ==>
2060   //  x=shuffle(x1,v2,newMask)
2061   // newMask[i] = (mask[i] < x1.size())
2062   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2063   // 4.
2064   // x1=shuffle(v1,undef,mask1)
2065   // x2=shuffle(v2,undef,mask2)
2066   //  x=shuffle(x1,x2,mask)
2067   // where v1.size() == v2.size()
2068   //        ==>
2069   //  x=shuffle(v1,v2,newMask)
2070   // newMask[i] = (mask[i] < x1.size())
2071   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2072   //
2073   // Here we are really conservative:
2074   // we are absolutely afraid of producing a shuffle mask not in the input
2075   // program, because the code gen may not be smart enough to turn a merged
2076   // shuffle into two specific shuffles: it may produce worse code.  As such,
2077   // we only merge two shuffles if the result is either a splat or one of the
2078   // input shuffle masks.  In this case, merging the shuffles just removes
2079   // one instruction, which we know is safe.  This is good for things like
2080   // turning: (splat(splat)) -> splat, or
2081   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2082   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2083   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2084   if (LHSShuffle)
2085     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2086       LHSShuffle = nullptr;
2087   if (RHSShuffle)
2088     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2089       RHSShuffle = nullptr;
2090   if (!LHSShuffle && !RHSShuffle)
2091     return MadeChange ? &SVI : nullptr;
2092 
2093   Value* LHSOp0 = nullptr;
2094   Value* LHSOp1 = nullptr;
2095   Value* RHSOp0 = nullptr;
2096   unsigned LHSOp0Width = 0;
2097   unsigned RHSOp0Width = 0;
2098   if (LHSShuffle) {
2099     LHSOp0 = LHSShuffle->getOperand(0);
2100     LHSOp1 = LHSShuffle->getOperand(1);
2101     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2102   }
2103   if (RHSShuffle) {
2104     RHSOp0 = RHSShuffle->getOperand(0);
2105     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2106   }
2107   Value* newLHS = LHS;
2108   Value* newRHS = RHS;
2109   if (LHSShuffle) {
2110     // case 1
2111     if (isa<UndefValue>(RHS)) {
2112       newLHS = LHSOp0;
2113       newRHS = LHSOp1;
2114     }
2115     // case 2 or 4
2116     else if (LHSOp0Width == LHSWidth) {
2117       newLHS = LHSOp0;
2118     }
2119   }
2120   // case 3 or 4
2121   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2122     newRHS = RHSOp0;
2123   }
2124   // case 4
2125   if (LHSOp0 == RHSOp0) {
2126     newLHS = LHSOp0;
2127     newRHS = nullptr;
2128   }
2129 
2130   if (newLHS == LHS && newRHS == RHS)
2131     return MadeChange ? &SVI : nullptr;
2132 
2133   SmallVector<int, 16> LHSMask;
2134   SmallVector<int, 16> RHSMask;
2135   if (newLHS != LHS)
2136     LHSMask = LHSShuffle->getShuffleMask();
2137   if (RHSShuffle && newRHS != RHS)
2138     RHSMask = RHSShuffle->getShuffleMask();
2139 
2140   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2141   SmallVector<int, 16> newMask;
2142   bool isSplat = true;
2143   int SplatElt = -1;
2144   // Create a new mask for the new ShuffleVectorInst so that the new
2145   // ShuffleVectorInst is equivalent to the original one.
2146   for (unsigned i = 0; i < VWidth; ++i) {
2147     int eltMask;
2148     if (Mask[i] < 0) {
2149       // This element is an undef value.
2150       eltMask = -1;
2151     } else if (Mask[i] < (int)LHSWidth) {
2152       // This element is from left hand side vector operand.
2153       //
2154       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2155       // new mask value for the element.
2156       if (newLHS != LHS) {
2157         eltMask = LHSMask[Mask[i]];
2158         // If the value selected is an undef value, explicitly specify it
2159         // with a -1 mask value.
2160         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2161           eltMask = -1;
2162       } else
2163         eltMask = Mask[i];
2164     } else {
2165       // This element is from right hand side vector operand
2166       //
2167       // If the value selected is an undef value, explicitly specify it
2168       // with a -1 mask value. (case 1)
2169       if (isa<UndefValue>(RHS))
2170         eltMask = -1;
2171       // If RHS is going to be replaced (case 3 or 4), calculate the
2172       // new mask value for the element.
2173       else if (newRHS != RHS) {
2174         eltMask = RHSMask[Mask[i]-LHSWidth];
2175         // If the value selected is an undef value, explicitly specify it
2176         // with a -1 mask value.
2177         if (eltMask >= (int)RHSOp0Width) {
2178           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2179                  && "should have been check above");
2180           eltMask = -1;
2181         }
2182       } else
2183         eltMask = Mask[i]-LHSWidth;
2184 
2185       // If LHS's width is changed, shift the mask value accordingly.
2186       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2187       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2188       // If newRHS == newLHS, we want to remap any references from newRHS to
2189       // newLHS so that we can properly identify splats that may occur due to
2190       // obfuscation across the two vectors.
2191       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2192         eltMask += newLHSWidth;
2193     }
2194 
2195     // Check if this could still be a splat.
2196     if (eltMask >= 0) {
2197       if (SplatElt >= 0 && SplatElt != eltMask)
2198         isSplat = false;
2199       SplatElt = eltMask;
2200     }
2201 
2202     newMask.push_back(eltMask);
2203   }
2204 
2205   // If the result mask is equal to one of the original shuffle masks,
2206   // or is a splat, do the replacement.
2207   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2208     SmallVector<Constant*, 16> Elts;
2209     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2210       if (newMask[i] < 0) {
2211         Elts.push_back(UndefValue::get(Int32Ty));
2212       } else {
2213         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2214       }
2215     }
2216     if (!newRHS)
2217       newRHS = UndefValue::get(newLHS->getType());
2218     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2219   }
2220 
2221   return MadeChange ? &SVI : nullptr;
2222 }
2223