1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <utility> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "instcombine" 47 48 /// Return true if the value is cheaper to scalarize than it is to leave as a 49 /// vector operation. isConstant indicates whether we're extracting one known 50 /// element. If false we're extracting a variable index. 51 // 52 // FIXME: It's possible to create more instructions that previously existed. 53 static bool cheapToScalarize(Value *V, bool isConstant) { 54 if (Constant *C = dyn_cast<Constant>(V)) { 55 if (isConstant) return true; 56 57 // If all elts are the same, we can extract it and use any of the values. 58 if (Constant *Op0 = C->getAggregateElement(0U)) { 59 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; 60 ++i) 61 if (C->getAggregateElement(i) != Op0) 62 return false; 63 return true; 64 } 65 } 66 Instruction *I = dyn_cast<Instruction>(V); 67 if (!I) return false; 68 69 // Insert element gets simplified to the inserted element or is deleted if 70 // this is constant idx extract element and its a constant idx insertelt. 71 if (I->getOpcode() == Instruction::InsertElement && isConstant && 72 isa<ConstantInt>(I->getOperand(2))) 73 return true; 74 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 75 return true; 76 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 77 if (BO->hasOneUse() && 78 (cheapToScalarize(BO->getOperand(0), isConstant) || 79 cheapToScalarize(BO->getOperand(1), isConstant))) 80 return true; 81 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 82 if (CI->hasOneUse() && 83 (cheapToScalarize(CI->getOperand(0), isConstant) || 84 cheapToScalarize(CI->getOperand(1), isConstant))) 85 return true; 86 87 return false; 88 } 89 90 // If we have a PHI node with a vector type that is only used to feed 91 // itself and be an operand of extractelement at a constant location, 92 // try to replace the PHI of the vector type with a PHI of a scalar type. 93 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 94 SmallVector<Instruction *, 2> Extracts; 95 // The users we want the PHI to have are: 96 // 1) The EI ExtractElement (we already know this) 97 // 2) Possibly more ExtractElements with the same index. 98 // 3) Another operand, which will feed back into the PHI. 99 Instruction *PHIUser = nullptr; 100 for (auto U : PN->users()) { 101 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 102 if (EI.getIndexOperand() == EU->getIndexOperand()) 103 Extracts.push_back(EU); 104 else 105 return nullptr; 106 } else if (!PHIUser) { 107 PHIUser = cast<Instruction>(U); 108 } else { 109 return nullptr; 110 } 111 } 112 113 if (!PHIUser) 114 return nullptr; 115 116 // Verify that this PHI user has one use, which is the PHI itself, 117 // and that it is a binary operation which is cheap to scalarize. 118 // otherwise return nullptr. 119 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 120 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 121 return nullptr; 122 123 // Create a scalar PHI node that will replace the vector PHI node 124 // just before the current PHI node. 125 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 126 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 127 // Scalarize each PHI operand. 128 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 129 Value *PHIInVal = PN->getIncomingValue(i); 130 BasicBlock *inBB = PN->getIncomingBlock(i); 131 Value *Elt = EI.getIndexOperand(); 132 // If the operand is the PHI induction variable: 133 if (PHIInVal == PHIUser) { 134 // Scalarize the binary operation. Its first operand is the 135 // scalar PHI, and the second operand is extracted from the other 136 // vector operand. 137 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 138 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 139 Value *Op = InsertNewInstWith( 140 ExtractElementInst::Create(B0->getOperand(opId), Elt, 141 B0->getOperand(opId)->getName() + ".Elt"), 142 *B0); 143 Value *newPHIUser = InsertNewInstWith( 144 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 145 scalarPHI, Op, B0), *B0); 146 scalarPHI->addIncoming(newPHIUser, inBB); 147 } else { 148 // Scalarize PHI input: 149 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 150 // Insert the new instruction into the predecessor basic block. 151 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 152 BasicBlock::iterator InsertPos; 153 if (pos && !isa<PHINode>(pos)) { 154 InsertPos = ++pos->getIterator(); 155 } else { 156 InsertPos = inBB->getFirstInsertionPt(); 157 } 158 159 InsertNewInstWith(newEI, *InsertPos); 160 161 scalarPHI->addIncoming(newEI, inBB); 162 } 163 } 164 165 for (auto E : Extracts) 166 replaceInstUsesWith(*E, scalarPHI); 167 168 return &EI; 169 } 170 171 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 172 InstCombiner::BuilderTy &Builder, 173 bool IsBigEndian) { 174 Value *X; 175 uint64_t ExtIndexC; 176 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 177 !X->getType()->isVectorTy() || 178 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 179 return nullptr; 180 181 // If this extractelement is using a bitcast from a vector of the same number 182 // of elements, see if we can find the source element from the source vector: 183 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 184 Type *SrcTy = X->getType(); 185 Type *DestTy = Ext.getType(); 186 unsigned NumSrcElts = SrcTy->getVectorNumElements(); 187 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 188 if (NumSrcElts == NumElts) 189 if (Value *Elt = findScalarElement(X, ExtIndexC)) 190 return new BitCastInst(Elt, DestTy); 191 192 // If the source elements are wider than the destination, try to shift and 193 // truncate a subset of scalar bits of an insert op. 194 if (NumSrcElts < NumElts) { 195 Value *Scalar; 196 uint64_t InsIndexC; 197 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 198 m_ConstantInt(InsIndexC)))) 199 return nullptr; 200 201 // The extract must be from the subset of vector elements that we inserted 202 // into. Example: if we inserted element 1 of a <2 x i64> and we are 203 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 204 // of elements 4-7 of the bitcasted vector. 205 unsigned NarrowingRatio = NumElts / NumSrcElts; 206 if (ExtIndexC / NarrowingRatio != InsIndexC) 207 return nullptr; 208 209 // We are extracting part of the original scalar. How that scalar is 210 // inserted into the vector depends on the endian-ness. Example: 211 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 212 // +--+--+--+--+--+--+--+--+ 213 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 214 // extelt <4 x i16> V', 3: | |S2|S3| 215 // +--+--+--+--+--+--+--+--+ 216 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 217 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 218 // In this example, we must right-shift little-endian. Big-endian is just a 219 // truncate. 220 unsigned Chunk = ExtIndexC % NarrowingRatio; 221 if (IsBigEndian) 222 Chunk = NarrowingRatio - 1 - Chunk; 223 224 // Bail out if this is an FP vector to FP vector sequence. That would take 225 // more instructions than we started with unless there is no shift, and it 226 // may not be handled as well in the backend. 227 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 228 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 229 if (NeedSrcBitcast && NeedDestBitcast) 230 return nullptr; 231 232 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 233 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 234 unsigned ShAmt = Chunk * DestWidth; 235 236 // TODO: This limitation is more strict than necessary. We could sum the 237 // number of new instructions and subtract the number eliminated to know if 238 // we can proceed. 239 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 240 if (NeedSrcBitcast || NeedDestBitcast) 241 return nullptr; 242 243 if (NeedSrcBitcast) { 244 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 245 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 246 } 247 248 if (ShAmt) { 249 // Bail out if we could end with more instructions than we started with. 250 if (!Ext.getVectorOperand()->hasOneUse()) 251 return nullptr; 252 Scalar = Builder.CreateLShr(Scalar, ShAmt); 253 } 254 255 if (NeedDestBitcast) { 256 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 257 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 258 } 259 return new TruncInst(Scalar, DestTy); 260 } 261 262 return nullptr; 263 } 264 265 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 266 Value *SrcVec = EI.getVectorOperand(); 267 Value *Index = EI.getIndexOperand(); 268 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 269 SQ.getWithInstruction(&EI))) 270 return replaceInstUsesWith(EI, V); 271 272 // If extracting a specified index from the vector, see if we can recursively 273 // find a previously computed scalar that was inserted into the vector. 274 auto *IndexC = dyn_cast<ConstantInt>(Index); 275 if (IndexC) { 276 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 277 278 // InstSimplify should handle cases where the index is invalid. 279 if (!IndexC->getValue().ule(NumElts)) 280 return nullptr; 281 282 // This instruction only demands the single element from the input vector. 283 // If the input vector has a single use, simplify it based on this use 284 // property. 285 if (SrcVec->hasOneUse() && NumElts != 1) { 286 APInt UndefElts(NumElts, 0); 287 APInt DemandedElts(NumElts, 0); 288 DemandedElts.setBit(IndexC->getZExtValue()); 289 if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts, 290 UndefElts)) { 291 EI.setOperand(0, V); 292 return &EI; 293 } 294 } 295 296 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 297 return I; 298 299 // If there's a vector PHI feeding a scalar use through this extractelement 300 // instruction, try to scalarize the PHI. 301 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 302 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 303 return ScalarPHI; 304 } 305 306 BinaryOperator *BO; 307 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 308 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 309 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 310 Value *E0 = Builder.CreateExtractElement(X, Index); 311 Value *E1 = Builder.CreateExtractElement(Y, Index); 312 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 313 } 314 315 Value *X, *Y; 316 CmpInst::Predicate Pred; 317 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 318 cheapToScalarize(SrcVec, IndexC)) { 319 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 320 Value *E0 = Builder.CreateExtractElement(X, Index); 321 Value *E1 = Builder.CreateExtractElement(Y, Index); 322 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 323 } 324 325 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 326 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 327 // Extracting the inserted element? 328 if (IE->getOperand(2) == Index) 329 return replaceInstUsesWith(EI, IE->getOperand(1)); 330 // If the inserted and extracted elements are constants, they must not 331 // be the same value, extract from the pre-inserted value instead. 332 if (isa<Constant>(IE->getOperand(2)) && IndexC) { 333 Worklist.AddValue(SrcVec); 334 EI.setOperand(0, IE->getOperand(0)); 335 return &EI; 336 } 337 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 338 // If this is extracting an element from a shufflevector, figure out where 339 // it came from and extract from the appropriate input element instead. 340 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 341 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 342 Value *Src; 343 unsigned LHSWidth = 344 SVI->getOperand(0)->getType()->getVectorNumElements(); 345 346 if (SrcIdx < 0) 347 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 348 if (SrcIdx < (int)LHSWidth) 349 Src = SVI->getOperand(0); 350 else { 351 SrcIdx -= LHSWidth; 352 Src = SVI->getOperand(1); 353 } 354 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 355 return ExtractElementInst::Create(Src, 356 ConstantInt::get(Int32Ty, 357 SrcIdx, false)); 358 } 359 } else if (auto *CI = dyn_cast<CastInst>(I)) { 360 // Canonicalize extractelement(cast) -> cast(extractelement). 361 // Bitcasts can change the number of vector elements, and they cost 362 // nothing. 363 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 364 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 365 Worklist.AddValue(EE); 366 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 367 } 368 } 369 } 370 return nullptr; 371 } 372 373 /// If V is a shuffle of values that ONLY returns elements from either LHS or 374 /// RHS, return the shuffle mask and true. Otherwise, return false. 375 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 376 SmallVectorImpl<Constant*> &Mask) { 377 assert(LHS->getType() == RHS->getType() && 378 "Invalid CollectSingleShuffleElements"); 379 unsigned NumElts = V->getType()->getVectorNumElements(); 380 381 if (isa<UndefValue>(V)) { 382 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 383 return true; 384 } 385 386 if (V == LHS) { 387 for (unsigned i = 0; i != NumElts; ++i) 388 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 389 return true; 390 } 391 392 if (V == RHS) { 393 for (unsigned i = 0; i != NumElts; ++i) 394 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 395 i+NumElts)); 396 return true; 397 } 398 399 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 400 // If this is an insert of an extract from some other vector, include it. 401 Value *VecOp = IEI->getOperand(0); 402 Value *ScalarOp = IEI->getOperand(1); 403 Value *IdxOp = IEI->getOperand(2); 404 405 if (!isa<ConstantInt>(IdxOp)) 406 return false; 407 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 408 409 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 410 // We can handle this if the vector we are inserting into is 411 // transitively ok. 412 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 413 // If so, update the mask to reflect the inserted undef. 414 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 415 return true; 416 } 417 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 418 if (isa<ConstantInt>(EI->getOperand(1))) { 419 unsigned ExtractedIdx = 420 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 421 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 422 423 // This must be extracting from either LHS or RHS. 424 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 425 // We can handle this if the vector we are inserting into is 426 // transitively ok. 427 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 428 // If so, update the mask to reflect the inserted value. 429 if (EI->getOperand(0) == LHS) { 430 Mask[InsertedIdx % NumElts] = 431 ConstantInt::get(Type::getInt32Ty(V->getContext()), 432 ExtractedIdx); 433 } else { 434 assert(EI->getOperand(0) == RHS); 435 Mask[InsertedIdx % NumElts] = 436 ConstantInt::get(Type::getInt32Ty(V->getContext()), 437 ExtractedIdx + NumLHSElts); 438 } 439 return true; 440 } 441 } 442 } 443 } 444 } 445 446 return false; 447 } 448 449 /// If we have insertion into a vector that is wider than the vector that we 450 /// are extracting from, try to widen the source vector to allow a single 451 /// shufflevector to replace one or more insert/extract pairs. 452 static void replaceExtractElements(InsertElementInst *InsElt, 453 ExtractElementInst *ExtElt, 454 InstCombiner &IC) { 455 VectorType *InsVecType = InsElt->getType(); 456 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 457 unsigned NumInsElts = InsVecType->getVectorNumElements(); 458 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 459 460 // The inserted-to vector must be wider than the extracted-from vector. 461 if (InsVecType->getElementType() != ExtVecType->getElementType() || 462 NumExtElts >= NumInsElts) 463 return; 464 465 // Create a shuffle mask to widen the extended-from vector using undefined 466 // values. The mask selects all of the values of the original vector followed 467 // by as many undefined values as needed to create a vector of the same length 468 // as the inserted-to vector. 469 SmallVector<Constant *, 16> ExtendMask; 470 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 471 for (unsigned i = 0; i < NumExtElts; ++i) 472 ExtendMask.push_back(ConstantInt::get(IntType, i)); 473 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 474 ExtendMask.push_back(UndefValue::get(IntType)); 475 476 Value *ExtVecOp = ExtElt->getVectorOperand(); 477 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 478 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 479 ? ExtVecOpInst->getParent() 480 : ExtElt->getParent(); 481 482 // TODO: This restriction matches the basic block check below when creating 483 // new extractelement instructions. If that limitation is removed, this one 484 // could also be removed. But for now, we just bail out to ensure that we 485 // will replace the extractelement instruction that is feeding our 486 // insertelement instruction. This allows the insertelement to then be 487 // replaced by a shufflevector. If the insertelement is not replaced, we can 488 // induce infinite looping because there's an optimization for extractelement 489 // that will delete our widening shuffle. This would trigger another attempt 490 // here to create that shuffle, and we spin forever. 491 if (InsertionBlock != InsElt->getParent()) 492 return; 493 494 // TODO: This restriction matches the check in visitInsertElementInst() and 495 // prevents an infinite loop caused by not turning the extract/insert pair 496 // into a shuffle. We really should not need either check, but we're lacking 497 // folds for shufflevectors because we're afraid to generate shuffle masks 498 // that the backend can't handle. 499 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 500 return; 501 502 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 503 ConstantVector::get(ExtendMask)); 504 505 // Insert the new shuffle after the vector operand of the extract is defined 506 // (as long as it's not a PHI) or at the start of the basic block of the 507 // extract, so any subsequent extracts in the same basic block can use it. 508 // TODO: Insert before the earliest ExtractElementInst that is replaced. 509 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 510 WideVec->insertAfter(ExtVecOpInst); 511 else 512 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 513 514 // Replace extracts from the original narrow vector with extracts from the new 515 // wide vector. 516 for (User *U : ExtVecOp->users()) { 517 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 518 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 519 continue; 520 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 521 NewExt->insertAfter(OldExt); 522 IC.replaceInstUsesWith(*OldExt, NewExt); 523 } 524 } 525 526 /// We are building a shuffle to create V, which is a sequence of insertelement, 527 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 528 /// not rely on the second vector source. Return a std::pair containing the 529 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 530 /// parameter as required. 531 /// 532 /// Note: we intentionally don't try to fold earlier shuffles since they have 533 /// often been chosen carefully to be efficiently implementable on the target. 534 using ShuffleOps = std::pair<Value *, Value *>; 535 536 static ShuffleOps collectShuffleElements(Value *V, 537 SmallVectorImpl<Constant *> &Mask, 538 Value *PermittedRHS, 539 InstCombiner &IC) { 540 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 541 unsigned NumElts = V->getType()->getVectorNumElements(); 542 543 if (isa<UndefValue>(V)) { 544 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 545 return std::make_pair( 546 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 547 } 548 549 if (isa<ConstantAggregateZero>(V)) { 550 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 551 return std::make_pair(V, nullptr); 552 } 553 554 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 555 // If this is an insert of an extract from some other vector, include it. 556 Value *VecOp = IEI->getOperand(0); 557 Value *ScalarOp = IEI->getOperand(1); 558 Value *IdxOp = IEI->getOperand(2); 559 560 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 561 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 562 unsigned ExtractedIdx = 563 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 564 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 565 566 // Either the extracted from or inserted into vector must be RHSVec, 567 // otherwise we'd end up with a shuffle of three inputs. 568 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 569 Value *RHS = EI->getOperand(0); 570 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 571 assert(LR.second == nullptr || LR.second == RHS); 572 573 if (LR.first->getType() != RHS->getType()) { 574 // Although we are giving up for now, see if we can create extracts 575 // that match the inserts for another round of combining. 576 replaceExtractElements(IEI, EI, IC); 577 578 // We tried our best, but we can't find anything compatible with RHS 579 // further up the chain. Return a trivial shuffle. 580 for (unsigned i = 0; i < NumElts; ++i) 581 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 582 return std::make_pair(V, nullptr); 583 } 584 585 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 586 Mask[InsertedIdx % NumElts] = 587 ConstantInt::get(Type::getInt32Ty(V->getContext()), 588 NumLHSElts+ExtractedIdx); 589 return std::make_pair(LR.first, RHS); 590 } 591 592 if (VecOp == PermittedRHS) { 593 // We've gone as far as we can: anything on the other side of the 594 // extractelement will already have been converted into a shuffle. 595 unsigned NumLHSElts = 596 EI->getOperand(0)->getType()->getVectorNumElements(); 597 for (unsigned i = 0; i != NumElts; ++i) 598 Mask.push_back(ConstantInt::get( 599 Type::getInt32Ty(V->getContext()), 600 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 601 return std::make_pair(EI->getOperand(0), PermittedRHS); 602 } 603 604 // If this insertelement is a chain that comes from exactly these two 605 // vectors, return the vector and the effective shuffle. 606 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 607 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 608 Mask)) 609 return std::make_pair(EI->getOperand(0), PermittedRHS); 610 } 611 } 612 } 613 614 // Otherwise, we can't do anything fancy. Return an identity vector. 615 for (unsigned i = 0; i != NumElts; ++i) 616 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 617 return std::make_pair(V, nullptr); 618 } 619 620 /// Try to find redundant insertvalue instructions, like the following ones: 621 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 622 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 623 /// Here the second instruction inserts values at the same indices, as the 624 /// first one, making the first one redundant. 625 /// It should be transformed to: 626 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 627 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 628 bool IsRedundant = false; 629 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 630 631 // If there is a chain of insertvalue instructions (each of them except the 632 // last one has only one use and it's another insertvalue insn from this 633 // chain), check if any of the 'children' uses the same indices as the first 634 // instruction. In this case, the first one is redundant. 635 Value *V = &I; 636 unsigned Depth = 0; 637 while (V->hasOneUse() && Depth < 10) { 638 User *U = V->user_back(); 639 auto UserInsInst = dyn_cast<InsertValueInst>(U); 640 if (!UserInsInst || U->getOperand(0) != V) 641 break; 642 if (UserInsInst->getIndices() == FirstIndices) { 643 IsRedundant = true; 644 break; 645 } 646 V = UserInsInst; 647 Depth++; 648 } 649 650 if (IsRedundant) 651 return replaceInstUsesWith(I, I.getOperand(0)); 652 return nullptr; 653 } 654 655 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 656 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 657 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 658 659 // A vector select does not change the size of the operands. 660 if (MaskSize != VecSize) 661 return false; 662 663 // Each mask element must be undefined or choose a vector element from one of 664 // the source operands without crossing vector lanes. 665 for (int i = 0; i != MaskSize; ++i) { 666 int Elt = Shuf.getMaskValue(i); 667 if (Elt != -1 && Elt != i && Elt != i + VecSize) 668 return false; 669 } 670 671 return true; 672 } 673 674 // Turn a chain of inserts that splats a value into a canonical insert + shuffle 675 // splat. That is: 676 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 677 // shufflevector(insertelt(X, %k, 0), undef, zero) 678 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) { 679 // We are interested in the last insert in a chain. So, if this insert 680 // has a single user, and that user is an insert, bail. 681 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 682 return nullptr; 683 684 VectorType *VT = cast<VectorType>(InsElt.getType()); 685 int NumElements = VT->getNumElements(); 686 687 // Do not try to do this for a one-element vector, since that's a nop, 688 // and will cause an inf-loop. 689 if (NumElements == 1) 690 return nullptr; 691 692 Value *SplatVal = InsElt.getOperand(1); 693 InsertElementInst *CurrIE = &InsElt; 694 SmallVector<bool, 16> ElementPresent(NumElements, false); 695 InsertElementInst *FirstIE = nullptr; 696 697 // Walk the chain backwards, keeping track of which indices we inserted into, 698 // until we hit something that isn't an insert of the splatted value. 699 while (CurrIE) { 700 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 701 if (!Idx || CurrIE->getOperand(1) != SplatVal) 702 return nullptr; 703 704 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 705 // Check none of the intermediate steps have any additional uses, except 706 // for the root insertelement instruction, which can be re-used, if it 707 // inserts at position 0. 708 if (CurrIE != &InsElt && 709 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 710 return nullptr; 711 712 ElementPresent[Idx->getZExtValue()] = true; 713 FirstIE = CurrIE; 714 CurrIE = NextIE; 715 } 716 717 // Make sure we've seen an insert into every element. 718 if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; })) 719 return nullptr; 720 721 // All right, create the insert + shuffle. 722 Instruction *InsertFirst; 723 if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 724 InsertFirst = FirstIE; 725 else 726 InsertFirst = InsertElementInst::Create( 727 UndefValue::get(VT), SplatVal, 728 ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), 729 "", &InsElt); 730 731 Constant *ZeroMask = ConstantAggregateZero::get( 732 VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements)); 733 734 return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask); 735 } 736 737 /// If we have an insertelement instruction feeding into another insertelement 738 /// and the 2nd is inserting a constant into the vector, canonicalize that 739 /// constant insertion before the insertion of a variable: 740 /// 741 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 742 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 743 /// 744 /// This has the potential of eliminating the 2nd insertelement instruction 745 /// via constant folding of the scalar constant into a vector constant. 746 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 747 InstCombiner::BuilderTy &Builder) { 748 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 749 if (!InsElt1 || !InsElt1->hasOneUse()) 750 return nullptr; 751 752 Value *X, *Y; 753 Constant *ScalarC; 754 ConstantInt *IdxC1, *IdxC2; 755 if (match(InsElt1->getOperand(0), m_Value(X)) && 756 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 757 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 758 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 759 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 760 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 761 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 762 } 763 764 return nullptr; 765 } 766 767 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 768 /// --> shufflevector X, CVec', Mask' 769 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 770 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 771 // Bail out if the parent has more than one use. In that case, we'd be 772 // replacing the insertelt with a shuffle, and that's not a clear win. 773 if (!Inst || !Inst->hasOneUse()) 774 return nullptr; 775 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 776 // The shuffle must have a constant vector operand. The insertelt must have 777 // a constant scalar being inserted at a constant position in the vector. 778 Constant *ShufConstVec, *InsEltScalar; 779 uint64_t InsEltIndex; 780 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 781 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 782 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 783 return nullptr; 784 785 // Adding an element to an arbitrary shuffle could be expensive, but a 786 // shuffle that selects elements from vectors without crossing lanes is 787 // assumed cheap. 788 // If we're just adding a constant into that shuffle, it will still be 789 // cheap. 790 if (!isShuffleEquivalentToSelect(*Shuf)) 791 return nullptr; 792 793 // From the above 'select' check, we know that the mask has the same number 794 // of elements as the vector input operands. We also know that each constant 795 // input element is used in its lane and can not be used more than once by 796 // the shuffle. Therefore, replace the constant in the shuffle's constant 797 // vector with the insertelt constant. Replace the constant in the shuffle's 798 // mask vector with the insertelt index plus the length of the vector 799 // (because the constant vector operand of a shuffle is always the 2nd 800 // operand). 801 Constant *Mask = Shuf->getMask(); 802 unsigned NumElts = Mask->getType()->getVectorNumElements(); 803 SmallVector<Constant *, 16> NewShufElts(NumElts); 804 SmallVector<Constant *, 16> NewMaskElts(NumElts); 805 for (unsigned I = 0; I != NumElts; ++I) { 806 if (I == InsEltIndex) { 807 NewShufElts[I] = InsEltScalar; 808 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 809 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 810 } else { 811 // Copy over the existing values. 812 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 813 NewMaskElts[I] = Mask->getAggregateElement(I); 814 } 815 } 816 817 // Create new operands for a shuffle that includes the constant of the 818 // original insertelt. The old shuffle will be dead now. 819 return new ShuffleVectorInst(Shuf->getOperand(0), 820 ConstantVector::get(NewShufElts), 821 ConstantVector::get(NewMaskElts)); 822 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 823 // Transform sequences of insertelements ops with constant data/indexes into 824 // a single shuffle op. 825 unsigned NumElts = InsElt.getType()->getNumElements(); 826 827 uint64_t InsertIdx[2]; 828 Constant *Val[2]; 829 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 830 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 831 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 832 !match(IEI->getOperand(1), m_Constant(Val[1]))) 833 return nullptr; 834 SmallVector<Constant *, 16> Values(NumElts); 835 SmallVector<Constant *, 16> Mask(NumElts); 836 auto ValI = std::begin(Val); 837 // Generate new constant vector and mask. 838 // We have 2 values/masks from the insertelements instructions. Insert them 839 // into new value/mask vectors. 840 for (uint64_t I : InsertIdx) { 841 if (!Values[I]) { 842 assert(!Mask[I]); 843 Values[I] = *ValI; 844 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 845 NumElts + I); 846 } 847 ++ValI; 848 } 849 // Remaining values are filled with 'undef' values. 850 for (unsigned I = 0; I < NumElts; ++I) { 851 if (!Values[I]) { 852 assert(!Mask[I]); 853 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 854 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 855 } 856 } 857 // Create new operands for a shuffle that includes the constant of the 858 // original insertelt. 859 return new ShuffleVectorInst(IEI->getOperand(0), 860 ConstantVector::get(Values), 861 ConstantVector::get(Mask)); 862 } 863 return nullptr; 864 } 865 866 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 867 Value *VecOp = IE.getOperand(0); 868 Value *ScalarOp = IE.getOperand(1); 869 Value *IdxOp = IE.getOperand(2); 870 871 if (auto *V = SimplifyInsertElementInst( 872 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 873 return replaceInstUsesWith(IE, V); 874 875 // Inserting an undef or into an undefined place, remove this. 876 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 877 replaceInstUsesWith(IE, VecOp); 878 879 // If the inserted element was extracted from some other vector and both 880 // indexes are constant, try to turn this into a shuffle. 881 uint64_t InsertedIdx, ExtractedIdx; 882 Value *ExtVecOp; 883 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 884 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), 885 m_ConstantInt(ExtractedIdx)))) { 886 unsigned NumInsertVectorElts = IE.getType()->getNumElements(); 887 unsigned NumExtractVectorElts = ExtVecOp->getType()->getVectorNumElements(); 888 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. 889 return replaceInstUsesWith(IE, VecOp); 890 891 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. 892 return replaceInstUsesWith(IE, UndefValue::get(IE.getType())); 893 894 // If we are extracting a value from a vector, then inserting it right 895 // back into the same place, just use the input vector. 896 if (ExtVecOp == VecOp && ExtractedIdx == InsertedIdx) 897 return replaceInstUsesWith(IE, VecOp); 898 899 // TODO: Looking at the user(s) to determine if this insert is a 900 // fold-to-shuffle opportunity does not match the usual instcombine 901 // constraints. We should decide if the transform is worthy based only 902 // on this instruction and its operands, but that may not work currently. 903 // 904 // Here, we are trying to avoid creating shuffles before reaching 905 // the end of a chain of extract-insert pairs. This is complicated because 906 // we do not generally form arbitrary shuffle masks in instcombine 907 // (because those may codegen poorly), but collectShuffleElements() does 908 // exactly that. 909 // 910 // The rules for determining what is an acceptable target-independent 911 // shuffle mask are fuzzy because they evolve based on the backend's 912 // capabilities and real-world impact. 913 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 914 if (!Insert.hasOneUse()) 915 return true; 916 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 917 if (!InsertUser) 918 return true; 919 return false; 920 }; 921 922 // Try to form a shuffle from a chain of extract-insert ops. 923 if (isShuffleRootCandidate(IE)) { 924 SmallVector<Constant*, 16> Mask; 925 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 926 927 // The proposed shuffle may be trivial, in which case we shouldn't 928 // perform the combine. 929 if (LR.first != &IE && LR.second != &IE) { 930 // We now have a shuffle of LHS, RHS, Mask. 931 if (LR.second == nullptr) 932 LR.second = UndefValue::get(LR.first->getType()); 933 return new ShuffleVectorInst(LR.first, LR.second, 934 ConstantVector::get(Mask)); 935 } 936 } 937 } 938 939 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 940 APInt UndefElts(VWidth, 0); 941 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 942 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 943 if (V != &IE) 944 return replaceInstUsesWith(IE, V); 945 return &IE; 946 } 947 948 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 949 return Shuf; 950 951 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 952 return NewInsElt; 953 954 // Turn a sequence of inserts that broadcasts a scalar into a single 955 // insert + shufflevector. 956 if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE)) 957 return Broadcast; 958 959 return nullptr; 960 } 961 962 /// Return true if we can evaluate the specified expression tree if the vector 963 /// elements were shuffled in a different order. 964 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 965 unsigned Depth = 5) { 966 // We can always reorder the elements of a constant. 967 if (isa<Constant>(V)) 968 return true; 969 970 // We won't reorder vector arguments. No IPO here. 971 Instruction *I = dyn_cast<Instruction>(V); 972 if (!I) return false; 973 974 // Two users may expect different orders of the elements. Don't try it. 975 if (!I->hasOneUse()) 976 return false; 977 978 if (Depth == 0) return false; 979 980 switch (I->getOpcode()) { 981 case Instruction::Add: 982 case Instruction::FAdd: 983 case Instruction::Sub: 984 case Instruction::FSub: 985 case Instruction::Mul: 986 case Instruction::FMul: 987 case Instruction::UDiv: 988 case Instruction::SDiv: 989 case Instruction::FDiv: 990 case Instruction::URem: 991 case Instruction::SRem: 992 case Instruction::FRem: 993 case Instruction::Shl: 994 case Instruction::LShr: 995 case Instruction::AShr: 996 case Instruction::And: 997 case Instruction::Or: 998 case Instruction::Xor: 999 case Instruction::ICmp: 1000 case Instruction::FCmp: 1001 case Instruction::Trunc: 1002 case Instruction::ZExt: 1003 case Instruction::SExt: 1004 case Instruction::FPToUI: 1005 case Instruction::FPToSI: 1006 case Instruction::UIToFP: 1007 case Instruction::SIToFP: 1008 case Instruction::FPTrunc: 1009 case Instruction::FPExt: 1010 case Instruction::GetElementPtr: { 1011 // Bail out if we would create longer vector ops. We could allow creating 1012 // longer vector ops, but that may result in more expensive codegen. We 1013 // would also need to limit the transform to avoid undefined behavior for 1014 // integer div/rem. 1015 Type *ITy = I->getType(); 1016 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) 1017 return false; 1018 for (Value *Operand : I->operands()) { 1019 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1020 return false; 1021 } 1022 return true; 1023 } 1024 case Instruction::InsertElement: { 1025 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1026 if (!CI) return false; 1027 int ElementNumber = CI->getLimitedValue(); 1028 1029 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1030 // can't put an element into multiple indices. 1031 bool SeenOnce = false; 1032 for (int i = 0, e = Mask.size(); i != e; ++i) { 1033 if (Mask[i] == ElementNumber) { 1034 if (SeenOnce) 1035 return false; 1036 SeenOnce = true; 1037 } 1038 } 1039 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1040 } 1041 } 1042 return false; 1043 } 1044 1045 /// Rebuild a new instruction just like 'I' but with the new operands given. 1046 /// In the event of type mismatch, the type of the operands is correct. 1047 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1048 // We don't want to use the IRBuilder here because we want the replacement 1049 // instructions to appear next to 'I', not the builder's insertion point. 1050 switch (I->getOpcode()) { 1051 case Instruction::Add: 1052 case Instruction::FAdd: 1053 case Instruction::Sub: 1054 case Instruction::FSub: 1055 case Instruction::Mul: 1056 case Instruction::FMul: 1057 case Instruction::UDiv: 1058 case Instruction::SDiv: 1059 case Instruction::FDiv: 1060 case Instruction::URem: 1061 case Instruction::SRem: 1062 case Instruction::FRem: 1063 case Instruction::Shl: 1064 case Instruction::LShr: 1065 case Instruction::AShr: 1066 case Instruction::And: 1067 case Instruction::Or: 1068 case Instruction::Xor: { 1069 BinaryOperator *BO = cast<BinaryOperator>(I); 1070 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1071 BinaryOperator *New = 1072 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1073 NewOps[0], NewOps[1], "", BO); 1074 if (isa<OverflowingBinaryOperator>(BO)) { 1075 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1076 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1077 } 1078 if (isa<PossiblyExactOperator>(BO)) { 1079 New->setIsExact(BO->isExact()); 1080 } 1081 if (isa<FPMathOperator>(BO)) 1082 New->copyFastMathFlags(I); 1083 return New; 1084 } 1085 case Instruction::ICmp: 1086 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1087 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1088 NewOps[0], NewOps[1]); 1089 case Instruction::FCmp: 1090 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1091 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1092 NewOps[0], NewOps[1]); 1093 case Instruction::Trunc: 1094 case Instruction::ZExt: 1095 case Instruction::SExt: 1096 case Instruction::FPToUI: 1097 case Instruction::FPToSI: 1098 case Instruction::UIToFP: 1099 case Instruction::SIToFP: 1100 case Instruction::FPTrunc: 1101 case Instruction::FPExt: { 1102 // It's possible that the mask has a different number of elements from 1103 // the original cast. We recompute the destination type to match the mask. 1104 Type *DestTy = 1105 VectorType::get(I->getType()->getScalarType(), 1106 NewOps[0]->getType()->getVectorNumElements()); 1107 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1108 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1109 "", I); 1110 } 1111 case Instruction::GetElementPtr: { 1112 Value *Ptr = NewOps[0]; 1113 ArrayRef<Value*> Idx = NewOps.slice(1); 1114 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1115 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1116 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1117 return GEP; 1118 } 1119 } 1120 llvm_unreachable("failed to rebuild vector instructions"); 1121 } 1122 1123 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1124 // Mask.size() does not need to be equal to the number of vector elements. 1125 1126 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1127 Type *EltTy = V->getType()->getScalarType(); 1128 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1129 if (isa<UndefValue>(V)) 1130 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1131 1132 if (isa<ConstantAggregateZero>(V)) 1133 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1134 1135 if (Constant *C = dyn_cast<Constant>(V)) { 1136 SmallVector<Constant *, 16> MaskValues; 1137 for (int i = 0, e = Mask.size(); i != e; ++i) { 1138 if (Mask[i] == -1) 1139 MaskValues.push_back(UndefValue::get(I32Ty)); 1140 else 1141 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i])); 1142 } 1143 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1144 ConstantVector::get(MaskValues)); 1145 } 1146 1147 Instruction *I = cast<Instruction>(V); 1148 switch (I->getOpcode()) { 1149 case Instruction::Add: 1150 case Instruction::FAdd: 1151 case Instruction::Sub: 1152 case Instruction::FSub: 1153 case Instruction::Mul: 1154 case Instruction::FMul: 1155 case Instruction::UDiv: 1156 case Instruction::SDiv: 1157 case Instruction::FDiv: 1158 case Instruction::URem: 1159 case Instruction::SRem: 1160 case Instruction::FRem: 1161 case Instruction::Shl: 1162 case Instruction::LShr: 1163 case Instruction::AShr: 1164 case Instruction::And: 1165 case Instruction::Or: 1166 case Instruction::Xor: 1167 case Instruction::ICmp: 1168 case Instruction::FCmp: 1169 case Instruction::Trunc: 1170 case Instruction::ZExt: 1171 case Instruction::SExt: 1172 case Instruction::FPToUI: 1173 case Instruction::FPToSI: 1174 case Instruction::UIToFP: 1175 case Instruction::SIToFP: 1176 case Instruction::FPTrunc: 1177 case Instruction::FPExt: 1178 case Instruction::Select: 1179 case Instruction::GetElementPtr: { 1180 SmallVector<Value*, 8> NewOps; 1181 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1182 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1183 Value *V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1184 NewOps.push_back(V); 1185 NeedsRebuild |= (V != I->getOperand(i)); 1186 } 1187 if (NeedsRebuild) { 1188 return buildNew(I, NewOps); 1189 } 1190 return I; 1191 } 1192 case Instruction::InsertElement: { 1193 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1194 1195 // The insertelement was inserting at Element. Figure out which element 1196 // that becomes after shuffling. The answer is guaranteed to be unique 1197 // by CanEvaluateShuffled. 1198 bool Found = false; 1199 int Index = 0; 1200 for (int e = Mask.size(); Index != e; ++Index) { 1201 if (Mask[Index] == Element) { 1202 Found = true; 1203 break; 1204 } 1205 } 1206 1207 // If element is not in Mask, no need to handle the operand 1 (element to 1208 // be inserted). Just evaluate values in operand 0 according to Mask. 1209 if (!Found) 1210 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1211 1212 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1213 return InsertElementInst::Create(V, I->getOperand(1), 1214 ConstantInt::get(I32Ty, Index), "", I); 1215 } 1216 } 1217 llvm_unreachable("failed to reorder elements of vector instruction!"); 1218 } 1219 1220 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 1221 bool &isLHSID, bool &isRHSID) { 1222 isLHSID = isRHSID = true; 1223 1224 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1225 if (Mask[i] < 0) continue; // Ignore undef values. 1226 // Is this an identity shuffle of the LHS value? 1227 isLHSID &= (Mask[i] == (int)i); 1228 1229 // Is this an identity shuffle of the RHS value? 1230 isRHSID &= (Mask[i]-e == i); 1231 } 1232 } 1233 1234 // Returns true if the shuffle is extracting a contiguous range of values from 1235 // LHS, for example: 1236 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1237 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1238 // Shuffles to: |EE|FF|GG|HH| 1239 // +--+--+--+--+ 1240 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1241 SmallVector<int, 16> &Mask) { 1242 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1243 unsigned MaskElems = Mask.size(); 1244 unsigned BegIdx = Mask.front(); 1245 unsigned EndIdx = Mask.back(); 1246 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1247 return false; 1248 for (unsigned I = 0; I != MaskElems; ++I) 1249 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1250 return false; 1251 return true; 1252 } 1253 1254 /// These are the ingredients in an alternate form binary operator as described 1255 /// below. 1256 struct BinopElts { 1257 BinaryOperator::BinaryOps Opcode; 1258 Value *Op0; 1259 Value *Op1; 1260 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1261 Value *V0 = nullptr, Value *V1 = nullptr) : 1262 Opcode(Opc), Op0(V0), Op1(V1) {} 1263 operator bool() const { return Opcode != 0; } 1264 }; 1265 1266 /// Binops may be transformed into binops with different opcodes and operands. 1267 /// Reverse the usual canonicalization to enable folds with the non-canonical 1268 /// form of the binop. If a transform is possible, return the elements of the 1269 /// new binop. If not, return invalid elements. 1270 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1271 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1272 Type *Ty = BO->getType(); 1273 switch (BO->getOpcode()) { 1274 case Instruction::Shl: { 1275 // shl X, C --> mul X, (1 << C) 1276 Constant *C; 1277 if (match(BO1, m_Constant(C))) { 1278 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1279 return { Instruction::Mul, BO0, ShlOne }; 1280 } 1281 break; 1282 } 1283 case Instruction::Or: { 1284 // or X, C --> add X, C (when X and C have no common bits set) 1285 const APInt *C; 1286 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1287 return { Instruction::Add, BO0, BO1 }; 1288 break; 1289 } 1290 default: 1291 break; 1292 } 1293 return {}; 1294 } 1295 1296 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1297 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1298 1299 // Are we shuffling together some value and that same value after it has been 1300 // modified by a binop with a constant? 1301 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1302 Constant *C; 1303 bool Op0IsBinop; 1304 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1305 Op0IsBinop = true; 1306 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1307 Op0IsBinop = false; 1308 else 1309 return nullptr; 1310 1311 // The identity constant for a binop leaves a variable operand unchanged. For 1312 // a vector, this is a splat of something like 0, -1, or 1. 1313 // If there's no identity constant for this binop, we're done. 1314 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1315 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1316 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1317 if (!IdC) 1318 return nullptr; 1319 1320 // Shuffle identity constants into the lanes that return the original value. 1321 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1322 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1323 // The existing binop constant vector remains in the same operand position. 1324 Constant *Mask = Shuf.getMask(); 1325 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1326 ConstantExpr::getShuffleVector(IdC, C, Mask); 1327 1328 bool MightCreatePoisonOrUB = 1329 Mask->containsUndefElement() && 1330 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1331 if (MightCreatePoisonOrUB) 1332 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1333 1334 // shuf (bop X, C), X, M --> bop X, C' 1335 // shuf X, (bop X, C), M --> bop X, C' 1336 Value *X = Op0IsBinop ? Op1 : Op0; 1337 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1338 NewBO->copyIRFlags(BO); 1339 1340 // An undef shuffle mask element may propagate as an undef constant element in 1341 // the new binop. That would produce poison where the original code might not. 1342 // If we already made a safe constant, then there's no danger. 1343 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1344 NewBO->dropPoisonGeneratingFlags(); 1345 return NewBO; 1346 } 1347 1348 /// Try to fold shuffles that are the equivalent of a vector select. 1349 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1350 InstCombiner::BuilderTy &Builder, 1351 const DataLayout &DL) { 1352 if (!Shuf.isSelect()) 1353 return nullptr; 1354 1355 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1356 return I; 1357 1358 BinaryOperator *B0, *B1; 1359 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1360 !match(Shuf.getOperand(1), m_BinOp(B1))) 1361 return nullptr; 1362 1363 Value *X, *Y; 1364 Constant *C0, *C1; 1365 bool ConstantsAreOp1; 1366 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1367 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1368 ConstantsAreOp1 = true; 1369 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1370 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1371 ConstantsAreOp1 = false; 1372 else 1373 return nullptr; 1374 1375 // We need matching binops to fold the lanes together. 1376 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1377 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1378 bool DropNSW = false; 1379 if (ConstantsAreOp1 && Opc0 != Opc1) { 1380 // TODO: We drop "nsw" if shift is converted into multiply because it may 1381 // not be correct when the shift amount is BitWidth - 1. We could examine 1382 // each vector element to determine if it is safe to keep that flag. 1383 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1384 DropNSW = true; 1385 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1386 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1387 Opc0 = AltB0.Opcode; 1388 C0 = cast<Constant>(AltB0.Op1); 1389 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1390 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1391 Opc1 = AltB1.Opcode; 1392 C1 = cast<Constant>(AltB1.Op1); 1393 } 1394 } 1395 1396 if (Opc0 != Opc1) 1397 return nullptr; 1398 1399 // The opcodes must be the same. Use a new name to make that clear. 1400 BinaryOperator::BinaryOps BOpc = Opc0; 1401 1402 // Select the constant elements needed for the single binop. 1403 Constant *Mask = Shuf.getMask(); 1404 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1405 1406 // We are moving a binop after a shuffle. When a shuffle has an undefined 1407 // mask element, the result is undefined, but it is not poison or undefined 1408 // behavior. That is not necessarily true for div/rem/shift. 1409 bool MightCreatePoisonOrUB = 1410 Mask->containsUndefElement() && 1411 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1412 if (MightCreatePoisonOrUB) 1413 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1414 1415 Value *V; 1416 if (X == Y) { 1417 // Remove a binop and the shuffle by rearranging the constant: 1418 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1419 // shuffle (op C0, V), (op C1, V), M --> op C', V 1420 V = X; 1421 } else { 1422 // If there are 2 different variable operands, we must create a new shuffle 1423 // (select) first, so check uses to ensure that we don't end up with more 1424 // instructions than we started with. 1425 if (!B0->hasOneUse() && !B1->hasOneUse()) 1426 return nullptr; 1427 1428 // If we use the original shuffle mask and op1 is *variable*, we would be 1429 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1430 // poison. We do not have to guard against UB when *constants* are op1 1431 // because safe constants guarantee that we do not overflow sdiv/srem (and 1432 // there's no danger for other opcodes). 1433 // TODO: To allow this case, create a new shuffle mask with no undefs. 1434 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1435 return nullptr; 1436 1437 // Note: In general, we do not create new shuffles in InstCombine because we 1438 // do not know if a target can lower an arbitrary shuffle optimally. In this 1439 // case, the shuffle uses the existing mask, so there is no additional risk. 1440 1441 // Select the variable vectors first, then perform the binop: 1442 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1443 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1444 V = Builder.CreateShuffleVector(X, Y, Mask); 1445 } 1446 1447 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1448 BinaryOperator::Create(BOpc, NewC, V); 1449 1450 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1451 // 1. If we changed an opcode, poison conditions might have changed. 1452 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1453 // where the original code did not. But if we already made a safe constant, 1454 // then there's no danger. 1455 NewBO->copyIRFlags(B0); 1456 NewBO->andIRFlags(B1); 1457 if (DropNSW) 1458 NewBO->setHasNoSignedWrap(false); 1459 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1460 NewBO->dropPoisonGeneratingFlags(); 1461 return NewBO; 1462 } 1463 1464 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1465 /// narrowing (concatenating with undef and extracting back to the original 1466 /// length). This allows replacing the wide select with a narrow select. 1467 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1468 InstCombiner::BuilderTy &Builder) { 1469 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1470 // of the 1st vector operand of a shuffle. 1471 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1472 return nullptr; 1473 1474 // The vector being shuffled must be a vector select that we can eliminate. 1475 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1476 Value *Cond, *X, *Y; 1477 if (!match(Shuf.getOperand(0), 1478 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1479 return nullptr; 1480 1481 // We need a narrow condition value. It must be extended with undef elements 1482 // and have the same number of elements as this shuffle. 1483 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); 1484 Value *NarrowCond; 1485 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(), 1486 m_Constant()))) || 1487 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || 1488 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1489 return nullptr; 1490 1491 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1492 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1493 Value *Undef = UndefValue::get(X->getType()); 1494 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask()); 1495 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask()); 1496 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1497 } 1498 1499 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1500 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1501 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1502 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1503 return nullptr; 1504 1505 Value *X, *Y; 1506 Constant *Mask; 1507 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask)))) 1508 return nullptr; 1509 1510 // We are extracting a subvector from a shuffle. Remove excess elements from 1511 // the 1st shuffle mask to eliminate the extract. 1512 // 1513 // This transform is conservatively limited to identity extracts because we do 1514 // not allow arbitrary shuffle mask creation as a target-independent transform 1515 // (because we can't guarantee that will lower efficiently). 1516 // 1517 // If the extracting shuffle has an undef mask element, it transfers to the 1518 // new shuffle mask. Otherwise, copy the original mask element. Example: 1519 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1520 // shuf X, Y, <C0, undef, C2, undef> 1521 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1522 SmallVector<Constant *, 16> NewMask(NumElts); 1523 assert(NumElts < Mask->getType()->getVectorNumElements() && 1524 "Identity with extract must have less elements than its inputs"); 1525 1526 for (unsigned i = 0; i != NumElts; ++i) { 1527 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i); 1528 Constant *MaskElt = Mask->getAggregateElement(i); 1529 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt; 1530 } 1531 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1532 } 1533 1534 /// Try to replace a shuffle with an insertelement. 1535 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) { 1536 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1537 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1538 1539 // The shuffle must not change vector sizes. 1540 // TODO: This restriction could be removed if the insert has only one use 1541 // (because the transform would require a new length-changing shuffle). 1542 int NumElts = Mask.size(); 1543 if (NumElts != (int)(V0->getType()->getVectorNumElements())) 1544 return nullptr; 1545 1546 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1547 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1548 // We need an insertelement with a constant index. 1549 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1550 m_ConstantInt(IndexC)))) 1551 return false; 1552 1553 // Test the shuffle mask to see if it splices the inserted scalar into the 1554 // operand 1 vector of the shuffle. 1555 int NewInsIndex = -1; 1556 for (int i = 0; i != NumElts; ++i) { 1557 // Ignore undef mask elements. 1558 if (Mask[i] == -1) 1559 continue; 1560 1561 // The shuffle takes elements of operand 1 without lane changes. 1562 if (Mask[i] == NumElts + i) 1563 continue; 1564 1565 // The shuffle must choose the inserted scalar exactly once. 1566 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1567 return false; 1568 1569 // The shuffle is placing the inserted scalar into element i. 1570 NewInsIndex = i; 1571 } 1572 1573 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1574 1575 // Index is updated to the potentially translated insertion lane. 1576 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1577 return true; 1578 }; 1579 1580 // If the shuffle is unnecessary, insert the scalar operand directly into 1581 // operand 1 of the shuffle. Example: 1582 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1583 Value *Scalar; 1584 ConstantInt *IndexC; 1585 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1586 return InsertElementInst::Create(V1, Scalar, IndexC); 1587 1588 // Try again after commuting shuffle. Example: 1589 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1590 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1591 std::swap(V0, V1); 1592 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1593 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1594 return InsertElementInst::Create(V1, Scalar, IndexC); 1595 1596 return nullptr; 1597 } 1598 1599 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1600 Value *LHS = SVI.getOperand(0); 1601 Value *RHS = SVI.getOperand(1); 1602 if (auto *V = SimplifyShuffleVectorInst( 1603 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) 1604 return replaceInstUsesWith(SVI, V); 1605 1606 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 1607 return I; 1608 1609 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 1610 return I; 1611 1612 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1613 APInt UndefElts(VWidth, 0); 1614 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1615 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1616 if (V != &SVI) 1617 return replaceInstUsesWith(SVI, V); 1618 return &SVI; 1619 } 1620 1621 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 1622 return I; 1623 1624 // This transform has the potential to lose undef knowledge, so it is 1625 // intentionally placed after SimplifyDemandedVectorElts(). 1626 if (Instruction *I = foldShuffleWithInsert(SVI)) 1627 return I; 1628 1629 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1630 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1631 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1632 bool MadeChange = false; 1633 1634 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 1635 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 1636 if (LHS == RHS || isa<UndefValue>(LHS)) { 1637 // Remap any references to RHS to use LHS. 1638 SmallVector<Constant*, 16> Elts; 1639 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 1640 if (Mask[i] < 0) { 1641 Elts.push_back(UndefValue::get(Int32Ty)); 1642 continue; 1643 } 1644 1645 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 1646 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 1647 Mask[i] = -1; // Turn into undef. 1648 Elts.push_back(UndefValue::get(Int32Ty)); 1649 } else { 1650 Mask[i] = Mask[i] % e; // Force to LHS. 1651 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 1652 } 1653 } 1654 SVI.setOperand(0, SVI.getOperand(1)); 1655 SVI.setOperand(1, UndefValue::get(RHS->getType())); 1656 SVI.setOperand(2, ConstantVector::get(Elts)); 1657 LHS = SVI.getOperand(0); 1658 RHS = SVI.getOperand(1); 1659 MadeChange = true; 1660 } 1661 1662 if (VWidth == LHSWidth) { 1663 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 1664 bool isLHSID, isRHSID; 1665 recognizeIdentityMask(Mask, isLHSID, isRHSID); 1666 1667 // Eliminate identity shuffles. 1668 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 1669 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 1670 } 1671 1672 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 1673 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 1674 return replaceInstUsesWith(SVI, V); 1675 } 1676 1677 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1678 // a non-vector type. We can instead bitcast the original vector followed by 1679 // an extract of the desired element: 1680 // 1681 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1682 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1683 // %1 = bitcast <4 x i8> %sroa to i32 1684 // Becomes: 1685 // %bc = bitcast <16 x i8> %in to <4 x i32> 1686 // %ext = extractelement <4 x i32> %bc, i32 0 1687 // 1688 // If the shuffle is extracting a contiguous range of values from the input 1689 // vector then each use which is a bitcast of the extracted size can be 1690 // replaced. This will work if the vector types are compatible, and the begin 1691 // index is aligned to a value in the casted vector type. If the begin index 1692 // isn't aligned then we can shuffle the original vector (keeping the same 1693 // vector type) before extracting. 1694 // 1695 // This code will bail out if the target type is fundamentally incompatible 1696 // with vectors of the source type. 1697 // 1698 // Example of <16 x i8>, target type i32: 1699 // Index range [4,8): v-----------v Will work. 1700 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1701 // <16 x i8>: | | | | | | | | | | | | | | | | | 1702 // <4 x i32>: | | | | | 1703 // +-----------+-----------+-----------+-----------+ 1704 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1705 // Target type i40: ^--------------^ Won't work, bail. 1706 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1707 Value *V = LHS; 1708 unsigned MaskElems = Mask.size(); 1709 VectorType *SrcTy = cast<VectorType>(V->getType()); 1710 unsigned VecBitWidth = SrcTy->getBitWidth(); 1711 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1712 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1713 unsigned SrcNumElems = SrcTy->getNumElements(); 1714 SmallVector<BitCastInst *, 8> BCs; 1715 DenseMap<Type *, Value *> NewBCs; 1716 for (User *U : SVI.users()) 1717 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1718 if (!BC->use_empty()) 1719 // Only visit bitcasts that weren't previously handled. 1720 BCs.push_back(BC); 1721 for (BitCastInst *BC : BCs) { 1722 unsigned BegIdx = Mask.front(); 1723 Type *TgtTy = BC->getDestTy(); 1724 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 1725 if (!TgtElemBitWidth) 1726 continue; 1727 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 1728 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 1729 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 1730 if (!VecBitWidthsEqual) 1731 continue; 1732 if (!VectorType::isValidElementType(TgtTy)) 1733 continue; 1734 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 1735 if (!BegIsAligned) { 1736 // Shuffle the input so [0,NumElements) contains the output, and 1737 // [NumElems,SrcNumElems) is undef. 1738 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 1739 UndefValue::get(Int32Ty)); 1740 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 1741 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 1742 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 1743 ConstantVector::get(ShuffleMask), 1744 SVI.getName() + ".extract"); 1745 BegIdx = 0; 1746 } 1747 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 1748 assert(SrcElemsPerTgtElem); 1749 BegIdx /= SrcElemsPerTgtElem; 1750 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 1751 auto *NewBC = 1752 BCAlreadyExists 1753 ? NewBCs[CastSrcTy] 1754 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 1755 if (!BCAlreadyExists) 1756 NewBCs[CastSrcTy] = NewBC; 1757 auto *Ext = Builder.CreateExtractElement( 1758 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 1759 // The shufflevector isn't being replaced: the bitcast that used it 1760 // is. InstCombine will visit the newly-created instructions. 1761 replaceInstUsesWith(*BC, Ext); 1762 MadeChange = true; 1763 } 1764 } 1765 1766 // If the LHS is a shufflevector itself, see if we can combine it with this 1767 // one without producing an unusual shuffle. 1768 // Cases that might be simplified: 1769 // 1. 1770 // x1=shuffle(v1,v2,mask1) 1771 // x=shuffle(x1,undef,mask) 1772 // ==> 1773 // x=shuffle(v1,undef,newMask) 1774 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1775 // 2. 1776 // x1=shuffle(v1,undef,mask1) 1777 // x=shuffle(x1,x2,mask) 1778 // where v1.size() == mask1.size() 1779 // ==> 1780 // x=shuffle(v1,x2,newMask) 1781 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1782 // 3. 1783 // x2=shuffle(v2,undef,mask2) 1784 // x=shuffle(x1,x2,mask) 1785 // where v2.size() == mask2.size() 1786 // ==> 1787 // x=shuffle(x1,v2,newMask) 1788 // newMask[i] = (mask[i] < x1.size()) 1789 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1790 // 4. 1791 // x1=shuffle(v1,undef,mask1) 1792 // x2=shuffle(v2,undef,mask2) 1793 // x=shuffle(x1,x2,mask) 1794 // where v1.size() == v2.size() 1795 // ==> 1796 // x=shuffle(v1,v2,newMask) 1797 // newMask[i] = (mask[i] < x1.size()) 1798 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1799 // 1800 // Here we are really conservative: 1801 // we are absolutely afraid of producing a shuffle mask not in the input 1802 // program, because the code gen may not be smart enough to turn a merged 1803 // shuffle into two specific shuffles: it may produce worse code. As such, 1804 // we only merge two shuffles if the result is either a splat or one of the 1805 // input shuffle masks. In this case, merging the shuffles just removes 1806 // one instruction, which we know is safe. This is good for things like 1807 // turning: (splat(splat)) -> splat, or 1808 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1809 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1810 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1811 if (LHSShuffle) 1812 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1813 LHSShuffle = nullptr; 1814 if (RHSShuffle) 1815 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1816 RHSShuffle = nullptr; 1817 if (!LHSShuffle && !RHSShuffle) 1818 return MadeChange ? &SVI : nullptr; 1819 1820 Value* LHSOp0 = nullptr; 1821 Value* LHSOp1 = nullptr; 1822 Value* RHSOp0 = nullptr; 1823 unsigned LHSOp0Width = 0; 1824 unsigned RHSOp0Width = 0; 1825 if (LHSShuffle) { 1826 LHSOp0 = LHSShuffle->getOperand(0); 1827 LHSOp1 = LHSShuffle->getOperand(1); 1828 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 1829 } 1830 if (RHSShuffle) { 1831 RHSOp0 = RHSShuffle->getOperand(0); 1832 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 1833 } 1834 Value* newLHS = LHS; 1835 Value* newRHS = RHS; 1836 if (LHSShuffle) { 1837 // case 1 1838 if (isa<UndefValue>(RHS)) { 1839 newLHS = LHSOp0; 1840 newRHS = LHSOp1; 1841 } 1842 // case 2 or 4 1843 else if (LHSOp0Width == LHSWidth) { 1844 newLHS = LHSOp0; 1845 } 1846 } 1847 // case 3 or 4 1848 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1849 newRHS = RHSOp0; 1850 } 1851 // case 4 1852 if (LHSOp0 == RHSOp0) { 1853 newLHS = LHSOp0; 1854 newRHS = nullptr; 1855 } 1856 1857 if (newLHS == LHS && newRHS == RHS) 1858 return MadeChange ? &SVI : nullptr; 1859 1860 SmallVector<int, 16> LHSMask; 1861 SmallVector<int, 16> RHSMask; 1862 if (newLHS != LHS) 1863 LHSMask = LHSShuffle->getShuffleMask(); 1864 if (RHSShuffle && newRHS != RHS) 1865 RHSMask = RHSShuffle->getShuffleMask(); 1866 1867 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1868 SmallVector<int, 16> newMask; 1869 bool isSplat = true; 1870 int SplatElt = -1; 1871 // Create a new mask for the new ShuffleVectorInst so that the new 1872 // ShuffleVectorInst is equivalent to the original one. 1873 for (unsigned i = 0; i < VWidth; ++i) { 1874 int eltMask; 1875 if (Mask[i] < 0) { 1876 // This element is an undef value. 1877 eltMask = -1; 1878 } else if (Mask[i] < (int)LHSWidth) { 1879 // This element is from left hand side vector operand. 1880 // 1881 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1882 // new mask value for the element. 1883 if (newLHS != LHS) { 1884 eltMask = LHSMask[Mask[i]]; 1885 // If the value selected is an undef value, explicitly specify it 1886 // with a -1 mask value. 1887 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1888 eltMask = -1; 1889 } else 1890 eltMask = Mask[i]; 1891 } else { 1892 // This element is from right hand side vector operand 1893 // 1894 // If the value selected is an undef value, explicitly specify it 1895 // with a -1 mask value. (case 1) 1896 if (isa<UndefValue>(RHS)) 1897 eltMask = -1; 1898 // If RHS is going to be replaced (case 3 or 4), calculate the 1899 // new mask value for the element. 1900 else if (newRHS != RHS) { 1901 eltMask = RHSMask[Mask[i]-LHSWidth]; 1902 // If the value selected is an undef value, explicitly specify it 1903 // with a -1 mask value. 1904 if (eltMask >= (int)RHSOp0Width) { 1905 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1906 && "should have been check above"); 1907 eltMask = -1; 1908 } 1909 } else 1910 eltMask = Mask[i]-LHSWidth; 1911 1912 // If LHS's width is changed, shift the mask value accordingly. 1913 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 1914 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1915 // If newRHS == newLHS, we want to remap any references from newRHS to 1916 // newLHS so that we can properly identify splats that may occur due to 1917 // obfuscation across the two vectors. 1918 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1919 eltMask += newLHSWidth; 1920 } 1921 1922 // Check if this could still be a splat. 1923 if (eltMask >= 0) { 1924 if (SplatElt >= 0 && SplatElt != eltMask) 1925 isSplat = false; 1926 SplatElt = eltMask; 1927 } 1928 1929 newMask.push_back(eltMask); 1930 } 1931 1932 // If the result mask is equal to one of the original shuffle masks, 1933 // or is a splat, do the replacement. 1934 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 1935 SmallVector<Constant*, 16> Elts; 1936 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1937 if (newMask[i] < 0) { 1938 Elts.push_back(UndefValue::get(Int32Ty)); 1939 } else { 1940 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1941 } 1942 } 1943 if (!newRHS) 1944 newRHS = UndefValue::get(newLHS->getType()); 1945 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1946 } 1947 1948 // If the result mask is an identity, replace uses of this instruction with 1949 // corresponding argument. 1950 bool isLHSID, isRHSID; 1951 recognizeIdentityMask(newMask, isLHSID, isRHSID); 1952 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); 1953 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); 1954 1955 return MadeChange ? &SVI : nullptr; 1956 } 1957