1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <utility> 42 43 using namespace llvm; 44 using namespace PatternMatch; 45 46 #define DEBUG_TYPE "instcombine" 47 48 /// Return true if the value is cheaper to scalarize than it is to leave as a 49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 50 /// one known element from a vector constant. 51 /// 52 /// FIXME: It's possible to create more instructions than previously existed. 53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 54 // If we can pick a scalar constant value out of a vector, that is free. 55 if (auto *C = dyn_cast<Constant>(V)) 56 return IsConstantExtractIndex || C->getSplatValue(); 57 58 // An insertelement to the same constant index as our extract will simplify 59 // to the scalar inserted element. An insertelement to a different constant 60 // index is irrelevant to our extract. 61 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 62 return IsConstantExtractIndex; 63 64 if (match(V, m_OneUse(m_Load(m_Value())))) 65 return true; 66 67 if (match(V, m_OneUse(m_UnOp()))) 68 return true; 69 70 Value *V0, *V1; 71 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 72 if (cheapToScalarize(V0, IsConstantExtractIndex) || 73 cheapToScalarize(V1, IsConstantExtractIndex)) 74 return true; 75 76 CmpInst::Predicate UnusedPred; 77 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 return false; 83 } 84 85 // If we have a PHI node with a vector type that is only used to feed 86 // itself and be an operand of extractelement at a constant location, 87 // try to replace the PHI of the vector type with a PHI of a scalar type. 88 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 89 SmallVector<Instruction *, 2> Extracts; 90 // The users we want the PHI to have are: 91 // 1) The EI ExtractElement (we already know this) 92 // 2) Possibly more ExtractElements with the same index. 93 // 3) Another operand, which will feed back into the PHI. 94 Instruction *PHIUser = nullptr; 95 for (auto U : PN->users()) { 96 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 97 if (EI.getIndexOperand() == EU->getIndexOperand()) 98 Extracts.push_back(EU); 99 else 100 return nullptr; 101 } else if (!PHIUser) { 102 PHIUser = cast<Instruction>(U); 103 } else { 104 return nullptr; 105 } 106 } 107 108 if (!PHIUser) 109 return nullptr; 110 111 // Verify that this PHI user has one use, which is the PHI itself, 112 // and that it is a binary operation which is cheap to scalarize. 113 // otherwise return nullptr. 114 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 115 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 116 return nullptr; 117 118 // Create a scalar PHI node that will replace the vector PHI node 119 // just before the current PHI node. 120 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 121 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 122 // Scalarize each PHI operand. 123 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 124 Value *PHIInVal = PN->getIncomingValue(i); 125 BasicBlock *inBB = PN->getIncomingBlock(i); 126 Value *Elt = EI.getIndexOperand(); 127 // If the operand is the PHI induction variable: 128 if (PHIInVal == PHIUser) { 129 // Scalarize the binary operation. Its first operand is the 130 // scalar PHI, and the second operand is extracted from the other 131 // vector operand. 132 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 133 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 134 Value *Op = InsertNewInstWith( 135 ExtractElementInst::Create(B0->getOperand(opId), Elt, 136 B0->getOperand(opId)->getName() + ".Elt"), 137 *B0); 138 Value *newPHIUser = InsertNewInstWith( 139 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 140 scalarPHI, Op, B0), *B0); 141 scalarPHI->addIncoming(newPHIUser, inBB); 142 } else { 143 // Scalarize PHI input: 144 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 145 // Insert the new instruction into the predecessor basic block. 146 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 147 BasicBlock::iterator InsertPos; 148 if (pos && !isa<PHINode>(pos)) { 149 InsertPos = ++pos->getIterator(); 150 } else { 151 InsertPos = inBB->getFirstInsertionPt(); 152 } 153 154 InsertNewInstWith(newEI, *InsertPos); 155 156 scalarPHI->addIncoming(newEI, inBB); 157 } 158 } 159 160 for (auto E : Extracts) 161 replaceInstUsesWith(*E, scalarPHI); 162 163 return &EI; 164 } 165 166 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 167 InstCombiner::BuilderTy &Builder, 168 bool IsBigEndian) { 169 Value *X; 170 uint64_t ExtIndexC; 171 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 172 !X->getType()->isVectorTy() || 173 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 174 return nullptr; 175 176 // If this extractelement is using a bitcast from a vector of the same number 177 // of elements, see if we can find the source element from the source vector: 178 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 179 auto *SrcTy = cast<VectorType>(X->getType()); 180 Type *DestTy = Ext.getType(); 181 unsigned NumSrcElts = SrcTy->getNumElements(); 182 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 183 if (NumSrcElts == NumElts) 184 if (Value *Elt = findScalarElement(X, ExtIndexC)) 185 return new BitCastInst(Elt, DestTy); 186 187 // If the source elements are wider than the destination, try to shift and 188 // truncate a subset of scalar bits of an insert op. 189 if (NumSrcElts < NumElts) { 190 Value *Scalar; 191 uint64_t InsIndexC; 192 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 193 m_ConstantInt(InsIndexC)))) 194 return nullptr; 195 196 // The extract must be from the subset of vector elements that we inserted 197 // into. Example: if we inserted element 1 of a <2 x i64> and we are 198 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 199 // of elements 4-7 of the bitcasted vector. 200 unsigned NarrowingRatio = NumElts / NumSrcElts; 201 if (ExtIndexC / NarrowingRatio != InsIndexC) 202 return nullptr; 203 204 // We are extracting part of the original scalar. How that scalar is 205 // inserted into the vector depends on the endian-ness. Example: 206 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 207 // +--+--+--+--+--+--+--+--+ 208 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 209 // extelt <4 x i16> V', 3: | |S2|S3| 210 // +--+--+--+--+--+--+--+--+ 211 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 212 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 213 // In this example, we must right-shift little-endian. Big-endian is just a 214 // truncate. 215 unsigned Chunk = ExtIndexC % NarrowingRatio; 216 if (IsBigEndian) 217 Chunk = NarrowingRatio - 1 - Chunk; 218 219 // Bail out if this is an FP vector to FP vector sequence. That would take 220 // more instructions than we started with unless there is no shift, and it 221 // may not be handled as well in the backend. 222 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 223 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 224 if (NeedSrcBitcast && NeedDestBitcast) 225 return nullptr; 226 227 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 228 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 229 unsigned ShAmt = Chunk * DestWidth; 230 231 // TODO: This limitation is more strict than necessary. We could sum the 232 // number of new instructions and subtract the number eliminated to know if 233 // we can proceed. 234 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 235 if (NeedSrcBitcast || NeedDestBitcast) 236 return nullptr; 237 238 if (NeedSrcBitcast) { 239 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 240 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 241 } 242 243 if (ShAmt) { 244 // Bail out if we could end with more instructions than we started with. 245 if (!Ext.getVectorOperand()->hasOneUse()) 246 return nullptr; 247 Scalar = Builder.CreateLShr(Scalar, ShAmt); 248 } 249 250 if (NeedDestBitcast) { 251 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 252 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 253 } 254 return new TruncInst(Scalar, DestTy); 255 } 256 257 return nullptr; 258 } 259 260 /// Find elements of V demanded by UserInstr. 261 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 262 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 263 264 // Conservatively assume that all elements are needed. 265 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 266 267 switch (UserInstr->getOpcode()) { 268 case Instruction::ExtractElement: { 269 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 270 assert(EEI->getVectorOperand() == V); 271 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 272 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 273 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 274 } 275 break; 276 } 277 case Instruction::ShuffleVector: { 278 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 279 unsigned MaskNumElts = 280 cast<VectorType>(UserInstr->getType())->getNumElements(); 281 282 UsedElts = APInt(VWidth, 0); 283 for (unsigned i = 0; i < MaskNumElts; i++) { 284 unsigned MaskVal = Shuffle->getMaskValue(i); 285 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 286 continue; 287 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 288 UsedElts.setBit(MaskVal); 289 if (Shuffle->getOperand(1) == V && 290 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 291 UsedElts.setBit(MaskVal - VWidth); 292 } 293 break; 294 } 295 default: 296 break; 297 } 298 return UsedElts; 299 } 300 301 /// Find union of elements of V demanded by all its users. 302 /// If it is known by querying findDemandedEltsBySingleUser that 303 /// no user demands an element of V, then the corresponding bit 304 /// remains unset in the returned value. 305 static APInt findDemandedEltsByAllUsers(Value *V) { 306 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 307 308 APInt UnionUsedElts(VWidth, 0); 309 for (const Use &U : V->uses()) { 310 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 311 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 312 } else { 313 UnionUsedElts = APInt::getAllOnesValue(VWidth); 314 break; 315 } 316 317 if (UnionUsedElts.isAllOnesValue()) 318 break; 319 } 320 321 return UnionUsedElts; 322 } 323 324 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 325 Value *SrcVec = EI.getVectorOperand(); 326 Value *Index = EI.getIndexOperand(); 327 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 328 SQ.getWithInstruction(&EI))) 329 return replaceInstUsesWith(EI, V); 330 331 // If extracting a specified index from the vector, see if we can recursively 332 // find a previously computed scalar that was inserted into the vector. 333 auto *IndexC = dyn_cast<ConstantInt>(Index); 334 if (IndexC) { 335 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 336 337 // InstSimplify should handle cases where the index is invalid. 338 if (!IndexC->getValue().ule(NumElts)) 339 return nullptr; 340 341 // This instruction only demands the single element from the input vector. 342 if (NumElts != 1) { 343 // If the input vector has a single use, simplify it based on this use 344 // property. 345 if (SrcVec->hasOneUse()) { 346 APInt UndefElts(NumElts, 0); 347 APInt DemandedElts(NumElts, 0); 348 DemandedElts.setBit(IndexC->getZExtValue()); 349 if (Value *V = 350 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 351 return replaceOperand(EI, 0, V); 352 } else { 353 // If the input vector has multiple uses, simplify it based on a union 354 // of all elements used. 355 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 356 if (!DemandedElts.isAllOnesValue()) { 357 APInt UndefElts(NumElts, 0); 358 if (Value *V = SimplifyDemandedVectorElts( 359 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 360 true /* AllowMultipleUsers */)) { 361 if (V != SrcVec) { 362 SrcVec->replaceAllUsesWith(V); 363 return &EI; 364 } 365 } 366 } 367 } 368 } 369 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 370 return I; 371 372 // If there's a vector PHI feeding a scalar use through this extractelement 373 // instruction, try to scalarize the PHI. 374 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 375 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 376 return ScalarPHI; 377 } 378 379 // TODO come up with a n-ary matcher that subsumes both unary and 380 // binary matchers. 381 UnaryOperator *UO; 382 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 383 // extelt (unop X), Index --> unop (extelt X, Index) 384 Value *X = UO->getOperand(0); 385 Value *E = Builder.CreateExtractElement(X, Index); 386 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 387 } 388 389 BinaryOperator *BO; 390 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 391 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 392 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 393 Value *E0 = Builder.CreateExtractElement(X, Index); 394 Value *E1 = Builder.CreateExtractElement(Y, Index); 395 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 396 } 397 398 Value *X, *Y; 399 CmpInst::Predicate Pred; 400 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 401 cheapToScalarize(SrcVec, IndexC)) { 402 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 403 Value *E0 = Builder.CreateExtractElement(X, Index); 404 Value *E1 = Builder.CreateExtractElement(Y, Index); 405 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 406 } 407 408 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 409 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 410 // Extracting the inserted element? 411 if (IE->getOperand(2) == Index) 412 return replaceInstUsesWith(EI, IE->getOperand(1)); 413 // If the inserted and extracted elements are constants, they must not 414 // be the same value, extract from the pre-inserted value instead. 415 if (isa<Constant>(IE->getOperand(2)) && IndexC) 416 return replaceOperand(EI, 0, IE->getOperand(0)); 417 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 418 // If this is extracting an element from a shufflevector, figure out where 419 // it came from and extract from the appropriate input element instead. 420 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 421 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 422 Value *Src; 423 unsigned LHSWidth = 424 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); 425 426 if (SrcIdx < 0) 427 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 428 if (SrcIdx < (int)LHSWidth) 429 Src = SVI->getOperand(0); 430 else { 431 SrcIdx -= LHSWidth; 432 Src = SVI->getOperand(1); 433 } 434 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 435 return ExtractElementInst::Create(Src, 436 ConstantInt::get(Int32Ty, 437 SrcIdx, false)); 438 } 439 } else if (auto *CI = dyn_cast<CastInst>(I)) { 440 // Canonicalize extractelement(cast) -> cast(extractelement). 441 // Bitcasts can change the number of vector elements, and they cost 442 // nothing. 443 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 444 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 445 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 446 } 447 } 448 } 449 return nullptr; 450 } 451 452 /// If V is a shuffle of values that ONLY returns elements from either LHS or 453 /// RHS, return the shuffle mask and true. Otherwise, return false. 454 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 455 SmallVectorImpl<int> &Mask) { 456 assert(LHS->getType() == RHS->getType() && 457 "Invalid CollectSingleShuffleElements"); 458 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 459 460 if (isa<UndefValue>(V)) { 461 Mask.assign(NumElts, -1); 462 return true; 463 } 464 465 if (V == LHS) { 466 for (unsigned i = 0; i != NumElts; ++i) 467 Mask.push_back(i); 468 return true; 469 } 470 471 if (V == RHS) { 472 for (unsigned i = 0; i != NumElts; ++i) 473 Mask.push_back(i + NumElts); 474 return true; 475 } 476 477 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 478 // If this is an insert of an extract from some other vector, include it. 479 Value *VecOp = IEI->getOperand(0); 480 Value *ScalarOp = IEI->getOperand(1); 481 Value *IdxOp = IEI->getOperand(2); 482 483 if (!isa<ConstantInt>(IdxOp)) 484 return false; 485 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 486 487 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 488 // We can handle this if the vector we are inserting into is 489 // transitively ok. 490 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 491 // If so, update the mask to reflect the inserted undef. 492 Mask[InsertedIdx] = -1; 493 return true; 494 } 495 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 496 if (isa<ConstantInt>(EI->getOperand(1))) { 497 unsigned ExtractedIdx = 498 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 499 unsigned NumLHSElts = 500 cast<VectorType>(LHS->getType())->getNumElements(); 501 502 // This must be extracting from either LHS or RHS. 503 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 504 // We can handle this if the vector we are inserting into is 505 // transitively ok. 506 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 507 // If so, update the mask to reflect the inserted value. 508 if (EI->getOperand(0) == LHS) { 509 Mask[InsertedIdx % NumElts] = ExtractedIdx; 510 } else { 511 assert(EI->getOperand(0) == RHS); 512 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 513 } 514 return true; 515 } 516 } 517 } 518 } 519 } 520 521 return false; 522 } 523 524 /// If we have insertion into a vector that is wider than the vector that we 525 /// are extracting from, try to widen the source vector to allow a single 526 /// shufflevector to replace one or more insert/extract pairs. 527 static void replaceExtractElements(InsertElementInst *InsElt, 528 ExtractElementInst *ExtElt, 529 InstCombiner &IC) { 530 VectorType *InsVecType = InsElt->getType(); 531 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 532 unsigned NumInsElts = InsVecType->getNumElements(); 533 unsigned NumExtElts = ExtVecType->getNumElements(); 534 535 // The inserted-to vector must be wider than the extracted-from vector. 536 if (InsVecType->getElementType() != ExtVecType->getElementType() || 537 NumExtElts >= NumInsElts) 538 return; 539 540 // Create a shuffle mask to widen the extended-from vector using undefined 541 // values. The mask selects all of the values of the original vector followed 542 // by as many undefined values as needed to create a vector of the same length 543 // as the inserted-to vector. 544 SmallVector<int, 16> ExtendMask; 545 for (unsigned i = 0; i < NumExtElts; ++i) 546 ExtendMask.push_back(i); 547 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 548 ExtendMask.push_back(-1); 549 550 Value *ExtVecOp = ExtElt->getVectorOperand(); 551 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 552 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 553 ? ExtVecOpInst->getParent() 554 : ExtElt->getParent(); 555 556 // TODO: This restriction matches the basic block check below when creating 557 // new extractelement instructions. If that limitation is removed, this one 558 // could also be removed. But for now, we just bail out to ensure that we 559 // will replace the extractelement instruction that is feeding our 560 // insertelement instruction. This allows the insertelement to then be 561 // replaced by a shufflevector. If the insertelement is not replaced, we can 562 // induce infinite looping because there's an optimization for extractelement 563 // that will delete our widening shuffle. This would trigger another attempt 564 // here to create that shuffle, and we spin forever. 565 if (InsertionBlock != InsElt->getParent()) 566 return; 567 568 // TODO: This restriction matches the check in visitInsertElementInst() and 569 // prevents an infinite loop caused by not turning the extract/insert pair 570 // into a shuffle. We really should not need either check, but we're lacking 571 // folds for shufflevectors because we're afraid to generate shuffle masks 572 // that the backend can't handle. 573 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 574 return; 575 576 auto *WideVec = 577 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 578 579 // Insert the new shuffle after the vector operand of the extract is defined 580 // (as long as it's not a PHI) or at the start of the basic block of the 581 // extract, so any subsequent extracts in the same basic block can use it. 582 // TODO: Insert before the earliest ExtractElementInst that is replaced. 583 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 584 WideVec->insertAfter(ExtVecOpInst); 585 else 586 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 587 588 // Replace extracts from the original narrow vector with extracts from the new 589 // wide vector. 590 for (User *U : ExtVecOp->users()) { 591 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 592 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 593 continue; 594 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 595 NewExt->insertAfter(OldExt); 596 IC.replaceInstUsesWith(*OldExt, NewExt); 597 } 598 } 599 600 /// We are building a shuffle to create V, which is a sequence of insertelement, 601 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 602 /// not rely on the second vector source. Return a std::pair containing the 603 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 604 /// parameter as required. 605 /// 606 /// Note: we intentionally don't try to fold earlier shuffles since they have 607 /// often been chosen carefully to be efficiently implementable on the target. 608 using ShuffleOps = std::pair<Value *, Value *>; 609 610 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 611 Value *PermittedRHS, 612 InstCombiner &IC) { 613 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 614 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 615 616 if (isa<UndefValue>(V)) { 617 Mask.assign(NumElts, -1); 618 return std::make_pair( 619 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 620 } 621 622 if (isa<ConstantAggregateZero>(V)) { 623 Mask.assign(NumElts, 0); 624 return std::make_pair(V, nullptr); 625 } 626 627 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 628 // If this is an insert of an extract from some other vector, include it. 629 Value *VecOp = IEI->getOperand(0); 630 Value *ScalarOp = IEI->getOperand(1); 631 Value *IdxOp = IEI->getOperand(2); 632 633 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 634 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 635 unsigned ExtractedIdx = 636 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 637 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 638 639 // Either the extracted from or inserted into vector must be RHSVec, 640 // otherwise we'd end up with a shuffle of three inputs. 641 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 642 Value *RHS = EI->getOperand(0); 643 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 644 assert(LR.second == nullptr || LR.second == RHS); 645 646 if (LR.first->getType() != RHS->getType()) { 647 // Although we are giving up for now, see if we can create extracts 648 // that match the inserts for another round of combining. 649 replaceExtractElements(IEI, EI, IC); 650 651 // We tried our best, but we can't find anything compatible with RHS 652 // further up the chain. Return a trivial shuffle. 653 for (unsigned i = 0; i < NumElts; ++i) 654 Mask[i] = i; 655 return std::make_pair(V, nullptr); 656 } 657 658 unsigned NumLHSElts = 659 cast<VectorType>(RHS->getType())->getNumElements(); 660 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 661 return std::make_pair(LR.first, RHS); 662 } 663 664 if (VecOp == PermittedRHS) { 665 // We've gone as far as we can: anything on the other side of the 666 // extractelement will already have been converted into a shuffle. 667 unsigned NumLHSElts = 668 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 669 for (unsigned i = 0; i != NumElts; ++i) 670 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 671 return std::make_pair(EI->getOperand(0), PermittedRHS); 672 } 673 674 // If this insertelement is a chain that comes from exactly these two 675 // vectors, return the vector and the effective shuffle. 676 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 677 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 678 Mask)) 679 return std::make_pair(EI->getOperand(0), PermittedRHS); 680 } 681 } 682 } 683 684 // Otherwise, we can't do anything fancy. Return an identity vector. 685 for (unsigned i = 0; i != NumElts; ++i) 686 Mask.push_back(i); 687 return std::make_pair(V, nullptr); 688 } 689 690 /// Try to find redundant insertvalue instructions, like the following ones: 691 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 692 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 693 /// Here the second instruction inserts values at the same indices, as the 694 /// first one, making the first one redundant. 695 /// It should be transformed to: 696 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 697 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 698 bool IsRedundant = false; 699 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 700 701 // If there is a chain of insertvalue instructions (each of them except the 702 // last one has only one use and it's another insertvalue insn from this 703 // chain), check if any of the 'children' uses the same indices as the first 704 // instruction. In this case, the first one is redundant. 705 Value *V = &I; 706 unsigned Depth = 0; 707 while (V->hasOneUse() && Depth < 10) { 708 User *U = V->user_back(); 709 auto UserInsInst = dyn_cast<InsertValueInst>(U); 710 if (!UserInsInst || U->getOperand(0) != V) 711 break; 712 if (UserInsInst->getIndices() == FirstIndices) { 713 IsRedundant = true; 714 break; 715 } 716 V = UserInsInst; 717 Depth++; 718 } 719 720 if (IsRedundant) 721 return replaceInstUsesWith(I, I.getOperand(0)); 722 return nullptr; 723 } 724 725 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 726 int MaskSize = Shuf.getShuffleMask().size(); 727 int VecSize = 728 cast<VectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 729 730 // A vector select does not change the size of the operands. 731 if (MaskSize != VecSize) 732 return false; 733 734 // Each mask element must be undefined or choose a vector element from one of 735 // the source operands without crossing vector lanes. 736 for (int i = 0; i != MaskSize; ++i) { 737 int Elt = Shuf.getMaskValue(i); 738 if (Elt != -1 && Elt != i && Elt != i + VecSize) 739 return false; 740 } 741 742 return true; 743 } 744 745 /// Turn a chain of inserts that splats a value into an insert + shuffle: 746 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 747 /// shufflevector(insertelt(X, %k, 0), undef, zero) 748 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 749 // We are interested in the last insert in a chain. So if this insert has a 750 // single user and that user is an insert, bail. 751 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 752 return nullptr; 753 754 auto *VecTy = cast<VectorType>(InsElt.getType()); 755 unsigned NumElements = VecTy->getNumElements(); 756 757 // Do not try to do this for a one-element vector, since that's a nop, 758 // and will cause an inf-loop. 759 if (NumElements == 1) 760 return nullptr; 761 762 Value *SplatVal = InsElt.getOperand(1); 763 InsertElementInst *CurrIE = &InsElt; 764 SmallBitVector ElementPresent(NumElements, false); 765 InsertElementInst *FirstIE = nullptr; 766 767 // Walk the chain backwards, keeping track of which indices we inserted into, 768 // until we hit something that isn't an insert of the splatted value. 769 while (CurrIE) { 770 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 771 if (!Idx || CurrIE->getOperand(1) != SplatVal) 772 return nullptr; 773 774 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 775 // Check none of the intermediate steps have any additional uses, except 776 // for the root insertelement instruction, which can be re-used, if it 777 // inserts at position 0. 778 if (CurrIE != &InsElt && 779 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 780 return nullptr; 781 782 ElementPresent[Idx->getZExtValue()] = true; 783 FirstIE = CurrIE; 784 CurrIE = NextIE; 785 } 786 787 // If this is just a single insertelement (not a sequence), we are done. 788 if (FirstIE == &InsElt) 789 return nullptr; 790 791 // If we are not inserting into an undef vector, make sure we've seen an 792 // insert into every element. 793 // TODO: If the base vector is not undef, it might be better to create a splat 794 // and then a select-shuffle (blend) with the base vector. 795 if (!isa<UndefValue>(FirstIE->getOperand(0))) 796 if (!ElementPresent.all()) 797 return nullptr; 798 799 // Create the insert + shuffle. 800 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 801 UndefValue *UndefVec = UndefValue::get(VecTy); 802 Constant *Zero = ConstantInt::get(Int32Ty, 0); 803 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 804 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 805 806 // Splat from element 0, but replace absent elements with undef in the mask. 807 SmallVector<int, 16> Mask(NumElements, 0); 808 for (unsigned i = 0; i != NumElements; ++i) 809 if (!ElementPresent[i]) 810 Mask[i] = -1; 811 812 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 813 } 814 815 /// Try to fold an insert element into an existing splat shuffle by changing 816 /// the shuffle's mask to include the index of this insert element. 817 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 818 // Check if the vector operand of this insert is a canonical splat shuffle. 819 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 820 if (!Shuf || !Shuf->isZeroEltSplat()) 821 return nullptr; 822 823 // Check for a constant insertion index. 824 uint64_t IdxC; 825 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 826 return nullptr; 827 828 // Check if the splat shuffle's input is the same as this insert's scalar op. 829 Value *X = InsElt.getOperand(1); 830 Value *Op0 = Shuf->getOperand(0); 831 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 832 return nullptr; 833 834 // Replace the shuffle mask element at the index of this insert with a zero. 835 // For example: 836 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 837 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 838 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 839 SmallVector<int, 16> NewMask(NumMaskElts); 840 for (unsigned i = 0; i != NumMaskElts; ++i) 841 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 842 843 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 844 } 845 846 /// Try to fold an extract+insert element into an existing identity shuffle by 847 /// changing the shuffle's mask to include the index of this insert element. 848 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 849 // Check if the vector operand of this insert is an identity shuffle. 850 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 851 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 852 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 853 return nullptr; 854 855 // Check for a constant insertion index. 856 uint64_t IdxC; 857 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 858 return nullptr; 859 860 // Check if this insert's scalar op is extracted from the identity shuffle's 861 // input vector. 862 Value *Scalar = InsElt.getOperand(1); 863 Value *X = Shuf->getOperand(0); 864 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 865 return nullptr; 866 867 // Replace the shuffle mask element at the index of this extract+insert with 868 // that same index value. 869 // For example: 870 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 871 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 872 SmallVector<int, 16> NewMask(NumMaskElts); 873 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 874 for (unsigned i = 0; i != NumMaskElts; ++i) { 875 if (i != IdxC) { 876 // All mask elements besides the inserted element remain the same. 877 NewMask[i] = OldMask[i]; 878 } else if (OldMask[i] == (int)IdxC) { 879 // If the mask element was already set, there's nothing to do 880 // (demanded elements analysis may unset it later). 881 return nullptr; 882 } else { 883 assert(OldMask[i] == UndefMaskElem && 884 "Unexpected shuffle mask element for identity shuffle"); 885 NewMask[i] = IdxC; 886 } 887 } 888 889 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 890 } 891 892 /// If we have an insertelement instruction feeding into another insertelement 893 /// and the 2nd is inserting a constant into the vector, canonicalize that 894 /// constant insertion before the insertion of a variable: 895 /// 896 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 897 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 898 /// 899 /// This has the potential of eliminating the 2nd insertelement instruction 900 /// via constant folding of the scalar constant into a vector constant. 901 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 902 InstCombiner::BuilderTy &Builder) { 903 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 904 if (!InsElt1 || !InsElt1->hasOneUse()) 905 return nullptr; 906 907 Value *X, *Y; 908 Constant *ScalarC; 909 ConstantInt *IdxC1, *IdxC2; 910 if (match(InsElt1->getOperand(0), m_Value(X)) && 911 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 912 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 913 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 914 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 915 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 916 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 917 } 918 919 return nullptr; 920 } 921 922 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 923 /// --> shufflevector X, CVec', Mask' 924 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 925 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 926 // Bail out if the parent has more than one use. In that case, we'd be 927 // replacing the insertelt with a shuffle, and that's not a clear win. 928 if (!Inst || !Inst->hasOneUse()) 929 return nullptr; 930 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 931 // The shuffle must have a constant vector operand. The insertelt must have 932 // a constant scalar being inserted at a constant position in the vector. 933 Constant *ShufConstVec, *InsEltScalar; 934 uint64_t InsEltIndex; 935 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 936 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 937 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 938 return nullptr; 939 940 // Adding an element to an arbitrary shuffle could be expensive, but a 941 // shuffle that selects elements from vectors without crossing lanes is 942 // assumed cheap. 943 // If we're just adding a constant into that shuffle, it will still be 944 // cheap. 945 if (!isShuffleEquivalentToSelect(*Shuf)) 946 return nullptr; 947 948 // From the above 'select' check, we know that the mask has the same number 949 // of elements as the vector input operands. We also know that each constant 950 // input element is used in its lane and can not be used more than once by 951 // the shuffle. Therefore, replace the constant in the shuffle's constant 952 // vector with the insertelt constant. Replace the constant in the shuffle's 953 // mask vector with the insertelt index plus the length of the vector 954 // (because the constant vector operand of a shuffle is always the 2nd 955 // operand). 956 ArrayRef<int> Mask = Shuf->getShuffleMask(); 957 unsigned NumElts = Mask.size(); 958 SmallVector<Constant *, 16> NewShufElts(NumElts); 959 SmallVector<int, 16> NewMaskElts(NumElts); 960 for (unsigned I = 0; I != NumElts; ++I) { 961 if (I == InsEltIndex) { 962 NewShufElts[I] = InsEltScalar; 963 NewMaskElts[I] = InsEltIndex + NumElts; 964 } else { 965 // Copy over the existing values. 966 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 967 NewMaskElts[I] = Mask[I]; 968 } 969 } 970 971 // Create new operands for a shuffle that includes the constant of the 972 // original insertelt. The old shuffle will be dead now. 973 return new ShuffleVectorInst(Shuf->getOperand(0), 974 ConstantVector::get(NewShufElts), NewMaskElts); 975 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 976 // Transform sequences of insertelements ops with constant data/indexes into 977 // a single shuffle op. 978 unsigned NumElts = InsElt.getType()->getNumElements(); 979 980 uint64_t InsertIdx[2]; 981 Constant *Val[2]; 982 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 983 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 984 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 985 !match(IEI->getOperand(1), m_Constant(Val[1]))) 986 return nullptr; 987 SmallVector<Constant *, 16> Values(NumElts); 988 SmallVector<int, 16> Mask(NumElts); 989 auto ValI = std::begin(Val); 990 // Generate new constant vector and mask. 991 // We have 2 values/masks from the insertelements instructions. Insert them 992 // into new value/mask vectors. 993 for (uint64_t I : InsertIdx) { 994 if (!Values[I]) { 995 Values[I] = *ValI; 996 Mask[I] = NumElts + I; 997 } 998 ++ValI; 999 } 1000 // Remaining values are filled with 'undef' values. 1001 for (unsigned I = 0; I < NumElts; ++I) { 1002 if (!Values[I]) { 1003 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1004 Mask[I] = I; 1005 } 1006 } 1007 // Create new operands for a shuffle that includes the constant of the 1008 // original insertelt. 1009 return new ShuffleVectorInst(IEI->getOperand(0), 1010 ConstantVector::get(Values), Mask); 1011 } 1012 return nullptr; 1013 } 1014 1015 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1016 Value *VecOp = IE.getOperand(0); 1017 Value *ScalarOp = IE.getOperand(1); 1018 Value *IdxOp = IE.getOperand(2); 1019 1020 if (auto *V = SimplifyInsertElementInst( 1021 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1022 return replaceInstUsesWith(IE, V); 1023 1024 // If the vector and scalar are both bitcast from the same element type, do 1025 // the insert in that source type followed by bitcast. 1026 Value *VecSrc, *ScalarSrc; 1027 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1028 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1029 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1030 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1031 cast<VectorType>(VecSrc->getType())->getElementType() == 1032 ScalarSrc->getType()) { 1033 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1034 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1035 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1036 return new BitCastInst(NewInsElt, IE.getType()); 1037 } 1038 1039 // If the inserted element was extracted from some other vector and both 1040 // indexes are valid constants, try to turn this into a shuffle. 1041 uint64_t InsertedIdx, ExtractedIdx; 1042 Value *ExtVecOp; 1043 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 1044 match(ScalarOp, 1045 m_ExtractElement(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1046 ExtractedIdx < cast<VectorType>(ExtVecOp->getType())->getNumElements()) { 1047 // TODO: Looking at the user(s) to determine if this insert is a 1048 // fold-to-shuffle opportunity does not match the usual instcombine 1049 // constraints. We should decide if the transform is worthy based only 1050 // on this instruction and its operands, but that may not work currently. 1051 // 1052 // Here, we are trying to avoid creating shuffles before reaching 1053 // the end of a chain of extract-insert pairs. This is complicated because 1054 // we do not generally form arbitrary shuffle masks in instcombine 1055 // (because those may codegen poorly), but collectShuffleElements() does 1056 // exactly that. 1057 // 1058 // The rules for determining what is an acceptable target-independent 1059 // shuffle mask are fuzzy because they evolve based on the backend's 1060 // capabilities and real-world impact. 1061 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1062 if (!Insert.hasOneUse()) 1063 return true; 1064 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1065 if (!InsertUser) 1066 return true; 1067 return false; 1068 }; 1069 1070 // Try to form a shuffle from a chain of extract-insert ops. 1071 if (isShuffleRootCandidate(IE)) { 1072 SmallVector<int, 16> Mask; 1073 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1074 1075 // The proposed shuffle may be trivial, in which case we shouldn't 1076 // perform the combine. 1077 if (LR.first != &IE && LR.second != &IE) { 1078 // We now have a shuffle of LHS, RHS, Mask. 1079 if (LR.second == nullptr) 1080 LR.second = UndefValue::get(LR.first->getType()); 1081 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1082 } 1083 } 1084 } 1085 1086 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); 1087 APInt UndefElts(VWidth, 0); 1088 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1089 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1090 if (V != &IE) 1091 return replaceInstUsesWith(IE, V); 1092 return &IE; 1093 } 1094 1095 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1096 return Shuf; 1097 1098 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1099 return NewInsElt; 1100 1101 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1102 return Broadcast; 1103 1104 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1105 return Splat; 1106 1107 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1108 return IdentityShuf; 1109 1110 return nullptr; 1111 } 1112 1113 /// Return true if we can evaluate the specified expression tree if the vector 1114 /// elements were shuffled in a different order. 1115 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1116 unsigned Depth = 5) { 1117 // We can always reorder the elements of a constant. 1118 if (isa<Constant>(V)) 1119 return true; 1120 1121 // We won't reorder vector arguments. No IPO here. 1122 Instruction *I = dyn_cast<Instruction>(V); 1123 if (!I) return false; 1124 1125 // Two users may expect different orders of the elements. Don't try it. 1126 if (!I->hasOneUse()) 1127 return false; 1128 1129 if (Depth == 0) return false; 1130 1131 switch (I->getOpcode()) { 1132 case Instruction::UDiv: 1133 case Instruction::SDiv: 1134 case Instruction::URem: 1135 case Instruction::SRem: 1136 // Propagating an undefined shuffle mask element to integer div/rem is not 1137 // allowed because those opcodes can create immediate undefined behavior 1138 // from an undefined element in an operand. 1139 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1140 return false; 1141 LLVM_FALLTHROUGH; 1142 case Instruction::Add: 1143 case Instruction::FAdd: 1144 case Instruction::Sub: 1145 case Instruction::FSub: 1146 case Instruction::Mul: 1147 case Instruction::FMul: 1148 case Instruction::FDiv: 1149 case Instruction::FRem: 1150 case Instruction::Shl: 1151 case Instruction::LShr: 1152 case Instruction::AShr: 1153 case Instruction::And: 1154 case Instruction::Or: 1155 case Instruction::Xor: 1156 case Instruction::ICmp: 1157 case Instruction::FCmp: 1158 case Instruction::Trunc: 1159 case Instruction::ZExt: 1160 case Instruction::SExt: 1161 case Instruction::FPToUI: 1162 case Instruction::FPToSI: 1163 case Instruction::UIToFP: 1164 case Instruction::SIToFP: 1165 case Instruction::FPTrunc: 1166 case Instruction::FPExt: 1167 case Instruction::GetElementPtr: { 1168 // Bail out if we would create longer vector ops. We could allow creating 1169 // longer vector ops, but that may result in more expensive codegen. 1170 Type *ITy = I->getType(); 1171 if (ITy->isVectorTy() && 1172 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1173 return false; 1174 for (Value *Operand : I->operands()) { 1175 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1176 return false; 1177 } 1178 return true; 1179 } 1180 case Instruction::InsertElement: { 1181 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1182 if (!CI) return false; 1183 int ElementNumber = CI->getLimitedValue(); 1184 1185 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1186 // can't put an element into multiple indices. 1187 bool SeenOnce = false; 1188 for (int i = 0, e = Mask.size(); i != e; ++i) { 1189 if (Mask[i] == ElementNumber) { 1190 if (SeenOnce) 1191 return false; 1192 SeenOnce = true; 1193 } 1194 } 1195 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1196 } 1197 } 1198 return false; 1199 } 1200 1201 /// Rebuild a new instruction just like 'I' but with the new operands given. 1202 /// In the event of type mismatch, the type of the operands is correct. 1203 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1204 // We don't want to use the IRBuilder here because we want the replacement 1205 // instructions to appear next to 'I', not the builder's insertion point. 1206 switch (I->getOpcode()) { 1207 case Instruction::Add: 1208 case Instruction::FAdd: 1209 case Instruction::Sub: 1210 case Instruction::FSub: 1211 case Instruction::Mul: 1212 case Instruction::FMul: 1213 case Instruction::UDiv: 1214 case Instruction::SDiv: 1215 case Instruction::FDiv: 1216 case Instruction::URem: 1217 case Instruction::SRem: 1218 case Instruction::FRem: 1219 case Instruction::Shl: 1220 case Instruction::LShr: 1221 case Instruction::AShr: 1222 case Instruction::And: 1223 case Instruction::Or: 1224 case Instruction::Xor: { 1225 BinaryOperator *BO = cast<BinaryOperator>(I); 1226 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1227 BinaryOperator *New = 1228 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1229 NewOps[0], NewOps[1], "", BO); 1230 if (isa<OverflowingBinaryOperator>(BO)) { 1231 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1232 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1233 } 1234 if (isa<PossiblyExactOperator>(BO)) { 1235 New->setIsExact(BO->isExact()); 1236 } 1237 if (isa<FPMathOperator>(BO)) 1238 New->copyFastMathFlags(I); 1239 return New; 1240 } 1241 case Instruction::ICmp: 1242 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1243 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1244 NewOps[0], NewOps[1]); 1245 case Instruction::FCmp: 1246 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1247 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1248 NewOps[0], NewOps[1]); 1249 case Instruction::Trunc: 1250 case Instruction::ZExt: 1251 case Instruction::SExt: 1252 case Instruction::FPToUI: 1253 case Instruction::FPToSI: 1254 case Instruction::UIToFP: 1255 case Instruction::SIToFP: 1256 case Instruction::FPTrunc: 1257 case Instruction::FPExt: { 1258 // It's possible that the mask has a different number of elements from 1259 // the original cast. We recompute the destination type to match the mask. 1260 Type *DestTy = VectorType::get( 1261 I->getType()->getScalarType(), 1262 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1263 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1264 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1265 "", I); 1266 } 1267 case Instruction::GetElementPtr: { 1268 Value *Ptr = NewOps[0]; 1269 ArrayRef<Value*> Idx = NewOps.slice(1); 1270 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1271 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1272 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1273 return GEP; 1274 } 1275 } 1276 llvm_unreachable("failed to rebuild vector instructions"); 1277 } 1278 1279 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1280 // Mask.size() does not need to be equal to the number of vector elements. 1281 1282 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1283 Type *EltTy = V->getType()->getScalarType(); 1284 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1285 if (isa<UndefValue>(V)) 1286 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1287 1288 if (isa<ConstantAggregateZero>(V)) 1289 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1290 1291 if (Constant *C = dyn_cast<Constant>(V)) 1292 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1293 Mask); 1294 1295 Instruction *I = cast<Instruction>(V); 1296 switch (I->getOpcode()) { 1297 case Instruction::Add: 1298 case Instruction::FAdd: 1299 case Instruction::Sub: 1300 case Instruction::FSub: 1301 case Instruction::Mul: 1302 case Instruction::FMul: 1303 case Instruction::UDiv: 1304 case Instruction::SDiv: 1305 case Instruction::FDiv: 1306 case Instruction::URem: 1307 case Instruction::SRem: 1308 case Instruction::FRem: 1309 case Instruction::Shl: 1310 case Instruction::LShr: 1311 case Instruction::AShr: 1312 case Instruction::And: 1313 case Instruction::Or: 1314 case Instruction::Xor: 1315 case Instruction::ICmp: 1316 case Instruction::FCmp: 1317 case Instruction::Trunc: 1318 case Instruction::ZExt: 1319 case Instruction::SExt: 1320 case Instruction::FPToUI: 1321 case Instruction::FPToSI: 1322 case Instruction::UIToFP: 1323 case Instruction::SIToFP: 1324 case Instruction::FPTrunc: 1325 case Instruction::FPExt: 1326 case Instruction::Select: 1327 case Instruction::GetElementPtr: { 1328 SmallVector<Value*, 8> NewOps; 1329 bool NeedsRebuild = 1330 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1331 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1332 Value *V; 1333 // Recursively call evaluateInDifferentElementOrder on vector arguments 1334 // as well. E.g. GetElementPtr may have scalar operands even if the 1335 // return value is a vector, so we need to examine the operand type. 1336 if (I->getOperand(i)->getType()->isVectorTy()) 1337 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1338 else 1339 V = I->getOperand(i); 1340 NewOps.push_back(V); 1341 NeedsRebuild |= (V != I->getOperand(i)); 1342 } 1343 if (NeedsRebuild) { 1344 return buildNew(I, NewOps); 1345 } 1346 return I; 1347 } 1348 case Instruction::InsertElement: { 1349 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1350 1351 // The insertelement was inserting at Element. Figure out which element 1352 // that becomes after shuffling. The answer is guaranteed to be unique 1353 // by CanEvaluateShuffled. 1354 bool Found = false; 1355 int Index = 0; 1356 for (int e = Mask.size(); Index != e; ++Index) { 1357 if (Mask[Index] == Element) { 1358 Found = true; 1359 break; 1360 } 1361 } 1362 1363 // If element is not in Mask, no need to handle the operand 1 (element to 1364 // be inserted). Just evaluate values in operand 0 according to Mask. 1365 if (!Found) 1366 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1367 1368 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1369 return InsertElementInst::Create(V, I->getOperand(1), 1370 ConstantInt::get(I32Ty, Index), "", I); 1371 } 1372 } 1373 llvm_unreachable("failed to reorder elements of vector instruction!"); 1374 } 1375 1376 // Returns true if the shuffle is extracting a contiguous range of values from 1377 // LHS, for example: 1378 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1379 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1380 // Shuffles to: |EE|FF|GG|HH| 1381 // +--+--+--+--+ 1382 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1383 ArrayRef<int> Mask) { 1384 unsigned LHSElems = 1385 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1386 unsigned MaskElems = Mask.size(); 1387 unsigned BegIdx = Mask.front(); 1388 unsigned EndIdx = Mask.back(); 1389 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1390 return false; 1391 for (unsigned I = 0; I != MaskElems; ++I) 1392 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1393 return false; 1394 return true; 1395 } 1396 1397 /// These are the ingredients in an alternate form binary operator as described 1398 /// below. 1399 struct BinopElts { 1400 BinaryOperator::BinaryOps Opcode; 1401 Value *Op0; 1402 Value *Op1; 1403 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1404 Value *V0 = nullptr, Value *V1 = nullptr) : 1405 Opcode(Opc), Op0(V0), Op1(V1) {} 1406 operator bool() const { return Opcode != 0; } 1407 }; 1408 1409 /// Binops may be transformed into binops with different opcodes and operands. 1410 /// Reverse the usual canonicalization to enable folds with the non-canonical 1411 /// form of the binop. If a transform is possible, return the elements of the 1412 /// new binop. If not, return invalid elements. 1413 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1414 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1415 Type *Ty = BO->getType(); 1416 switch (BO->getOpcode()) { 1417 case Instruction::Shl: { 1418 // shl X, C --> mul X, (1 << C) 1419 Constant *C; 1420 if (match(BO1, m_Constant(C))) { 1421 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1422 return { Instruction::Mul, BO0, ShlOne }; 1423 } 1424 break; 1425 } 1426 case Instruction::Or: { 1427 // or X, C --> add X, C (when X and C have no common bits set) 1428 const APInt *C; 1429 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1430 return { Instruction::Add, BO0, BO1 }; 1431 break; 1432 } 1433 default: 1434 break; 1435 } 1436 return {}; 1437 } 1438 1439 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1440 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1441 1442 // Are we shuffling together some value and that same value after it has been 1443 // modified by a binop with a constant? 1444 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1445 Constant *C; 1446 bool Op0IsBinop; 1447 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1448 Op0IsBinop = true; 1449 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1450 Op0IsBinop = false; 1451 else 1452 return nullptr; 1453 1454 // The identity constant for a binop leaves a variable operand unchanged. For 1455 // a vector, this is a splat of something like 0, -1, or 1. 1456 // If there's no identity constant for this binop, we're done. 1457 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1458 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1459 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1460 if (!IdC) 1461 return nullptr; 1462 1463 // Shuffle identity constants into the lanes that return the original value. 1464 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1465 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1466 // The existing binop constant vector remains in the same operand position. 1467 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1468 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1469 ConstantExpr::getShuffleVector(IdC, C, Mask); 1470 1471 bool MightCreatePoisonOrUB = 1472 is_contained(Mask, UndefMaskElem) && 1473 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1474 if (MightCreatePoisonOrUB) 1475 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1476 1477 // shuf (bop X, C), X, M --> bop X, C' 1478 // shuf X, (bop X, C), M --> bop X, C' 1479 Value *X = Op0IsBinop ? Op1 : Op0; 1480 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1481 NewBO->copyIRFlags(BO); 1482 1483 // An undef shuffle mask element may propagate as an undef constant element in 1484 // the new binop. That would produce poison where the original code might not. 1485 // If we already made a safe constant, then there's no danger. 1486 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1487 NewBO->dropPoisonGeneratingFlags(); 1488 return NewBO; 1489 } 1490 1491 /// If we have an insert of a scalar to a non-zero element of an undefined 1492 /// vector and then shuffle that value, that's the same as inserting to the zero 1493 /// element and shuffling. Splatting from the zero element is recognized as the 1494 /// canonical form of splat. 1495 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1496 InstCombiner::BuilderTy &Builder) { 1497 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1498 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1499 Value *X; 1500 uint64_t IndexC; 1501 1502 // Match a shuffle that is a splat to a non-zero element. 1503 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1504 m_ConstantInt(IndexC)))) || 1505 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1506 return nullptr; 1507 1508 // Insert into element 0 of an undef vector. 1509 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1510 Constant *Zero = Builder.getInt32(0); 1511 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1512 1513 // Splat from element 0. Any mask element that is undefined remains undefined. 1514 // For example: 1515 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1516 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1517 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1518 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1519 for (unsigned i = 0; i != NumMaskElts; ++i) 1520 if (Mask[i] == UndefMaskElem) 1521 NewMask[i] = Mask[i]; 1522 1523 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1524 } 1525 1526 /// Try to fold shuffles that are the equivalent of a vector select. 1527 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1528 InstCombiner::BuilderTy &Builder, 1529 const DataLayout &DL) { 1530 if (!Shuf.isSelect()) 1531 return nullptr; 1532 1533 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1534 // Commuting undef to operand 0 conflicts with another canonicalization. 1535 unsigned NumElts = Shuf.getType()->getNumElements(); 1536 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1537 Shuf.getMaskValue(0) >= (int)NumElts) { 1538 // TODO: Can we assert that both operands of a shuffle-select are not undef 1539 // (otherwise, it would have been folded by instsimplify? 1540 Shuf.commute(); 1541 return &Shuf; 1542 } 1543 1544 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1545 return I; 1546 1547 BinaryOperator *B0, *B1; 1548 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1549 !match(Shuf.getOperand(1), m_BinOp(B1))) 1550 return nullptr; 1551 1552 Value *X, *Y; 1553 Constant *C0, *C1; 1554 bool ConstantsAreOp1; 1555 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1556 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1557 ConstantsAreOp1 = true; 1558 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1559 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1560 ConstantsAreOp1 = false; 1561 else 1562 return nullptr; 1563 1564 // We need matching binops to fold the lanes together. 1565 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1566 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1567 bool DropNSW = false; 1568 if (ConstantsAreOp1 && Opc0 != Opc1) { 1569 // TODO: We drop "nsw" if shift is converted into multiply because it may 1570 // not be correct when the shift amount is BitWidth - 1. We could examine 1571 // each vector element to determine if it is safe to keep that flag. 1572 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1573 DropNSW = true; 1574 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1575 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1576 Opc0 = AltB0.Opcode; 1577 C0 = cast<Constant>(AltB0.Op1); 1578 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1579 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1580 Opc1 = AltB1.Opcode; 1581 C1 = cast<Constant>(AltB1.Op1); 1582 } 1583 } 1584 1585 if (Opc0 != Opc1) 1586 return nullptr; 1587 1588 // The opcodes must be the same. Use a new name to make that clear. 1589 BinaryOperator::BinaryOps BOpc = Opc0; 1590 1591 // Select the constant elements needed for the single binop. 1592 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1593 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1594 1595 // We are moving a binop after a shuffle. When a shuffle has an undefined 1596 // mask element, the result is undefined, but it is not poison or undefined 1597 // behavior. That is not necessarily true for div/rem/shift. 1598 bool MightCreatePoisonOrUB = 1599 is_contained(Mask, UndefMaskElem) && 1600 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1601 if (MightCreatePoisonOrUB) 1602 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1603 1604 Value *V; 1605 if (X == Y) { 1606 // Remove a binop and the shuffle by rearranging the constant: 1607 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1608 // shuffle (op C0, V), (op C1, V), M --> op C', V 1609 V = X; 1610 } else { 1611 // If there are 2 different variable operands, we must create a new shuffle 1612 // (select) first, so check uses to ensure that we don't end up with more 1613 // instructions than we started with. 1614 if (!B0->hasOneUse() && !B1->hasOneUse()) 1615 return nullptr; 1616 1617 // If we use the original shuffle mask and op1 is *variable*, we would be 1618 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1619 // poison. We do not have to guard against UB when *constants* are op1 1620 // because safe constants guarantee that we do not overflow sdiv/srem (and 1621 // there's no danger for other opcodes). 1622 // TODO: To allow this case, create a new shuffle mask with no undefs. 1623 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1624 return nullptr; 1625 1626 // Note: In general, we do not create new shuffles in InstCombine because we 1627 // do not know if a target can lower an arbitrary shuffle optimally. In this 1628 // case, the shuffle uses the existing mask, so there is no additional risk. 1629 1630 // Select the variable vectors first, then perform the binop: 1631 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1632 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1633 V = Builder.CreateShuffleVector(X, Y, Mask); 1634 } 1635 1636 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1637 BinaryOperator::Create(BOpc, NewC, V); 1638 1639 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1640 // 1. If we changed an opcode, poison conditions might have changed. 1641 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1642 // where the original code did not. But if we already made a safe constant, 1643 // then there's no danger. 1644 NewBO->copyIRFlags(B0); 1645 NewBO->andIRFlags(B1); 1646 if (DropNSW) 1647 NewBO->setHasNoSignedWrap(false); 1648 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1649 NewBO->dropPoisonGeneratingFlags(); 1650 return NewBO; 1651 } 1652 1653 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1654 /// Example (little endian): 1655 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1656 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1657 bool IsBigEndian) { 1658 // This must be a bitcasted shuffle of 1 vector integer operand. 1659 Type *DestType = Shuf.getType(); 1660 Value *X; 1661 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1662 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1663 return nullptr; 1664 1665 // The source type must have the same number of elements as the shuffle, 1666 // and the source element type must be larger than the shuffle element type. 1667 Type *SrcType = X->getType(); 1668 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1669 cast<VectorType>(SrcType)->getNumElements() != 1670 cast<VectorType>(DestType)->getNumElements() || 1671 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1672 return nullptr; 1673 1674 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1675 "Expected a shuffle that decreases length"); 1676 1677 // Last, check that the mask chooses the correct low bits for each narrow 1678 // element in the result. 1679 uint64_t TruncRatio = 1680 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1681 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1682 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1683 if (Mask[i] == UndefMaskElem) 1684 continue; 1685 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1686 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1687 "Overflowed 32-bits"); 1688 if (Mask[i] != (int)LSBIndex) 1689 return nullptr; 1690 } 1691 1692 return new TruncInst(X, DestType); 1693 } 1694 1695 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1696 /// narrowing (concatenating with undef and extracting back to the original 1697 /// length). This allows replacing the wide select with a narrow select. 1698 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1699 InstCombiner::BuilderTy &Builder) { 1700 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1701 // of the 1st vector operand of a shuffle. 1702 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1703 return nullptr; 1704 1705 // The vector being shuffled must be a vector select that we can eliminate. 1706 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1707 Value *Cond, *X, *Y; 1708 if (!match(Shuf.getOperand(0), 1709 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1710 return nullptr; 1711 1712 // We need a narrow condition value. It must be extended with undef elements 1713 // and have the same number of elements as this shuffle. 1714 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 1715 Value *NarrowCond; 1716 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) || 1717 cast<VectorType>(NarrowCond->getType())->getNumElements() != 1718 NarrowNumElts || 1719 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1720 return nullptr; 1721 1722 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1723 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1724 Value *Undef = UndefValue::get(X->getType()); 1725 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1726 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1727 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1728 } 1729 1730 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1731 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1732 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1733 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1734 return nullptr; 1735 1736 Value *X, *Y; 1737 ArrayRef<int> Mask; 1738 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1739 return nullptr; 1740 1741 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1742 // then combining may result in worse codegen. 1743 if (!Op0->hasOneUse()) 1744 return nullptr; 1745 1746 // We are extracting a subvector from a shuffle. Remove excess elements from 1747 // the 1st shuffle mask to eliminate the extract. 1748 // 1749 // This transform is conservatively limited to identity extracts because we do 1750 // not allow arbitrary shuffle mask creation as a target-independent transform 1751 // (because we can't guarantee that will lower efficiently). 1752 // 1753 // If the extracting shuffle has an undef mask element, it transfers to the 1754 // new shuffle mask. Otherwise, copy the original mask element. Example: 1755 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1756 // shuf X, Y, <C0, undef, C2, undef> 1757 unsigned NumElts = Shuf.getType()->getNumElements(); 1758 SmallVector<int, 16> NewMask(NumElts); 1759 assert(NumElts < Mask.size() && 1760 "Identity with extract must have less elements than its inputs"); 1761 1762 for (unsigned i = 0; i != NumElts; ++i) { 1763 int ExtractMaskElt = Shuf.getMaskValue(i); 1764 int MaskElt = Mask[i]; 1765 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1766 } 1767 return new ShuffleVectorInst(X, Y, NewMask); 1768 } 1769 1770 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1771 /// operand with the operand of an insertelement. 1772 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1773 InstCombiner &IC) { 1774 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1775 SmallVector<int, 16> Mask; 1776 Shuf.getShuffleMask(Mask); 1777 1778 // The shuffle must not change vector sizes. 1779 // TODO: This restriction could be removed if the insert has only one use 1780 // (because the transform would require a new length-changing shuffle). 1781 int NumElts = Mask.size(); 1782 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 1783 return nullptr; 1784 1785 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1786 // not be able to handle it there if the insertelement has >1 use. 1787 // If the shuffle has an insertelement operand but does not choose the 1788 // inserted scalar element from that value, then we can replace that shuffle 1789 // operand with the source vector of the insertelement. 1790 Value *X; 1791 uint64_t IdxC; 1792 if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1793 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1794 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1795 return IC.replaceOperand(Shuf, 0, X); 1796 } 1797 if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1798 // Offset the index constant by the vector width because we are checking for 1799 // accesses to the 2nd vector input of the shuffle. 1800 IdxC += NumElts; 1801 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1802 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1803 return IC.replaceOperand(Shuf, 1, X); 1804 } 1805 1806 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1807 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1808 // We need an insertelement with a constant index. 1809 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1810 m_ConstantInt(IndexC)))) 1811 return false; 1812 1813 // Test the shuffle mask to see if it splices the inserted scalar into the 1814 // operand 1 vector of the shuffle. 1815 int NewInsIndex = -1; 1816 for (int i = 0; i != NumElts; ++i) { 1817 // Ignore undef mask elements. 1818 if (Mask[i] == -1) 1819 continue; 1820 1821 // The shuffle takes elements of operand 1 without lane changes. 1822 if (Mask[i] == NumElts + i) 1823 continue; 1824 1825 // The shuffle must choose the inserted scalar exactly once. 1826 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1827 return false; 1828 1829 // The shuffle is placing the inserted scalar into element i. 1830 NewInsIndex = i; 1831 } 1832 1833 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1834 1835 // Index is updated to the potentially translated insertion lane. 1836 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1837 return true; 1838 }; 1839 1840 // If the shuffle is unnecessary, insert the scalar operand directly into 1841 // operand 1 of the shuffle. Example: 1842 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1843 Value *Scalar; 1844 ConstantInt *IndexC; 1845 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1846 return InsertElementInst::Create(V1, Scalar, IndexC); 1847 1848 // Try again after commuting shuffle. Example: 1849 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1850 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1851 std::swap(V0, V1); 1852 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1853 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1854 return InsertElementInst::Create(V1, Scalar, IndexC); 1855 1856 return nullptr; 1857 } 1858 1859 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1860 // Match the operands as identity with padding (also known as concatenation 1861 // with undef) shuffles of the same source type. The backend is expected to 1862 // recreate these concatenations from a shuffle of narrow operands. 1863 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1864 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1865 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1866 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1867 return nullptr; 1868 1869 // We limit this transform to power-of-2 types because we expect that the 1870 // backend can convert the simplified IR patterns to identical nodes as the 1871 // original IR. 1872 // TODO: If we can verify the same behavior for arbitrary types, the 1873 // power-of-2 checks can be removed. 1874 Value *X = Shuffle0->getOperand(0); 1875 Value *Y = Shuffle1->getOperand(0); 1876 if (X->getType() != Y->getType() || 1877 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 1878 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 1879 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 1880 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1881 return nullptr; 1882 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1883 isa<UndefValue>(Shuffle1->getOperand(1)) && 1884 "Unexpected operand for identity shuffle"); 1885 1886 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1887 // operands directly by adjusting the shuffle mask to account for the narrower 1888 // types: 1889 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1890 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 1891 int WideElts = Shuffle0->getType()->getNumElements(); 1892 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1893 1894 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1895 SmallVector<int, 16> NewMask(Mask.size(), -1); 1896 for (int i = 0, e = Mask.size(); i != e; ++i) { 1897 if (Mask[i] == -1) 1898 continue; 1899 1900 // If this shuffle is choosing an undef element from 1 of the sources, that 1901 // element is undef. 1902 if (Mask[i] < WideElts) { 1903 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1904 continue; 1905 } else { 1906 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1907 continue; 1908 } 1909 1910 // If this shuffle is choosing from the 1st narrow op, the mask element is 1911 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1912 // element is offset down to adjust for the narrow vector widths. 1913 if (Mask[i] < WideElts) { 1914 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1915 NewMask[i] = Mask[i]; 1916 } else { 1917 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1918 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 1919 } 1920 } 1921 return new ShuffleVectorInst(X, Y, NewMask); 1922 } 1923 1924 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1925 Value *LHS = SVI.getOperand(0); 1926 Value *RHS = SVI.getOperand(1); 1927 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 1928 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1929 SVI.getType(), ShufQuery)) 1930 return replaceInstUsesWith(SVI, V); 1931 1932 // shuffle x, x, mask --> shuffle x, undef, mask' 1933 unsigned VWidth = SVI.getType()->getNumElements(); 1934 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 1935 ArrayRef<int> Mask = SVI.getShuffleMask(); 1936 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1937 1938 // Peek through a bitcasted shuffle operand by scaling the mask. If the 1939 // simulated shuffle can simplify, then this shuffle is unnecessary: 1940 // shuf (bitcast X), undef, Mask --> bitcast X' 1941 // TODO: This could be extended to allow length-changing shuffles. 1942 // The transform might also be obsoleted if we allowed canonicalization 1943 // of bitcasted shuffles. 1944 Value *X; 1945 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 1946 X->getType()->isVectorTy() && VWidth == LHSWidth) { 1947 // Try to create a scaled mask constant. 1948 auto *XType = cast<VectorType>(X->getType()); 1949 unsigned XNumElts = XType->getNumElements(); 1950 SmallVector<int, 16> ScaledMask; 1951 if (XNumElts >= VWidth) { 1952 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 1953 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 1954 } else { 1955 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 1956 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 1957 ScaledMask.clear(); 1958 } 1959 if (!ScaledMask.empty()) { 1960 // If the shuffled source vector simplifies, cast that value to this 1961 // shuffle's type. 1962 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 1963 ScaledMask, XType, ShufQuery)) 1964 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 1965 } 1966 } 1967 1968 if (LHS == RHS) { 1969 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 1970 // Remap any references to RHS to use LHS. 1971 SmallVector<int, 16> Elts; 1972 for (unsigned i = 0; i != VWidth; ++i) { 1973 // Propagate undef elements or force mask to LHS. 1974 if (Mask[i] < 0) 1975 Elts.push_back(UndefMaskElem); 1976 else 1977 Elts.push_back(Mask[i] % LHSWidth); 1978 } 1979 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 1980 } 1981 1982 // shuffle undef, x, mask --> shuffle x, undef, mask' 1983 if (isa<UndefValue>(LHS)) { 1984 SVI.commute(); 1985 return &SVI; 1986 } 1987 1988 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 1989 return I; 1990 1991 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 1992 return I; 1993 1994 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 1995 return I; 1996 1997 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 1998 return I; 1999 2000 APInt UndefElts(VWidth, 0); 2001 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2002 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2003 if (V != &SVI) 2004 return replaceInstUsesWith(SVI, V); 2005 return &SVI; 2006 } 2007 2008 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2009 return I; 2010 2011 // These transforms have the potential to lose undef knowledge, so they are 2012 // intentionally placed after SimplifyDemandedVectorElts(). 2013 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2014 return I; 2015 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2016 return I; 2017 2018 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2019 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2020 return replaceInstUsesWith(SVI, V); 2021 } 2022 2023 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2024 // a non-vector type. We can instead bitcast the original vector followed by 2025 // an extract of the desired element: 2026 // 2027 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2028 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2029 // %1 = bitcast <4 x i8> %sroa to i32 2030 // Becomes: 2031 // %bc = bitcast <16 x i8> %in to <4 x i32> 2032 // %ext = extractelement <4 x i32> %bc, i32 0 2033 // 2034 // If the shuffle is extracting a contiguous range of values from the input 2035 // vector then each use which is a bitcast of the extracted size can be 2036 // replaced. This will work if the vector types are compatible, and the begin 2037 // index is aligned to a value in the casted vector type. If the begin index 2038 // isn't aligned then we can shuffle the original vector (keeping the same 2039 // vector type) before extracting. 2040 // 2041 // This code will bail out if the target type is fundamentally incompatible 2042 // with vectors of the source type. 2043 // 2044 // Example of <16 x i8>, target type i32: 2045 // Index range [4,8): v-----------v Will work. 2046 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2047 // <16 x i8>: | | | | | | | | | | | | | | | | | 2048 // <4 x i32>: | | | | | 2049 // +-----------+-----------+-----------+-----------+ 2050 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2051 // Target type i40: ^--------------^ Won't work, bail. 2052 bool MadeChange = false; 2053 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2054 Value *V = LHS; 2055 unsigned MaskElems = Mask.size(); 2056 VectorType *SrcTy = cast<VectorType>(V->getType()); 2057 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2058 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2059 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2060 unsigned SrcNumElems = SrcTy->getNumElements(); 2061 SmallVector<BitCastInst *, 8> BCs; 2062 DenseMap<Type *, Value *> NewBCs; 2063 for (User *U : SVI.users()) 2064 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2065 if (!BC->use_empty()) 2066 // Only visit bitcasts that weren't previously handled. 2067 BCs.push_back(BC); 2068 for (BitCastInst *BC : BCs) { 2069 unsigned BegIdx = Mask.front(); 2070 Type *TgtTy = BC->getDestTy(); 2071 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2072 if (!TgtElemBitWidth) 2073 continue; 2074 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2075 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2076 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2077 if (!VecBitWidthsEqual) 2078 continue; 2079 if (!VectorType::isValidElementType(TgtTy)) 2080 continue; 2081 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2082 if (!BegIsAligned) { 2083 // Shuffle the input so [0,NumElements) contains the output, and 2084 // [NumElems,SrcNumElems) is undef. 2085 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2086 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2087 ShuffleMask[I] = Idx; 2088 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2089 ShuffleMask, 2090 SVI.getName() + ".extract"); 2091 BegIdx = 0; 2092 } 2093 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2094 assert(SrcElemsPerTgtElem); 2095 BegIdx /= SrcElemsPerTgtElem; 2096 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2097 auto *NewBC = 2098 BCAlreadyExists 2099 ? NewBCs[CastSrcTy] 2100 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2101 if (!BCAlreadyExists) 2102 NewBCs[CastSrcTy] = NewBC; 2103 auto *Ext = Builder.CreateExtractElement( 2104 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2105 // The shufflevector isn't being replaced: the bitcast that used it 2106 // is. InstCombine will visit the newly-created instructions. 2107 replaceInstUsesWith(*BC, Ext); 2108 MadeChange = true; 2109 } 2110 } 2111 2112 // If the LHS is a shufflevector itself, see if we can combine it with this 2113 // one without producing an unusual shuffle. 2114 // Cases that might be simplified: 2115 // 1. 2116 // x1=shuffle(v1,v2,mask1) 2117 // x=shuffle(x1,undef,mask) 2118 // ==> 2119 // x=shuffle(v1,undef,newMask) 2120 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2121 // 2. 2122 // x1=shuffle(v1,undef,mask1) 2123 // x=shuffle(x1,x2,mask) 2124 // where v1.size() == mask1.size() 2125 // ==> 2126 // x=shuffle(v1,x2,newMask) 2127 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2128 // 3. 2129 // x2=shuffle(v2,undef,mask2) 2130 // x=shuffle(x1,x2,mask) 2131 // where v2.size() == mask2.size() 2132 // ==> 2133 // x=shuffle(x1,v2,newMask) 2134 // newMask[i] = (mask[i] < x1.size()) 2135 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2136 // 4. 2137 // x1=shuffle(v1,undef,mask1) 2138 // x2=shuffle(v2,undef,mask2) 2139 // x=shuffle(x1,x2,mask) 2140 // where v1.size() == v2.size() 2141 // ==> 2142 // x=shuffle(v1,v2,newMask) 2143 // newMask[i] = (mask[i] < x1.size()) 2144 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2145 // 2146 // Here we are really conservative: 2147 // we are absolutely afraid of producing a shuffle mask not in the input 2148 // program, because the code gen may not be smart enough to turn a merged 2149 // shuffle into two specific shuffles: it may produce worse code. As such, 2150 // we only merge two shuffles if the result is either a splat or one of the 2151 // input shuffle masks. In this case, merging the shuffles just removes 2152 // one instruction, which we know is safe. This is good for things like 2153 // turning: (splat(splat)) -> splat, or 2154 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2155 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2156 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2157 if (LHSShuffle) 2158 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2159 LHSShuffle = nullptr; 2160 if (RHSShuffle) 2161 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2162 RHSShuffle = nullptr; 2163 if (!LHSShuffle && !RHSShuffle) 2164 return MadeChange ? &SVI : nullptr; 2165 2166 Value* LHSOp0 = nullptr; 2167 Value* LHSOp1 = nullptr; 2168 Value* RHSOp0 = nullptr; 2169 unsigned LHSOp0Width = 0; 2170 unsigned RHSOp0Width = 0; 2171 if (LHSShuffle) { 2172 LHSOp0 = LHSShuffle->getOperand(0); 2173 LHSOp1 = LHSShuffle->getOperand(1); 2174 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2175 } 2176 if (RHSShuffle) { 2177 RHSOp0 = RHSShuffle->getOperand(0); 2178 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2179 } 2180 Value* newLHS = LHS; 2181 Value* newRHS = RHS; 2182 if (LHSShuffle) { 2183 // case 1 2184 if (isa<UndefValue>(RHS)) { 2185 newLHS = LHSOp0; 2186 newRHS = LHSOp1; 2187 } 2188 // case 2 or 4 2189 else if (LHSOp0Width == LHSWidth) { 2190 newLHS = LHSOp0; 2191 } 2192 } 2193 // case 3 or 4 2194 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2195 newRHS = RHSOp0; 2196 } 2197 // case 4 2198 if (LHSOp0 == RHSOp0) { 2199 newLHS = LHSOp0; 2200 newRHS = nullptr; 2201 } 2202 2203 if (newLHS == LHS && newRHS == RHS) 2204 return MadeChange ? &SVI : nullptr; 2205 2206 ArrayRef<int> LHSMask; 2207 ArrayRef<int> RHSMask; 2208 if (newLHS != LHS) 2209 LHSMask = LHSShuffle->getShuffleMask(); 2210 if (RHSShuffle && newRHS != RHS) 2211 RHSMask = RHSShuffle->getShuffleMask(); 2212 2213 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2214 SmallVector<int, 16> newMask; 2215 bool isSplat = true; 2216 int SplatElt = -1; 2217 // Create a new mask for the new ShuffleVectorInst so that the new 2218 // ShuffleVectorInst is equivalent to the original one. 2219 for (unsigned i = 0; i < VWidth; ++i) { 2220 int eltMask; 2221 if (Mask[i] < 0) { 2222 // This element is an undef value. 2223 eltMask = -1; 2224 } else if (Mask[i] < (int)LHSWidth) { 2225 // This element is from left hand side vector operand. 2226 // 2227 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2228 // new mask value for the element. 2229 if (newLHS != LHS) { 2230 eltMask = LHSMask[Mask[i]]; 2231 // If the value selected is an undef value, explicitly specify it 2232 // with a -1 mask value. 2233 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2234 eltMask = -1; 2235 } else 2236 eltMask = Mask[i]; 2237 } else { 2238 // This element is from right hand side vector operand 2239 // 2240 // If the value selected is an undef value, explicitly specify it 2241 // with a -1 mask value. (case 1) 2242 if (isa<UndefValue>(RHS)) 2243 eltMask = -1; 2244 // If RHS is going to be replaced (case 3 or 4), calculate the 2245 // new mask value for the element. 2246 else if (newRHS != RHS) { 2247 eltMask = RHSMask[Mask[i]-LHSWidth]; 2248 // If the value selected is an undef value, explicitly specify it 2249 // with a -1 mask value. 2250 if (eltMask >= (int)RHSOp0Width) { 2251 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2252 && "should have been check above"); 2253 eltMask = -1; 2254 } 2255 } else 2256 eltMask = Mask[i]-LHSWidth; 2257 2258 // If LHS's width is changed, shift the mask value accordingly. 2259 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2260 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2261 // If newRHS == newLHS, we want to remap any references from newRHS to 2262 // newLHS so that we can properly identify splats that may occur due to 2263 // obfuscation across the two vectors. 2264 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2265 eltMask += newLHSWidth; 2266 } 2267 2268 // Check if this could still be a splat. 2269 if (eltMask >= 0) { 2270 if (SplatElt >= 0 && SplatElt != eltMask) 2271 isSplat = false; 2272 SplatElt = eltMask; 2273 } 2274 2275 newMask.push_back(eltMask); 2276 } 2277 2278 // If the result mask is equal to one of the original shuffle masks, 2279 // or is a splat, do the replacement. 2280 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2281 SmallVector<Constant*, 16> Elts; 2282 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2283 if (newMask[i] < 0) { 2284 Elts.push_back(UndefValue::get(Int32Ty)); 2285 } else { 2286 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2287 } 2288 } 2289 if (!newRHS) 2290 newRHS = UndefValue::get(newLHS->getType()); 2291 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2292 } 2293 2294 return MadeChange ? &SVI : nullptr; 2295 } 2296