1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Return true if the value is cheaper to scalarize than it is to leave as a 26 /// vector operation. isConstant indicates whether we're extracting one known 27 /// element. If false we're extracting a variable index. 28 static bool cheapToScalarize(Value *V, bool isConstant) { 29 if (Constant *C = dyn_cast<Constant>(V)) { 30 if (isConstant) return true; 31 32 // If all elts are the same, we can extract it and use any of the values. 33 if (Constant *Op0 = C->getAggregateElement(0U)) { 34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; 35 ++i) 36 if (C->getAggregateElement(i) != Op0) 37 return false; 38 return true; 39 } 40 } 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (!I) return false; 43 44 // Insert element gets simplified to the inserted element or is deleted if 45 // this is constant idx extract element and its a constant idx insertelt. 46 if (I->getOpcode() == Instruction::InsertElement && isConstant && 47 isa<ConstantInt>(I->getOperand(2))) 48 return true; 49 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 50 return true; 51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 52 if (BO->hasOneUse() && 53 (cheapToScalarize(BO->getOperand(0), isConstant) || 54 cheapToScalarize(BO->getOperand(1), isConstant))) 55 return true; 56 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 57 if (CI->hasOneUse() && 58 (cheapToScalarize(CI->getOperand(0), isConstant) || 59 cheapToScalarize(CI->getOperand(1), isConstant))) 60 return true; 61 62 return false; 63 } 64 65 // If we have a PHI node with a vector type that is only used to feed 66 // itself and be an operand of extractelement at a constant location, 67 // try to replace the PHI of the vector type with a PHI of a scalar type. 68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 69 SmallVector<Instruction *, 2> Extracts; 70 // The users we want the PHI to have are: 71 // 1) The EI ExtractElement (we already know this) 72 // 2) Possibly more ExtractElements with the same index. 73 // 3) Another operand, which will feed back into the PHI. 74 Instruction *PHIUser = nullptr; 75 for (auto U : PN->users()) { 76 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 77 if (EI.getIndexOperand() == EU->getIndexOperand()) 78 Extracts.push_back(EU); 79 else 80 return nullptr; 81 } else if (!PHIUser) { 82 PHIUser = cast<Instruction>(U); 83 } else { 84 return nullptr; 85 } 86 } 87 88 if (!PHIUser) 89 return nullptr; 90 91 // Verify that this PHI user has one use, which is the PHI itself, 92 // and that it is a binary operation which is cheap to scalarize. 93 // otherwise return NULL. 94 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 95 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 96 return nullptr; 97 98 // Create a scalar PHI node that will replace the vector PHI node 99 // just before the current PHI node. 100 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 101 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 102 // Scalarize each PHI operand. 103 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 104 Value *PHIInVal = PN->getIncomingValue(i); 105 BasicBlock *inBB = PN->getIncomingBlock(i); 106 Value *Elt = EI.getIndexOperand(); 107 // If the operand is the PHI induction variable: 108 if (PHIInVal == PHIUser) { 109 // Scalarize the binary operation. Its first operand is the 110 // scalar PHI, and the second operand is extracted from the other 111 // vector operand. 112 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 113 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 114 Value *Op = InsertNewInstWith( 115 ExtractElementInst::Create(B0->getOperand(opId), Elt, 116 B0->getOperand(opId)->getName() + ".Elt"), 117 *B0); 118 Value *newPHIUser = InsertNewInstWith( 119 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 120 scalarPHI, Op, B0), *B0); 121 scalarPHI->addIncoming(newPHIUser, inBB); 122 } else { 123 // Scalarize PHI input: 124 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 125 // Insert the new instruction into the predecessor basic block. 126 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 127 BasicBlock::iterator InsertPos; 128 if (pos && !isa<PHINode>(pos)) { 129 InsertPos = ++pos->getIterator(); 130 } else { 131 InsertPos = inBB->getFirstInsertionPt(); 132 } 133 134 InsertNewInstWith(newEI, *InsertPos); 135 136 scalarPHI->addIncoming(newEI, inBB); 137 } 138 } 139 140 for (auto E : Extracts) 141 replaceInstUsesWith(*E, scalarPHI); 142 143 return &EI; 144 } 145 146 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 147 if (Value *V = SimplifyExtractElementInst( 148 EI.getVectorOperand(), EI.getIndexOperand(), DL, &TLI, &DT, &AC)) 149 return replaceInstUsesWith(EI, V); 150 151 // If vector val is constant with all elements the same, replace EI with 152 // that element. We handle a known element # below. 153 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) 154 if (cheapToScalarize(C, false)) 155 return replaceInstUsesWith(EI, C->getAggregateElement(0U)); 156 157 // If extracting a specified index from the vector, see if we can recursively 158 // find a previously computed scalar that was inserted into the vector. 159 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { 160 unsigned IndexVal = IdxC->getZExtValue(); 161 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); 162 163 // InstSimplify handles cases where the index is invalid. 164 assert(IndexVal < VectorWidth); 165 166 // This instruction only demands the single element from the input vector. 167 // If the input vector has a single use, simplify it based on this use 168 // property. 169 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { 170 APInt UndefElts(VectorWidth, 0); 171 APInt DemandedMask(VectorWidth, 0); 172 DemandedMask.setBit(IndexVal); 173 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, 174 UndefElts)) { 175 EI.setOperand(0, V); 176 return &EI; 177 } 178 } 179 180 // If this extractelement is directly using a bitcast from a vector of 181 // the same number of elements, see if we can find the source element from 182 // it. In this case, we will end up needing to bitcast the scalars. 183 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { 184 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) 185 if (VT->getNumElements() == VectorWidth) 186 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) 187 return new BitCastInst(Elt, EI.getType()); 188 } 189 190 // If there's a vector PHI feeding a scalar use through this extractelement 191 // instruction, try to scalarize the PHI. 192 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { 193 Instruction *scalarPHI = scalarizePHI(EI, PN); 194 if (scalarPHI) 195 return scalarPHI; 196 } 197 } 198 199 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { 200 // Push extractelement into predecessor operation if legal and 201 // profitable to do so. 202 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 203 if (I->hasOneUse() && 204 cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { 205 Value *newEI0 = 206 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), 207 EI.getName()+".lhs"); 208 Value *newEI1 = 209 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), 210 EI.getName()+".rhs"); 211 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), 212 newEI0, newEI1, BO); 213 } 214 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { 215 // Extracting the inserted element? 216 if (IE->getOperand(2) == EI.getOperand(1)) 217 return replaceInstUsesWith(EI, IE->getOperand(1)); 218 // If the inserted and extracted elements are constants, they must not 219 // be the same value, extract from the pre-inserted value instead. 220 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { 221 Worklist.AddValue(EI.getOperand(0)); 222 EI.setOperand(0, IE->getOperand(0)); 223 return &EI; 224 } 225 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 226 // If this is extracting an element from a shufflevector, figure out where 227 // it came from and extract from the appropriate input element instead. 228 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { 229 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 230 Value *Src; 231 unsigned LHSWidth = 232 SVI->getOperand(0)->getType()->getVectorNumElements(); 233 234 if (SrcIdx < 0) 235 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 236 if (SrcIdx < (int)LHSWidth) 237 Src = SVI->getOperand(0); 238 else { 239 SrcIdx -= LHSWidth; 240 Src = SVI->getOperand(1); 241 } 242 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 243 return ExtractElementInst::Create(Src, 244 ConstantInt::get(Int32Ty, 245 SrcIdx, false)); 246 } 247 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 248 // Canonicalize extractelement(cast) -> cast(extractelement). 249 // Bitcasts can change the number of vector elements, and they cost 250 // nothing. 251 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 252 Value *EE = Builder->CreateExtractElement(CI->getOperand(0), 253 EI.getIndexOperand()); 254 Worklist.AddValue(EE); 255 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 256 } 257 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 258 if (SI->hasOneUse()) { 259 // TODO: For a select on vectors, it might be useful to do this if it 260 // has multiple extractelement uses. For vector select, that seems to 261 // fight the vectorizer. 262 263 // If we are extracting an element from a vector select or a select on 264 // vectors, create a select on the scalars extracted from the vector 265 // arguments. 266 Value *TrueVal = SI->getTrueValue(); 267 Value *FalseVal = SI->getFalseValue(); 268 269 Value *Cond = SI->getCondition(); 270 if (Cond->getType()->isVectorTy()) { 271 Cond = Builder->CreateExtractElement(Cond, 272 EI.getIndexOperand(), 273 Cond->getName() + ".elt"); 274 } 275 276 Value *V1Elem 277 = Builder->CreateExtractElement(TrueVal, 278 EI.getIndexOperand(), 279 TrueVal->getName() + ".elt"); 280 281 Value *V2Elem 282 = Builder->CreateExtractElement(FalseVal, 283 EI.getIndexOperand(), 284 FalseVal->getName() + ".elt"); 285 return SelectInst::Create(Cond, 286 V1Elem, 287 V2Elem, 288 SI->getName() + ".elt"); 289 } 290 } 291 } 292 return nullptr; 293 } 294 295 /// If V is a shuffle of values that ONLY returns elements from either LHS or 296 /// RHS, return the shuffle mask and true. Otherwise, return false. 297 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 298 SmallVectorImpl<Constant*> &Mask) { 299 assert(LHS->getType() == RHS->getType() && 300 "Invalid CollectSingleShuffleElements"); 301 unsigned NumElts = V->getType()->getVectorNumElements(); 302 303 if (isa<UndefValue>(V)) { 304 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 305 return true; 306 } 307 308 if (V == LHS) { 309 for (unsigned i = 0; i != NumElts; ++i) 310 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 311 return true; 312 } 313 314 if (V == RHS) { 315 for (unsigned i = 0; i != NumElts; ++i) 316 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 317 i+NumElts)); 318 return true; 319 } 320 321 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 322 // If this is an insert of an extract from some other vector, include it. 323 Value *VecOp = IEI->getOperand(0); 324 Value *ScalarOp = IEI->getOperand(1); 325 Value *IdxOp = IEI->getOperand(2); 326 327 if (!isa<ConstantInt>(IdxOp)) 328 return false; 329 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 330 331 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 332 // We can handle this if the vector we are inserting into is 333 // transitively ok. 334 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 335 // If so, update the mask to reflect the inserted undef. 336 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 337 return true; 338 } 339 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 340 if (isa<ConstantInt>(EI->getOperand(1))) { 341 unsigned ExtractedIdx = 342 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 343 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 344 345 // This must be extracting from either LHS or RHS. 346 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 347 // We can handle this if the vector we are inserting into is 348 // transitively ok. 349 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 350 // If so, update the mask to reflect the inserted value. 351 if (EI->getOperand(0) == LHS) { 352 Mask[InsertedIdx % NumElts] = 353 ConstantInt::get(Type::getInt32Ty(V->getContext()), 354 ExtractedIdx); 355 } else { 356 assert(EI->getOperand(0) == RHS); 357 Mask[InsertedIdx % NumElts] = 358 ConstantInt::get(Type::getInt32Ty(V->getContext()), 359 ExtractedIdx + NumLHSElts); 360 } 361 return true; 362 } 363 } 364 } 365 } 366 } 367 368 return false; 369 } 370 371 /// If we have insertion into a vector that is wider than the vector that we 372 /// are extracting from, try to widen the source vector to allow a single 373 /// shufflevector to replace one or more insert/extract pairs. 374 static void replaceExtractElements(InsertElementInst *InsElt, 375 ExtractElementInst *ExtElt, 376 InstCombiner &IC) { 377 VectorType *InsVecType = InsElt->getType(); 378 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 379 unsigned NumInsElts = InsVecType->getVectorNumElements(); 380 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 381 382 // The inserted-to vector must be wider than the extracted-from vector. 383 if (InsVecType->getElementType() != ExtVecType->getElementType() || 384 NumExtElts >= NumInsElts) 385 return; 386 387 // Create a shuffle mask to widen the extended-from vector using undefined 388 // values. The mask selects all of the values of the original vector followed 389 // by as many undefined values as needed to create a vector of the same length 390 // as the inserted-to vector. 391 SmallVector<Constant *, 16> ExtendMask; 392 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 393 for (unsigned i = 0; i < NumExtElts; ++i) 394 ExtendMask.push_back(ConstantInt::get(IntType, i)); 395 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 396 ExtendMask.push_back(UndefValue::get(IntType)); 397 398 Value *ExtVecOp = ExtElt->getVectorOperand(); 399 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 400 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 401 ? ExtVecOpInst->getParent() 402 : ExtElt->getParent(); 403 404 // TODO: This restriction matches the basic block check below when creating 405 // new extractelement instructions. If that limitation is removed, this one 406 // could also be removed. But for now, we just bail out to ensure that we 407 // will replace the extractelement instruction that is feeding our 408 // insertelement instruction. This allows the insertelement to then be 409 // replaced by a shufflevector. If the insertelement is not replaced, we can 410 // induce infinite looping because there's an optimization for extractelement 411 // that will delete our widening shuffle. This would trigger another attempt 412 // here to create that shuffle, and we spin forever. 413 if (InsertionBlock != InsElt->getParent()) 414 return; 415 416 // TODO: This restriction matches the check in visitInsertElementInst() and 417 // prevents an infinite loop caused by not turning the extract/insert pair 418 // into a shuffle. We really should not need either check, but we're lacking 419 // folds for shufflevectors because we're afraid to generate shuffle masks 420 // that the backend can't handle. 421 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 422 return; 423 424 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 425 ConstantVector::get(ExtendMask)); 426 427 // Insert the new shuffle after the vector operand of the extract is defined 428 // (as long as it's not a PHI) or at the start of the basic block of the 429 // extract, so any subsequent extracts in the same basic block can use it. 430 // TODO: Insert before the earliest ExtractElementInst that is replaced. 431 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 432 WideVec->insertAfter(ExtVecOpInst); 433 else 434 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 435 436 // Replace extracts from the original narrow vector with extracts from the new 437 // wide vector. 438 for (User *U : ExtVecOp->users()) { 439 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 440 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 441 continue; 442 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 443 NewExt->insertAfter(WideVec); 444 IC.replaceInstUsesWith(*OldExt, NewExt); 445 } 446 } 447 448 /// We are building a shuffle to create V, which is a sequence of insertelement, 449 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 450 /// not rely on the second vector source. Return a std::pair containing the 451 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 452 /// parameter as required. 453 /// 454 /// Note: we intentionally don't try to fold earlier shuffles since they have 455 /// often been chosen carefully to be efficiently implementable on the target. 456 typedef std::pair<Value *, Value *> ShuffleOps; 457 458 static ShuffleOps collectShuffleElements(Value *V, 459 SmallVectorImpl<Constant *> &Mask, 460 Value *PermittedRHS, 461 InstCombiner &IC) { 462 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 463 unsigned NumElts = V->getType()->getVectorNumElements(); 464 465 if (isa<UndefValue>(V)) { 466 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 467 return std::make_pair( 468 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 469 } 470 471 if (isa<ConstantAggregateZero>(V)) { 472 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 473 return std::make_pair(V, nullptr); 474 } 475 476 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 477 // If this is an insert of an extract from some other vector, include it. 478 Value *VecOp = IEI->getOperand(0); 479 Value *ScalarOp = IEI->getOperand(1); 480 Value *IdxOp = IEI->getOperand(2); 481 482 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 483 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 484 unsigned ExtractedIdx = 485 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 486 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 487 488 // Either the extracted from or inserted into vector must be RHSVec, 489 // otherwise we'd end up with a shuffle of three inputs. 490 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 491 Value *RHS = EI->getOperand(0); 492 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 493 assert(LR.second == nullptr || LR.second == RHS); 494 495 if (LR.first->getType() != RHS->getType()) { 496 // Although we are giving up for now, see if we can create extracts 497 // that match the inserts for another round of combining. 498 replaceExtractElements(IEI, EI, IC); 499 500 // We tried our best, but we can't find anything compatible with RHS 501 // further up the chain. Return a trivial shuffle. 502 for (unsigned i = 0; i < NumElts; ++i) 503 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 504 return std::make_pair(V, nullptr); 505 } 506 507 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 508 Mask[InsertedIdx % NumElts] = 509 ConstantInt::get(Type::getInt32Ty(V->getContext()), 510 NumLHSElts+ExtractedIdx); 511 return std::make_pair(LR.first, RHS); 512 } 513 514 if (VecOp == PermittedRHS) { 515 // We've gone as far as we can: anything on the other side of the 516 // extractelement will already have been converted into a shuffle. 517 unsigned NumLHSElts = 518 EI->getOperand(0)->getType()->getVectorNumElements(); 519 for (unsigned i = 0; i != NumElts; ++i) 520 Mask.push_back(ConstantInt::get( 521 Type::getInt32Ty(V->getContext()), 522 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 523 return std::make_pair(EI->getOperand(0), PermittedRHS); 524 } 525 526 // If this insertelement is a chain that comes from exactly these two 527 // vectors, return the vector and the effective shuffle. 528 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 529 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 530 Mask)) 531 return std::make_pair(EI->getOperand(0), PermittedRHS); 532 } 533 } 534 } 535 536 // Otherwise, we can't do anything fancy. Return an identity vector. 537 for (unsigned i = 0; i != NumElts; ++i) 538 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 539 return std::make_pair(V, nullptr); 540 } 541 542 /// Try to find redundant insertvalue instructions, like the following ones: 543 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 544 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 545 /// Here the second instruction inserts values at the same indices, as the 546 /// first one, making the first one redundant. 547 /// It should be transformed to: 548 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 549 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 550 bool IsRedundant = false; 551 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 552 553 // If there is a chain of insertvalue instructions (each of them except the 554 // last one has only one use and it's another insertvalue insn from this 555 // chain), check if any of the 'children' uses the same indices as the first 556 // instruction. In this case, the first one is redundant. 557 Value *V = &I; 558 unsigned Depth = 0; 559 while (V->hasOneUse() && Depth < 10) { 560 User *U = V->user_back(); 561 auto UserInsInst = dyn_cast<InsertValueInst>(U); 562 if (!UserInsInst || U->getOperand(0) != V) 563 break; 564 if (UserInsInst->getIndices() == FirstIndices) { 565 IsRedundant = true; 566 break; 567 } 568 V = UserInsInst; 569 Depth++; 570 } 571 572 if (IsRedundant) 573 return replaceInstUsesWith(I, I.getOperand(0)); 574 return nullptr; 575 } 576 577 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 578 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 579 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 580 581 // A vector select does not change the size of the operands. 582 if (MaskSize != VecSize) 583 return false; 584 585 // Each mask element must be undefined or choose a vector element from one of 586 // the source operands without crossing vector lanes. 587 for (int i = 0; i != MaskSize; ++i) { 588 int Elt = Shuf.getMaskValue(i); 589 if (Elt != -1 && Elt != i && Elt != i + VecSize) 590 return false; 591 } 592 593 return true; 594 } 595 596 // Turn a chain of inserts that splats a value into a canonical insert + shuffle 597 // splat. That is: 598 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 599 // shufflevector(insertelt(X, %k, 0), undef, zero) 600 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) { 601 // We are interested in the last insert in a chain. So, if this insert 602 // has a single user, and that user is an insert, bail. 603 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 604 return nullptr; 605 606 VectorType *VT = cast<VectorType>(InsElt.getType()); 607 int NumElements = VT->getNumElements(); 608 609 // Do not try to do this for a one-element vector, since that's a nop, 610 // and will cause an inf-loop. 611 if (NumElements == 1) 612 return nullptr; 613 614 Value *SplatVal = InsElt.getOperand(1); 615 InsertElementInst *CurrIE = &InsElt; 616 SmallVector<bool, 16> ElementPresent(NumElements, false); 617 618 // Walk the chain backwards, keeping track of which indices we inserted into, 619 // until we hit something that isn't an insert of the splatted value. 620 while (CurrIE) { 621 ConstantInt *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 622 if (!Idx || CurrIE->getOperand(1) != SplatVal) 623 return nullptr; 624 625 // Check none of the intermediate steps have any additional uses. 626 if ((CurrIE != &InsElt) && !CurrIE->hasOneUse()) 627 return nullptr; 628 629 ElementPresent[Idx->getZExtValue()] = true; 630 CurrIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 631 } 632 633 // Make sure we've seen an insert into every element. 634 if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; })) 635 return nullptr; 636 637 // All right, create the insert + shuffle. 638 Instruction *InsertFirst = InsertElementInst::Create( 639 UndefValue::get(VT), SplatVal, 640 ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), "", &InsElt); 641 642 Constant *ZeroMask = ConstantAggregateZero::get( 643 VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements)); 644 645 return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask); 646 } 647 648 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 649 /// --> shufflevector X, CVec', Mask' 650 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 651 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 652 // Bail out if the parent has more than one use. In that case, we'd be 653 // replacing the insertelt with a shuffle, and that's not a clear win. 654 if (!Inst || !Inst->hasOneUse()) 655 return nullptr; 656 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 657 // The shuffle must have a constant vector operand. The insertelt must have 658 // a constant scalar being inserted at a constant position in the vector. 659 Constant *ShufConstVec, *InsEltScalar; 660 uint64_t InsEltIndex; 661 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 662 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 663 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 664 return nullptr; 665 666 // Adding an element to an arbitrary shuffle could be expensive, but a 667 // shuffle that selects elements from vectors without crossing lanes is 668 // assumed cheap. 669 // If we're just adding a constant into that shuffle, it will still be 670 // cheap. 671 if (!isShuffleEquivalentToSelect(*Shuf)) 672 return nullptr; 673 674 // From the above 'select' check, we know that the mask has the same number 675 // of elements as the vector input operands. We also know that each constant 676 // input element is used in its lane and can not be used more than once by 677 // the shuffle. Therefore, replace the constant in the shuffle's constant 678 // vector with the insertelt constant. Replace the constant in the shuffle's 679 // mask vector with the insertelt index plus the length of the vector 680 // (because the constant vector operand of a shuffle is always the 2nd 681 // operand). 682 Constant *Mask = Shuf->getMask(); 683 unsigned NumElts = Mask->getType()->getVectorNumElements(); 684 SmallVector<Constant *, 16> NewShufElts(NumElts); 685 SmallVector<Constant *, 16> NewMaskElts(NumElts); 686 for (unsigned I = 0; I != NumElts; ++I) { 687 if (I == InsEltIndex) { 688 NewShufElts[I] = InsEltScalar; 689 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 690 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 691 } else { 692 // Copy over the existing values. 693 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 694 NewMaskElts[I] = Mask->getAggregateElement(I); 695 } 696 } 697 698 // Create new operands for a shuffle that includes the constant of the 699 // original insertelt. The old shuffle will be dead now. 700 return new ShuffleVectorInst(Shuf->getOperand(0), 701 ConstantVector::get(NewShufElts), 702 ConstantVector::get(NewMaskElts)); 703 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 704 // Transform sequences of insertelements ops with constant data/indexes into 705 // a single shuffle op. 706 unsigned NumElts = InsElt.getType()->getNumElements(); 707 708 uint64_t InsertIdx[2]; 709 Constant *Val[2]; 710 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 711 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 712 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 713 !match(IEI->getOperand(1), m_Constant(Val[1]))) 714 return nullptr; 715 SmallVector<Constant *, 16> Values(NumElts); 716 SmallVector<Constant *, 16> Mask(NumElts); 717 auto ValI = std::begin(Val); 718 // Generate new constant vector and mask. 719 // We have 2 values/masks from the insertelements instructions. Insert them 720 // into new value/mask vectors. 721 for (uint64_t I : InsertIdx) { 722 if (!Values[I]) { 723 assert(!Mask[I]); 724 Values[I] = *ValI; 725 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 726 NumElts + I); 727 } 728 ++ValI; 729 } 730 // Remaining values are filled with 'undef' values. 731 for (unsigned I = 0; I < NumElts; ++I) { 732 if (!Values[I]) { 733 assert(!Mask[I]); 734 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 735 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 736 } 737 } 738 // Create new operands for a shuffle that includes the constant of the 739 // original insertelt. 740 return new ShuffleVectorInst(IEI->getOperand(0), 741 ConstantVector::get(Values), 742 ConstantVector::get(Mask)); 743 } 744 return nullptr; 745 } 746 747 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 748 Value *VecOp = IE.getOperand(0); 749 Value *ScalarOp = IE.getOperand(1); 750 Value *IdxOp = IE.getOperand(2); 751 752 // Inserting an undef or into an undefined place, remove this. 753 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 754 replaceInstUsesWith(IE, VecOp); 755 756 // If the inserted element was extracted from some other vector, and if the 757 // indexes are constant, try to turn this into a shufflevector operation. 758 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 759 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 760 unsigned NumInsertVectorElts = IE.getType()->getNumElements(); 761 unsigned NumExtractVectorElts = 762 EI->getOperand(0)->getType()->getVectorNumElements(); 763 unsigned ExtractedIdx = 764 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 765 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 766 767 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. 768 return replaceInstUsesWith(IE, VecOp); 769 770 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. 771 return replaceInstUsesWith(IE, UndefValue::get(IE.getType())); 772 773 // If we are extracting a value from a vector, then inserting it right 774 // back into the same place, just use the input vector. 775 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) 776 return replaceInstUsesWith(IE, VecOp); 777 778 // If this insertelement isn't used by some other insertelement, turn it 779 // (and any insertelements it points to), into one big shuffle. 780 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { 781 SmallVector<Constant*, 16> Mask; 782 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 783 784 // The proposed shuffle may be trivial, in which case we shouldn't 785 // perform the combine. 786 if (LR.first != &IE && LR.second != &IE) { 787 // We now have a shuffle of LHS, RHS, Mask. 788 if (LR.second == nullptr) 789 LR.second = UndefValue::get(LR.first->getType()); 790 return new ShuffleVectorInst(LR.first, LR.second, 791 ConstantVector::get(Mask)); 792 } 793 } 794 } 795 } 796 797 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 798 APInt UndefElts(VWidth, 0); 799 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 800 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 801 if (V != &IE) 802 return replaceInstUsesWith(IE, V); 803 return &IE; 804 } 805 806 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 807 return Shuf; 808 809 // Turn a sequence of inserts that broadcasts a scalar into a single 810 // insert + shufflevector. 811 if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE)) 812 return Broadcast; 813 814 return nullptr; 815 } 816 817 /// Return true if we can evaluate the specified expression tree if the vector 818 /// elements were shuffled in a different order. 819 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, 820 unsigned Depth = 5) { 821 // We can always reorder the elements of a constant. 822 if (isa<Constant>(V)) 823 return true; 824 825 // We won't reorder vector arguments. No IPO here. 826 Instruction *I = dyn_cast<Instruction>(V); 827 if (!I) return false; 828 829 // Two users may expect different orders of the elements. Don't try it. 830 if (!I->hasOneUse()) 831 return false; 832 833 if (Depth == 0) return false; 834 835 switch (I->getOpcode()) { 836 case Instruction::Add: 837 case Instruction::FAdd: 838 case Instruction::Sub: 839 case Instruction::FSub: 840 case Instruction::Mul: 841 case Instruction::FMul: 842 case Instruction::UDiv: 843 case Instruction::SDiv: 844 case Instruction::FDiv: 845 case Instruction::URem: 846 case Instruction::SRem: 847 case Instruction::FRem: 848 case Instruction::Shl: 849 case Instruction::LShr: 850 case Instruction::AShr: 851 case Instruction::And: 852 case Instruction::Or: 853 case Instruction::Xor: 854 case Instruction::ICmp: 855 case Instruction::FCmp: 856 case Instruction::Trunc: 857 case Instruction::ZExt: 858 case Instruction::SExt: 859 case Instruction::FPToUI: 860 case Instruction::FPToSI: 861 case Instruction::UIToFP: 862 case Instruction::SIToFP: 863 case Instruction::FPTrunc: 864 case Instruction::FPExt: 865 case Instruction::GetElementPtr: { 866 for (Value *Operand : I->operands()) { 867 if (!CanEvaluateShuffled(Operand, Mask, Depth-1)) 868 return false; 869 } 870 return true; 871 } 872 case Instruction::InsertElement: { 873 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 874 if (!CI) return false; 875 int ElementNumber = CI->getLimitedValue(); 876 877 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 878 // can't put an element into multiple indices. 879 bool SeenOnce = false; 880 for (int i = 0, e = Mask.size(); i != e; ++i) { 881 if (Mask[i] == ElementNumber) { 882 if (SeenOnce) 883 return false; 884 SeenOnce = true; 885 } 886 } 887 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); 888 } 889 } 890 return false; 891 } 892 893 /// Rebuild a new instruction just like 'I' but with the new operands given. 894 /// In the event of type mismatch, the type of the operands is correct. 895 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 896 // We don't want to use the IRBuilder here because we want the replacement 897 // instructions to appear next to 'I', not the builder's insertion point. 898 switch (I->getOpcode()) { 899 case Instruction::Add: 900 case Instruction::FAdd: 901 case Instruction::Sub: 902 case Instruction::FSub: 903 case Instruction::Mul: 904 case Instruction::FMul: 905 case Instruction::UDiv: 906 case Instruction::SDiv: 907 case Instruction::FDiv: 908 case Instruction::URem: 909 case Instruction::SRem: 910 case Instruction::FRem: 911 case Instruction::Shl: 912 case Instruction::LShr: 913 case Instruction::AShr: 914 case Instruction::And: 915 case Instruction::Or: 916 case Instruction::Xor: { 917 BinaryOperator *BO = cast<BinaryOperator>(I); 918 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 919 BinaryOperator *New = 920 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 921 NewOps[0], NewOps[1], "", BO); 922 if (isa<OverflowingBinaryOperator>(BO)) { 923 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 924 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 925 } 926 if (isa<PossiblyExactOperator>(BO)) { 927 New->setIsExact(BO->isExact()); 928 } 929 if (isa<FPMathOperator>(BO)) 930 New->copyFastMathFlags(I); 931 return New; 932 } 933 case Instruction::ICmp: 934 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 935 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 936 NewOps[0], NewOps[1]); 937 case Instruction::FCmp: 938 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 939 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 940 NewOps[0], NewOps[1]); 941 case Instruction::Trunc: 942 case Instruction::ZExt: 943 case Instruction::SExt: 944 case Instruction::FPToUI: 945 case Instruction::FPToSI: 946 case Instruction::UIToFP: 947 case Instruction::SIToFP: 948 case Instruction::FPTrunc: 949 case Instruction::FPExt: { 950 // It's possible that the mask has a different number of elements from 951 // the original cast. We recompute the destination type to match the mask. 952 Type *DestTy = 953 VectorType::get(I->getType()->getScalarType(), 954 NewOps[0]->getType()->getVectorNumElements()); 955 assert(NewOps.size() == 1 && "cast with #ops != 1"); 956 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 957 "", I); 958 } 959 case Instruction::GetElementPtr: { 960 Value *Ptr = NewOps[0]; 961 ArrayRef<Value*> Idx = NewOps.slice(1); 962 GetElementPtrInst *GEP = GetElementPtrInst::Create( 963 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 964 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 965 return GEP; 966 } 967 } 968 llvm_unreachable("failed to rebuild vector instructions"); 969 } 970 971 Value * 972 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 973 // Mask.size() does not need to be equal to the number of vector elements. 974 975 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 976 if (isa<UndefValue>(V)) { 977 return UndefValue::get(VectorType::get(V->getType()->getScalarType(), 978 Mask.size())); 979 } 980 if (isa<ConstantAggregateZero>(V)) { 981 return ConstantAggregateZero::get( 982 VectorType::get(V->getType()->getScalarType(), 983 Mask.size())); 984 } 985 if (Constant *C = dyn_cast<Constant>(V)) { 986 SmallVector<Constant *, 16> MaskValues; 987 for (int i = 0, e = Mask.size(); i != e; ++i) { 988 if (Mask[i] == -1) 989 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty())); 990 else 991 MaskValues.push_back(Builder->getInt32(Mask[i])); 992 } 993 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 994 ConstantVector::get(MaskValues)); 995 } 996 997 Instruction *I = cast<Instruction>(V); 998 switch (I->getOpcode()) { 999 case Instruction::Add: 1000 case Instruction::FAdd: 1001 case Instruction::Sub: 1002 case Instruction::FSub: 1003 case Instruction::Mul: 1004 case Instruction::FMul: 1005 case Instruction::UDiv: 1006 case Instruction::SDiv: 1007 case Instruction::FDiv: 1008 case Instruction::URem: 1009 case Instruction::SRem: 1010 case Instruction::FRem: 1011 case Instruction::Shl: 1012 case Instruction::LShr: 1013 case Instruction::AShr: 1014 case Instruction::And: 1015 case Instruction::Or: 1016 case Instruction::Xor: 1017 case Instruction::ICmp: 1018 case Instruction::FCmp: 1019 case Instruction::Trunc: 1020 case Instruction::ZExt: 1021 case Instruction::SExt: 1022 case Instruction::FPToUI: 1023 case Instruction::FPToSI: 1024 case Instruction::UIToFP: 1025 case Instruction::SIToFP: 1026 case Instruction::FPTrunc: 1027 case Instruction::FPExt: 1028 case Instruction::Select: 1029 case Instruction::GetElementPtr: { 1030 SmallVector<Value*, 8> NewOps; 1031 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1032 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1033 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); 1034 NewOps.push_back(V); 1035 NeedsRebuild |= (V != I->getOperand(i)); 1036 } 1037 if (NeedsRebuild) { 1038 return buildNew(I, NewOps); 1039 } 1040 return I; 1041 } 1042 case Instruction::InsertElement: { 1043 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1044 1045 // The insertelement was inserting at Element. Figure out which element 1046 // that becomes after shuffling. The answer is guaranteed to be unique 1047 // by CanEvaluateShuffled. 1048 bool Found = false; 1049 int Index = 0; 1050 for (int e = Mask.size(); Index != e; ++Index) { 1051 if (Mask[Index] == Element) { 1052 Found = true; 1053 break; 1054 } 1055 } 1056 1057 // If element is not in Mask, no need to handle the operand 1 (element to 1058 // be inserted). Just evaluate values in operand 0 according to Mask. 1059 if (!Found) 1060 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 1061 1062 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 1063 return InsertElementInst::Create(V, I->getOperand(1), 1064 Builder->getInt32(Index), "", I); 1065 } 1066 } 1067 llvm_unreachable("failed to reorder elements of vector instruction!"); 1068 } 1069 1070 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 1071 bool &isLHSID, bool &isRHSID) { 1072 isLHSID = isRHSID = true; 1073 1074 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1075 if (Mask[i] < 0) continue; // Ignore undef values. 1076 // Is this an identity shuffle of the LHS value? 1077 isLHSID &= (Mask[i] == (int)i); 1078 1079 // Is this an identity shuffle of the RHS value? 1080 isRHSID &= (Mask[i]-e == i); 1081 } 1082 } 1083 1084 // Returns true if the shuffle is extracting a contiguous range of values from 1085 // LHS, for example: 1086 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1087 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1088 // Shuffles to: |EE|FF|GG|HH| 1089 // +--+--+--+--+ 1090 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1091 SmallVector<int, 16> &Mask) { 1092 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1093 unsigned MaskElems = Mask.size(); 1094 unsigned BegIdx = Mask.front(); 1095 unsigned EndIdx = Mask.back(); 1096 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1097 return false; 1098 for (unsigned I = 0; I != MaskElems; ++I) 1099 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1100 return false; 1101 return true; 1102 } 1103 1104 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1105 Value *LHS = SVI.getOperand(0); 1106 Value *RHS = SVI.getOperand(1); 1107 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1108 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1109 1110 bool MadeChange = false; 1111 1112 // Undefined shuffle mask -> undefined value. 1113 if (isa<UndefValue>(SVI.getOperand(2))) 1114 return replaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); 1115 1116 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1117 1118 APInt UndefElts(VWidth, 0); 1119 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1120 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1121 if (V != &SVI) 1122 return replaceInstUsesWith(SVI, V); 1123 LHS = SVI.getOperand(0); 1124 RHS = SVI.getOperand(1); 1125 MadeChange = true; 1126 } 1127 1128 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1129 1130 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 1131 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 1132 if (LHS == RHS || isa<UndefValue>(LHS)) { 1133 if (isa<UndefValue>(LHS) && LHS == RHS) { 1134 // shuffle(undef,undef,mask) -> undef. 1135 Value *Result = (VWidth == LHSWidth) 1136 ? LHS : UndefValue::get(SVI.getType()); 1137 return replaceInstUsesWith(SVI, Result); 1138 } 1139 1140 // Remap any references to RHS to use LHS. 1141 SmallVector<Constant*, 16> Elts; 1142 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 1143 if (Mask[i] < 0) { 1144 Elts.push_back(UndefValue::get(Int32Ty)); 1145 continue; 1146 } 1147 1148 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 1149 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 1150 Mask[i] = -1; // Turn into undef. 1151 Elts.push_back(UndefValue::get(Int32Ty)); 1152 } else { 1153 Mask[i] = Mask[i] % e; // Force to LHS. 1154 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 1155 } 1156 } 1157 SVI.setOperand(0, SVI.getOperand(1)); 1158 SVI.setOperand(1, UndefValue::get(RHS->getType())); 1159 SVI.setOperand(2, ConstantVector::get(Elts)); 1160 LHS = SVI.getOperand(0); 1161 RHS = SVI.getOperand(1); 1162 MadeChange = true; 1163 } 1164 1165 if (VWidth == LHSWidth) { 1166 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 1167 bool isLHSID, isRHSID; 1168 recognizeIdentityMask(Mask, isLHSID, isRHSID); 1169 1170 // Eliminate identity shuffles. 1171 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 1172 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 1173 } 1174 1175 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { 1176 Value *V = EvaluateInDifferentElementOrder(LHS, Mask); 1177 return replaceInstUsesWith(SVI, V); 1178 } 1179 1180 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1181 // a non-vector type. We can instead bitcast the original vector followed by 1182 // an extract of the desired element: 1183 // 1184 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1185 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1186 // %1 = bitcast <4 x i8> %sroa to i32 1187 // Becomes: 1188 // %bc = bitcast <16 x i8> %in to <4 x i32> 1189 // %ext = extractelement <4 x i32> %bc, i32 0 1190 // 1191 // If the shuffle is extracting a contiguous range of values from the input 1192 // vector then each use which is a bitcast of the extracted size can be 1193 // replaced. This will work if the vector types are compatible, and the begin 1194 // index is aligned to a value in the casted vector type. If the begin index 1195 // isn't aligned then we can shuffle the original vector (keeping the same 1196 // vector type) before extracting. 1197 // 1198 // This code will bail out if the target type is fundamentally incompatible 1199 // with vectors of the source type. 1200 // 1201 // Example of <16 x i8>, target type i32: 1202 // Index range [4,8): v-----------v Will work. 1203 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1204 // <16 x i8>: | | | | | | | | | | | | | | | | | 1205 // <4 x i32>: | | | | | 1206 // +-----------+-----------+-----------+-----------+ 1207 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1208 // Target type i40: ^--------------^ Won't work, bail. 1209 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1210 Value *V = LHS; 1211 unsigned MaskElems = Mask.size(); 1212 unsigned BegIdx = Mask.front(); 1213 VectorType *SrcTy = cast<VectorType>(V->getType()); 1214 unsigned VecBitWidth = SrcTy->getBitWidth(); 1215 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1216 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1217 unsigned SrcNumElems = SrcTy->getNumElements(); 1218 SmallVector<BitCastInst *, 8> BCs; 1219 DenseMap<Type *, Value *> NewBCs; 1220 for (User *U : SVI.users()) 1221 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1222 if (!BC->use_empty()) 1223 // Only visit bitcasts that weren't previously handled. 1224 BCs.push_back(BC); 1225 for (BitCastInst *BC : BCs) { 1226 Type *TgtTy = BC->getDestTy(); 1227 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 1228 if (!TgtElemBitWidth) 1229 continue; 1230 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 1231 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 1232 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 1233 if (!VecBitWidthsEqual) 1234 continue; 1235 if (!VectorType::isValidElementType(TgtTy)) 1236 continue; 1237 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 1238 if (!BegIsAligned) { 1239 // Shuffle the input so [0,NumElements) contains the output, and 1240 // [NumElems,SrcNumElems) is undef. 1241 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 1242 UndefValue::get(Int32Ty)); 1243 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 1244 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 1245 V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()), 1246 ConstantVector::get(ShuffleMask), 1247 SVI.getName() + ".extract"); 1248 BegIdx = 0; 1249 } 1250 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 1251 assert(SrcElemsPerTgtElem); 1252 BegIdx /= SrcElemsPerTgtElem; 1253 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 1254 auto *NewBC = 1255 BCAlreadyExists 1256 ? NewBCs[CastSrcTy] 1257 : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 1258 if (!BCAlreadyExists) 1259 NewBCs[CastSrcTy] = NewBC; 1260 auto *Ext = Builder->CreateExtractElement( 1261 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 1262 // The shufflevector isn't being replaced: the bitcast that used it 1263 // is. InstCombine will visit the newly-created instructions. 1264 replaceInstUsesWith(*BC, Ext); 1265 MadeChange = true; 1266 } 1267 } 1268 1269 // If the LHS is a shufflevector itself, see if we can combine it with this 1270 // one without producing an unusual shuffle. 1271 // Cases that might be simplified: 1272 // 1. 1273 // x1=shuffle(v1,v2,mask1) 1274 // x=shuffle(x1,undef,mask) 1275 // ==> 1276 // x=shuffle(v1,undef,newMask) 1277 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1278 // 2. 1279 // x1=shuffle(v1,undef,mask1) 1280 // x=shuffle(x1,x2,mask) 1281 // where v1.size() == mask1.size() 1282 // ==> 1283 // x=shuffle(v1,x2,newMask) 1284 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1285 // 3. 1286 // x2=shuffle(v2,undef,mask2) 1287 // x=shuffle(x1,x2,mask) 1288 // where v2.size() == mask2.size() 1289 // ==> 1290 // x=shuffle(x1,v2,newMask) 1291 // newMask[i] = (mask[i] < x1.size()) 1292 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1293 // 4. 1294 // x1=shuffle(v1,undef,mask1) 1295 // x2=shuffle(v2,undef,mask2) 1296 // x=shuffle(x1,x2,mask) 1297 // where v1.size() == v2.size() 1298 // ==> 1299 // x=shuffle(v1,v2,newMask) 1300 // newMask[i] = (mask[i] < x1.size()) 1301 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1302 // 1303 // Here we are really conservative: 1304 // we are absolutely afraid of producing a shuffle mask not in the input 1305 // program, because the code gen may not be smart enough to turn a merged 1306 // shuffle into two specific shuffles: it may produce worse code. As such, 1307 // we only merge two shuffles if the result is either a splat or one of the 1308 // input shuffle masks. In this case, merging the shuffles just removes 1309 // one instruction, which we know is safe. This is good for things like 1310 // turning: (splat(splat)) -> splat, or 1311 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1312 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1313 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1314 if (LHSShuffle) 1315 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1316 LHSShuffle = nullptr; 1317 if (RHSShuffle) 1318 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1319 RHSShuffle = nullptr; 1320 if (!LHSShuffle && !RHSShuffle) 1321 return MadeChange ? &SVI : nullptr; 1322 1323 Value* LHSOp0 = nullptr; 1324 Value* LHSOp1 = nullptr; 1325 Value* RHSOp0 = nullptr; 1326 unsigned LHSOp0Width = 0; 1327 unsigned RHSOp0Width = 0; 1328 if (LHSShuffle) { 1329 LHSOp0 = LHSShuffle->getOperand(0); 1330 LHSOp1 = LHSShuffle->getOperand(1); 1331 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 1332 } 1333 if (RHSShuffle) { 1334 RHSOp0 = RHSShuffle->getOperand(0); 1335 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 1336 } 1337 Value* newLHS = LHS; 1338 Value* newRHS = RHS; 1339 if (LHSShuffle) { 1340 // case 1 1341 if (isa<UndefValue>(RHS)) { 1342 newLHS = LHSOp0; 1343 newRHS = LHSOp1; 1344 } 1345 // case 2 or 4 1346 else if (LHSOp0Width == LHSWidth) { 1347 newLHS = LHSOp0; 1348 } 1349 } 1350 // case 3 or 4 1351 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1352 newRHS = RHSOp0; 1353 } 1354 // case 4 1355 if (LHSOp0 == RHSOp0) { 1356 newLHS = LHSOp0; 1357 newRHS = nullptr; 1358 } 1359 1360 if (newLHS == LHS && newRHS == RHS) 1361 return MadeChange ? &SVI : nullptr; 1362 1363 SmallVector<int, 16> LHSMask; 1364 SmallVector<int, 16> RHSMask; 1365 if (newLHS != LHS) 1366 LHSMask = LHSShuffle->getShuffleMask(); 1367 if (RHSShuffle && newRHS != RHS) 1368 RHSMask = RHSShuffle->getShuffleMask(); 1369 1370 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1371 SmallVector<int, 16> newMask; 1372 bool isSplat = true; 1373 int SplatElt = -1; 1374 // Create a new mask for the new ShuffleVectorInst so that the new 1375 // ShuffleVectorInst is equivalent to the original one. 1376 for (unsigned i = 0; i < VWidth; ++i) { 1377 int eltMask; 1378 if (Mask[i] < 0) { 1379 // This element is an undef value. 1380 eltMask = -1; 1381 } else if (Mask[i] < (int)LHSWidth) { 1382 // This element is from left hand side vector operand. 1383 // 1384 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1385 // new mask value for the element. 1386 if (newLHS != LHS) { 1387 eltMask = LHSMask[Mask[i]]; 1388 // If the value selected is an undef value, explicitly specify it 1389 // with a -1 mask value. 1390 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1391 eltMask = -1; 1392 } else 1393 eltMask = Mask[i]; 1394 } else { 1395 // This element is from right hand side vector operand 1396 // 1397 // If the value selected is an undef value, explicitly specify it 1398 // with a -1 mask value. (case 1) 1399 if (isa<UndefValue>(RHS)) 1400 eltMask = -1; 1401 // If RHS is going to be replaced (case 3 or 4), calculate the 1402 // new mask value for the element. 1403 else if (newRHS != RHS) { 1404 eltMask = RHSMask[Mask[i]-LHSWidth]; 1405 // If the value selected is an undef value, explicitly specify it 1406 // with a -1 mask value. 1407 if (eltMask >= (int)RHSOp0Width) { 1408 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1409 && "should have been check above"); 1410 eltMask = -1; 1411 } 1412 } else 1413 eltMask = Mask[i]-LHSWidth; 1414 1415 // If LHS's width is changed, shift the mask value accordingly. 1416 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any 1417 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1418 // If newRHS == newLHS, we want to remap any references from newRHS to 1419 // newLHS so that we can properly identify splats that may occur due to 1420 // obfuscation across the two vectors. 1421 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1422 eltMask += newLHSWidth; 1423 } 1424 1425 // Check if this could still be a splat. 1426 if (eltMask >= 0) { 1427 if (SplatElt >= 0 && SplatElt != eltMask) 1428 isSplat = false; 1429 SplatElt = eltMask; 1430 } 1431 1432 newMask.push_back(eltMask); 1433 } 1434 1435 // If the result mask is equal to one of the original shuffle masks, 1436 // or is a splat, do the replacement. 1437 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 1438 SmallVector<Constant*, 16> Elts; 1439 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1440 if (newMask[i] < 0) { 1441 Elts.push_back(UndefValue::get(Int32Ty)); 1442 } else { 1443 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1444 } 1445 } 1446 if (!newRHS) 1447 newRHS = UndefValue::get(newLHS->getType()); 1448 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1449 } 1450 1451 // If the result mask is an identity, replace uses of this instruction with 1452 // corresponding argument. 1453 bool isLHSID, isRHSID; 1454 recognizeIdentityMask(newMask, isLHSID, isRHSID); 1455 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); 1456 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); 1457 1458 return MadeChange ? &SVI : nullptr; 1459 } 1460