1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/User.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <iterator> 40 #include <utility> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "instcombine" 46 47 /// Return true if the value is cheaper to scalarize than it is to leave as a 48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 49 /// one known element from a vector constant. 50 /// 51 /// FIXME: It's possible to create more instructions than previously existed. 52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 53 // If we can pick a scalar constant value out of a vector, that is free. 54 if (auto *C = dyn_cast<Constant>(V)) 55 return IsConstantExtractIndex || C->getSplatValue(); 56 57 // An insertelement to the same constant index as our extract will simplify 58 // to the scalar inserted element. An insertelement to a different constant 59 // index is irrelevant to our extract. 60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 61 return IsConstantExtractIndex; 62 63 if (match(V, m_OneUse(m_Load(m_Value())))) 64 return true; 65 66 Value *V0, *V1; 67 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 68 if (cheapToScalarize(V0, IsConstantExtractIndex) || 69 cheapToScalarize(V1, IsConstantExtractIndex)) 70 return true; 71 72 CmpInst::Predicate UnusedPred; 73 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 74 if (cheapToScalarize(V0, IsConstantExtractIndex) || 75 cheapToScalarize(V1, IsConstantExtractIndex)) 76 return true; 77 78 return false; 79 } 80 81 // If we have a PHI node with a vector type that is only used to feed 82 // itself and be an operand of extractelement at a constant location, 83 // try to replace the PHI of the vector type with a PHI of a scalar type. 84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 85 SmallVector<Instruction *, 2> Extracts; 86 // The users we want the PHI to have are: 87 // 1) The EI ExtractElement (we already know this) 88 // 2) Possibly more ExtractElements with the same index. 89 // 3) Another operand, which will feed back into the PHI. 90 Instruction *PHIUser = nullptr; 91 for (auto U : PN->users()) { 92 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 93 if (EI.getIndexOperand() == EU->getIndexOperand()) 94 Extracts.push_back(EU); 95 else 96 return nullptr; 97 } else if (!PHIUser) { 98 PHIUser = cast<Instruction>(U); 99 } else { 100 return nullptr; 101 } 102 } 103 104 if (!PHIUser) 105 return nullptr; 106 107 // Verify that this PHI user has one use, which is the PHI itself, 108 // and that it is a binary operation which is cheap to scalarize. 109 // otherwise return nullptr. 110 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 111 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 112 return nullptr; 113 114 // Create a scalar PHI node that will replace the vector PHI node 115 // just before the current PHI node. 116 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 117 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 118 // Scalarize each PHI operand. 119 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 120 Value *PHIInVal = PN->getIncomingValue(i); 121 BasicBlock *inBB = PN->getIncomingBlock(i); 122 Value *Elt = EI.getIndexOperand(); 123 // If the operand is the PHI induction variable: 124 if (PHIInVal == PHIUser) { 125 // Scalarize the binary operation. Its first operand is the 126 // scalar PHI, and the second operand is extracted from the other 127 // vector operand. 128 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 129 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 130 Value *Op = InsertNewInstWith( 131 ExtractElementInst::Create(B0->getOperand(opId), Elt, 132 B0->getOperand(opId)->getName() + ".Elt"), 133 *B0); 134 Value *newPHIUser = InsertNewInstWith( 135 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 136 scalarPHI, Op, B0), *B0); 137 scalarPHI->addIncoming(newPHIUser, inBB); 138 } else { 139 // Scalarize PHI input: 140 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 141 // Insert the new instruction into the predecessor basic block. 142 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 143 BasicBlock::iterator InsertPos; 144 if (pos && !isa<PHINode>(pos)) { 145 InsertPos = ++pos->getIterator(); 146 } else { 147 InsertPos = inBB->getFirstInsertionPt(); 148 } 149 150 InsertNewInstWith(newEI, *InsertPos); 151 152 scalarPHI->addIncoming(newEI, inBB); 153 } 154 } 155 156 for (auto E : Extracts) 157 replaceInstUsesWith(*E, scalarPHI); 158 159 return &EI; 160 } 161 162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 163 InstCombiner::BuilderTy &Builder, 164 bool IsBigEndian) { 165 Value *X; 166 uint64_t ExtIndexC; 167 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 168 !X->getType()->isVectorTy() || 169 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 170 return nullptr; 171 172 // If this extractelement is using a bitcast from a vector of the same number 173 // of elements, see if we can find the source element from the source vector: 174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 175 Type *SrcTy = X->getType(); 176 Type *DestTy = Ext.getType(); 177 unsigned NumSrcElts = SrcTy->getVectorNumElements(); 178 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 179 if (NumSrcElts == NumElts) 180 if (Value *Elt = findScalarElement(X, ExtIndexC)) 181 return new BitCastInst(Elt, DestTy); 182 183 // If the source elements are wider than the destination, try to shift and 184 // truncate a subset of scalar bits of an insert op. 185 if (NumSrcElts < NumElts) { 186 Value *Scalar; 187 uint64_t InsIndexC; 188 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 189 m_ConstantInt(InsIndexC)))) 190 return nullptr; 191 192 // The extract must be from the subset of vector elements that we inserted 193 // into. Example: if we inserted element 1 of a <2 x i64> and we are 194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 195 // of elements 4-7 of the bitcasted vector. 196 unsigned NarrowingRatio = NumElts / NumSrcElts; 197 if (ExtIndexC / NarrowingRatio != InsIndexC) 198 return nullptr; 199 200 // We are extracting part of the original scalar. How that scalar is 201 // inserted into the vector depends on the endian-ness. Example: 202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 203 // +--+--+--+--+--+--+--+--+ 204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 205 // extelt <4 x i16> V', 3: | |S2|S3| 206 // +--+--+--+--+--+--+--+--+ 207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 209 // In this example, we must right-shift little-endian. Big-endian is just a 210 // truncate. 211 unsigned Chunk = ExtIndexC % NarrowingRatio; 212 if (IsBigEndian) 213 Chunk = NarrowingRatio - 1 - Chunk; 214 215 // Bail out if this is an FP vector to FP vector sequence. That would take 216 // more instructions than we started with unless there is no shift, and it 217 // may not be handled as well in the backend. 218 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 219 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 220 if (NeedSrcBitcast && NeedDestBitcast) 221 return nullptr; 222 223 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 224 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 225 unsigned ShAmt = Chunk * DestWidth; 226 227 // TODO: This limitation is more strict than necessary. We could sum the 228 // number of new instructions and subtract the number eliminated to know if 229 // we can proceed. 230 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 231 if (NeedSrcBitcast || NeedDestBitcast) 232 return nullptr; 233 234 if (NeedSrcBitcast) { 235 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 236 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 237 } 238 239 if (ShAmt) { 240 // Bail out if we could end with more instructions than we started with. 241 if (!Ext.getVectorOperand()->hasOneUse()) 242 return nullptr; 243 Scalar = Builder.CreateLShr(Scalar, ShAmt); 244 } 245 246 if (NeedDestBitcast) { 247 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 248 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 249 } 250 return new TruncInst(Scalar, DestTy); 251 } 252 253 return nullptr; 254 } 255 256 /// Find elements of V demanded by UserInstr. 257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 258 unsigned VWidth = V->getType()->getVectorNumElements(); 259 260 // Conservatively assume that all elements are needed. 261 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 262 263 switch (UserInstr->getOpcode()) { 264 case Instruction::ExtractElement: { 265 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 266 assert(EEI->getVectorOperand() == V); 267 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 268 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 269 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 270 } 271 break; 272 } 273 case Instruction::ShuffleVector: { 274 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 275 unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements(); 276 277 UsedElts = APInt(VWidth, 0); 278 for (unsigned i = 0; i < MaskNumElts; i++) { 279 unsigned MaskVal = Shuffle->getMaskValue(i); 280 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 281 continue; 282 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 283 UsedElts.setBit(MaskVal); 284 if (Shuffle->getOperand(1) == V && 285 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 286 UsedElts.setBit(MaskVal - VWidth); 287 } 288 break; 289 } 290 default: 291 break; 292 } 293 return UsedElts; 294 } 295 296 /// Find union of elements of V demanded by all its users. 297 /// If it is known by querying findDemandedEltsBySingleUser that 298 /// no user demands an element of V, then the corresponding bit 299 /// remains unset in the returned value. 300 static APInt findDemandedEltsByAllUsers(Value *V) { 301 unsigned VWidth = V->getType()->getVectorNumElements(); 302 303 APInt UnionUsedElts(VWidth, 0); 304 for (const Use &U : V->uses()) { 305 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 306 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 307 } else { 308 UnionUsedElts = APInt::getAllOnesValue(VWidth); 309 break; 310 } 311 312 if (UnionUsedElts.isAllOnesValue()) 313 break; 314 } 315 316 return UnionUsedElts; 317 } 318 319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 320 Value *SrcVec = EI.getVectorOperand(); 321 Value *Index = EI.getIndexOperand(); 322 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 323 SQ.getWithInstruction(&EI))) 324 return replaceInstUsesWith(EI, V); 325 326 // If extracting a specified index from the vector, see if we can recursively 327 // find a previously computed scalar that was inserted into the vector. 328 auto *IndexC = dyn_cast<ConstantInt>(Index); 329 if (IndexC) { 330 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 331 332 // InstSimplify should handle cases where the index is invalid. 333 if (!IndexC->getValue().ule(NumElts)) 334 return nullptr; 335 336 // This instruction only demands the single element from the input vector. 337 if (NumElts != 1) { 338 // If the input vector has a single use, simplify it based on this use 339 // property. 340 if (SrcVec->hasOneUse()) { 341 APInt UndefElts(NumElts, 0); 342 APInt DemandedElts(NumElts, 0); 343 DemandedElts.setBit(IndexC->getZExtValue()); 344 if (Value *V = 345 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) { 346 EI.setOperand(0, V); 347 return &EI; 348 } 349 } else { 350 // If the input vector has multiple uses, simplify it based on a union 351 // of all elements used. 352 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 353 if (!DemandedElts.isAllOnesValue()) { 354 APInt UndefElts(NumElts, 0); 355 if (Value *V = SimplifyDemandedVectorElts( 356 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 357 true /* AllowMultipleUsers */)) { 358 if (V != SrcVec) { 359 SrcVec->replaceAllUsesWith(V); 360 return &EI; 361 } 362 } 363 } 364 } 365 } 366 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 367 return I; 368 369 // If there's a vector PHI feeding a scalar use through this extractelement 370 // instruction, try to scalarize the PHI. 371 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 372 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 373 return ScalarPHI; 374 } 375 376 BinaryOperator *BO; 377 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 378 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 379 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 380 Value *E0 = Builder.CreateExtractElement(X, Index); 381 Value *E1 = Builder.CreateExtractElement(Y, Index); 382 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 383 } 384 385 Value *X, *Y; 386 CmpInst::Predicate Pred; 387 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 388 cheapToScalarize(SrcVec, IndexC)) { 389 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 390 Value *E0 = Builder.CreateExtractElement(X, Index); 391 Value *E1 = Builder.CreateExtractElement(Y, Index); 392 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 393 } 394 395 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 396 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 397 // Extracting the inserted element? 398 if (IE->getOperand(2) == Index) 399 return replaceInstUsesWith(EI, IE->getOperand(1)); 400 // If the inserted and extracted elements are constants, they must not 401 // be the same value, extract from the pre-inserted value instead. 402 if (isa<Constant>(IE->getOperand(2)) && IndexC) { 403 Worklist.AddValue(SrcVec); 404 EI.setOperand(0, IE->getOperand(0)); 405 return &EI; 406 } 407 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 408 // If this is extracting an element from a shufflevector, figure out where 409 // it came from and extract from the appropriate input element instead. 410 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 411 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 412 Value *Src; 413 unsigned LHSWidth = 414 SVI->getOperand(0)->getType()->getVectorNumElements(); 415 416 if (SrcIdx < 0) 417 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 418 if (SrcIdx < (int)LHSWidth) 419 Src = SVI->getOperand(0); 420 else { 421 SrcIdx -= LHSWidth; 422 Src = SVI->getOperand(1); 423 } 424 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 425 return ExtractElementInst::Create(Src, 426 ConstantInt::get(Int32Ty, 427 SrcIdx, false)); 428 } 429 } else if (auto *CI = dyn_cast<CastInst>(I)) { 430 // Canonicalize extractelement(cast) -> cast(extractelement). 431 // Bitcasts can change the number of vector elements, and they cost 432 // nothing. 433 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 434 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 435 Worklist.AddValue(EE); 436 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 437 } 438 439 // If the input is a bitcast from x86_mmx, turn into a single bitcast from 440 // the mmx type to the scalar type. 441 if (CI->getOpcode() == Instruction::BitCast && 442 EI.getVectorOperandType()->getNumElements() == 1 && 443 CI->getOperand(0)->getType()->isX86_MMXTy()) 444 return new BitCastInst(CI->getOperand(0), EI.getType()); 445 } 446 } 447 return nullptr; 448 } 449 450 /// If V is a shuffle of values that ONLY returns elements from either LHS or 451 /// RHS, return the shuffle mask and true. Otherwise, return false. 452 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 453 SmallVectorImpl<Constant*> &Mask) { 454 assert(LHS->getType() == RHS->getType() && 455 "Invalid CollectSingleShuffleElements"); 456 unsigned NumElts = V->getType()->getVectorNumElements(); 457 458 if (isa<UndefValue>(V)) { 459 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 460 return true; 461 } 462 463 if (V == LHS) { 464 for (unsigned i = 0; i != NumElts; ++i) 465 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 466 return true; 467 } 468 469 if (V == RHS) { 470 for (unsigned i = 0; i != NumElts; ++i) 471 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 472 i+NumElts)); 473 return true; 474 } 475 476 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 477 // If this is an insert of an extract from some other vector, include it. 478 Value *VecOp = IEI->getOperand(0); 479 Value *ScalarOp = IEI->getOperand(1); 480 Value *IdxOp = IEI->getOperand(2); 481 482 if (!isa<ConstantInt>(IdxOp)) 483 return false; 484 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 485 486 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 487 // We can handle this if the vector we are inserting into is 488 // transitively ok. 489 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 490 // If so, update the mask to reflect the inserted undef. 491 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 492 return true; 493 } 494 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 495 if (isa<ConstantInt>(EI->getOperand(1))) { 496 unsigned ExtractedIdx = 497 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 498 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 499 500 // This must be extracting from either LHS or RHS. 501 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 502 // We can handle this if the vector we are inserting into is 503 // transitively ok. 504 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 505 // If so, update the mask to reflect the inserted value. 506 if (EI->getOperand(0) == LHS) { 507 Mask[InsertedIdx % NumElts] = 508 ConstantInt::get(Type::getInt32Ty(V->getContext()), 509 ExtractedIdx); 510 } else { 511 assert(EI->getOperand(0) == RHS); 512 Mask[InsertedIdx % NumElts] = 513 ConstantInt::get(Type::getInt32Ty(V->getContext()), 514 ExtractedIdx + NumLHSElts); 515 } 516 return true; 517 } 518 } 519 } 520 } 521 } 522 523 return false; 524 } 525 526 /// If we have insertion into a vector that is wider than the vector that we 527 /// are extracting from, try to widen the source vector to allow a single 528 /// shufflevector to replace one or more insert/extract pairs. 529 static void replaceExtractElements(InsertElementInst *InsElt, 530 ExtractElementInst *ExtElt, 531 InstCombiner &IC) { 532 VectorType *InsVecType = InsElt->getType(); 533 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 534 unsigned NumInsElts = InsVecType->getVectorNumElements(); 535 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 536 537 // The inserted-to vector must be wider than the extracted-from vector. 538 if (InsVecType->getElementType() != ExtVecType->getElementType() || 539 NumExtElts >= NumInsElts) 540 return; 541 542 // Create a shuffle mask to widen the extended-from vector using undefined 543 // values. The mask selects all of the values of the original vector followed 544 // by as many undefined values as needed to create a vector of the same length 545 // as the inserted-to vector. 546 SmallVector<Constant *, 16> ExtendMask; 547 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 548 for (unsigned i = 0; i < NumExtElts; ++i) 549 ExtendMask.push_back(ConstantInt::get(IntType, i)); 550 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 551 ExtendMask.push_back(UndefValue::get(IntType)); 552 553 Value *ExtVecOp = ExtElt->getVectorOperand(); 554 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 555 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 556 ? ExtVecOpInst->getParent() 557 : ExtElt->getParent(); 558 559 // TODO: This restriction matches the basic block check below when creating 560 // new extractelement instructions. If that limitation is removed, this one 561 // could also be removed. But for now, we just bail out to ensure that we 562 // will replace the extractelement instruction that is feeding our 563 // insertelement instruction. This allows the insertelement to then be 564 // replaced by a shufflevector. If the insertelement is not replaced, we can 565 // induce infinite looping because there's an optimization for extractelement 566 // that will delete our widening shuffle. This would trigger another attempt 567 // here to create that shuffle, and we spin forever. 568 if (InsertionBlock != InsElt->getParent()) 569 return; 570 571 // TODO: This restriction matches the check in visitInsertElementInst() and 572 // prevents an infinite loop caused by not turning the extract/insert pair 573 // into a shuffle. We really should not need either check, but we're lacking 574 // folds for shufflevectors because we're afraid to generate shuffle masks 575 // that the backend can't handle. 576 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 577 return; 578 579 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 580 ConstantVector::get(ExtendMask)); 581 582 // Insert the new shuffle after the vector operand of the extract is defined 583 // (as long as it's not a PHI) or at the start of the basic block of the 584 // extract, so any subsequent extracts in the same basic block can use it. 585 // TODO: Insert before the earliest ExtractElementInst that is replaced. 586 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 587 WideVec->insertAfter(ExtVecOpInst); 588 else 589 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 590 591 // Replace extracts from the original narrow vector with extracts from the new 592 // wide vector. 593 for (User *U : ExtVecOp->users()) { 594 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 595 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 596 continue; 597 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 598 NewExt->insertAfter(OldExt); 599 IC.replaceInstUsesWith(*OldExt, NewExt); 600 } 601 } 602 603 /// We are building a shuffle to create V, which is a sequence of insertelement, 604 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 605 /// not rely on the second vector source. Return a std::pair containing the 606 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 607 /// parameter as required. 608 /// 609 /// Note: we intentionally don't try to fold earlier shuffles since they have 610 /// often been chosen carefully to be efficiently implementable on the target. 611 using ShuffleOps = std::pair<Value *, Value *>; 612 613 static ShuffleOps collectShuffleElements(Value *V, 614 SmallVectorImpl<Constant *> &Mask, 615 Value *PermittedRHS, 616 InstCombiner &IC) { 617 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 618 unsigned NumElts = V->getType()->getVectorNumElements(); 619 620 if (isa<UndefValue>(V)) { 621 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 622 return std::make_pair( 623 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 624 } 625 626 if (isa<ConstantAggregateZero>(V)) { 627 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 628 return std::make_pair(V, nullptr); 629 } 630 631 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 632 // If this is an insert of an extract from some other vector, include it. 633 Value *VecOp = IEI->getOperand(0); 634 Value *ScalarOp = IEI->getOperand(1); 635 Value *IdxOp = IEI->getOperand(2); 636 637 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 638 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 639 unsigned ExtractedIdx = 640 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 641 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 642 643 // Either the extracted from or inserted into vector must be RHSVec, 644 // otherwise we'd end up with a shuffle of three inputs. 645 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 646 Value *RHS = EI->getOperand(0); 647 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 648 assert(LR.second == nullptr || LR.second == RHS); 649 650 if (LR.first->getType() != RHS->getType()) { 651 // Although we are giving up for now, see if we can create extracts 652 // that match the inserts for another round of combining. 653 replaceExtractElements(IEI, EI, IC); 654 655 // We tried our best, but we can't find anything compatible with RHS 656 // further up the chain. Return a trivial shuffle. 657 for (unsigned i = 0; i < NumElts; ++i) 658 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 659 return std::make_pair(V, nullptr); 660 } 661 662 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 663 Mask[InsertedIdx % NumElts] = 664 ConstantInt::get(Type::getInt32Ty(V->getContext()), 665 NumLHSElts+ExtractedIdx); 666 return std::make_pair(LR.first, RHS); 667 } 668 669 if (VecOp == PermittedRHS) { 670 // We've gone as far as we can: anything on the other side of the 671 // extractelement will already have been converted into a shuffle. 672 unsigned NumLHSElts = 673 EI->getOperand(0)->getType()->getVectorNumElements(); 674 for (unsigned i = 0; i != NumElts; ++i) 675 Mask.push_back(ConstantInt::get( 676 Type::getInt32Ty(V->getContext()), 677 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 678 return std::make_pair(EI->getOperand(0), PermittedRHS); 679 } 680 681 // If this insertelement is a chain that comes from exactly these two 682 // vectors, return the vector and the effective shuffle. 683 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 684 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 685 Mask)) 686 return std::make_pair(EI->getOperand(0), PermittedRHS); 687 } 688 } 689 } 690 691 // Otherwise, we can't do anything fancy. Return an identity vector. 692 for (unsigned i = 0; i != NumElts; ++i) 693 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 694 return std::make_pair(V, nullptr); 695 } 696 697 /// Try to find redundant insertvalue instructions, like the following ones: 698 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 699 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 700 /// Here the second instruction inserts values at the same indices, as the 701 /// first one, making the first one redundant. 702 /// It should be transformed to: 703 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 704 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 705 bool IsRedundant = false; 706 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 707 708 // If there is a chain of insertvalue instructions (each of them except the 709 // last one has only one use and it's another insertvalue insn from this 710 // chain), check if any of the 'children' uses the same indices as the first 711 // instruction. In this case, the first one is redundant. 712 Value *V = &I; 713 unsigned Depth = 0; 714 while (V->hasOneUse() && Depth < 10) { 715 User *U = V->user_back(); 716 auto UserInsInst = dyn_cast<InsertValueInst>(U); 717 if (!UserInsInst || U->getOperand(0) != V) 718 break; 719 if (UserInsInst->getIndices() == FirstIndices) { 720 IsRedundant = true; 721 break; 722 } 723 V = UserInsInst; 724 Depth++; 725 } 726 727 if (IsRedundant) 728 return replaceInstUsesWith(I, I.getOperand(0)); 729 return nullptr; 730 } 731 732 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 733 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 734 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 735 736 // A vector select does not change the size of the operands. 737 if (MaskSize != VecSize) 738 return false; 739 740 // Each mask element must be undefined or choose a vector element from one of 741 // the source operands without crossing vector lanes. 742 for (int i = 0; i != MaskSize; ++i) { 743 int Elt = Shuf.getMaskValue(i); 744 if (Elt != -1 && Elt != i && Elt != i + VecSize) 745 return false; 746 } 747 748 return true; 749 } 750 751 /// Turn a chain of inserts that splats a value into an insert + shuffle: 752 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 753 /// shufflevector(insertelt(X, %k, 0), undef, zero) 754 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 755 // We are interested in the last insert in a chain. So if this insert has a 756 // single user and that user is an insert, bail. 757 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 758 return nullptr; 759 760 auto *VecTy = cast<VectorType>(InsElt.getType()); 761 unsigned NumElements = VecTy->getNumElements(); 762 763 // Do not try to do this for a one-element vector, since that's a nop, 764 // and will cause an inf-loop. 765 if (NumElements == 1) 766 return nullptr; 767 768 Value *SplatVal = InsElt.getOperand(1); 769 InsertElementInst *CurrIE = &InsElt; 770 SmallVector<bool, 16> ElementPresent(NumElements, false); 771 InsertElementInst *FirstIE = nullptr; 772 773 // Walk the chain backwards, keeping track of which indices we inserted into, 774 // until we hit something that isn't an insert of the splatted value. 775 while (CurrIE) { 776 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 777 if (!Idx || CurrIE->getOperand(1) != SplatVal) 778 return nullptr; 779 780 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 781 // Check none of the intermediate steps have any additional uses, except 782 // for the root insertelement instruction, which can be re-used, if it 783 // inserts at position 0. 784 if (CurrIE != &InsElt && 785 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 786 return nullptr; 787 788 ElementPresent[Idx->getZExtValue()] = true; 789 FirstIE = CurrIE; 790 CurrIE = NextIE; 791 } 792 793 // If this is just a single insertelement (not a sequence), we are done. 794 if (FirstIE == &InsElt) 795 return nullptr; 796 797 // If we are not inserting into an undef vector, make sure we've seen an 798 // insert into every element. 799 // TODO: If the base vector is not undef, it might be better to create a splat 800 // and then a select-shuffle (blend) with the base vector. 801 if (!isa<UndefValue>(FirstIE->getOperand(0))) 802 if (any_of(ElementPresent, [](bool Present) { return !Present; })) 803 return nullptr; 804 805 // Create the insert + shuffle. 806 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 807 UndefValue *UndefVec = UndefValue::get(VecTy); 808 Constant *Zero = ConstantInt::get(Int32Ty, 0); 809 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 810 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 811 812 // Splat from element 0, but replace absent elements with undef in the mask. 813 SmallVector<Constant *, 16> Mask(NumElements, Zero); 814 for (unsigned i = 0; i != NumElements; ++i) 815 if (!ElementPresent[i]) 816 Mask[i] = UndefValue::get(Int32Ty); 817 818 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); 819 } 820 821 /// Try to fold an insert element into an existing splat shuffle by changing 822 /// the shuffle's mask to include the index of this insert element. 823 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 824 // Check if the vector operand of this insert is a canonical splat shuffle. 825 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 826 if (!Shuf || !Shuf->isZeroEltSplat()) 827 return nullptr; 828 829 // Check for a constant insertion index. 830 uint64_t IdxC; 831 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 832 return nullptr; 833 834 // Check if the splat shuffle's input is the same as this insert's scalar op. 835 Value *X = InsElt.getOperand(1); 836 Value *Op0 = Shuf->getOperand(0); 837 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 838 return nullptr; 839 840 // Replace the shuffle mask element at the index of this insert with a zero. 841 // For example: 842 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 843 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 844 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); 845 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); 846 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); 847 Constant *Zero = ConstantInt::getNullValue(I32Ty); 848 for (unsigned i = 0; i != NumMaskElts; ++i) 849 NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i); 850 851 Constant *NewMask = ConstantVector::get(NewMaskVec); 852 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 853 } 854 855 /// Try to fold an extract+insert element into an existing identity shuffle by 856 /// changing the shuffle's mask to include the index of this insert element. 857 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 858 // Check if the vector operand of this insert is an identity shuffle. 859 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 860 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 861 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 862 return nullptr; 863 864 // Check for a constant insertion index. 865 uint64_t IdxC; 866 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 867 return nullptr; 868 869 // Check if this insert's scalar op is extracted from the identity shuffle's 870 // input vector. 871 Value *Scalar = InsElt.getOperand(1); 872 Value *X = Shuf->getOperand(0); 873 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 874 return nullptr; 875 876 // Replace the shuffle mask element at the index of this extract+insert with 877 // that same index value. 878 // For example: 879 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 880 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); 881 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); 882 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); 883 Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC); 884 Constant *OldMask = Shuf->getMask(); 885 for (unsigned i = 0; i != NumMaskElts; ++i) { 886 if (i != IdxC) { 887 // All mask elements besides the inserted element remain the same. 888 NewMaskVec[i] = OldMask->getAggregateElement(i); 889 } else if (OldMask->getAggregateElement(i) == NewMaskEltC) { 890 // If the mask element was already set, there's nothing to do 891 // (demanded elements analysis may unset it later). 892 return nullptr; 893 } else { 894 assert(isa<UndefValue>(OldMask->getAggregateElement(i)) && 895 "Unexpected shuffle mask element for identity shuffle"); 896 NewMaskVec[i] = NewMaskEltC; 897 } 898 } 899 900 Constant *NewMask = ConstantVector::get(NewMaskVec); 901 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 902 } 903 904 /// If we have an insertelement instruction feeding into another insertelement 905 /// and the 2nd is inserting a constant into the vector, canonicalize that 906 /// constant insertion before the insertion of a variable: 907 /// 908 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 909 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 910 /// 911 /// This has the potential of eliminating the 2nd insertelement instruction 912 /// via constant folding of the scalar constant into a vector constant. 913 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 914 InstCombiner::BuilderTy &Builder) { 915 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 916 if (!InsElt1 || !InsElt1->hasOneUse()) 917 return nullptr; 918 919 Value *X, *Y; 920 Constant *ScalarC; 921 ConstantInt *IdxC1, *IdxC2; 922 if (match(InsElt1->getOperand(0), m_Value(X)) && 923 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 924 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 925 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 926 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 927 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 928 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 929 } 930 931 return nullptr; 932 } 933 934 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 935 /// --> shufflevector X, CVec', Mask' 936 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 937 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 938 // Bail out if the parent has more than one use. In that case, we'd be 939 // replacing the insertelt with a shuffle, and that's not a clear win. 940 if (!Inst || !Inst->hasOneUse()) 941 return nullptr; 942 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 943 // The shuffle must have a constant vector operand. The insertelt must have 944 // a constant scalar being inserted at a constant position in the vector. 945 Constant *ShufConstVec, *InsEltScalar; 946 uint64_t InsEltIndex; 947 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 948 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 949 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 950 return nullptr; 951 952 // Adding an element to an arbitrary shuffle could be expensive, but a 953 // shuffle that selects elements from vectors without crossing lanes is 954 // assumed cheap. 955 // If we're just adding a constant into that shuffle, it will still be 956 // cheap. 957 if (!isShuffleEquivalentToSelect(*Shuf)) 958 return nullptr; 959 960 // From the above 'select' check, we know that the mask has the same number 961 // of elements as the vector input operands. We also know that each constant 962 // input element is used in its lane and can not be used more than once by 963 // the shuffle. Therefore, replace the constant in the shuffle's constant 964 // vector with the insertelt constant. Replace the constant in the shuffle's 965 // mask vector with the insertelt index plus the length of the vector 966 // (because the constant vector operand of a shuffle is always the 2nd 967 // operand). 968 Constant *Mask = Shuf->getMask(); 969 unsigned NumElts = Mask->getType()->getVectorNumElements(); 970 SmallVector<Constant *, 16> NewShufElts(NumElts); 971 SmallVector<Constant *, 16> NewMaskElts(NumElts); 972 for (unsigned I = 0; I != NumElts; ++I) { 973 if (I == InsEltIndex) { 974 NewShufElts[I] = InsEltScalar; 975 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 976 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 977 } else { 978 // Copy over the existing values. 979 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 980 NewMaskElts[I] = Mask->getAggregateElement(I); 981 } 982 } 983 984 // Create new operands for a shuffle that includes the constant of the 985 // original insertelt. The old shuffle will be dead now. 986 return new ShuffleVectorInst(Shuf->getOperand(0), 987 ConstantVector::get(NewShufElts), 988 ConstantVector::get(NewMaskElts)); 989 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 990 // Transform sequences of insertelements ops with constant data/indexes into 991 // a single shuffle op. 992 unsigned NumElts = InsElt.getType()->getNumElements(); 993 994 uint64_t InsertIdx[2]; 995 Constant *Val[2]; 996 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 997 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 998 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 999 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1000 return nullptr; 1001 SmallVector<Constant *, 16> Values(NumElts); 1002 SmallVector<Constant *, 16> Mask(NumElts); 1003 auto ValI = std::begin(Val); 1004 // Generate new constant vector and mask. 1005 // We have 2 values/masks from the insertelements instructions. Insert them 1006 // into new value/mask vectors. 1007 for (uint64_t I : InsertIdx) { 1008 if (!Values[I]) { 1009 assert(!Mask[I]); 1010 Values[I] = *ValI; 1011 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 1012 NumElts + I); 1013 } 1014 ++ValI; 1015 } 1016 // Remaining values are filled with 'undef' values. 1017 for (unsigned I = 0; I < NumElts; ++I) { 1018 if (!Values[I]) { 1019 assert(!Mask[I]); 1020 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1021 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 1022 } 1023 } 1024 // Create new operands for a shuffle that includes the constant of the 1025 // original insertelt. 1026 return new ShuffleVectorInst(IEI->getOperand(0), 1027 ConstantVector::get(Values), 1028 ConstantVector::get(Mask)); 1029 } 1030 return nullptr; 1031 } 1032 1033 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1034 Value *VecOp = IE.getOperand(0); 1035 Value *ScalarOp = IE.getOperand(1); 1036 Value *IdxOp = IE.getOperand(2); 1037 1038 if (auto *V = SimplifyInsertElementInst( 1039 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1040 return replaceInstUsesWith(IE, V); 1041 1042 // If the vector and scalar are both bitcast from the same element type, do 1043 // the insert in that source type followed by bitcast. 1044 Value *VecSrc, *ScalarSrc; 1045 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1046 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1047 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1048 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1049 VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) { 1050 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1051 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1052 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1053 return new BitCastInst(NewInsElt, IE.getType()); 1054 } 1055 1056 // If the inserted element was extracted from some other vector and both 1057 // indexes are valid constants, try to turn this into a shuffle. 1058 uint64_t InsertedIdx, ExtractedIdx; 1059 Value *ExtVecOp; 1060 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 1061 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), 1062 m_ConstantInt(ExtractedIdx))) && 1063 ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) { 1064 // TODO: Looking at the user(s) to determine if this insert is a 1065 // fold-to-shuffle opportunity does not match the usual instcombine 1066 // constraints. We should decide if the transform is worthy based only 1067 // on this instruction and its operands, but that may not work currently. 1068 // 1069 // Here, we are trying to avoid creating shuffles before reaching 1070 // the end of a chain of extract-insert pairs. This is complicated because 1071 // we do not generally form arbitrary shuffle masks in instcombine 1072 // (because those may codegen poorly), but collectShuffleElements() does 1073 // exactly that. 1074 // 1075 // The rules for determining what is an acceptable target-independent 1076 // shuffle mask are fuzzy because they evolve based on the backend's 1077 // capabilities and real-world impact. 1078 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1079 if (!Insert.hasOneUse()) 1080 return true; 1081 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1082 if (!InsertUser) 1083 return true; 1084 return false; 1085 }; 1086 1087 // Try to form a shuffle from a chain of extract-insert ops. 1088 if (isShuffleRootCandidate(IE)) { 1089 SmallVector<Constant*, 16> Mask; 1090 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1091 1092 // The proposed shuffle may be trivial, in which case we shouldn't 1093 // perform the combine. 1094 if (LR.first != &IE && LR.second != &IE) { 1095 // We now have a shuffle of LHS, RHS, Mask. 1096 if (LR.second == nullptr) 1097 LR.second = UndefValue::get(LR.first->getType()); 1098 return new ShuffleVectorInst(LR.first, LR.second, 1099 ConstantVector::get(Mask)); 1100 } 1101 } 1102 } 1103 1104 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 1105 APInt UndefElts(VWidth, 0); 1106 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1107 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1108 if (V != &IE) 1109 return replaceInstUsesWith(IE, V); 1110 return &IE; 1111 } 1112 1113 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1114 return Shuf; 1115 1116 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1117 return NewInsElt; 1118 1119 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1120 return Broadcast; 1121 1122 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1123 return Splat; 1124 1125 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1126 return IdentityShuf; 1127 1128 return nullptr; 1129 } 1130 1131 /// Return true if we can evaluate the specified expression tree if the vector 1132 /// elements were shuffled in a different order. 1133 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1134 unsigned Depth = 5) { 1135 // We can always reorder the elements of a constant. 1136 if (isa<Constant>(V)) 1137 return true; 1138 1139 // We won't reorder vector arguments. No IPO here. 1140 Instruction *I = dyn_cast<Instruction>(V); 1141 if (!I) return false; 1142 1143 // Two users may expect different orders of the elements. Don't try it. 1144 if (!I->hasOneUse()) 1145 return false; 1146 1147 if (Depth == 0) return false; 1148 1149 switch (I->getOpcode()) { 1150 case Instruction::UDiv: 1151 case Instruction::SDiv: 1152 case Instruction::URem: 1153 case Instruction::SRem: 1154 // Propagating an undefined shuffle mask element to integer div/rem is not 1155 // allowed because those opcodes can create immediate undefined behavior 1156 // from an undefined element in an operand. 1157 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1158 return false; 1159 LLVM_FALLTHROUGH; 1160 case Instruction::Add: 1161 case Instruction::FAdd: 1162 case Instruction::Sub: 1163 case Instruction::FSub: 1164 case Instruction::Mul: 1165 case Instruction::FMul: 1166 case Instruction::FDiv: 1167 case Instruction::FRem: 1168 case Instruction::Shl: 1169 case Instruction::LShr: 1170 case Instruction::AShr: 1171 case Instruction::And: 1172 case Instruction::Or: 1173 case Instruction::Xor: 1174 case Instruction::ICmp: 1175 case Instruction::FCmp: 1176 case Instruction::Trunc: 1177 case Instruction::ZExt: 1178 case Instruction::SExt: 1179 case Instruction::FPToUI: 1180 case Instruction::FPToSI: 1181 case Instruction::UIToFP: 1182 case Instruction::SIToFP: 1183 case Instruction::FPTrunc: 1184 case Instruction::FPExt: 1185 case Instruction::GetElementPtr: { 1186 // Bail out if we would create longer vector ops. We could allow creating 1187 // longer vector ops, but that may result in more expensive codegen. 1188 Type *ITy = I->getType(); 1189 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) 1190 return false; 1191 for (Value *Operand : I->operands()) { 1192 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1193 return false; 1194 } 1195 return true; 1196 } 1197 case Instruction::InsertElement: { 1198 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1199 if (!CI) return false; 1200 int ElementNumber = CI->getLimitedValue(); 1201 1202 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1203 // can't put an element into multiple indices. 1204 bool SeenOnce = false; 1205 for (int i = 0, e = Mask.size(); i != e; ++i) { 1206 if (Mask[i] == ElementNumber) { 1207 if (SeenOnce) 1208 return false; 1209 SeenOnce = true; 1210 } 1211 } 1212 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1213 } 1214 } 1215 return false; 1216 } 1217 1218 /// Rebuild a new instruction just like 'I' but with the new operands given. 1219 /// In the event of type mismatch, the type of the operands is correct. 1220 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1221 // We don't want to use the IRBuilder here because we want the replacement 1222 // instructions to appear next to 'I', not the builder's insertion point. 1223 switch (I->getOpcode()) { 1224 case Instruction::Add: 1225 case Instruction::FAdd: 1226 case Instruction::Sub: 1227 case Instruction::FSub: 1228 case Instruction::Mul: 1229 case Instruction::FMul: 1230 case Instruction::UDiv: 1231 case Instruction::SDiv: 1232 case Instruction::FDiv: 1233 case Instruction::URem: 1234 case Instruction::SRem: 1235 case Instruction::FRem: 1236 case Instruction::Shl: 1237 case Instruction::LShr: 1238 case Instruction::AShr: 1239 case Instruction::And: 1240 case Instruction::Or: 1241 case Instruction::Xor: { 1242 BinaryOperator *BO = cast<BinaryOperator>(I); 1243 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1244 BinaryOperator *New = 1245 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1246 NewOps[0], NewOps[1], "", BO); 1247 if (isa<OverflowingBinaryOperator>(BO)) { 1248 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1249 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1250 } 1251 if (isa<PossiblyExactOperator>(BO)) { 1252 New->setIsExact(BO->isExact()); 1253 } 1254 if (isa<FPMathOperator>(BO)) 1255 New->copyFastMathFlags(I); 1256 return New; 1257 } 1258 case Instruction::ICmp: 1259 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1260 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1261 NewOps[0], NewOps[1]); 1262 case Instruction::FCmp: 1263 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1264 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1265 NewOps[0], NewOps[1]); 1266 case Instruction::Trunc: 1267 case Instruction::ZExt: 1268 case Instruction::SExt: 1269 case Instruction::FPToUI: 1270 case Instruction::FPToSI: 1271 case Instruction::UIToFP: 1272 case Instruction::SIToFP: 1273 case Instruction::FPTrunc: 1274 case Instruction::FPExt: { 1275 // It's possible that the mask has a different number of elements from 1276 // the original cast. We recompute the destination type to match the mask. 1277 Type *DestTy = 1278 VectorType::get(I->getType()->getScalarType(), 1279 NewOps[0]->getType()->getVectorNumElements()); 1280 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1281 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1282 "", I); 1283 } 1284 case Instruction::GetElementPtr: { 1285 Value *Ptr = NewOps[0]; 1286 ArrayRef<Value*> Idx = NewOps.slice(1); 1287 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1288 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1289 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1290 return GEP; 1291 } 1292 } 1293 llvm_unreachable("failed to rebuild vector instructions"); 1294 } 1295 1296 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1297 // Mask.size() does not need to be equal to the number of vector elements. 1298 1299 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1300 Type *EltTy = V->getType()->getScalarType(); 1301 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1302 if (isa<UndefValue>(V)) 1303 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1304 1305 if (isa<ConstantAggregateZero>(V)) 1306 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1307 1308 if (Constant *C = dyn_cast<Constant>(V)) { 1309 SmallVector<Constant *, 16> MaskValues; 1310 for (int i = 0, e = Mask.size(); i != e; ++i) { 1311 if (Mask[i] == -1) 1312 MaskValues.push_back(UndefValue::get(I32Ty)); 1313 else 1314 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i])); 1315 } 1316 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1317 ConstantVector::get(MaskValues)); 1318 } 1319 1320 Instruction *I = cast<Instruction>(V); 1321 switch (I->getOpcode()) { 1322 case Instruction::Add: 1323 case Instruction::FAdd: 1324 case Instruction::Sub: 1325 case Instruction::FSub: 1326 case Instruction::Mul: 1327 case Instruction::FMul: 1328 case Instruction::UDiv: 1329 case Instruction::SDiv: 1330 case Instruction::FDiv: 1331 case Instruction::URem: 1332 case Instruction::SRem: 1333 case Instruction::FRem: 1334 case Instruction::Shl: 1335 case Instruction::LShr: 1336 case Instruction::AShr: 1337 case Instruction::And: 1338 case Instruction::Or: 1339 case Instruction::Xor: 1340 case Instruction::ICmp: 1341 case Instruction::FCmp: 1342 case Instruction::Trunc: 1343 case Instruction::ZExt: 1344 case Instruction::SExt: 1345 case Instruction::FPToUI: 1346 case Instruction::FPToSI: 1347 case Instruction::UIToFP: 1348 case Instruction::SIToFP: 1349 case Instruction::FPTrunc: 1350 case Instruction::FPExt: 1351 case Instruction::Select: 1352 case Instruction::GetElementPtr: { 1353 SmallVector<Value*, 8> NewOps; 1354 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1355 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1356 Value *V; 1357 // Recursively call evaluateInDifferentElementOrder on vector arguments 1358 // as well. E.g. GetElementPtr may have scalar operands even if the 1359 // return value is a vector, so we need to examine the operand type. 1360 if (I->getOperand(i)->getType()->isVectorTy()) 1361 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1362 else 1363 V = I->getOperand(i); 1364 NewOps.push_back(V); 1365 NeedsRebuild |= (V != I->getOperand(i)); 1366 } 1367 if (NeedsRebuild) { 1368 return buildNew(I, NewOps); 1369 } 1370 return I; 1371 } 1372 case Instruction::InsertElement: { 1373 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1374 1375 // The insertelement was inserting at Element. Figure out which element 1376 // that becomes after shuffling. The answer is guaranteed to be unique 1377 // by CanEvaluateShuffled. 1378 bool Found = false; 1379 int Index = 0; 1380 for (int e = Mask.size(); Index != e; ++Index) { 1381 if (Mask[Index] == Element) { 1382 Found = true; 1383 break; 1384 } 1385 } 1386 1387 // If element is not in Mask, no need to handle the operand 1 (element to 1388 // be inserted). Just evaluate values in operand 0 according to Mask. 1389 if (!Found) 1390 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1391 1392 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1393 return InsertElementInst::Create(V, I->getOperand(1), 1394 ConstantInt::get(I32Ty, Index), "", I); 1395 } 1396 } 1397 llvm_unreachable("failed to reorder elements of vector instruction!"); 1398 } 1399 1400 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 1401 bool &isLHSID, bool &isRHSID) { 1402 isLHSID = isRHSID = true; 1403 1404 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1405 if (Mask[i] < 0) continue; // Ignore undef values. 1406 // Is this an identity shuffle of the LHS value? 1407 isLHSID &= (Mask[i] == (int)i); 1408 1409 // Is this an identity shuffle of the RHS value? 1410 isRHSID &= (Mask[i]-e == i); 1411 } 1412 } 1413 1414 // Returns true if the shuffle is extracting a contiguous range of values from 1415 // LHS, for example: 1416 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1417 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1418 // Shuffles to: |EE|FF|GG|HH| 1419 // +--+--+--+--+ 1420 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1421 SmallVector<int, 16> &Mask) { 1422 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1423 unsigned MaskElems = Mask.size(); 1424 unsigned BegIdx = Mask.front(); 1425 unsigned EndIdx = Mask.back(); 1426 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1427 return false; 1428 for (unsigned I = 0; I != MaskElems; ++I) 1429 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1430 return false; 1431 return true; 1432 } 1433 1434 /// These are the ingredients in an alternate form binary operator as described 1435 /// below. 1436 struct BinopElts { 1437 BinaryOperator::BinaryOps Opcode; 1438 Value *Op0; 1439 Value *Op1; 1440 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1441 Value *V0 = nullptr, Value *V1 = nullptr) : 1442 Opcode(Opc), Op0(V0), Op1(V1) {} 1443 operator bool() const { return Opcode != 0; } 1444 }; 1445 1446 /// Binops may be transformed into binops with different opcodes and operands. 1447 /// Reverse the usual canonicalization to enable folds with the non-canonical 1448 /// form of the binop. If a transform is possible, return the elements of the 1449 /// new binop. If not, return invalid elements. 1450 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1451 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1452 Type *Ty = BO->getType(); 1453 switch (BO->getOpcode()) { 1454 case Instruction::Shl: { 1455 // shl X, C --> mul X, (1 << C) 1456 Constant *C; 1457 if (match(BO1, m_Constant(C))) { 1458 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1459 return { Instruction::Mul, BO0, ShlOne }; 1460 } 1461 break; 1462 } 1463 case Instruction::Or: { 1464 // or X, C --> add X, C (when X and C have no common bits set) 1465 const APInt *C; 1466 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1467 return { Instruction::Add, BO0, BO1 }; 1468 break; 1469 } 1470 default: 1471 break; 1472 } 1473 return {}; 1474 } 1475 1476 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1477 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1478 1479 // Are we shuffling together some value and that same value after it has been 1480 // modified by a binop with a constant? 1481 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1482 Constant *C; 1483 bool Op0IsBinop; 1484 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1485 Op0IsBinop = true; 1486 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1487 Op0IsBinop = false; 1488 else 1489 return nullptr; 1490 1491 // The identity constant for a binop leaves a variable operand unchanged. For 1492 // a vector, this is a splat of something like 0, -1, or 1. 1493 // If there's no identity constant for this binop, we're done. 1494 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1495 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1496 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1497 if (!IdC) 1498 return nullptr; 1499 1500 // Shuffle identity constants into the lanes that return the original value. 1501 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1502 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1503 // The existing binop constant vector remains in the same operand position. 1504 Constant *Mask = Shuf.getMask(); 1505 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1506 ConstantExpr::getShuffleVector(IdC, C, Mask); 1507 1508 bool MightCreatePoisonOrUB = 1509 Mask->containsUndefElement() && 1510 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1511 if (MightCreatePoisonOrUB) 1512 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1513 1514 // shuf (bop X, C), X, M --> bop X, C' 1515 // shuf X, (bop X, C), M --> bop X, C' 1516 Value *X = Op0IsBinop ? Op1 : Op0; 1517 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1518 NewBO->copyIRFlags(BO); 1519 1520 // An undef shuffle mask element may propagate as an undef constant element in 1521 // the new binop. That would produce poison where the original code might not. 1522 // If we already made a safe constant, then there's no danger. 1523 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1524 NewBO->dropPoisonGeneratingFlags(); 1525 return NewBO; 1526 } 1527 1528 /// If we have an insert of a scalar to a non-zero element of an undefined 1529 /// vector and then shuffle that value, that's the same as inserting to the zero 1530 /// element and shuffling. Splatting from the zero element is recognized as the 1531 /// canonical form of splat. 1532 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1533 InstCombiner::BuilderTy &Builder) { 1534 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1535 Constant *Mask = Shuf.getMask(); 1536 Value *X; 1537 uint64_t IndexC; 1538 1539 // Match a shuffle that is a splat to a non-zero element. 1540 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1541 m_ConstantInt(IndexC)))) || 1542 !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0) 1543 return nullptr; 1544 1545 // Insert into element 0 of an undef vector. 1546 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1547 Constant *Zero = Builder.getInt32(0); 1548 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1549 1550 // Splat from element 0. Any mask element that is undefined remains undefined. 1551 // For example: 1552 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1553 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1554 unsigned NumMaskElts = Shuf.getType()->getVectorNumElements(); 1555 SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero); 1556 for (unsigned i = 0; i != NumMaskElts; ++i) 1557 if (isa<UndefValue>(Mask->getAggregateElement(i))) 1558 NewMask[i] = Mask->getAggregateElement(i); 1559 1560 return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask)); 1561 } 1562 1563 /// Try to fold shuffles that are the equivalent of a vector select. 1564 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1565 InstCombiner::BuilderTy &Builder, 1566 const DataLayout &DL) { 1567 if (!Shuf.isSelect()) 1568 return nullptr; 1569 1570 // Canonicalize to choose from operand 0 first. 1571 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1572 if (Shuf.getMaskValue(0) >= (int)NumElts) { 1573 // TODO: Can we assert that both operands of a shuffle-select are not undef 1574 // (otherwise, it would have been folded by instsimplify? 1575 Shuf.commute(); 1576 return &Shuf; 1577 } 1578 1579 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1580 return I; 1581 1582 BinaryOperator *B0, *B1; 1583 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1584 !match(Shuf.getOperand(1), m_BinOp(B1))) 1585 return nullptr; 1586 1587 Value *X, *Y; 1588 Constant *C0, *C1; 1589 bool ConstantsAreOp1; 1590 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1591 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1592 ConstantsAreOp1 = true; 1593 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1594 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1595 ConstantsAreOp1 = false; 1596 else 1597 return nullptr; 1598 1599 // We need matching binops to fold the lanes together. 1600 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1601 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1602 bool DropNSW = false; 1603 if (ConstantsAreOp1 && Opc0 != Opc1) { 1604 // TODO: We drop "nsw" if shift is converted into multiply because it may 1605 // not be correct when the shift amount is BitWidth - 1. We could examine 1606 // each vector element to determine if it is safe to keep that flag. 1607 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1608 DropNSW = true; 1609 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1610 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1611 Opc0 = AltB0.Opcode; 1612 C0 = cast<Constant>(AltB0.Op1); 1613 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1614 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1615 Opc1 = AltB1.Opcode; 1616 C1 = cast<Constant>(AltB1.Op1); 1617 } 1618 } 1619 1620 if (Opc0 != Opc1) 1621 return nullptr; 1622 1623 // The opcodes must be the same. Use a new name to make that clear. 1624 BinaryOperator::BinaryOps BOpc = Opc0; 1625 1626 // Select the constant elements needed for the single binop. 1627 Constant *Mask = Shuf.getMask(); 1628 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1629 1630 // We are moving a binop after a shuffle. When a shuffle has an undefined 1631 // mask element, the result is undefined, but it is not poison or undefined 1632 // behavior. That is not necessarily true for div/rem/shift. 1633 bool MightCreatePoisonOrUB = 1634 Mask->containsUndefElement() && 1635 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1636 if (MightCreatePoisonOrUB) 1637 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1638 1639 Value *V; 1640 if (X == Y) { 1641 // Remove a binop and the shuffle by rearranging the constant: 1642 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1643 // shuffle (op C0, V), (op C1, V), M --> op C', V 1644 V = X; 1645 } else { 1646 // If there are 2 different variable operands, we must create a new shuffle 1647 // (select) first, so check uses to ensure that we don't end up with more 1648 // instructions than we started with. 1649 if (!B0->hasOneUse() && !B1->hasOneUse()) 1650 return nullptr; 1651 1652 // If we use the original shuffle mask and op1 is *variable*, we would be 1653 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1654 // poison. We do not have to guard against UB when *constants* are op1 1655 // because safe constants guarantee that we do not overflow sdiv/srem (and 1656 // there's no danger for other opcodes). 1657 // TODO: To allow this case, create a new shuffle mask with no undefs. 1658 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1659 return nullptr; 1660 1661 // Note: In general, we do not create new shuffles in InstCombine because we 1662 // do not know if a target can lower an arbitrary shuffle optimally. In this 1663 // case, the shuffle uses the existing mask, so there is no additional risk. 1664 1665 // Select the variable vectors first, then perform the binop: 1666 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1667 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1668 V = Builder.CreateShuffleVector(X, Y, Mask); 1669 } 1670 1671 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1672 BinaryOperator::Create(BOpc, NewC, V); 1673 1674 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1675 // 1. If we changed an opcode, poison conditions might have changed. 1676 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1677 // where the original code did not. But if we already made a safe constant, 1678 // then there's no danger. 1679 NewBO->copyIRFlags(B0); 1680 NewBO->andIRFlags(B1); 1681 if (DropNSW) 1682 NewBO->setHasNoSignedWrap(false); 1683 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1684 NewBO->dropPoisonGeneratingFlags(); 1685 return NewBO; 1686 } 1687 1688 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1689 /// narrowing (concatenating with undef and extracting back to the original 1690 /// length). This allows replacing the wide select with a narrow select. 1691 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1692 InstCombiner::BuilderTy &Builder) { 1693 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1694 // of the 1st vector operand of a shuffle. 1695 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1696 return nullptr; 1697 1698 // The vector being shuffled must be a vector select that we can eliminate. 1699 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1700 Value *Cond, *X, *Y; 1701 if (!match(Shuf.getOperand(0), 1702 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1703 return nullptr; 1704 1705 // We need a narrow condition value. It must be extended with undef elements 1706 // and have the same number of elements as this shuffle. 1707 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); 1708 Value *NarrowCond; 1709 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(), 1710 m_Constant()))) || 1711 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || 1712 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1713 return nullptr; 1714 1715 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1716 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1717 Value *Undef = UndefValue::get(X->getType()); 1718 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask()); 1719 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask()); 1720 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1721 } 1722 1723 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1724 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1725 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1726 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1727 return nullptr; 1728 1729 Value *X, *Y; 1730 Constant *Mask; 1731 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask)))) 1732 return nullptr; 1733 1734 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1735 // then combining may result in worse codegen. 1736 if (!Op0->hasOneUse()) 1737 return nullptr; 1738 1739 // We are extracting a subvector from a shuffle. Remove excess elements from 1740 // the 1st shuffle mask to eliminate the extract. 1741 // 1742 // This transform is conservatively limited to identity extracts because we do 1743 // not allow arbitrary shuffle mask creation as a target-independent transform 1744 // (because we can't guarantee that will lower efficiently). 1745 // 1746 // If the extracting shuffle has an undef mask element, it transfers to the 1747 // new shuffle mask. Otherwise, copy the original mask element. Example: 1748 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1749 // shuf X, Y, <C0, undef, C2, undef> 1750 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1751 SmallVector<Constant *, 16> NewMask(NumElts); 1752 assert(NumElts < Mask->getType()->getVectorNumElements() && 1753 "Identity with extract must have less elements than its inputs"); 1754 1755 for (unsigned i = 0; i != NumElts; ++i) { 1756 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i); 1757 Constant *MaskElt = Mask->getAggregateElement(i); 1758 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt; 1759 } 1760 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1761 } 1762 1763 /// Try to replace a shuffle with an insertelement. 1764 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) { 1765 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1766 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1767 1768 // The shuffle must not change vector sizes. 1769 // TODO: This restriction could be removed if the insert has only one use 1770 // (because the transform would require a new length-changing shuffle). 1771 int NumElts = Mask.size(); 1772 if (NumElts != (int)(V0->getType()->getVectorNumElements())) 1773 return nullptr; 1774 1775 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1776 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1777 // We need an insertelement with a constant index. 1778 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1779 m_ConstantInt(IndexC)))) 1780 return false; 1781 1782 // Test the shuffle mask to see if it splices the inserted scalar into the 1783 // operand 1 vector of the shuffle. 1784 int NewInsIndex = -1; 1785 for (int i = 0; i != NumElts; ++i) { 1786 // Ignore undef mask elements. 1787 if (Mask[i] == -1) 1788 continue; 1789 1790 // The shuffle takes elements of operand 1 without lane changes. 1791 if (Mask[i] == NumElts + i) 1792 continue; 1793 1794 // The shuffle must choose the inserted scalar exactly once. 1795 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1796 return false; 1797 1798 // The shuffle is placing the inserted scalar into element i. 1799 NewInsIndex = i; 1800 } 1801 1802 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1803 1804 // Index is updated to the potentially translated insertion lane. 1805 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1806 return true; 1807 }; 1808 1809 // If the shuffle is unnecessary, insert the scalar operand directly into 1810 // operand 1 of the shuffle. Example: 1811 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1812 Value *Scalar; 1813 ConstantInt *IndexC; 1814 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1815 return InsertElementInst::Create(V1, Scalar, IndexC); 1816 1817 // Try again after commuting shuffle. Example: 1818 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1819 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1820 std::swap(V0, V1); 1821 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1822 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1823 return InsertElementInst::Create(V1, Scalar, IndexC); 1824 1825 return nullptr; 1826 } 1827 1828 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1829 // Match the operands as identity with padding (also known as concatenation 1830 // with undef) shuffles of the same source type. The backend is expected to 1831 // recreate these concatenations from a shuffle of narrow operands. 1832 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1833 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1834 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1835 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1836 return nullptr; 1837 1838 // We limit this transform to power-of-2 types because we expect that the 1839 // backend can convert the simplified IR patterns to identical nodes as the 1840 // original IR. 1841 // TODO: If we can verify the same behavior for arbitrary types, the 1842 // power-of-2 checks can be removed. 1843 Value *X = Shuffle0->getOperand(0); 1844 Value *Y = Shuffle1->getOperand(0); 1845 if (X->getType() != Y->getType() || 1846 !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) || 1847 !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) || 1848 !isPowerOf2_32(X->getType()->getVectorNumElements()) || 1849 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1850 return nullptr; 1851 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1852 isa<UndefValue>(Shuffle1->getOperand(1)) && 1853 "Unexpected operand for identity shuffle"); 1854 1855 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1856 // operands directly by adjusting the shuffle mask to account for the narrower 1857 // types: 1858 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1859 int NarrowElts = X->getType()->getVectorNumElements(); 1860 int WideElts = Shuffle0->getType()->getVectorNumElements(); 1861 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1862 1863 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); 1864 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1865 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); 1866 for (int i = 0, e = Mask.size(); i != e; ++i) { 1867 if (Mask[i] == -1) 1868 continue; 1869 1870 // If this shuffle is choosing an undef element from 1 of the sources, that 1871 // element is undef. 1872 if (Mask[i] < WideElts) { 1873 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1874 continue; 1875 } else { 1876 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1877 continue; 1878 } 1879 1880 // If this shuffle is choosing from the 1st narrow op, the mask element is 1881 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1882 // element is offset down to adjust for the narrow vector widths. 1883 if (Mask[i] < WideElts) { 1884 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1885 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); 1886 } else { 1887 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1888 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); 1889 } 1890 } 1891 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1892 } 1893 1894 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1895 Value *LHS = SVI.getOperand(0); 1896 Value *RHS = SVI.getOperand(1); 1897 if (auto *V = SimplifyShuffleVectorInst( 1898 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) 1899 return replaceInstUsesWith(SVI, V); 1900 1901 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 1902 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 1903 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1904 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1905 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1906 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1907 if (LHS == RHS || isa<UndefValue>(LHS)) { 1908 // Remap any references to RHS to use LHS. 1909 SmallVector<Constant*, 16> Elts; 1910 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 1911 if (Mask[i] < 0) { 1912 Elts.push_back(UndefValue::get(Int32Ty)); 1913 continue; 1914 } 1915 1916 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 1917 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 1918 Mask[i] = -1; // Turn into undef. 1919 Elts.push_back(UndefValue::get(Int32Ty)); 1920 } else { 1921 Mask[i] = Mask[i] % e; // Force to LHS. 1922 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 1923 } 1924 } 1925 SVI.setOperand(0, SVI.getOperand(1)); 1926 SVI.setOperand(1, UndefValue::get(RHS->getType())); 1927 SVI.setOperand(2, ConstantVector::get(Elts)); 1928 return &SVI; 1929 } 1930 1931 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 1932 return I; 1933 1934 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 1935 return I; 1936 1937 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 1938 return I; 1939 1940 APInt UndefElts(VWidth, 0); 1941 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1942 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1943 if (V != &SVI) 1944 return replaceInstUsesWith(SVI, V); 1945 return &SVI; 1946 } 1947 1948 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 1949 return I; 1950 1951 // These transforms have the potential to lose undef knowledge, so they are 1952 // intentionally placed after SimplifyDemandedVectorElts(). 1953 if (Instruction *I = foldShuffleWithInsert(SVI)) 1954 return I; 1955 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 1956 return I; 1957 1958 if (VWidth == LHSWidth) { 1959 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 1960 bool isLHSID, isRHSID; 1961 recognizeIdentityMask(Mask, isLHSID, isRHSID); 1962 1963 // Eliminate identity shuffles. 1964 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 1965 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 1966 } 1967 1968 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 1969 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 1970 return replaceInstUsesWith(SVI, V); 1971 } 1972 1973 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1974 // a non-vector type. We can instead bitcast the original vector followed by 1975 // an extract of the desired element: 1976 // 1977 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1978 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1979 // %1 = bitcast <4 x i8> %sroa to i32 1980 // Becomes: 1981 // %bc = bitcast <16 x i8> %in to <4 x i32> 1982 // %ext = extractelement <4 x i32> %bc, i32 0 1983 // 1984 // If the shuffle is extracting a contiguous range of values from the input 1985 // vector then each use which is a bitcast of the extracted size can be 1986 // replaced. This will work if the vector types are compatible, and the begin 1987 // index is aligned to a value in the casted vector type. If the begin index 1988 // isn't aligned then we can shuffle the original vector (keeping the same 1989 // vector type) before extracting. 1990 // 1991 // This code will bail out if the target type is fundamentally incompatible 1992 // with vectors of the source type. 1993 // 1994 // Example of <16 x i8>, target type i32: 1995 // Index range [4,8): v-----------v Will work. 1996 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1997 // <16 x i8>: | | | | | | | | | | | | | | | | | 1998 // <4 x i32>: | | | | | 1999 // +-----------+-----------+-----------+-----------+ 2000 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2001 // Target type i40: ^--------------^ Won't work, bail. 2002 bool MadeChange = false; 2003 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2004 Value *V = LHS; 2005 unsigned MaskElems = Mask.size(); 2006 VectorType *SrcTy = cast<VectorType>(V->getType()); 2007 unsigned VecBitWidth = SrcTy->getBitWidth(); 2008 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2009 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2010 unsigned SrcNumElems = SrcTy->getNumElements(); 2011 SmallVector<BitCastInst *, 8> BCs; 2012 DenseMap<Type *, Value *> NewBCs; 2013 for (User *U : SVI.users()) 2014 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2015 if (!BC->use_empty()) 2016 // Only visit bitcasts that weren't previously handled. 2017 BCs.push_back(BC); 2018 for (BitCastInst *BC : BCs) { 2019 unsigned BegIdx = Mask.front(); 2020 Type *TgtTy = BC->getDestTy(); 2021 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2022 if (!TgtElemBitWidth) 2023 continue; 2024 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2025 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2026 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2027 if (!VecBitWidthsEqual) 2028 continue; 2029 if (!VectorType::isValidElementType(TgtTy)) 2030 continue; 2031 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2032 if (!BegIsAligned) { 2033 // Shuffle the input so [0,NumElements) contains the output, and 2034 // [NumElems,SrcNumElems) is undef. 2035 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 2036 UndefValue::get(Int32Ty)); 2037 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2038 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 2039 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2040 ConstantVector::get(ShuffleMask), 2041 SVI.getName() + ".extract"); 2042 BegIdx = 0; 2043 } 2044 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2045 assert(SrcElemsPerTgtElem); 2046 BegIdx /= SrcElemsPerTgtElem; 2047 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2048 auto *NewBC = 2049 BCAlreadyExists 2050 ? NewBCs[CastSrcTy] 2051 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2052 if (!BCAlreadyExists) 2053 NewBCs[CastSrcTy] = NewBC; 2054 auto *Ext = Builder.CreateExtractElement( 2055 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2056 // The shufflevector isn't being replaced: the bitcast that used it 2057 // is. InstCombine will visit the newly-created instructions. 2058 replaceInstUsesWith(*BC, Ext); 2059 MadeChange = true; 2060 } 2061 } 2062 2063 // If the LHS is a shufflevector itself, see if we can combine it with this 2064 // one without producing an unusual shuffle. 2065 // Cases that might be simplified: 2066 // 1. 2067 // x1=shuffle(v1,v2,mask1) 2068 // x=shuffle(x1,undef,mask) 2069 // ==> 2070 // x=shuffle(v1,undef,newMask) 2071 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2072 // 2. 2073 // x1=shuffle(v1,undef,mask1) 2074 // x=shuffle(x1,x2,mask) 2075 // where v1.size() == mask1.size() 2076 // ==> 2077 // x=shuffle(v1,x2,newMask) 2078 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2079 // 3. 2080 // x2=shuffle(v2,undef,mask2) 2081 // x=shuffle(x1,x2,mask) 2082 // where v2.size() == mask2.size() 2083 // ==> 2084 // x=shuffle(x1,v2,newMask) 2085 // newMask[i] = (mask[i] < x1.size()) 2086 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2087 // 4. 2088 // x1=shuffle(v1,undef,mask1) 2089 // x2=shuffle(v2,undef,mask2) 2090 // x=shuffle(x1,x2,mask) 2091 // where v1.size() == v2.size() 2092 // ==> 2093 // x=shuffle(v1,v2,newMask) 2094 // newMask[i] = (mask[i] < x1.size()) 2095 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2096 // 2097 // Here we are really conservative: 2098 // we are absolutely afraid of producing a shuffle mask not in the input 2099 // program, because the code gen may not be smart enough to turn a merged 2100 // shuffle into two specific shuffles: it may produce worse code. As such, 2101 // we only merge two shuffles if the result is either a splat or one of the 2102 // input shuffle masks. In this case, merging the shuffles just removes 2103 // one instruction, which we know is safe. This is good for things like 2104 // turning: (splat(splat)) -> splat, or 2105 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2106 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2107 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2108 if (LHSShuffle) 2109 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2110 LHSShuffle = nullptr; 2111 if (RHSShuffle) 2112 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2113 RHSShuffle = nullptr; 2114 if (!LHSShuffle && !RHSShuffle) 2115 return MadeChange ? &SVI : nullptr; 2116 2117 Value* LHSOp0 = nullptr; 2118 Value* LHSOp1 = nullptr; 2119 Value* RHSOp0 = nullptr; 2120 unsigned LHSOp0Width = 0; 2121 unsigned RHSOp0Width = 0; 2122 if (LHSShuffle) { 2123 LHSOp0 = LHSShuffle->getOperand(0); 2124 LHSOp1 = LHSShuffle->getOperand(1); 2125 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 2126 } 2127 if (RHSShuffle) { 2128 RHSOp0 = RHSShuffle->getOperand(0); 2129 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 2130 } 2131 Value* newLHS = LHS; 2132 Value* newRHS = RHS; 2133 if (LHSShuffle) { 2134 // case 1 2135 if (isa<UndefValue>(RHS)) { 2136 newLHS = LHSOp0; 2137 newRHS = LHSOp1; 2138 } 2139 // case 2 or 4 2140 else if (LHSOp0Width == LHSWidth) { 2141 newLHS = LHSOp0; 2142 } 2143 } 2144 // case 3 or 4 2145 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2146 newRHS = RHSOp0; 2147 } 2148 // case 4 2149 if (LHSOp0 == RHSOp0) { 2150 newLHS = LHSOp0; 2151 newRHS = nullptr; 2152 } 2153 2154 if (newLHS == LHS && newRHS == RHS) 2155 return MadeChange ? &SVI : nullptr; 2156 2157 SmallVector<int, 16> LHSMask; 2158 SmallVector<int, 16> RHSMask; 2159 if (newLHS != LHS) 2160 LHSMask = LHSShuffle->getShuffleMask(); 2161 if (RHSShuffle && newRHS != RHS) 2162 RHSMask = RHSShuffle->getShuffleMask(); 2163 2164 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2165 SmallVector<int, 16> newMask; 2166 bool isSplat = true; 2167 int SplatElt = -1; 2168 // Create a new mask for the new ShuffleVectorInst so that the new 2169 // ShuffleVectorInst is equivalent to the original one. 2170 for (unsigned i = 0; i < VWidth; ++i) { 2171 int eltMask; 2172 if (Mask[i] < 0) { 2173 // This element is an undef value. 2174 eltMask = -1; 2175 } else if (Mask[i] < (int)LHSWidth) { 2176 // This element is from left hand side vector operand. 2177 // 2178 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2179 // new mask value for the element. 2180 if (newLHS != LHS) { 2181 eltMask = LHSMask[Mask[i]]; 2182 // If the value selected is an undef value, explicitly specify it 2183 // with a -1 mask value. 2184 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2185 eltMask = -1; 2186 } else 2187 eltMask = Mask[i]; 2188 } else { 2189 // This element is from right hand side vector operand 2190 // 2191 // If the value selected is an undef value, explicitly specify it 2192 // with a -1 mask value. (case 1) 2193 if (isa<UndefValue>(RHS)) 2194 eltMask = -1; 2195 // If RHS is going to be replaced (case 3 or 4), calculate the 2196 // new mask value for the element. 2197 else if (newRHS != RHS) { 2198 eltMask = RHSMask[Mask[i]-LHSWidth]; 2199 // If the value selected is an undef value, explicitly specify it 2200 // with a -1 mask value. 2201 if (eltMask >= (int)RHSOp0Width) { 2202 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2203 && "should have been check above"); 2204 eltMask = -1; 2205 } 2206 } else 2207 eltMask = Mask[i]-LHSWidth; 2208 2209 // If LHS's width is changed, shift the mask value accordingly. 2210 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2211 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2212 // If newRHS == newLHS, we want to remap any references from newRHS to 2213 // newLHS so that we can properly identify splats that may occur due to 2214 // obfuscation across the two vectors. 2215 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2216 eltMask += newLHSWidth; 2217 } 2218 2219 // Check if this could still be a splat. 2220 if (eltMask >= 0) { 2221 if (SplatElt >= 0 && SplatElt != eltMask) 2222 isSplat = false; 2223 SplatElt = eltMask; 2224 } 2225 2226 newMask.push_back(eltMask); 2227 } 2228 2229 // If the result mask is equal to one of the original shuffle masks, 2230 // or is a splat, do the replacement. 2231 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2232 SmallVector<Constant*, 16> Elts; 2233 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2234 if (newMask[i] < 0) { 2235 Elts.push_back(UndefValue::get(Int32Ty)); 2236 } else { 2237 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2238 } 2239 } 2240 if (!newRHS) 2241 newRHS = UndefValue::get(newLHS->getType()); 2242 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2243 } 2244 2245 return MadeChange ? &SVI : nullptr; 2246 } 2247