1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 /// Find elements of V demanded by UserInstr.
257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
258   unsigned VWidth = V->getType()->getVectorNumElements();
259 
260   // Conservatively assume that all elements are needed.
261   APInt UsedElts(APInt::getAllOnesValue(VWidth));
262 
263   switch (UserInstr->getOpcode()) {
264   case Instruction::ExtractElement: {
265     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
266     assert(EEI->getVectorOperand() == V);
267     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
268     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
269       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
270     }
271     break;
272   }
273   case Instruction::ShuffleVector: {
274     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
275     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
276 
277     UsedElts = APInt(VWidth, 0);
278     for (unsigned i = 0; i < MaskNumElts; i++) {
279       unsigned MaskVal = Shuffle->getMaskValue(i);
280       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
281         continue;
282       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
283         UsedElts.setBit(MaskVal);
284       if (Shuffle->getOperand(1) == V &&
285           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
286         UsedElts.setBit(MaskVal - VWidth);
287     }
288     break;
289   }
290   default:
291     break;
292   }
293   return UsedElts;
294 }
295 
296 /// Find union of elements of V demanded by all its users.
297 /// If it is known by querying findDemandedEltsBySingleUser that
298 /// no user demands an element of V, then the corresponding bit
299 /// remains unset in the returned value.
300 static APInt findDemandedEltsByAllUsers(Value *V) {
301   unsigned VWidth = V->getType()->getVectorNumElements();
302 
303   APInt UnionUsedElts(VWidth, 0);
304   for (const Use &U : V->uses()) {
305     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
306       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
307     } else {
308       UnionUsedElts = APInt::getAllOnesValue(VWidth);
309       break;
310     }
311 
312     if (UnionUsedElts.isAllOnesValue())
313       break;
314   }
315 
316   return UnionUsedElts;
317 }
318 
319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
320   Value *SrcVec = EI.getVectorOperand();
321   Value *Index = EI.getIndexOperand();
322   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
323                                             SQ.getWithInstruction(&EI)))
324     return replaceInstUsesWith(EI, V);
325 
326   // If extracting a specified index from the vector, see if we can recursively
327   // find a previously computed scalar that was inserted into the vector.
328   auto *IndexC = dyn_cast<ConstantInt>(Index);
329   if (IndexC) {
330     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
331 
332     // InstSimplify should handle cases where the index is invalid.
333     if (!IndexC->getValue().ule(NumElts))
334       return nullptr;
335 
336     // This instruction only demands the single element from the input vector.
337     if (NumElts != 1) {
338       // If the input vector has a single use, simplify it based on this use
339       // property.
340       if (SrcVec->hasOneUse()) {
341         APInt UndefElts(NumElts, 0);
342         APInt DemandedElts(NumElts, 0);
343         DemandedElts.setBit(IndexC->getZExtValue());
344         if (Value *V =
345                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
346           EI.setOperand(0, V);
347           return &EI;
348         }
349       } else {
350         // If the input vector has multiple uses, simplify it based on a union
351         // of all elements used.
352         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
353         if (!DemandedElts.isAllOnesValue()) {
354           APInt UndefElts(NumElts, 0);
355           if (Value *V = SimplifyDemandedVectorElts(
356                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
357                   true /* AllowMultipleUsers */)) {
358             if (V != SrcVec) {
359               SrcVec->replaceAllUsesWith(V);
360               return &EI;
361             }
362           }
363         }
364       }
365     }
366     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
367       return I;
368 
369     // If there's a vector PHI feeding a scalar use through this extractelement
370     // instruction, try to scalarize the PHI.
371     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
372       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
373         return ScalarPHI;
374   }
375 
376   BinaryOperator *BO;
377   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
378     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
380     Value *E0 = Builder.CreateExtractElement(X, Index);
381     Value *E1 = Builder.CreateExtractElement(Y, Index);
382     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
383   }
384 
385   Value *X, *Y;
386   CmpInst::Predicate Pred;
387   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
388       cheapToScalarize(SrcVec, IndexC)) {
389     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390     Value *E0 = Builder.CreateExtractElement(X, Index);
391     Value *E1 = Builder.CreateExtractElement(Y, Index);
392     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
393   }
394 
395   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
396     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
397       // Extracting the inserted element?
398       if (IE->getOperand(2) == Index)
399         return replaceInstUsesWith(EI, IE->getOperand(1));
400       // If the inserted and extracted elements are constants, they must not
401       // be the same value, extract from the pre-inserted value instead.
402       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
403         Worklist.AddValue(SrcVec);
404         EI.setOperand(0, IE->getOperand(0));
405         return &EI;
406       }
407     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
408       // If this is extracting an element from a shufflevector, figure out where
409       // it came from and extract from the appropriate input element instead.
410       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
411         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
412         Value *Src;
413         unsigned LHSWidth =
414           SVI->getOperand(0)->getType()->getVectorNumElements();
415 
416         if (SrcIdx < 0)
417           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
418         if (SrcIdx < (int)LHSWidth)
419           Src = SVI->getOperand(0);
420         else {
421           SrcIdx -= LHSWidth;
422           Src = SVI->getOperand(1);
423         }
424         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
425         return ExtractElementInst::Create(Src,
426                                           ConstantInt::get(Int32Ty,
427                                                            SrcIdx, false));
428       }
429     } else if (auto *CI = dyn_cast<CastInst>(I)) {
430       // Canonicalize extractelement(cast) -> cast(extractelement).
431       // Bitcasts can change the number of vector elements, and they cost
432       // nothing.
433       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
434         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
435         Worklist.AddValue(EE);
436         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
437       }
438 
439       // If the input is a bitcast from x86_mmx, turn into a single bitcast from
440       // the mmx type to the scalar type.
441       if (CI->getOpcode() == Instruction::BitCast &&
442           EI.getVectorOperandType()->getNumElements() == 1 &&
443           CI->getOperand(0)->getType()->isX86_MMXTy())
444         return new BitCastInst(CI->getOperand(0), EI.getType());
445     }
446   }
447   return nullptr;
448 }
449 
450 /// If V is a shuffle of values that ONLY returns elements from either LHS or
451 /// RHS, return the shuffle mask and true. Otherwise, return false.
452 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
453                                          SmallVectorImpl<Constant*> &Mask) {
454   assert(LHS->getType() == RHS->getType() &&
455          "Invalid CollectSingleShuffleElements");
456   unsigned NumElts = V->getType()->getVectorNumElements();
457 
458   if (isa<UndefValue>(V)) {
459     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
460     return true;
461   }
462 
463   if (V == LHS) {
464     for (unsigned i = 0; i != NumElts; ++i)
465       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
466     return true;
467   }
468 
469   if (V == RHS) {
470     for (unsigned i = 0; i != NumElts; ++i)
471       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
472                                       i+NumElts));
473     return true;
474   }
475 
476   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
477     // If this is an insert of an extract from some other vector, include it.
478     Value *VecOp    = IEI->getOperand(0);
479     Value *ScalarOp = IEI->getOperand(1);
480     Value *IdxOp    = IEI->getOperand(2);
481 
482     if (!isa<ConstantInt>(IdxOp))
483       return false;
484     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
485 
486     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
487       // We can handle this if the vector we are inserting into is
488       // transitively ok.
489       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
490         // If so, update the mask to reflect the inserted undef.
491         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
492         return true;
493       }
494     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
495       if (isa<ConstantInt>(EI->getOperand(1))) {
496         unsigned ExtractedIdx =
497         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
498         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
499 
500         // This must be extracting from either LHS or RHS.
501         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
502           // We can handle this if the vector we are inserting into is
503           // transitively ok.
504           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
505             // If so, update the mask to reflect the inserted value.
506             if (EI->getOperand(0) == LHS) {
507               Mask[InsertedIdx % NumElts] =
508               ConstantInt::get(Type::getInt32Ty(V->getContext()),
509                                ExtractedIdx);
510             } else {
511               assert(EI->getOperand(0) == RHS);
512               Mask[InsertedIdx % NumElts] =
513               ConstantInt::get(Type::getInt32Ty(V->getContext()),
514                                ExtractedIdx + NumLHSElts);
515             }
516             return true;
517           }
518         }
519       }
520     }
521   }
522 
523   return false;
524 }
525 
526 /// If we have insertion into a vector that is wider than the vector that we
527 /// are extracting from, try to widen the source vector to allow a single
528 /// shufflevector to replace one or more insert/extract pairs.
529 static void replaceExtractElements(InsertElementInst *InsElt,
530                                    ExtractElementInst *ExtElt,
531                                    InstCombiner &IC) {
532   VectorType *InsVecType = InsElt->getType();
533   VectorType *ExtVecType = ExtElt->getVectorOperandType();
534   unsigned NumInsElts = InsVecType->getVectorNumElements();
535   unsigned NumExtElts = ExtVecType->getVectorNumElements();
536 
537   // The inserted-to vector must be wider than the extracted-from vector.
538   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
539       NumExtElts >= NumInsElts)
540     return;
541 
542   // Create a shuffle mask to widen the extended-from vector using undefined
543   // values. The mask selects all of the values of the original vector followed
544   // by as many undefined values as needed to create a vector of the same length
545   // as the inserted-to vector.
546   SmallVector<Constant *, 16> ExtendMask;
547   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
548   for (unsigned i = 0; i < NumExtElts; ++i)
549     ExtendMask.push_back(ConstantInt::get(IntType, i));
550   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
551     ExtendMask.push_back(UndefValue::get(IntType));
552 
553   Value *ExtVecOp = ExtElt->getVectorOperand();
554   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
555   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
556                                    ? ExtVecOpInst->getParent()
557                                    : ExtElt->getParent();
558 
559   // TODO: This restriction matches the basic block check below when creating
560   // new extractelement instructions. If that limitation is removed, this one
561   // could also be removed. But for now, we just bail out to ensure that we
562   // will replace the extractelement instruction that is feeding our
563   // insertelement instruction. This allows the insertelement to then be
564   // replaced by a shufflevector. If the insertelement is not replaced, we can
565   // induce infinite looping because there's an optimization for extractelement
566   // that will delete our widening shuffle. This would trigger another attempt
567   // here to create that shuffle, and we spin forever.
568   if (InsertionBlock != InsElt->getParent())
569     return;
570 
571   // TODO: This restriction matches the check in visitInsertElementInst() and
572   // prevents an infinite loop caused by not turning the extract/insert pair
573   // into a shuffle. We really should not need either check, but we're lacking
574   // folds for shufflevectors because we're afraid to generate shuffle masks
575   // that the backend can't handle.
576   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
577     return;
578 
579   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
580                                         ConstantVector::get(ExtendMask));
581 
582   // Insert the new shuffle after the vector operand of the extract is defined
583   // (as long as it's not a PHI) or at the start of the basic block of the
584   // extract, so any subsequent extracts in the same basic block can use it.
585   // TODO: Insert before the earliest ExtractElementInst that is replaced.
586   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
587     WideVec->insertAfter(ExtVecOpInst);
588   else
589     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
590 
591   // Replace extracts from the original narrow vector with extracts from the new
592   // wide vector.
593   for (User *U : ExtVecOp->users()) {
594     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
595     if (!OldExt || OldExt->getParent() != WideVec->getParent())
596       continue;
597     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
598     NewExt->insertAfter(OldExt);
599     IC.replaceInstUsesWith(*OldExt, NewExt);
600   }
601 }
602 
603 /// We are building a shuffle to create V, which is a sequence of insertelement,
604 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
605 /// not rely on the second vector source. Return a std::pair containing the
606 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
607 /// parameter as required.
608 ///
609 /// Note: we intentionally don't try to fold earlier shuffles since they have
610 /// often been chosen carefully to be efficiently implementable on the target.
611 using ShuffleOps = std::pair<Value *, Value *>;
612 
613 static ShuffleOps collectShuffleElements(Value *V,
614                                          SmallVectorImpl<Constant *> &Mask,
615                                          Value *PermittedRHS,
616                                          InstCombiner &IC) {
617   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
618   unsigned NumElts = V->getType()->getVectorNumElements();
619 
620   if (isa<UndefValue>(V)) {
621     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
622     return std::make_pair(
623         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
624   }
625 
626   if (isa<ConstantAggregateZero>(V)) {
627     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
628     return std::make_pair(V, nullptr);
629   }
630 
631   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
632     // If this is an insert of an extract from some other vector, include it.
633     Value *VecOp    = IEI->getOperand(0);
634     Value *ScalarOp = IEI->getOperand(1);
635     Value *IdxOp    = IEI->getOperand(2);
636 
637     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
638       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
639         unsigned ExtractedIdx =
640           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
641         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
642 
643         // Either the extracted from or inserted into vector must be RHSVec,
644         // otherwise we'd end up with a shuffle of three inputs.
645         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
646           Value *RHS = EI->getOperand(0);
647           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
648           assert(LR.second == nullptr || LR.second == RHS);
649 
650           if (LR.first->getType() != RHS->getType()) {
651             // Although we are giving up for now, see if we can create extracts
652             // that match the inserts for another round of combining.
653             replaceExtractElements(IEI, EI, IC);
654 
655             // We tried our best, but we can't find anything compatible with RHS
656             // further up the chain. Return a trivial shuffle.
657             for (unsigned i = 0; i < NumElts; ++i)
658               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
659             return std::make_pair(V, nullptr);
660           }
661 
662           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
663           Mask[InsertedIdx % NumElts] =
664             ConstantInt::get(Type::getInt32Ty(V->getContext()),
665                              NumLHSElts+ExtractedIdx);
666           return std::make_pair(LR.first, RHS);
667         }
668 
669         if (VecOp == PermittedRHS) {
670           // We've gone as far as we can: anything on the other side of the
671           // extractelement will already have been converted into a shuffle.
672           unsigned NumLHSElts =
673               EI->getOperand(0)->getType()->getVectorNumElements();
674           for (unsigned i = 0; i != NumElts; ++i)
675             Mask.push_back(ConstantInt::get(
676                 Type::getInt32Ty(V->getContext()),
677                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
678           return std::make_pair(EI->getOperand(0), PermittedRHS);
679         }
680 
681         // If this insertelement is a chain that comes from exactly these two
682         // vectors, return the vector and the effective shuffle.
683         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
684             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
685                                          Mask))
686           return std::make_pair(EI->getOperand(0), PermittedRHS);
687       }
688     }
689   }
690 
691   // Otherwise, we can't do anything fancy. Return an identity vector.
692   for (unsigned i = 0; i != NumElts; ++i)
693     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
694   return std::make_pair(V, nullptr);
695 }
696 
697 /// Try to find redundant insertvalue instructions, like the following ones:
698 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
699 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
700 /// Here the second instruction inserts values at the same indices, as the
701 /// first one, making the first one redundant.
702 /// It should be transformed to:
703 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
704 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
705   bool IsRedundant = false;
706   ArrayRef<unsigned int> FirstIndices = I.getIndices();
707 
708   // If there is a chain of insertvalue instructions (each of them except the
709   // last one has only one use and it's another insertvalue insn from this
710   // chain), check if any of the 'children' uses the same indices as the first
711   // instruction. In this case, the first one is redundant.
712   Value *V = &I;
713   unsigned Depth = 0;
714   while (V->hasOneUse() && Depth < 10) {
715     User *U = V->user_back();
716     auto UserInsInst = dyn_cast<InsertValueInst>(U);
717     if (!UserInsInst || U->getOperand(0) != V)
718       break;
719     if (UserInsInst->getIndices() == FirstIndices) {
720       IsRedundant = true;
721       break;
722     }
723     V = UserInsInst;
724     Depth++;
725   }
726 
727   if (IsRedundant)
728     return replaceInstUsesWith(I, I.getOperand(0));
729   return nullptr;
730 }
731 
732 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
733   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
734   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
735 
736   // A vector select does not change the size of the operands.
737   if (MaskSize != VecSize)
738     return false;
739 
740   // Each mask element must be undefined or choose a vector element from one of
741   // the source operands without crossing vector lanes.
742   for (int i = 0; i != MaskSize; ++i) {
743     int Elt = Shuf.getMaskValue(i);
744     if (Elt != -1 && Elt != i && Elt != i + VecSize)
745       return false;
746   }
747 
748   return true;
749 }
750 
751 /// Turn a chain of inserts that splats a value into an insert + shuffle:
752 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
753 /// shufflevector(insertelt(X, %k, 0), undef, zero)
754 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
755   // We are interested in the last insert in a chain. So if this insert has a
756   // single user and that user is an insert, bail.
757   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
758     return nullptr;
759 
760   auto *VecTy = cast<VectorType>(InsElt.getType());
761   unsigned NumElements = VecTy->getNumElements();
762 
763   // Do not try to do this for a one-element vector, since that's a nop,
764   // and will cause an inf-loop.
765   if (NumElements == 1)
766     return nullptr;
767 
768   Value *SplatVal = InsElt.getOperand(1);
769   InsertElementInst *CurrIE = &InsElt;
770   SmallVector<bool, 16> ElementPresent(NumElements, false);
771   InsertElementInst *FirstIE = nullptr;
772 
773   // Walk the chain backwards, keeping track of which indices we inserted into,
774   // until we hit something that isn't an insert of the splatted value.
775   while (CurrIE) {
776     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
777     if (!Idx || CurrIE->getOperand(1) != SplatVal)
778       return nullptr;
779 
780     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
781     // Check none of the intermediate steps have any additional uses, except
782     // for the root insertelement instruction, which can be re-used, if it
783     // inserts at position 0.
784     if (CurrIE != &InsElt &&
785         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
786       return nullptr;
787 
788     ElementPresent[Idx->getZExtValue()] = true;
789     FirstIE = CurrIE;
790     CurrIE = NextIE;
791   }
792 
793   // If this is just a single insertelement (not a sequence), we are done.
794   if (FirstIE == &InsElt)
795     return nullptr;
796 
797   // If we are not inserting into an undef vector, make sure we've seen an
798   // insert into every element.
799   // TODO: If the base vector is not undef, it might be better to create a splat
800   //       and then a select-shuffle (blend) with the base vector.
801   if (!isa<UndefValue>(FirstIE->getOperand(0)))
802     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
803       return nullptr;
804 
805   // Create the insert + shuffle.
806   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
807   UndefValue *UndefVec = UndefValue::get(VecTy);
808   Constant *Zero = ConstantInt::get(Int32Ty, 0);
809   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
810     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
811 
812   // Splat from element 0, but replace absent elements with undef in the mask.
813   SmallVector<Constant *, 16> Mask(NumElements, Zero);
814   for (unsigned i = 0; i != NumElements; ++i)
815     if (!ElementPresent[i])
816       Mask[i] = UndefValue::get(Int32Ty);
817 
818   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
819 }
820 
821 /// Try to fold an insert element into an existing splat shuffle by changing
822 /// the shuffle's mask to include the index of this insert element.
823 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
824   // Check if the vector operand of this insert is a canonical splat shuffle.
825   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
826   if (!Shuf || !Shuf->isZeroEltSplat())
827     return nullptr;
828 
829   // Check for a constant insertion index.
830   uint64_t IdxC;
831   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
832     return nullptr;
833 
834   // Check if the splat shuffle's input is the same as this insert's scalar op.
835   Value *X = InsElt.getOperand(1);
836   Value *Op0 = Shuf->getOperand(0);
837   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
838     return nullptr;
839 
840   // Replace the shuffle mask element at the index of this insert with a zero.
841   // For example:
842   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
843   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
844   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
845   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
846   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
847   Constant *Zero = ConstantInt::getNullValue(I32Ty);
848   for (unsigned i = 0; i != NumMaskElts; ++i)
849     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
850 
851   Constant *NewMask = ConstantVector::get(NewMaskVec);
852   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
853 }
854 
855 /// Try to fold an extract+insert element into an existing identity shuffle by
856 /// changing the shuffle's mask to include the index of this insert element.
857 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
858   // Check if the vector operand of this insert is an identity shuffle.
859   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
860   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
861       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
862     return nullptr;
863 
864   // Check for a constant insertion index.
865   uint64_t IdxC;
866   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
867     return nullptr;
868 
869   // Check if this insert's scalar op is extracted from the identity shuffle's
870   // input vector.
871   Value *Scalar = InsElt.getOperand(1);
872   Value *X = Shuf->getOperand(0);
873   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
874     return nullptr;
875 
876   // Replace the shuffle mask element at the index of this extract+insert with
877   // that same index value.
878   // For example:
879   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
880   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
881   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
882   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
883   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
884   Constant *OldMask = Shuf->getMask();
885   for (unsigned i = 0; i != NumMaskElts; ++i) {
886     if (i != IdxC) {
887       // All mask elements besides the inserted element remain the same.
888       NewMaskVec[i] = OldMask->getAggregateElement(i);
889     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
890       // If the mask element was already set, there's nothing to do
891       // (demanded elements analysis may unset it later).
892       return nullptr;
893     } else {
894       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
895              "Unexpected shuffle mask element for identity shuffle");
896       NewMaskVec[i] = NewMaskEltC;
897     }
898   }
899 
900   Constant *NewMask = ConstantVector::get(NewMaskVec);
901   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
902 }
903 
904 /// If we have an insertelement instruction feeding into another insertelement
905 /// and the 2nd is inserting a constant into the vector, canonicalize that
906 /// constant insertion before the insertion of a variable:
907 ///
908 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
909 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
910 ///
911 /// This has the potential of eliminating the 2nd insertelement instruction
912 /// via constant folding of the scalar constant into a vector constant.
913 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
914                                      InstCombiner::BuilderTy &Builder) {
915   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
916   if (!InsElt1 || !InsElt1->hasOneUse())
917     return nullptr;
918 
919   Value *X, *Y;
920   Constant *ScalarC;
921   ConstantInt *IdxC1, *IdxC2;
922   if (match(InsElt1->getOperand(0), m_Value(X)) &&
923       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
924       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
925       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
926       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
927     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
928     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
929   }
930 
931   return nullptr;
932 }
933 
934 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
935 /// --> shufflevector X, CVec', Mask'
936 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
937   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
938   // Bail out if the parent has more than one use. In that case, we'd be
939   // replacing the insertelt with a shuffle, and that's not a clear win.
940   if (!Inst || !Inst->hasOneUse())
941     return nullptr;
942   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
943     // The shuffle must have a constant vector operand. The insertelt must have
944     // a constant scalar being inserted at a constant position in the vector.
945     Constant *ShufConstVec, *InsEltScalar;
946     uint64_t InsEltIndex;
947     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
948         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
949         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
950       return nullptr;
951 
952     // Adding an element to an arbitrary shuffle could be expensive, but a
953     // shuffle that selects elements from vectors without crossing lanes is
954     // assumed cheap.
955     // If we're just adding a constant into that shuffle, it will still be
956     // cheap.
957     if (!isShuffleEquivalentToSelect(*Shuf))
958       return nullptr;
959 
960     // From the above 'select' check, we know that the mask has the same number
961     // of elements as the vector input operands. We also know that each constant
962     // input element is used in its lane and can not be used more than once by
963     // the shuffle. Therefore, replace the constant in the shuffle's constant
964     // vector with the insertelt constant. Replace the constant in the shuffle's
965     // mask vector with the insertelt index plus the length of the vector
966     // (because the constant vector operand of a shuffle is always the 2nd
967     // operand).
968     Constant *Mask = Shuf->getMask();
969     unsigned NumElts = Mask->getType()->getVectorNumElements();
970     SmallVector<Constant *, 16> NewShufElts(NumElts);
971     SmallVector<Constant *, 16> NewMaskElts(NumElts);
972     for (unsigned I = 0; I != NumElts; ++I) {
973       if (I == InsEltIndex) {
974         NewShufElts[I] = InsEltScalar;
975         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
976         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
977       } else {
978         // Copy over the existing values.
979         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
980         NewMaskElts[I] = Mask->getAggregateElement(I);
981       }
982     }
983 
984     // Create new operands for a shuffle that includes the constant of the
985     // original insertelt. The old shuffle will be dead now.
986     return new ShuffleVectorInst(Shuf->getOperand(0),
987                                  ConstantVector::get(NewShufElts),
988                                  ConstantVector::get(NewMaskElts));
989   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
990     // Transform sequences of insertelements ops with constant data/indexes into
991     // a single shuffle op.
992     unsigned NumElts = InsElt.getType()->getNumElements();
993 
994     uint64_t InsertIdx[2];
995     Constant *Val[2];
996     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
997         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
998         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
999         !match(IEI->getOperand(1), m_Constant(Val[1])))
1000       return nullptr;
1001     SmallVector<Constant *, 16> Values(NumElts);
1002     SmallVector<Constant *, 16> Mask(NumElts);
1003     auto ValI = std::begin(Val);
1004     // Generate new constant vector and mask.
1005     // We have 2 values/masks from the insertelements instructions. Insert them
1006     // into new value/mask vectors.
1007     for (uint64_t I : InsertIdx) {
1008       if (!Values[I]) {
1009         assert(!Mask[I]);
1010         Values[I] = *ValI;
1011         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1012                                    NumElts + I);
1013       }
1014       ++ValI;
1015     }
1016     // Remaining values are filled with 'undef' values.
1017     for (unsigned I = 0; I < NumElts; ++I) {
1018       if (!Values[I]) {
1019         assert(!Mask[I]);
1020         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1021         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1022       }
1023     }
1024     // Create new operands for a shuffle that includes the constant of the
1025     // original insertelt.
1026     return new ShuffleVectorInst(IEI->getOperand(0),
1027                                  ConstantVector::get(Values),
1028                                  ConstantVector::get(Mask));
1029   }
1030   return nullptr;
1031 }
1032 
1033 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1034   Value *VecOp    = IE.getOperand(0);
1035   Value *ScalarOp = IE.getOperand(1);
1036   Value *IdxOp    = IE.getOperand(2);
1037 
1038   if (auto *V = SimplifyInsertElementInst(
1039           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1040     return replaceInstUsesWith(IE, V);
1041 
1042   // If the vector and scalar are both bitcast from the same element type, do
1043   // the insert in that source type followed by bitcast.
1044   Value *VecSrc, *ScalarSrc;
1045   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1046       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1047       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1048       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1049       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1050     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1051     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1052     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1053     return new BitCastInst(NewInsElt, IE.getType());
1054   }
1055 
1056   // If the inserted element was extracted from some other vector and both
1057   // indexes are valid constants, try to turn this into a shuffle.
1058   uint64_t InsertedIdx, ExtractedIdx;
1059   Value *ExtVecOp;
1060   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1061       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1062                                        m_ConstantInt(ExtractedIdx))) &&
1063       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1064     // TODO: Looking at the user(s) to determine if this insert is a
1065     // fold-to-shuffle opportunity does not match the usual instcombine
1066     // constraints. We should decide if the transform is worthy based only
1067     // on this instruction and its operands, but that may not work currently.
1068     //
1069     // Here, we are trying to avoid creating shuffles before reaching
1070     // the end of a chain of extract-insert pairs. This is complicated because
1071     // we do not generally form arbitrary shuffle masks in instcombine
1072     // (because those may codegen poorly), but collectShuffleElements() does
1073     // exactly that.
1074     //
1075     // The rules for determining what is an acceptable target-independent
1076     // shuffle mask are fuzzy because they evolve based on the backend's
1077     // capabilities and real-world impact.
1078     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1079       if (!Insert.hasOneUse())
1080         return true;
1081       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1082       if (!InsertUser)
1083         return true;
1084       return false;
1085     };
1086 
1087     // Try to form a shuffle from a chain of extract-insert ops.
1088     if (isShuffleRootCandidate(IE)) {
1089       SmallVector<Constant*, 16> Mask;
1090       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1091 
1092       // The proposed shuffle may be trivial, in which case we shouldn't
1093       // perform the combine.
1094       if (LR.first != &IE && LR.second != &IE) {
1095         // We now have a shuffle of LHS, RHS, Mask.
1096         if (LR.second == nullptr)
1097           LR.second = UndefValue::get(LR.first->getType());
1098         return new ShuffleVectorInst(LR.first, LR.second,
1099                                      ConstantVector::get(Mask));
1100       }
1101     }
1102   }
1103 
1104   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1105   APInt UndefElts(VWidth, 0);
1106   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1107   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1108     if (V != &IE)
1109       return replaceInstUsesWith(IE, V);
1110     return &IE;
1111   }
1112 
1113   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1114     return Shuf;
1115 
1116   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1117     return NewInsElt;
1118 
1119   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1120     return Broadcast;
1121 
1122   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1123     return Splat;
1124 
1125   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1126     return IdentityShuf;
1127 
1128   return nullptr;
1129 }
1130 
1131 /// Return true if we can evaluate the specified expression tree if the vector
1132 /// elements were shuffled in a different order.
1133 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1134                                 unsigned Depth = 5) {
1135   // We can always reorder the elements of a constant.
1136   if (isa<Constant>(V))
1137     return true;
1138 
1139   // We won't reorder vector arguments. No IPO here.
1140   Instruction *I = dyn_cast<Instruction>(V);
1141   if (!I) return false;
1142 
1143   // Two users may expect different orders of the elements. Don't try it.
1144   if (!I->hasOneUse())
1145     return false;
1146 
1147   if (Depth == 0) return false;
1148 
1149   switch (I->getOpcode()) {
1150     case Instruction::UDiv:
1151     case Instruction::SDiv:
1152     case Instruction::URem:
1153     case Instruction::SRem:
1154       // Propagating an undefined shuffle mask element to integer div/rem is not
1155       // allowed because those opcodes can create immediate undefined behavior
1156       // from an undefined element in an operand.
1157       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1158         return false;
1159       LLVM_FALLTHROUGH;
1160     case Instruction::Add:
1161     case Instruction::FAdd:
1162     case Instruction::Sub:
1163     case Instruction::FSub:
1164     case Instruction::Mul:
1165     case Instruction::FMul:
1166     case Instruction::FDiv:
1167     case Instruction::FRem:
1168     case Instruction::Shl:
1169     case Instruction::LShr:
1170     case Instruction::AShr:
1171     case Instruction::And:
1172     case Instruction::Or:
1173     case Instruction::Xor:
1174     case Instruction::ICmp:
1175     case Instruction::FCmp:
1176     case Instruction::Trunc:
1177     case Instruction::ZExt:
1178     case Instruction::SExt:
1179     case Instruction::FPToUI:
1180     case Instruction::FPToSI:
1181     case Instruction::UIToFP:
1182     case Instruction::SIToFP:
1183     case Instruction::FPTrunc:
1184     case Instruction::FPExt:
1185     case Instruction::GetElementPtr: {
1186       // Bail out if we would create longer vector ops. We could allow creating
1187       // longer vector ops, but that may result in more expensive codegen.
1188       Type *ITy = I->getType();
1189       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1190         return false;
1191       for (Value *Operand : I->operands()) {
1192         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1193           return false;
1194       }
1195       return true;
1196     }
1197     case Instruction::InsertElement: {
1198       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1199       if (!CI) return false;
1200       int ElementNumber = CI->getLimitedValue();
1201 
1202       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1203       // can't put an element into multiple indices.
1204       bool SeenOnce = false;
1205       for (int i = 0, e = Mask.size(); i != e; ++i) {
1206         if (Mask[i] == ElementNumber) {
1207           if (SeenOnce)
1208             return false;
1209           SeenOnce = true;
1210         }
1211       }
1212       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1213     }
1214   }
1215   return false;
1216 }
1217 
1218 /// Rebuild a new instruction just like 'I' but with the new operands given.
1219 /// In the event of type mismatch, the type of the operands is correct.
1220 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1221   // We don't want to use the IRBuilder here because we want the replacement
1222   // instructions to appear next to 'I', not the builder's insertion point.
1223   switch (I->getOpcode()) {
1224     case Instruction::Add:
1225     case Instruction::FAdd:
1226     case Instruction::Sub:
1227     case Instruction::FSub:
1228     case Instruction::Mul:
1229     case Instruction::FMul:
1230     case Instruction::UDiv:
1231     case Instruction::SDiv:
1232     case Instruction::FDiv:
1233     case Instruction::URem:
1234     case Instruction::SRem:
1235     case Instruction::FRem:
1236     case Instruction::Shl:
1237     case Instruction::LShr:
1238     case Instruction::AShr:
1239     case Instruction::And:
1240     case Instruction::Or:
1241     case Instruction::Xor: {
1242       BinaryOperator *BO = cast<BinaryOperator>(I);
1243       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1244       BinaryOperator *New =
1245           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1246                                  NewOps[0], NewOps[1], "", BO);
1247       if (isa<OverflowingBinaryOperator>(BO)) {
1248         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1249         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1250       }
1251       if (isa<PossiblyExactOperator>(BO)) {
1252         New->setIsExact(BO->isExact());
1253       }
1254       if (isa<FPMathOperator>(BO))
1255         New->copyFastMathFlags(I);
1256       return New;
1257     }
1258     case Instruction::ICmp:
1259       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1260       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1261                           NewOps[0], NewOps[1]);
1262     case Instruction::FCmp:
1263       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1264       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1265                           NewOps[0], NewOps[1]);
1266     case Instruction::Trunc:
1267     case Instruction::ZExt:
1268     case Instruction::SExt:
1269     case Instruction::FPToUI:
1270     case Instruction::FPToSI:
1271     case Instruction::UIToFP:
1272     case Instruction::SIToFP:
1273     case Instruction::FPTrunc:
1274     case Instruction::FPExt: {
1275       // It's possible that the mask has a different number of elements from
1276       // the original cast. We recompute the destination type to match the mask.
1277       Type *DestTy =
1278           VectorType::get(I->getType()->getScalarType(),
1279                           NewOps[0]->getType()->getVectorNumElements());
1280       assert(NewOps.size() == 1 && "cast with #ops != 1");
1281       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1282                               "", I);
1283     }
1284     case Instruction::GetElementPtr: {
1285       Value *Ptr = NewOps[0];
1286       ArrayRef<Value*> Idx = NewOps.slice(1);
1287       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1288           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1289       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1290       return GEP;
1291     }
1292   }
1293   llvm_unreachable("failed to rebuild vector instructions");
1294 }
1295 
1296 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1297   // Mask.size() does not need to be equal to the number of vector elements.
1298 
1299   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1300   Type *EltTy = V->getType()->getScalarType();
1301   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1302   if (isa<UndefValue>(V))
1303     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1304 
1305   if (isa<ConstantAggregateZero>(V))
1306     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1307 
1308   if (Constant *C = dyn_cast<Constant>(V)) {
1309     SmallVector<Constant *, 16> MaskValues;
1310     for (int i = 0, e = Mask.size(); i != e; ++i) {
1311       if (Mask[i] == -1)
1312         MaskValues.push_back(UndefValue::get(I32Ty));
1313       else
1314         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1315     }
1316     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1317                                           ConstantVector::get(MaskValues));
1318   }
1319 
1320   Instruction *I = cast<Instruction>(V);
1321   switch (I->getOpcode()) {
1322     case Instruction::Add:
1323     case Instruction::FAdd:
1324     case Instruction::Sub:
1325     case Instruction::FSub:
1326     case Instruction::Mul:
1327     case Instruction::FMul:
1328     case Instruction::UDiv:
1329     case Instruction::SDiv:
1330     case Instruction::FDiv:
1331     case Instruction::URem:
1332     case Instruction::SRem:
1333     case Instruction::FRem:
1334     case Instruction::Shl:
1335     case Instruction::LShr:
1336     case Instruction::AShr:
1337     case Instruction::And:
1338     case Instruction::Or:
1339     case Instruction::Xor:
1340     case Instruction::ICmp:
1341     case Instruction::FCmp:
1342     case Instruction::Trunc:
1343     case Instruction::ZExt:
1344     case Instruction::SExt:
1345     case Instruction::FPToUI:
1346     case Instruction::FPToSI:
1347     case Instruction::UIToFP:
1348     case Instruction::SIToFP:
1349     case Instruction::FPTrunc:
1350     case Instruction::FPExt:
1351     case Instruction::Select:
1352     case Instruction::GetElementPtr: {
1353       SmallVector<Value*, 8> NewOps;
1354       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1355       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1356         Value *V;
1357         // Recursively call evaluateInDifferentElementOrder on vector arguments
1358         // as well. E.g. GetElementPtr may have scalar operands even if the
1359         // return value is a vector, so we need to examine the operand type.
1360         if (I->getOperand(i)->getType()->isVectorTy())
1361           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1362         else
1363           V = I->getOperand(i);
1364         NewOps.push_back(V);
1365         NeedsRebuild |= (V != I->getOperand(i));
1366       }
1367       if (NeedsRebuild) {
1368         return buildNew(I, NewOps);
1369       }
1370       return I;
1371     }
1372     case Instruction::InsertElement: {
1373       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1374 
1375       // The insertelement was inserting at Element. Figure out which element
1376       // that becomes after shuffling. The answer is guaranteed to be unique
1377       // by CanEvaluateShuffled.
1378       bool Found = false;
1379       int Index = 0;
1380       for (int e = Mask.size(); Index != e; ++Index) {
1381         if (Mask[Index] == Element) {
1382           Found = true;
1383           break;
1384         }
1385       }
1386 
1387       // If element is not in Mask, no need to handle the operand 1 (element to
1388       // be inserted). Just evaluate values in operand 0 according to Mask.
1389       if (!Found)
1390         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1391 
1392       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1393       return InsertElementInst::Create(V, I->getOperand(1),
1394                                        ConstantInt::get(I32Ty, Index), "", I);
1395     }
1396   }
1397   llvm_unreachable("failed to reorder elements of vector instruction!");
1398 }
1399 
1400 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1401                                   bool &isLHSID, bool &isRHSID) {
1402   isLHSID = isRHSID = true;
1403 
1404   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1405     if (Mask[i] < 0) continue;  // Ignore undef values.
1406     // Is this an identity shuffle of the LHS value?
1407     isLHSID &= (Mask[i] == (int)i);
1408 
1409     // Is this an identity shuffle of the RHS value?
1410     isRHSID &= (Mask[i]-e == i);
1411   }
1412 }
1413 
1414 // Returns true if the shuffle is extracting a contiguous range of values from
1415 // LHS, for example:
1416 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1417 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1418 //   Shuffles to:  |EE|FF|GG|HH|
1419 //                 +--+--+--+--+
1420 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1421                                        SmallVector<int, 16> &Mask) {
1422   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1423   unsigned MaskElems = Mask.size();
1424   unsigned BegIdx = Mask.front();
1425   unsigned EndIdx = Mask.back();
1426   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1427     return false;
1428   for (unsigned I = 0; I != MaskElems; ++I)
1429     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1430       return false;
1431   return true;
1432 }
1433 
1434 /// These are the ingredients in an alternate form binary operator as described
1435 /// below.
1436 struct BinopElts {
1437   BinaryOperator::BinaryOps Opcode;
1438   Value *Op0;
1439   Value *Op1;
1440   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1441             Value *V0 = nullptr, Value *V1 = nullptr) :
1442       Opcode(Opc), Op0(V0), Op1(V1) {}
1443   operator bool() const { return Opcode != 0; }
1444 };
1445 
1446 /// Binops may be transformed into binops with different opcodes and operands.
1447 /// Reverse the usual canonicalization to enable folds with the non-canonical
1448 /// form of the binop. If a transform is possible, return the elements of the
1449 /// new binop. If not, return invalid elements.
1450 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1451   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1452   Type *Ty = BO->getType();
1453   switch (BO->getOpcode()) {
1454     case Instruction::Shl: {
1455       // shl X, C --> mul X, (1 << C)
1456       Constant *C;
1457       if (match(BO1, m_Constant(C))) {
1458         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1459         return { Instruction::Mul, BO0, ShlOne };
1460       }
1461       break;
1462     }
1463     case Instruction::Or: {
1464       // or X, C --> add X, C (when X and C have no common bits set)
1465       const APInt *C;
1466       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1467         return { Instruction::Add, BO0, BO1 };
1468       break;
1469     }
1470     default:
1471       break;
1472   }
1473   return {};
1474 }
1475 
1476 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1477   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1478 
1479   // Are we shuffling together some value and that same value after it has been
1480   // modified by a binop with a constant?
1481   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1482   Constant *C;
1483   bool Op0IsBinop;
1484   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1485     Op0IsBinop = true;
1486   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1487     Op0IsBinop = false;
1488   else
1489     return nullptr;
1490 
1491   // The identity constant for a binop leaves a variable operand unchanged. For
1492   // a vector, this is a splat of something like 0, -1, or 1.
1493   // If there's no identity constant for this binop, we're done.
1494   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1495   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1496   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1497   if (!IdC)
1498     return nullptr;
1499 
1500   // Shuffle identity constants into the lanes that return the original value.
1501   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1502   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1503   // The existing binop constant vector remains in the same operand position.
1504   Constant *Mask = Shuf.getMask();
1505   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1506                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1507 
1508   bool MightCreatePoisonOrUB =
1509       Mask->containsUndefElement() &&
1510       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1511   if (MightCreatePoisonOrUB)
1512     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1513 
1514   // shuf (bop X, C), X, M --> bop X, C'
1515   // shuf X, (bop X, C), M --> bop X, C'
1516   Value *X = Op0IsBinop ? Op1 : Op0;
1517   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1518   NewBO->copyIRFlags(BO);
1519 
1520   // An undef shuffle mask element may propagate as an undef constant element in
1521   // the new binop. That would produce poison where the original code might not.
1522   // If we already made a safe constant, then there's no danger.
1523   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1524     NewBO->dropPoisonGeneratingFlags();
1525   return NewBO;
1526 }
1527 
1528 /// If we have an insert of a scalar to a non-zero element of an undefined
1529 /// vector and then shuffle that value, that's the same as inserting to the zero
1530 /// element and shuffling. Splatting from the zero element is recognized as the
1531 /// canonical form of splat.
1532 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1533                                             InstCombiner::BuilderTy &Builder) {
1534   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1535   Constant *Mask = Shuf.getMask();
1536   Value *X;
1537   uint64_t IndexC;
1538 
1539   // Match a shuffle that is a splat to a non-zero element.
1540   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1541                                            m_ConstantInt(IndexC)))) ||
1542       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1543     return nullptr;
1544 
1545   // Insert into element 0 of an undef vector.
1546   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1547   Constant *Zero = Builder.getInt32(0);
1548   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1549 
1550   // Splat from element 0. Any mask element that is undefined remains undefined.
1551   // For example:
1552   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1553   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1554   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1555   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1556   for (unsigned i = 0; i != NumMaskElts; ++i)
1557     if (isa<UndefValue>(Mask->getAggregateElement(i)))
1558       NewMask[i] = Mask->getAggregateElement(i);
1559 
1560   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1561 }
1562 
1563 /// Try to fold shuffles that are the equivalent of a vector select.
1564 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1565                                       InstCombiner::BuilderTy &Builder,
1566                                       const DataLayout &DL) {
1567   if (!Shuf.isSelect())
1568     return nullptr;
1569 
1570   // Canonicalize to choose from operand 0 first.
1571   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1572   if (Shuf.getMaskValue(0) >= (int)NumElts) {
1573     // TODO: Can we assert that both operands of a shuffle-select are not undef
1574     // (otherwise, it would have been folded by instsimplify?
1575     Shuf.commute();
1576     return &Shuf;
1577   }
1578 
1579   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1580     return I;
1581 
1582   BinaryOperator *B0, *B1;
1583   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1584       !match(Shuf.getOperand(1), m_BinOp(B1)))
1585     return nullptr;
1586 
1587   Value *X, *Y;
1588   Constant *C0, *C1;
1589   bool ConstantsAreOp1;
1590   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1591       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1592     ConstantsAreOp1 = true;
1593   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1594            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1595     ConstantsAreOp1 = false;
1596   else
1597     return nullptr;
1598 
1599   // We need matching binops to fold the lanes together.
1600   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1601   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1602   bool DropNSW = false;
1603   if (ConstantsAreOp1 && Opc0 != Opc1) {
1604     // TODO: We drop "nsw" if shift is converted into multiply because it may
1605     // not be correct when the shift amount is BitWidth - 1. We could examine
1606     // each vector element to determine if it is safe to keep that flag.
1607     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1608       DropNSW = true;
1609     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1610       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1611       Opc0 = AltB0.Opcode;
1612       C0 = cast<Constant>(AltB0.Op1);
1613     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1614       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1615       Opc1 = AltB1.Opcode;
1616       C1 = cast<Constant>(AltB1.Op1);
1617     }
1618   }
1619 
1620   if (Opc0 != Opc1)
1621     return nullptr;
1622 
1623   // The opcodes must be the same. Use a new name to make that clear.
1624   BinaryOperator::BinaryOps BOpc = Opc0;
1625 
1626   // Select the constant elements needed for the single binop.
1627   Constant *Mask = Shuf.getMask();
1628   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1629 
1630   // We are moving a binop after a shuffle. When a shuffle has an undefined
1631   // mask element, the result is undefined, but it is not poison or undefined
1632   // behavior. That is not necessarily true for div/rem/shift.
1633   bool MightCreatePoisonOrUB =
1634       Mask->containsUndefElement() &&
1635       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1636   if (MightCreatePoisonOrUB)
1637     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1638 
1639   Value *V;
1640   if (X == Y) {
1641     // Remove a binop and the shuffle by rearranging the constant:
1642     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1643     // shuffle (op C0, V), (op C1, V), M --> op C', V
1644     V = X;
1645   } else {
1646     // If there are 2 different variable operands, we must create a new shuffle
1647     // (select) first, so check uses to ensure that we don't end up with more
1648     // instructions than we started with.
1649     if (!B0->hasOneUse() && !B1->hasOneUse())
1650       return nullptr;
1651 
1652     // If we use the original shuffle mask and op1 is *variable*, we would be
1653     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1654     // poison. We do not have to guard against UB when *constants* are op1
1655     // because safe constants guarantee that we do not overflow sdiv/srem (and
1656     // there's no danger for other opcodes).
1657     // TODO: To allow this case, create a new shuffle mask with no undefs.
1658     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1659       return nullptr;
1660 
1661     // Note: In general, we do not create new shuffles in InstCombine because we
1662     // do not know if a target can lower an arbitrary shuffle optimally. In this
1663     // case, the shuffle uses the existing mask, so there is no additional risk.
1664 
1665     // Select the variable vectors first, then perform the binop:
1666     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1667     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1668     V = Builder.CreateShuffleVector(X, Y, Mask);
1669   }
1670 
1671   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1672                                          BinaryOperator::Create(BOpc, NewC, V);
1673 
1674   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1675   // 1. If we changed an opcode, poison conditions might have changed.
1676   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1677   //    where the original code did not. But if we already made a safe constant,
1678   //    then there's no danger.
1679   NewBO->copyIRFlags(B0);
1680   NewBO->andIRFlags(B1);
1681   if (DropNSW)
1682     NewBO->setHasNoSignedWrap(false);
1683   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1684     NewBO->dropPoisonGeneratingFlags();
1685   return NewBO;
1686 }
1687 
1688 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1689 /// narrowing (concatenating with undef and extracting back to the original
1690 /// length). This allows replacing the wide select with a narrow select.
1691 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1692                                        InstCombiner::BuilderTy &Builder) {
1693   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1694   // of the 1st vector operand of a shuffle.
1695   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1696     return nullptr;
1697 
1698   // The vector being shuffled must be a vector select that we can eliminate.
1699   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1700   Value *Cond, *X, *Y;
1701   if (!match(Shuf.getOperand(0),
1702              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1703     return nullptr;
1704 
1705   // We need a narrow condition value. It must be extended with undef elements
1706   // and have the same number of elements as this shuffle.
1707   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1708   Value *NarrowCond;
1709   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1710                                             m_Constant()))) ||
1711       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1712       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1713     return nullptr;
1714 
1715   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1716   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1717   Value *Undef = UndefValue::get(X->getType());
1718   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1719   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1720   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1721 }
1722 
1723 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1724 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1725   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1726   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1727     return nullptr;
1728 
1729   Value *X, *Y;
1730   Constant *Mask;
1731   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1732     return nullptr;
1733 
1734   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1735   // then combining may result in worse codegen.
1736   if (!Op0->hasOneUse())
1737     return nullptr;
1738 
1739   // We are extracting a subvector from a shuffle. Remove excess elements from
1740   // the 1st shuffle mask to eliminate the extract.
1741   //
1742   // This transform is conservatively limited to identity extracts because we do
1743   // not allow arbitrary shuffle mask creation as a target-independent transform
1744   // (because we can't guarantee that will lower efficiently).
1745   //
1746   // If the extracting shuffle has an undef mask element, it transfers to the
1747   // new shuffle mask. Otherwise, copy the original mask element. Example:
1748   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1749   //   shuf X, Y, <C0, undef, C2, undef>
1750   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1751   SmallVector<Constant *, 16> NewMask(NumElts);
1752   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1753          "Identity with extract must have less elements than its inputs");
1754 
1755   for (unsigned i = 0; i != NumElts; ++i) {
1756     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1757     Constant *MaskElt = Mask->getAggregateElement(i);
1758     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1759   }
1760   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1761 }
1762 
1763 /// Try to replace a shuffle with an insertelement.
1764 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1765   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1766   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1767 
1768   // The shuffle must not change vector sizes.
1769   // TODO: This restriction could be removed if the insert has only one use
1770   //       (because the transform would require a new length-changing shuffle).
1771   int NumElts = Mask.size();
1772   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1773     return nullptr;
1774 
1775   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1776   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1777     // We need an insertelement with a constant index.
1778     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1779                                    m_ConstantInt(IndexC))))
1780       return false;
1781 
1782     // Test the shuffle mask to see if it splices the inserted scalar into the
1783     // operand 1 vector of the shuffle.
1784     int NewInsIndex = -1;
1785     for (int i = 0; i != NumElts; ++i) {
1786       // Ignore undef mask elements.
1787       if (Mask[i] == -1)
1788         continue;
1789 
1790       // The shuffle takes elements of operand 1 without lane changes.
1791       if (Mask[i] == NumElts + i)
1792         continue;
1793 
1794       // The shuffle must choose the inserted scalar exactly once.
1795       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1796         return false;
1797 
1798       // The shuffle is placing the inserted scalar into element i.
1799       NewInsIndex = i;
1800     }
1801 
1802     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1803 
1804     // Index is updated to the potentially translated insertion lane.
1805     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1806     return true;
1807   };
1808 
1809   // If the shuffle is unnecessary, insert the scalar operand directly into
1810   // operand 1 of the shuffle. Example:
1811   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1812   Value *Scalar;
1813   ConstantInt *IndexC;
1814   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1815     return InsertElementInst::Create(V1, Scalar, IndexC);
1816 
1817   // Try again after commuting shuffle. Example:
1818   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1819   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1820   std::swap(V0, V1);
1821   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1822   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1823     return InsertElementInst::Create(V1, Scalar, IndexC);
1824 
1825   return nullptr;
1826 }
1827 
1828 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1829   // Match the operands as identity with padding (also known as concatenation
1830   // with undef) shuffles of the same source type. The backend is expected to
1831   // recreate these concatenations from a shuffle of narrow operands.
1832   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1833   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1834   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1835       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1836     return nullptr;
1837 
1838   // We limit this transform to power-of-2 types because we expect that the
1839   // backend can convert the simplified IR patterns to identical nodes as the
1840   // original IR.
1841   // TODO: If we can verify the same behavior for arbitrary types, the
1842   //       power-of-2 checks can be removed.
1843   Value *X = Shuffle0->getOperand(0);
1844   Value *Y = Shuffle1->getOperand(0);
1845   if (X->getType() != Y->getType() ||
1846       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1847       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1848       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1849       isa<UndefValue>(X) || isa<UndefValue>(Y))
1850     return nullptr;
1851   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1852          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1853          "Unexpected operand for identity shuffle");
1854 
1855   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1856   // operands directly by adjusting the shuffle mask to account for the narrower
1857   // types:
1858   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1859   int NarrowElts = X->getType()->getVectorNumElements();
1860   int WideElts = Shuffle0->getType()->getVectorNumElements();
1861   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1862 
1863   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1864   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1865   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1866   for (int i = 0, e = Mask.size(); i != e; ++i) {
1867     if (Mask[i] == -1)
1868       continue;
1869 
1870     // If this shuffle is choosing an undef element from 1 of the sources, that
1871     // element is undef.
1872     if (Mask[i] < WideElts) {
1873       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1874         continue;
1875     } else {
1876       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1877         continue;
1878     }
1879 
1880     // If this shuffle is choosing from the 1st narrow op, the mask element is
1881     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1882     // element is offset down to adjust for the narrow vector widths.
1883     if (Mask[i] < WideElts) {
1884       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1885       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1886     } else {
1887       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1888       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1889     }
1890   }
1891   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1892 }
1893 
1894 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1895   Value *LHS = SVI.getOperand(0);
1896   Value *RHS = SVI.getOperand(1);
1897   if (auto *V = SimplifyShuffleVectorInst(
1898           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1899     return replaceInstUsesWith(SVI, V);
1900 
1901   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1902   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1903   unsigned VWidth = SVI.getType()->getVectorNumElements();
1904   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1905   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1906   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1907   if (LHS == RHS || isa<UndefValue>(LHS)) {
1908     // Remap any references to RHS to use LHS.
1909     SmallVector<Constant*, 16> Elts;
1910     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1911       if (Mask[i] < 0) {
1912         Elts.push_back(UndefValue::get(Int32Ty));
1913         continue;
1914       }
1915 
1916       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1917           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1918         Mask[i] = -1;     // Turn into undef.
1919         Elts.push_back(UndefValue::get(Int32Ty));
1920       } else {
1921         Mask[i] = Mask[i] % e;  // Force to LHS.
1922         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1923       }
1924     }
1925     SVI.setOperand(0, SVI.getOperand(1));
1926     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1927     SVI.setOperand(2, ConstantVector::get(Elts));
1928     return &SVI;
1929   }
1930 
1931   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1932     return I;
1933 
1934   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1935     return I;
1936 
1937   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1938     return I;
1939 
1940   APInt UndefElts(VWidth, 0);
1941   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1942   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1943     if (V != &SVI)
1944       return replaceInstUsesWith(SVI, V);
1945     return &SVI;
1946   }
1947 
1948   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1949     return I;
1950 
1951   // These transforms have the potential to lose undef knowledge, so they are
1952   // intentionally placed after SimplifyDemandedVectorElts().
1953   if (Instruction *I = foldShuffleWithInsert(SVI))
1954     return I;
1955   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1956     return I;
1957 
1958   if (VWidth == LHSWidth) {
1959     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1960     bool isLHSID, isRHSID;
1961     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1962 
1963     // Eliminate identity shuffles.
1964     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1965     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1966   }
1967 
1968   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1969     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1970     return replaceInstUsesWith(SVI, V);
1971   }
1972 
1973   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1974   // a non-vector type. We can instead bitcast the original vector followed by
1975   // an extract of the desired element:
1976   //
1977   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1978   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1979   //   %1 = bitcast <4 x i8> %sroa to i32
1980   // Becomes:
1981   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1982   //   %ext = extractelement <4 x i32> %bc, i32 0
1983   //
1984   // If the shuffle is extracting a contiguous range of values from the input
1985   // vector then each use which is a bitcast of the extracted size can be
1986   // replaced. This will work if the vector types are compatible, and the begin
1987   // index is aligned to a value in the casted vector type. If the begin index
1988   // isn't aligned then we can shuffle the original vector (keeping the same
1989   // vector type) before extracting.
1990   //
1991   // This code will bail out if the target type is fundamentally incompatible
1992   // with vectors of the source type.
1993   //
1994   // Example of <16 x i8>, target type i32:
1995   // Index range [4,8):         v-----------v Will work.
1996   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1997   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1998   //     <4 x i32>: |           |           |           |           |
1999   //                +-----------+-----------+-----------+-----------+
2000   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2001   // Target type i40:           ^--------------^ Won't work, bail.
2002   bool MadeChange = false;
2003   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2004     Value *V = LHS;
2005     unsigned MaskElems = Mask.size();
2006     VectorType *SrcTy = cast<VectorType>(V->getType());
2007     unsigned VecBitWidth = SrcTy->getBitWidth();
2008     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2009     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2010     unsigned SrcNumElems = SrcTy->getNumElements();
2011     SmallVector<BitCastInst *, 8> BCs;
2012     DenseMap<Type *, Value *> NewBCs;
2013     for (User *U : SVI.users())
2014       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2015         if (!BC->use_empty())
2016           // Only visit bitcasts that weren't previously handled.
2017           BCs.push_back(BC);
2018     for (BitCastInst *BC : BCs) {
2019       unsigned BegIdx = Mask.front();
2020       Type *TgtTy = BC->getDestTy();
2021       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2022       if (!TgtElemBitWidth)
2023         continue;
2024       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2025       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2026       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2027       if (!VecBitWidthsEqual)
2028         continue;
2029       if (!VectorType::isValidElementType(TgtTy))
2030         continue;
2031       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2032       if (!BegIsAligned) {
2033         // Shuffle the input so [0,NumElements) contains the output, and
2034         // [NumElems,SrcNumElems) is undef.
2035         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2036                                                 UndefValue::get(Int32Ty));
2037         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2038           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2039         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2040                                         ConstantVector::get(ShuffleMask),
2041                                         SVI.getName() + ".extract");
2042         BegIdx = 0;
2043       }
2044       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2045       assert(SrcElemsPerTgtElem);
2046       BegIdx /= SrcElemsPerTgtElem;
2047       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2048       auto *NewBC =
2049           BCAlreadyExists
2050               ? NewBCs[CastSrcTy]
2051               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2052       if (!BCAlreadyExists)
2053         NewBCs[CastSrcTy] = NewBC;
2054       auto *Ext = Builder.CreateExtractElement(
2055           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2056       // The shufflevector isn't being replaced: the bitcast that used it
2057       // is. InstCombine will visit the newly-created instructions.
2058       replaceInstUsesWith(*BC, Ext);
2059       MadeChange = true;
2060     }
2061   }
2062 
2063   // If the LHS is a shufflevector itself, see if we can combine it with this
2064   // one without producing an unusual shuffle.
2065   // Cases that might be simplified:
2066   // 1.
2067   // x1=shuffle(v1,v2,mask1)
2068   //  x=shuffle(x1,undef,mask)
2069   //        ==>
2070   //  x=shuffle(v1,undef,newMask)
2071   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2072   // 2.
2073   // x1=shuffle(v1,undef,mask1)
2074   //  x=shuffle(x1,x2,mask)
2075   // where v1.size() == mask1.size()
2076   //        ==>
2077   //  x=shuffle(v1,x2,newMask)
2078   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2079   // 3.
2080   // x2=shuffle(v2,undef,mask2)
2081   //  x=shuffle(x1,x2,mask)
2082   // where v2.size() == mask2.size()
2083   //        ==>
2084   //  x=shuffle(x1,v2,newMask)
2085   // newMask[i] = (mask[i] < x1.size())
2086   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2087   // 4.
2088   // x1=shuffle(v1,undef,mask1)
2089   // x2=shuffle(v2,undef,mask2)
2090   //  x=shuffle(x1,x2,mask)
2091   // where v1.size() == v2.size()
2092   //        ==>
2093   //  x=shuffle(v1,v2,newMask)
2094   // newMask[i] = (mask[i] < x1.size())
2095   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2096   //
2097   // Here we are really conservative:
2098   // we are absolutely afraid of producing a shuffle mask not in the input
2099   // program, because the code gen may not be smart enough to turn a merged
2100   // shuffle into two specific shuffles: it may produce worse code.  As such,
2101   // we only merge two shuffles if the result is either a splat or one of the
2102   // input shuffle masks.  In this case, merging the shuffles just removes
2103   // one instruction, which we know is safe.  This is good for things like
2104   // turning: (splat(splat)) -> splat, or
2105   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2106   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2107   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2108   if (LHSShuffle)
2109     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2110       LHSShuffle = nullptr;
2111   if (RHSShuffle)
2112     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2113       RHSShuffle = nullptr;
2114   if (!LHSShuffle && !RHSShuffle)
2115     return MadeChange ? &SVI : nullptr;
2116 
2117   Value* LHSOp0 = nullptr;
2118   Value* LHSOp1 = nullptr;
2119   Value* RHSOp0 = nullptr;
2120   unsigned LHSOp0Width = 0;
2121   unsigned RHSOp0Width = 0;
2122   if (LHSShuffle) {
2123     LHSOp0 = LHSShuffle->getOperand(0);
2124     LHSOp1 = LHSShuffle->getOperand(1);
2125     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2126   }
2127   if (RHSShuffle) {
2128     RHSOp0 = RHSShuffle->getOperand(0);
2129     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2130   }
2131   Value* newLHS = LHS;
2132   Value* newRHS = RHS;
2133   if (LHSShuffle) {
2134     // case 1
2135     if (isa<UndefValue>(RHS)) {
2136       newLHS = LHSOp0;
2137       newRHS = LHSOp1;
2138     }
2139     // case 2 or 4
2140     else if (LHSOp0Width == LHSWidth) {
2141       newLHS = LHSOp0;
2142     }
2143   }
2144   // case 3 or 4
2145   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2146     newRHS = RHSOp0;
2147   }
2148   // case 4
2149   if (LHSOp0 == RHSOp0) {
2150     newLHS = LHSOp0;
2151     newRHS = nullptr;
2152   }
2153 
2154   if (newLHS == LHS && newRHS == RHS)
2155     return MadeChange ? &SVI : nullptr;
2156 
2157   SmallVector<int, 16> LHSMask;
2158   SmallVector<int, 16> RHSMask;
2159   if (newLHS != LHS)
2160     LHSMask = LHSShuffle->getShuffleMask();
2161   if (RHSShuffle && newRHS != RHS)
2162     RHSMask = RHSShuffle->getShuffleMask();
2163 
2164   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2165   SmallVector<int, 16> newMask;
2166   bool isSplat = true;
2167   int SplatElt = -1;
2168   // Create a new mask for the new ShuffleVectorInst so that the new
2169   // ShuffleVectorInst is equivalent to the original one.
2170   for (unsigned i = 0; i < VWidth; ++i) {
2171     int eltMask;
2172     if (Mask[i] < 0) {
2173       // This element is an undef value.
2174       eltMask = -1;
2175     } else if (Mask[i] < (int)LHSWidth) {
2176       // This element is from left hand side vector operand.
2177       //
2178       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2179       // new mask value for the element.
2180       if (newLHS != LHS) {
2181         eltMask = LHSMask[Mask[i]];
2182         // If the value selected is an undef value, explicitly specify it
2183         // with a -1 mask value.
2184         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2185           eltMask = -1;
2186       } else
2187         eltMask = Mask[i];
2188     } else {
2189       // This element is from right hand side vector operand
2190       //
2191       // If the value selected is an undef value, explicitly specify it
2192       // with a -1 mask value. (case 1)
2193       if (isa<UndefValue>(RHS))
2194         eltMask = -1;
2195       // If RHS is going to be replaced (case 3 or 4), calculate the
2196       // new mask value for the element.
2197       else if (newRHS != RHS) {
2198         eltMask = RHSMask[Mask[i]-LHSWidth];
2199         // If the value selected is an undef value, explicitly specify it
2200         // with a -1 mask value.
2201         if (eltMask >= (int)RHSOp0Width) {
2202           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2203                  && "should have been check above");
2204           eltMask = -1;
2205         }
2206       } else
2207         eltMask = Mask[i]-LHSWidth;
2208 
2209       // If LHS's width is changed, shift the mask value accordingly.
2210       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2211       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2212       // If newRHS == newLHS, we want to remap any references from newRHS to
2213       // newLHS so that we can properly identify splats that may occur due to
2214       // obfuscation across the two vectors.
2215       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2216         eltMask += newLHSWidth;
2217     }
2218 
2219     // Check if this could still be a splat.
2220     if (eltMask >= 0) {
2221       if (SplatElt >= 0 && SplatElt != eltMask)
2222         isSplat = false;
2223       SplatElt = eltMask;
2224     }
2225 
2226     newMask.push_back(eltMask);
2227   }
2228 
2229   // If the result mask is equal to one of the original shuffle masks,
2230   // or is a splat, do the replacement.
2231   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2232     SmallVector<Constant*, 16> Elts;
2233     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2234       if (newMask[i] < 0) {
2235         Elts.push_back(UndefValue::get(Int32Ty));
2236       } else {
2237         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2238       }
2239     }
2240     if (!newRHS)
2241       newRHS = UndefValue::get(newLHS->getType());
2242     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2243   }
2244 
2245   return MadeChange ? &SVI : nullptr;
2246 }
2247