1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 /// Find elements of V demanded by UserInstr.
257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
258   unsigned VWidth = V->getType()->getVectorNumElements();
259 
260   // Conservatively assume that all elements are needed.
261   APInt UsedElts(APInt::getAllOnesValue(VWidth));
262 
263   switch (UserInstr->getOpcode()) {
264   case Instruction::ExtractElement: {
265     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
266     assert(EEI->getVectorOperand() == V);
267     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
268     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
269       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
270     }
271     break;
272   }
273   case Instruction::ShuffleVector: {
274     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
275     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
276 
277     UsedElts = APInt(VWidth, 0);
278     for (unsigned i = 0; i < MaskNumElts; i++) {
279       unsigned MaskVal = Shuffle->getMaskValue(i);
280       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
281         continue;
282       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
283         UsedElts.setBit(MaskVal);
284       if (Shuffle->getOperand(1) == V &&
285           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
286         UsedElts.setBit(MaskVal - VWidth);
287     }
288     break;
289   }
290   default:
291     break;
292   }
293   return UsedElts;
294 }
295 
296 /// Find union of elements of V demanded by all its users.
297 /// If it is known by querying findDemandedEltsBySingleUser that
298 /// no user demands an element of V, then the corresponding bit
299 /// remains unset in the returned value.
300 static APInt findDemandedEltsByAllUsers(Value *V) {
301   unsigned VWidth = V->getType()->getVectorNumElements();
302 
303   APInt UnionUsedElts(VWidth, 0);
304   for (const Use &U : V->uses()) {
305     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
306       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
307     } else {
308       UnionUsedElts = APInt::getAllOnesValue(VWidth);
309       break;
310     }
311 
312     if (UnionUsedElts.isAllOnesValue())
313       break;
314   }
315 
316   return UnionUsedElts;
317 }
318 
319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
320   Value *SrcVec = EI.getVectorOperand();
321   Value *Index = EI.getIndexOperand();
322   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
323                                             SQ.getWithInstruction(&EI)))
324     return replaceInstUsesWith(EI, V);
325 
326   // If extracting a specified index from the vector, see if we can recursively
327   // find a previously computed scalar that was inserted into the vector.
328   auto *IndexC = dyn_cast<ConstantInt>(Index);
329   if (IndexC) {
330     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
331 
332     // InstSimplify should handle cases where the index is invalid.
333     if (!IndexC->getValue().ule(NumElts))
334       return nullptr;
335 
336     // This instruction only demands the single element from the input vector.
337     if (NumElts != 1) {
338       // If the input vector has a single use, simplify it based on this use
339       // property.
340       if (SrcVec->hasOneUse()) {
341         APInt UndefElts(NumElts, 0);
342         APInt DemandedElts(NumElts, 0);
343         DemandedElts.setBit(IndexC->getZExtValue());
344         if (Value *V =
345                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
346           EI.setOperand(0, V);
347           return &EI;
348         }
349       } else {
350         // If the input vector has multiple uses, simplify it based on a union
351         // of all elements used.
352         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
353         if (!DemandedElts.isAllOnesValue()) {
354           APInt UndefElts(NumElts, 0);
355           if (Value *V = SimplifyDemandedVectorElts(
356                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
357                   true /* AllowMultipleUsers */)) {
358             if (V != SrcVec) {
359               SrcVec->replaceAllUsesWith(V);
360               return &EI;
361             }
362           }
363         }
364       }
365     }
366     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
367       return I;
368 
369     // If there's a vector PHI feeding a scalar use through this extractelement
370     // instruction, try to scalarize the PHI.
371     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
372       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
373         return ScalarPHI;
374   }
375 
376   BinaryOperator *BO;
377   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
378     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
380     Value *E0 = Builder.CreateExtractElement(X, Index);
381     Value *E1 = Builder.CreateExtractElement(Y, Index);
382     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
383   }
384 
385   Value *X, *Y;
386   CmpInst::Predicate Pred;
387   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
388       cheapToScalarize(SrcVec, IndexC)) {
389     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390     Value *E0 = Builder.CreateExtractElement(X, Index);
391     Value *E1 = Builder.CreateExtractElement(Y, Index);
392     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
393   }
394 
395   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
396     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
397       // Extracting the inserted element?
398       if (IE->getOperand(2) == Index)
399         return replaceInstUsesWith(EI, IE->getOperand(1));
400       // If the inserted and extracted elements are constants, they must not
401       // be the same value, extract from the pre-inserted value instead.
402       if (isa<Constant>(IE->getOperand(2)) && IndexC)
403         return replaceOperand(EI, 0, IE->getOperand(0));
404     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
405       // If this is extracting an element from a shufflevector, figure out where
406       // it came from and extract from the appropriate input element instead.
407       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
408         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
409         Value *Src;
410         unsigned LHSWidth =
411           SVI->getOperand(0)->getType()->getVectorNumElements();
412 
413         if (SrcIdx < 0)
414           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
415         if (SrcIdx < (int)LHSWidth)
416           Src = SVI->getOperand(0);
417         else {
418           SrcIdx -= LHSWidth;
419           Src = SVI->getOperand(1);
420         }
421         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
422         return ExtractElementInst::Create(Src,
423                                           ConstantInt::get(Int32Ty,
424                                                            SrcIdx, false));
425       }
426     } else if (auto *CI = dyn_cast<CastInst>(I)) {
427       // Canonicalize extractelement(cast) -> cast(extractelement).
428       // Bitcasts can change the number of vector elements, and they cost
429       // nothing.
430       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
431         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
432         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
433       }
434     }
435   }
436   return nullptr;
437 }
438 
439 /// If V is a shuffle of values that ONLY returns elements from either LHS or
440 /// RHS, return the shuffle mask and true. Otherwise, return false.
441 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
442                                          SmallVectorImpl<Constant*> &Mask) {
443   assert(LHS->getType() == RHS->getType() &&
444          "Invalid CollectSingleShuffleElements");
445   unsigned NumElts = V->getType()->getVectorNumElements();
446 
447   if (isa<UndefValue>(V)) {
448     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
449     return true;
450   }
451 
452   if (V == LHS) {
453     for (unsigned i = 0; i != NumElts; ++i)
454       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
455     return true;
456   }
457 
458   if (V == RHS) {
459     for (unsigned i = 0; i != NumElts; ++i)
460       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
461                                       i+NumElts));
462     return true;
463   }
464 
465   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
466     // If this is an insert of an extract from some other vector, include it.
467     Value *VecOp    = IEI->getOperand(0);
468     Value *ScalarOp = IEI->getOperand(1);
469     Value *IdxOp    = IEI->getOperand(2);
470 
471     if (!isa<ConstantInt>(IdxOp))
472       return false;
473     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
474 
475     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
476       // We can handle this if the vector we are inserting into is
477       // transitively ok.
478       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
479         // If so, update the mask to reflect the inserted undef.
480         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
481         return true;
482       }
483     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
484       if (isa<ConstantInt>(EI->getOperand(1))) {
485         unsigned ExtractedIdx =
486         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
487         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
488 
489         // This must be extracting from either LHS or RHS.
490         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
491           // We can handle this if the vector we are inserting into is
492           // transitively ok.
493           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
494             // If so, update the mask to reflect the inserted value.
495             if (EI->getOperand(0) == LHS) {
496               Mask[InsertedIdx % NumElts] =
497               ConstantInt::get(Type::getInt32Ty(V->getContext()),
498                                ExtractedIdx);
499             } else {
500               assert(EI->getOperand(0) == RHS);
501               Mask[InsertedIdx % NumElts] =
502               ConstantInt::get(Type::getInt32Ty(V->getContext()),
503                                ExtractedIdx + NumLHSElts);
504             }
505             return true;
506           }
507         }
508       }
509     }
510   }
511 
512   return false;
513 }
514 
515 /// If we have insertion into a vector that is wider than the vector that we
516 /// are extracting from, try to widen the source vector to allow a single
517 /// shufflevector to replace one or more insert/extract pairs.
518 static void replaceExtractElements(InsertElementInst *InsElt,
519                                    ExtractElementInst *ExtElt,
520                                    InstCombiner &IC) {
521   VectorType *InsVecType = InsElt->getType();
522   VectorType *ExtVecType = ExtElt->getVectorOperandType();
523   unsigned NumInsElts = InsVecType->getVectorNumElements();
524   unsigned NumExtElts = ExtVecType->getVectorNumElements();
525 
526   // The inserted-to vector must be wider than the extracted-from vector.
527   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
528       NumExtElts >= NumInsElts)
529     return;
530 
531   // Create a shuffle mask to widen the extended-from vector using undefined
532   // values. The mask selects all of the values of the original vector followed
533   // by as many undefined values as needed to create a vector of the same length
534   // as the inserted-to vector.
535   SmallVector<Constant *, 16> ExtendMask;
536   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
537   for (unsigned i = 0; i < NumExtElts; ++i)
538     ExtendMask.push_back(ConstantInt::get(IntType, i));
539   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
540     ExtendMask.push_back(UndefValue::get(IntType));
541 
542   Value *ExtVecOp = ExtElt->getVectorOperand();
543   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
544   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
545                                    ? ExtVecOpInst->getParent()
546                                    : ExtElt->getParent();
547 
548   // TODO: This restriction matches the basic block check below when creating
549   // new extractelement instructions. If that limitation is removed, this one
550   // could also be removed. But for now, we just bail out to ensure that we
551   // will replace the extractelement instruction that is feeding our
552   // insertelement instruction. This allows the insertelement to then be
553   // replaced by a shufflevector. If the insertelement is not replaced, we can
554   // induce infinite looping because there's an optimization for extractelement
555   // that will delete our widening shuffle. This would trigger another attempt
556   // here to create that shuffle, and we spin forever.
557   if (InsertionBlock != InsElt->getParent())
558     return;
559 
560   // TODO: This restriction matches the check in visitInsertElementInst() and
561   // prevents an infinite loop caused by not turning the extract/insert pair
562   // into a shuffle. We really should not need either check, but we're lacking
563   // folds for shufflevectors because we're afraid to generate shuffle masks
564   // that the backend can't handle.
565   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
566     return;
567 
568   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
569                                         ConstantVector::get(ExtendMask));
570 
571   // Insert the new shuffle after the vector operand of the extract is defined
572   // (as long as it's not a PHI) or at the start of the basic block of the
573   // extract, so any subsequent extracts in the same basic block can use it.
574   // TODO: Insert before the earliest ExtractElementInst that is replaced.
575   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
576     WideVec->insertAfter(ExtVecOpInst);
577   else
578     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
579 
580   // Replace extracts from the original narrow vector with extracts from the new
581   // wide vector.
582   for (User *U : ExtVecOp->users()) {
583     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
584     if (!OldExt || OldExt->getParent() != WideVec->getParent())
585       continue;
586     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
587     NewExt->insertAfter(OldExt);
588     IC.replaceInstUsesWith(*OldExt, NewExt);
589   }
590 }
591 
592 /// We are building a shuffle to create V, which is a sequence of insertelement,
593 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
594 /// not rely on the second vector source. Return a std::pair containing the
595 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
596 /// parameter as required.
597 ///
598 /// Note: we intentionally don't try to fold earlier shuffles since they have
599 /// often been chosen carefully to be efficiently implementable on the target.
600 using ShuffleOps = std::pair<Value *, Value *>;
601 
602 static ShuffleOps collectShuffleElements(Value *V,
603                                          SmallVectorImpl<Constant *> &Mask,
604                                          Value *PermittedRHS,
605                                          InstCombiner &IC) {
606   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
607   unsigned NumElts = V->getType()->getVectorNumElements();
608 
609   if (isa<UndefValue>(V)) {
610     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
611     return std::make_pair(
612         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
613   }
614 
615   if (isa<ConstantAggregateZero>(V)) {
616     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
617     return std::make_pair(V, nullptr);
618   }
619 
620   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
621     // If this is an insert of an extract from some other vector, include it.
622     Value *VecOp    = IEI->getOperand(0);
623     Value *ScalarOp = IEI->getOperand(1);
624     Value *IdxOp    = IEI->getOperand(2);
625 
626     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
627       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
628         unsigned ExtractedIdx =
629           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
630         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
631 
632         // Either the extracted from or inserted into vector must be RHSVec,
633         // otherwise we'd end up with a shuffle of three inputs.
634         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
635           Value *RHS = EI->getOperand(0);
636           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
637           assert(LR.second == nullptr || LR.second == RHS);
638 
639           if (LR.first->getType() != RHS->getType()) {
640             // Although we are giving up for now, see if we can create extracts
641             // that match the inserts for another round of combining.
642             replaceExtractElements(IEI, EI, IC);
643 
644             // We tried our best, but we can't find anything compatible with RHS
645             // further up the chain. Return a trivial shuffle.
646             for (unsigned i = 0; i < NumElts; ++i)
647               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
648             return std::make_pair(V, nullptr);
649           }
650 
651           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
652           Mask[InsertedIdx % NumElts] =
653             ConstantInt::get(Type::getInt32Ty(V->getContext()),
654                              NumLHSElts+ExtractedIdx);
655           return std::make_pair(LR.first, RHS);
656         }
657 
658         if (VecOp == PermittedRHS) {
659           // We've gone as far as we can: anything on the other side of the
660           // extractelement will already have been converted into a shuffle.
661           unsigned NumLHSElts =
662               EI->getOperand(0)->getType()->getVectorNumElements();
663           for (unsigned i = 0; i != NumElts; ++i)
664             Mask.push_back(ConstantInt::get(
665                 Type::getInt32Ty(V->getContext()),
666                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
667           return std::make_pair(EI->getOperand(0), PermittedRHS);
668         }
669 
670         // If this insertelement is a chain that comes from exactly these two
671         // vectors, return the vector and the effective shuffle.
672         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
673             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
674                                          Mask))
675           return std::make_pair(EI->getOperand(0), PermittedRHS);
676       }
677     }
678   }
679 
680   // Otherwise, we can't do anything fancy. Return an identity vector.
681   for (unsigned i = 0; i != NumElts; ++i)
682     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
683   return std::make_pair(V, nullptr);
684 }
685 
686 /// Try to find redundant insertvalue instructions, like the following ones:
687 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
688 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
689 /// Here the second instruction inserts values at the same indices, as the
690 /// first one, making the first one redundant.
691 /// It should be transformed to:
692 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
693 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
694   bool IsRedundant = false;
695   ArrayRef<unsigned int> FirstIndices = I.getIndices();
696 
697   // If there is a chain of insertvalue instructions (each of them except the
698   // last one has only one use and it's another insertvalue insn from this
699   // chain), check if any of the 'children' uses the same indices as the first
700   // instruction. In this case, the first one is redundant.
701   Value *V = &I;
702   unsigned Depth = 0;
703   while (V->hasOneUse() && Depth < 10) {
704     User *U = V->user_back();
705     auto UserInsInst = dyn_cast<InsertValueInst>(U);
706     if (!UserInsInst || U->getOperand(0) != V)
707       break;
708     if (UserInsInst->getIndices() == FirstIndices) {
709       IsRedundant = true;
710       break;
711     }
712     V = UserInsInst;
713     Depth++;
714   }
715 
716   if (IsRedundant)
717     return replaceInstUsesWith(I, I.getOperand(0));
718   return nullptr;
719 }
720 
721 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
722   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
723   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
724 
725   // A vector select does not change the size of the operands.
726   if (MaskSize != VecSize)
727     return false;
728 
729   // Each mask element must be undefined or choose a vector element from one of
730   // the source operands without crossing vector lanes.
731   for (int i = 0; i != MaskSize; ++i) {
732     int Elt = Shuf.getMaskValue(i);
733     if (Elt != -1 && Elt != i && Elt != i + VecSize)
734       return false;
735   }
736 
737   return true;
738 }
739 
740 /// Turn a chain of inserts that splats a value into an insert + shuffle:
741 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
742 /// shufflevector(insertelt(X, %k, 0), undef, zero)
743 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
744   // We are interested in the last insert in a chain. So if this insert has a
745   // single user and that user is an insert, bail.
746   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
747     return nullptr;
748 
749   auto *VecTy = cast<VectorType>(InsElt.getType());
750   unsigned NumElements = VecTy->getNumElements();
751 
752   // Do not try to do this for a one-element vector, since that's a nop,
753   // and will cause an inf-loop.
754   if (NumElements == 1)
755     return nullptr;
756 
757   Value *SplatVal = InsElt.getOperand(1);
758   InsertElementInst *CurrIE = &InsElt;
759   SmallVector<bool, 16> ElementPresent(NumElements, false);
760   InsertElementInst *FirstIE = nullptr;
761 
762   // Walk the chain backwards, keeping track of which indices we inserted into,
763   // until we hit something that isn't an insert of the splatted value.
764   while (CurrIE) {
765     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
766     if (!Idx || CurrIE->getOperand(1) != SplatVal)
767       return nullptr;
768 
769     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
770     // Check none of the intermediate steps have any additional uses, except
771     // for the root insertelement instruction, which can be re-used, if it
772     // inserts at position 0.
773     if (CurrIE != &InsElt &&
774         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
775       return nullptr;
776 
777     ElementPresent[Idx->getZExtValue()] = true;
778     FirstIE = CurrIE;
779     CurrIE = NextIE;
780   }
781 
782   // If this is just a single insertelement (not a sequence), we are done.
783   if (FirstIE == &InsElt)
784     return nullptr;
785 
786   // If we are not inserting into an undef vector, make sure we've seen an
787   // insert into every element.
788   // TODO: If the base vector is not undef, it might be better to create a splat
789   //       and then a select-shuffle (blend) with the base vector.
790   if (!isa<UndefValue>(FirstIE->getOperand(0)))
791     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
792       return nullptr;
793 
794   // Create the insert + shuffle.
795   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
796   UndefValue *UndefVec = UndefValue::get(VecTy);
797   Constant *Zero = ConstantInt::get(Int32Ty, 0);
798   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
799     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
800 
801   // Splat from element 0, but replace absent elements with undef in the mask.
802   SmallVector<Constant *, 16> Mask(NumElements, Zero);
803   for (unsigned i = 0; i != NumElements; ++i)
804     if (!ElementPresent[i])
805       Mask[i] = UndefValue::get(Int32Ty);
806 
807   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
808 }
809 
810 /// Try to fold an insert element into an existing splat shuffle by changing
811 /// the shuffle's mask to include the index of this insert element.
812 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
813   // Check if the vector operand of this insert is a canonical splat shuffle.
814   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
815   if (!Shuf || !Shuf->isZeroEltSplat())
816     return nullptr;
817 
818   // Check for a constant insertion index.
819   uint64_t IdxC;
820   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
821     return nullptr;
822 
823   // Check if the splat shuffle's input is the same as this insert's scalar op.
824   Value *X = InsElt.getOperand(1);
825   Value *Op0 = Shuf->getOperand(0);
826   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
827     return nullptr;
828 
829   // Replace the shuffle mask element at the index of this insert with a zero.
830   // For example:
831   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
832   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
833   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
834   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
835   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
836   Constant *Zero = ConstantInt::getNullValue(I32Ty);
837   for (unsigned i = 0; i != NumMaskElts; ++i)
838     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
839 
840   Constant *NewMask = ConstantVector::get(NewMaskVec);
841   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
842 }
843 
844 /// Try to fold an extract+insert element into an existing identity shuffle by
845 /// changing the shuffle's mask to include the index of this insert element.
846 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
847   // Check if the vector operand of this insert is an identity shuffle.
848   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
849   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
850       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
851     return nullptr;
852 
853   // Check for a constant insertion index.
854   uint64_t IdxC;
855   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
856     return nullptr;
857 
858   // Check if this insert's scalar op is extracted from the identity shuffle's
859   // input vector.
860   Value *Scalar = InsElt.getOperand(1);
861   Value *X = Shuf->getOperand(0);
862   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
863     return nullptr;
864 
865   // Replace the shuffle mask element at the index of this extract+insert with
866   // that same index value.
867   // For example:
868   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
869   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
870   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
871   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
872   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
873   Constant *OldMask = Shuf->getMask();
874   for (unsigned i = 0; i != NumMaskElts; ++i) {
875     if (i != IdxC) {
876       // All mask elements besides the inserted element remain the same.
877       NewMaskVec[i] = OldMask->getAggregateElement(i);
878     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
879       // If the mask element was already set, there's nothing to do
880       // (demanded elements analysis may unset it later).
881       return nullptr;
882     } else {
883       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
884              "Unexpected shuffle mask element for identity shuffle");
885       NewMaskVec[i] = NewMaskEltC;
886     }
887   }
888 
889   Constant *NewMask = ConstantVector::get(NewMaskVec);
890   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
891 }
892 
893 /// If we have an insertelement instruction feeding into another insertelement
894 /// and the 2nd is inserting a constant into the vector, canonicalize that
895 /// constant insertion before the insertion of a variable:
896 ///
897 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
898 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
899 ///
900 /// This has the potential of eliminating the 2nd insertelement instruction
901 /// via constant folding of the scalar constant into a vector constant.
902 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
903                                      InstCombiner::BuilderTy &Builder) {
904   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
905   if (!InsElt1 || !InsElt1->hasOneUse())
906     return nullptr;
907 
908   Value *X, *Y;
909   Constant *ScalarC;
910   ConstantInt *IdxC1, *IdxC2;
911   if (match(InsElt1->getOperand(0), m_Value(X)) &&
912       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
913       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
914       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
915       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
916     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
917     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
918   }
919 
920   return nullptr;
921 }
922 
923 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
924 /// --> shufflevector X, CVec', Mask'
925 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
926   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
927   // Bail out if the parent has more than one use. In that case, we'd be
928   // replacing the insertelt with a shuffle, and that's not a clear win.
929   if (!Inst || !Inst->hasOneUse())
930     return nullptr;
931   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
932     // The shuffle must have a constant vector operand. The insertelt must have
933     // a constant scalar being inserted at a constant position in the vector.
934     Constant *ShufConstVec, *InsEltScalar;
935     uint64_t InsEltIndex;
936     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
937         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
938         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
939       return nullptr;
940 
941     // Adding an element to an arbitrary shuffle could be expensive, but a
942     // shuffle that selects elements from vectors without crossing lanes is
943     // assumed cheap.
944     // If we're just adding a constant into that shuffle, it will still be
945     // cheap.
946     if (!isShuffleEquivalentToSelect(*Shuf))
947       return nullptr;
948 
949     // From the above 'select' check, we know that the mask has the same number
950     // of elements as the vector input operands. We also know that each constant
951     // input element is used in its lane and can not be used more than once by
952     // the shuffle. Therefore, replace the constant in the shuffle's constant
953     // vector with the insertelt constant. Replace the constant in the shuffle's
954     // mask vector with the insertelt index plus the length of the vector
955     // (because the constant vector operand of a shuffle is always the 2nd
956     // operand).
957     Constant *Mask = Shuf->getMask();
958     unsigned NumElts = Mask->getType()->getVectorNumElements();
959     SmallVector<Constant *, 16> NewShufElts(NumElts);
960     SmallVector<Constant *, 16> NewMaskElts(NumElts);
961     for (unsigned I = 0; I != NumElts; ++I) {
962       if (I == InsEltIndex) {
963         NewShufElts[I] = InsEltScalar;
964         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
965         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
966       } else {
967         // Copy over the existing values.
968         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
969         NewMaskElts[I] = Mask->getAggregateElement(I);
970       }
971     }
972 
973     // Create new operands for a shuffle that includes the constant of the
974     // original insertelt. The old shuffle will be dead now.
975     return new ShuffleVectorInst(Shuf->getOperand(0),
976                                  ConstantVector::get(NewShufElts),
977                                  ConstantVector::get(NewMaskElts));
978   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
979     // Transform sequences of insertelements ops with constant data/indexes into
980     // a single shuffle op.
981     unsigned NumElts = InsElt.getType()->getNumElements();
982 
983     uint64_t InsertIdx[2];
984     Constant *Val[2];
985     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
986         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
987         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
988         !match(IEI->getOperand(1), m_Constant(Val[1])))
989       return nullptr;
990     SmallVector<Constant *, 16> Values(NumElts);
991     SmallVector<Constant *, 16> Mask(NumElts);
992     auto ValI = std::begin(Val);
993     // Generate new constant vector and mask.
994     // We have 2 values/masks from the insertelements instructions. Insert them
995     // into new value/mask vectors.
996     for (uint64_t I : InsertIdx) {
997       if (!Values[I]) {
998         assert(!Mask[I]);
999         Values[I] = *ValI;
1000         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1001                                    NumElts + I);
1002       }
1003       ++ValI;
1004     }
1005     // Remaining values are filled with 'undef' values.
1006     for (unsigned I = 0; I < NumElts; ++I) {
1007       if (!Values[I]) {
1008         assert(!Mask[I]);
1009         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1010         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1011       }
1012     }
1013     // Create new operands for a shuffle that includes the constant of the
1014     // original insertelt.
1015     return new ShuffleVectorInst(IEI->getOperand(0),
1016                                  ConstantVector::get(Values),
1017                                  ConstantVector::get(Mask));
1018   }
1019   return nullptr;
1020 }
1021 
1022 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1023   Value *VecOp    = IE.getOperand(0);
1024   Value *ScalarOp = IE.getOperand(1);
1025   Value *IdxOp    = IE.getOperand(2);
1026 
1027   if (auto *V = SimplifyInsertElementInst(
1028           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1029     return replaceInstUsesWith(IE, V);
1030 
1031   // If the vector and scalar are both bitcast from the same element type, do
1032   // the insert in that source type followed by bitcast.
1033   Value *VecSrc, *ScalarSrc;
1034   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1035       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1036       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1037       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1038       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1039     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1040     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1041     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1042     return new BitCastInst(NewInsElt, IE.getType());
1043   }
1044 
1045   // If the inserted element was extracted from some other vector and both
1046   // indexes are valid constants, try to turn this into a shuffle.
1047   uint64_t InsertedIdx, ExtractedIdx;
1048   Value *ExtVecOp;
1049   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1050       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1051                                        m_ConstantInt(ExtractedIdx))) &&
1052       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1053     // TODO: Looking at the user(s) to determine if this insert is a
1054     // fold-to-shuffle opportunity does not match the usual instcombine
1055     // constraints. We should decide if the transform is worthy based only
1056     // on this instruction and its operands, but that may not work currently.
1057     //
1058     // Here, we are trying to avoid creating shuffles before reaching
1059     // the end of a chain of extract-insert pairs. This is complicated because
1060     // we do not generally form arbitrary shuffle masks in instcombine
1061     // (because those may codegen poorly), but collectShuffleElements() does
1062     // exactly that.
1063     //
1064     // The rules for determining what is an acceptable target-independent
1065     // shuffle mask are fuzzy because they evolve based on the backend's
1066     // capabilities and real-world impact.
1067     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1068       if (!Insert.hasOneUse())
1069         return true;
1070       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1071       if (!InsertUser)
1072         return true;
1073       return false;
1074     };
1075 
1076     // Try to form a shuffle from a chain of extract-insert ops.
1077     if (isShuffleRootCandidate(IE)) {
1078       SmallVector<Constant*, 16> Mask;
1079       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1080 
1081       // The proposed shuffle may be trivial, in which case we shouldn't
1082       // perform the combine.
1083       if (LR.first != &IE && LR.second != &IE) {
1084         // We now have a shuffle of LHS, RHS, Mask.
1085         if (LR.second == nullptr)
1086           LR.second = UndefValue::get(LR.first->getType());
1087         return new ShuffleVectorInst(LR.first, LR.second,
1088                                      ConstantVector::get(Mask));
1089       }
1090     }
1091   }
1092 
1093   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1094   APInt UndefElts(VWidth, 0);
1095   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1096   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1097     if (V != &IE)
1098       return replaceInstUsesWith(IE, V);
1099     return &IE;
1100   }
1101 
1102   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1103     return Shuf;
1104 
1105   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1106     return NewInsElt;
1107 
1108   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1109     return Broadcast;
1110 
1111   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1112     return Splat;
1113 
1114   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1115     return IdentityShuf;
1116 
1117   return nullptr;
1118 }
1119 
1120 /// Return true if we can evaluate the specified expression tree if the vector
1121 /// elements were shuffled in a different order.
1122 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1123                                 unsigned Depth = 5) {
1124   // We can always reorder the elements of a constant.
1125   if (isa<Constant>(V))
1126     return true;
1127 
1128   // We won't reorder vector arguments. No IPO here.
1129   Instruction *I = dyn_cast<Instruction>(V);
1130   if (!I) return false;
1131 
1132   // Two users may expect different orders of the elements. Don't try it.
1133   if (!I->hasOneUse())
1134     return false;
1135 
1136   if (Depth == 0) return false;
1137 
1138   switch (I->getOpcode()) {
1139     case Instruction::UDiv:
1140     case Instruction::SDiv:
1141     case Instruction::URem:
1142     case Instruction::SRem:
1143       // Propagating an undefined shuffle mask element to integer div/rem is not
1144       // allowed because those opcodes can create immediate undefined behavior
1145       // from an undefined element in an operand.
1146       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1147         return false;
1148       LLVM_FALLTHROUGH;
1149     case Instruction::Add:
1150     case Instruction::FAdd:
1151     case Instruction::Sub:
1152     case Instruction::FSub:
1153     case Instruction::Mul:
1154     case Instruction::FMul:
1155     case Instruction::FDiv:
1156     case Instruction::FRem:
1157     case Instruction::Shl:
1158     case Instruction::LShr:
1159     case Instruction::AShr:
1160     case Instruction::And:
1161     case Instruction::Or:
1162     case Instruction::Xor:
1163     case Instruction::ICmp:
1164     case Instruction::FCmp:
1165     case Instruction::Trunc:
1166     case Instruction::ZExt:
1167     case Instruction::SExt:
1168     case Instruction::FPToUI:
1169     case Instruction::FPToSI:
1170     case Instruction::UIToFP:
1171     case Instruction::SIToFP:
1172     case Instruction::FPTrunc:
1173     case Instruction::FPExt:
1174     case Instruction::GetElementPtr: {
1175       // Bail out if we would create longer vector ops. We could allow creating
1176       // longer vector ops, but that may result in more expensive codegen.
1177       Type *ITy = I->getType();
1178       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1179         return false;
1180       for (Value *Operand : I->operands()) {
1181         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1182           return false;
1183       }
1184       return true;
1185     }
1186     case Instruction::InsertElement: {
1187       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1188       if (!CI) return false;
1189       int ElementNumber = CI->getLimitedValue();
1190 
1191       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1192       // can't put an element into multiple indices.
1193       bool SeenOnce = false;
1194       for (int i = 0, e = Mask.size(); i != e; ++i) {
1195         if (Mask[i] == ElementNumber) {
1196           if (SeenOnce)
1197             return false;
1198           SeenOnce = true;
1199         }
1200       }
1201       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1202     }
1203   }
1204   return false;
1205 }
1206 
1207 /// Rebuild a new instruction just like 'I' but with the new operands given.
1208 /// In the event of type mismatch, the type of the operands is correct.
1209 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1210   // We don't want to use the IRBuilder here because we want the replacement
1211   // instructions to appear next to 'I', not the builder's insertion point.
1212   switch (I->getOpcode()) {
1213     case Instruction::Add:
1214     case Instruction::FAdd:
1215     case Instruction::Sub:
1216     case Instruction::FSub:
1217     case Instruction::Mul:
1218     case Instruction::FMul:
1219     case Instruction::UDiv:
1220     case Instruction::SDiv:
1221     case Instruction::FDiv:
1222     case Instruction::URem:
1223     case Instruction::SRem:
1224     case Instruction::FRem:
1225     case Instruction::Shl:
1226     case Instruction::LShr:
1227     case Instruction::AShr:
1228     case Instruction::And:
1229     case Instruction::Or:
1230     case Instruction::Xor: {
1231       BinaryOperator *BO = cast<BinaryOperator>(I);
1232       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1233       BinaryOperator *New =
1234           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1235                                  NewOps[0], NewOps[1], "", BO);
1236       if (isa<OverflowingBinaryOperator>(BO)) {
1237         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1238         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1239       }
1240       if (isa<PossiblyExactOperator>(BO)) {
1241         New->setIsExact(BO->isExact());
1242       }
1243       if (isa<FPMathOperator>(BO))
1244         New->copyFastMathFlags(I);
1245       return New;
1246     }
1247     case Instruction::ICmp:
1248       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1249       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1250                           NewOps[0], NewOps[1]);
1251     case Instruction::FCmp:
1252       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1253       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1254                           NewOps[0], NewOps[1]);
1255     case Instruction::Trunc:
1256     case Instruction::ZExt:
1257     case Instruction::SExt:
1258     case Instruction::FPToUI:
1259     case Instruction::FPToSI:
1260     case Instruction::UIToFP:
1261     case Instruction::SIToFP:
1262     case Instruction::FPTrunc:
1263     case Instruction::FPExt: {
1264       // It's possible that the mask has a different number of elements from
1265       // the original cast. We recompute the destination type to match the mask.
1266       Type *DestTy =
1267           VectorType::get(I->getType()->getScalarType(),
1268                           NewOps[0]->getType()->getVectorNumElements());
1269       assert(NewOps.size() == 1 && "cast with #ops != 1");
1270       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1271                               "", I);
1272     }
1273     case Instruction::GetElementPtr: {
1274       Value *Ptr = NewOps[0];
1275       ArrayRef<Value*> Idx = NewOps.slice(1);
1276       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1277           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1278       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1279       return GEP;
1280     }
1281   }
1282   llvm_unreachable("failed to rebuild vector instructions");
1283 }
1284 
1285 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1286   // Mask.size() does not need to be equal to the number of vector elements.
1287 
1288   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1289   Type *EltTy = V->getType()->getScalarType();
1290   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1291   if (isa<UndefValue>(V))
1292     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1293 
1294   if (isa<ConstantAggregateZero>(V))
1295     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1296 
1297   if (Constant *C = dyn_cast<Constant>(V)) {
1298     SmallVector<Constant *, 16> MaskValues;
1299     for (int i = 0, e = Mask.size(); i != e; ++i) {
1300       if (Mask[i] == -1)
1301         MaskValues.push_back(UndefValue::get(I32Ty));
1302       else
1303         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1304     }
1305     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1306                                           ConstantVector::get(MaskValues));
1307   }
1308 
1309   Instruction *I = cast<Instruction>(V);
1310   switch (I->getOpcode()) {
1311     case Instruction::Add:
1312     case Instruction::FAdd:
1313     case Instruction::Sub:
1314     case Instruction::FSub:
1315     case Instruction::Mul:
1316     case Instruction::FMul:
1317     case Instruction::UDiv:
1318     case Instruction::SDiv:
1319     case Instruction::FDiv:
1320     case Instruction::URem:
1321     case Instruction::SRem:
1322     case Instruction::FRem:
1323     case Instruction::Shl:
1324     case Instruction::LShr:
1325     case Instruction::AShr:
1326     case Instruction::And:
1327     case Instruction::Or:
1328     case Instruction::Xor:
1329     case Instruction::ICmp:
1330     case Instruction::FCmp:
1331     case Instruction::Trunc:
1332     case Instruction::ZExt:
1333     case Instruction::SExt:
1334     case Instruction::FPToUI:
1335     case Instruction::FPToSI:
1336     case Instruction::UIToFP:
1337     case Instruction::SIToFP:
1338     case Instruction::FPTrunc:
1339     case Instruction::FPExt:
1340     case Instruction::Select:
1341     case Instruction::GetElementPtr: {
1342       SmallVector<Value*, 8> NewOps;
1343       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1344       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1345         Value *V;
1346         // Recursively call evaluateInDifferentElementOrder on vector arguments
1347         // as well. E.g. GetElementPtr may have scalar operands even if the
1348         // return value is a vector, so we need to examine the operand type.
1349         if (I->getOperand(i)->getType()->isVectorTy())
1350           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1351         else
1352           V = I->getOperand(i);
1353         NewOps.push_back(V);
1354         NeedsRebuild |= (V != I->getOperand(i));
1355       }
1356       if (NeedsRebuild) {
1357         return buildNew(I, NewOps);
1358       }
1359       return I;
1360     }
1361     case Instruction::InsertElement: {
1362       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1363 
1364       // The insertelement was inserting at Element. Figure out which element
1365       // that becomes after shuffling. The answer is guaranteed to be unique
1366       // by CanEvaluateShuffled.
1367       bool Found = false;
1368       int Index = 0;
1369       for (int e = Mask.size(); Index != e; ++Index) {
1370         if (Mask[Index] == Element) {
1371           Found = true;
1372           break;
1373         }
1374       }
1375 
1376       // If element is not in Mask, no need to handle the operand 1 (element to
1377       // be inserted). Just evaluate values in operand 0 according to Mask.
1378       if (!Found)
1379         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1380 
1381       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1382       return InsertElementInst::Create(V, I->getOperand(1),
1383                                        ConstantInt::get(I32Ty, Index), "", I);
1384     }
1385   }
1386   llvm_unreachable("failed to reorder elements of vector instruction!");
1387 }
1388 
1389 // Returns true if the shuffle is extracting a contiguous range of values from
1390 // LHS, for example:
1391 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1392 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1393 //   Shuffles to:  |EE|FF|GG|HH|
1394 //                 +--+--+--+--+
1395 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1396                                        SmallVector<int, 16> &Mask) {
1397   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1398   unsigned MaskElems = Mask.size();
1399   unsigned BegIdx = Mask.front();
1400   unsigned EndIdx = Mask.back();
1401   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1402     return false;
1403   for (unsigned I = 0; I != MaskElems; ++I)
1404     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1405       return false;
1406   return true;
1407 }
1408 
1409 /// These are the ingredients in an alternate form binary operator as described
1410 /// below.
1411 struct BinopElts {
1412   BinaryOperator::BinaryOps Opcode;
1413   Value *Op0;
1414   Value *Op1;
1415   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1416             Value *V0 = nullptr, Value *V1 = nullptr) :
1417       Opcode(Opc), Op0(V0), Op1(V1) {}
1418   operator bool() const { return Opcode != 0; }
1419 };
1420 
1421 /// Binops may be transformed into binops with different opcodes and operands.
1422 /// Reverse the usual canonicalization to enable folds with the non-canonical
1423 /// form of the binop. If a transform is possible, return the elements of the
1424 /// new binop. If not, return invalid elements.
1425 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1426   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1427   Type *Ty = BO->getType();
1428   switch (BO->getOpcode()) {
1429     case Instruction::Shl: {
1430       // shl X, C --> mul X, (1 << C)
1431       Constant *C;
1432       if (match(BO1, m_Constant(C))) {
1433         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1434         return { Instruction::Mul, BO0, ShlOne };
1435       }
1436       break;
1437     }
1438     case Instruction::Or: {
1439       // or X, C --> add X, C (when X and C have no common bits set)
1440       const APInt *C;
1441       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1442         return { Instruction::Add, BO0, BO1 };
1443       break;
1444     }
1445     default:
1446       break;
1447   }
1448   return {};
1449 }
1450 
1451 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1452   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1453 
1454   // Are we shuffling together some value and that same value after it has been
1455   // modified by a binop with a constant?
1456   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1457   Constant *C;
1458   bool Op0IsBinop;
1459   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1460     Op0IsBinop = true;
1461   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1462     Op0IsBinop = false;
1463   else
1464     return nullptr;
1465 
1466   // The identity constant for a binop leaves a variable operand unchanged. For
1467   // a vector, this is a splat of something like 0, -1, or 1.
1468   // If there's no identity constant for this binop, we're done.
1469   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1470   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1471   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1472   if (!IdC)
1473     return nullptr;
1474 
1475   // Shuffle identity constants into the lanes that return the original value.
1476   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1477   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1478   // The existing binop constant vector remains in the same operand position.
1479   Constant *Mask = Shuf.getMask();
1480   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1481                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1482 
1483   bool MightCreatePoisonOrUB =
1484       Mask->containsUndefElement() &&
1485       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1486   if (MightCreatePoisonOrUB)
1487     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1488 
1489   // shuf (bop X, C), X, M --> bop X, C'
1490   // shuf X, (bop X, C), M --> bop X, C'
1491   Value *X = Op0IsBinop ? Op1 : Op0;
1492   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1493   NewBO->copyIRFlags(BO);
1494 
1495   // An undef shuffle mask element may propagate as an undef constant element in
1496   // the new binop. That would produce poison where the original code might not.
1497   // If we already made a safe constant, then there's no danger.
1498   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1499     NewBO->dropPoisonGeneratingFlags();
1500   return NewBO;
1501 }
1502 
1503 /// If we have an insert of a scalar to a non-zero element of an undefined
1504 /// vector and then shuffle that value, that's the same as inserting to the zero
1505 /// element and shuffling. Splatting from the zero element is recognized as the
1506 /// canonical form of splat.
1507 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1508                                             InstCombiner::BuilderTy &Builder) {
1509   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1510   Constant *Mask = Shuf.getMask();
1511   Value *X;
1512   uint64_t IndexC;
1513 
1514   // Match a shuffle that is a splat to a non-zero element.
1515   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1516                                            m_ConstantInt(IndexC)))) ||
1517       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1518     return nullptr;
1519 
1520   // Insert into element 0 of an undef vector.
1521   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1522   Constant *Zero = Builder.getInt32(0);
1523   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1524 
1525   // Splat from element 0. Any mask element that is undefined remains undefined.
1526   // For example:
1527   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1528   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1529   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1530   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1531   for (unsigned i = 0; i != NumMaskElts; ++i)
1532     if (isa<UndefValue>(Mask->getAggregateElement(i)))
1533       NewMask[i] = Mask->getAggregateElement(i);
1534 
1535   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1536 }
1537 
1538 /// Try to fold shuffles that are the equivalent of a vector select.
1539 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1540                                       InstCombiner::BuilderTy &Builder,
1541                                       const DataLayout &DL) {
1542   if (!Shuf.isSelect())
1543     return nullptr;
1544 
1545   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1546   // Commuting undef to operand 0 conflicts with another canonicalization.
1547   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1548   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1549       Shuf.getMaskValue(0) >= (int)NumElts) {
1550     // TODO: Can we assert that both operands of a shuffle-select are not undef
1551     // (otherwise, it would have been folded by instsimplify?
1552     Shuf.commute();
1553     return &Shuf;
1554   }
1555 
1556   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1557     return I;
1558 
1559   BinaryOperator *B0, *B1;
1560   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1561       !match(Shuf.getOperand(1), m_BinOp(B1)))
1562     return nullptr;
1563 
1564   Value *X, *Y;
1565   Constant *C0, *C1;
1566   bool ConstantsAreOp1;
1567   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1568       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1569     ConstantsAreOp1 = true;
1570   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1571            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1572     ConstantsAreOp1 = false;
1573   else
1574     return nullptr;
1575 
1576   // We need matching binops to fold the lanes together.
1577   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1578   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1579   bool DropNSW = false;
1580   if (ConstantsAreOp1 && Opc0 != Opc1) {
1581     // TODO: We drop "nsw" if shift is converted into multiply because it may
1582     // not be correct when the shift amount is BitWidth - 1. We could examine
1583     // each vector element to determine if it is safe to keep that flag.
1584     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1585       DropNSW = true;
1586     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1587       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1588       Opc0 = AltB0.Opcode;
1589       C0 = cast<Constant>(AltB0.Op1);
1590     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1591       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1592       Opc1 = AltB1.Opcode;
1593       C1 = cast<Constant>(AltB1.Op1);
1594     }
1595   }
1596 
1597   if (Opc0 != Opc1)
1598     return nullptr;
1599 
1600   // The opcodes must be the same. Use a new name to make that clear.
1601   BinaryOperator::BinaryOps BOpc = Opc0;
1602 
1603   // Select the constant elements needed for the single binop.
1604   Constant *Mask = Shuf.getMask();
1605   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1606 
1607   // We are moving a binop after a shuffle. When a shuffle has an undefined
1608   // mask element, the result is undefined, but it is not poison or undefined
1609   // behavior. That is not necessarily true for div/rem/shift.
1610   bool MightCreatePoisonOrUB =
1611       Mask->containsUndefElement() &&
1612       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1613   if (MightCreatePoisonOrUB)
1614     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1615 
1616   Value *V;
1617   if (X == Y) {
1618     // Remove a binop and the shuffle by rearranging the constant:
1619     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1620     // shuffle (op C0, V), (op C1, V), M --> op C', V
1621     V = X;
1622   } else {
1623     // If there are 2 different variable operands, we must create a new shuffle
1624     // (select) first, so check uses to ensure that we don't end up with more
1625     // instructions than we started with.
1626     if (!B0->hasOneUse() && !B1->hasOneUse())
1627       return nullptr;
1628 
1629     // If we use the original shuffle mask and op1 is *variable*, we would be
1630     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1631     // poison. We do not have to guard against UB when *constants* are op1
1632     // because safe constants guarantee that we do not overflow sdiv/srem (and
1633     // there's no danger for other opcodes).
1634     // TODO: To allow this case, create a new shuffle mask with no undefs.
1635     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1636       return nullptr;
1637 
1638     // Note: In general, we do not create new shuffles in InstCombine because we
1639     // do not know if a target can lower an arbitrary shuffle optimally. In this
1640     // case, the shuffle uses the existing mask, so there is no additional risk.
1641 
1642     // Select the variable vectors first, then perform the binop:
1643     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1644     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1645     V = Builder.CreateShuffleVector(X, Y, Mask);
1646   }
1647 
1648   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1649                                          BinaryOperator::Create(BOpc, NewC, V);
1650 
1651   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1652   // 1. If we changed an opcode, poison conditions might have changed.
1653   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1654   //    where the original code did not. But if we already made a safe constant,
1655   //    then there's no danger.
1656   NewBO->copyIRFlags(B0);
1657   NewBO->andIRFlags(B1);
1658   if (DropNSW)
1659     NewBO->setHasNoSignedWrap(false);
1660   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1661     NewBO->dropPoisonGeneratingFlags();
1662   return NewBO;
1663 }
1664 
1665 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1666 /// narrowing (concatenating with undef and extracting back to the original
1667 /// length). This allows replacing the wide select with a narrow select.
1668 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1669                                        InstCombiner::BuilderTy &Builder) {
1670   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1671   // of the 1st vector operand of a shuffle.
1672   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1673     return nullptr;
1674 
1675   // The vector being shuffled must be a vector select that we can eliminate.
1676   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1677   Value *Cond, *X, *Y;
1678   if (!match(Shuf.getOperand(0),
1679              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1680     return nullptr;
1681 
1682   // We need a narrow condition value. It must be extended with undef elements
1683   // and have the same number of elements as this shuffle.
1684   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1685   Value *NarrowCond;
1686   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1687                                             m_Constant()))) ||
1688       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1689       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1690     return nullptr;
1691 
1692   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1693   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1694   Value *Undef = UndefValue::get(X->getType());
1695   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1696   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1697   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1698 }
1699 
1700 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1701 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1702   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1703   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1704     return nullptr;
1705 
1706   Value *X, *Y;
1707   Constant *Mask;
1708   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1709     return nullptr;
1710 
1711   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1712   // then combining may result in worse codegen.
1713   if (!Op0->hasOneUse())
1714     return nullptr;
1715 
1716   // We are extracting a subvector from a shuffle. Remove excess elements from
1717   // the 1st shuffle mask to eliminate the extract.
1718   //
1719   // This transform is conservatively limited to identity extracts because we do
1720   // not allow arbitrary shuffle mask creation as a target-independent transform
1721   // (because we can't guarantee that will lower efficiently).
1722   //
1723   // If the extracting shuffle has an undef mask element, it transfers to the
1724   // new shuffle mask. Otherwise, copy the original mask element. Example:
1725   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1726   //   shuf X, Y, <C0, undef, C2, undef>
1727   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1728   SmallVector<Constant *, 16> NewMask(NumElts);
1729   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1730          "Identity with extract must have less elements than its inputs");
1731 
1732   for (unsigned i = 0; i != NumElts; ++i) {
1733     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1734     Constant *MaskElt = Mask->getAggregateElement(i);
1735     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1736   }
1737   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1738 }
1739 
1740 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
1741 /// operand with the operand of an insertelement.
1742 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
1743                                           InstCombiner &IC) {
1744   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1745   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1746 
1747   // The shuffle must not change vector sizes.
1748   // TODO: This restriction could be removed if the insert has only one use
1749   //       (because the transform would require a new length-changing shuffle).
1750   int NumElts = Mask.size();
1751   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1752     return nullptr;
1753 
1754   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1755   // not be able to handle it there if the insertelement has >1 use.
1756   // If the shuffle has an insertelement operand but does not choose the
1757   // inserted scalar element from that value, then we can replace that shuffle
1758   // operand with the source vector of the insertelement.
1759   Value *X;
1760   uint64_t IdxC;
1761   if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1762     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1763     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1764       return IC.replaceOperand(Shuf, 0, X);
1765   }
1766   if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1767     // Offset the index constant by the vector width because we are checking for
1768     // accesses to the 2nd vector input of the shuffle.
1769     IdxC += NumElts;
1770     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1771     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1772       return IC.replaceOperand(Shuf, 1, X);
1773   }
1774 
1775   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1776   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1777     // We need an insertelement with a constant index.
1778     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1779                                    m_ConstantInt(IndexC))))
1780       return false;
1781 
1782     // Test the shuffle mask to see if it splices the inserted scalar into the
1783     // operand 1 vector of the shuffle.
1784     int NewInsIndex = -1;
1785     for (int i = 0; i != NumElts; ++i) {
1786       // Ignore undef mask elements.
1787       if (Mask[i] == -1)
1788         continue;
1789 
1790       // The shuffle takes elements of operand 1 without lane changes.
1791       if (Mask[i] == NumElts + i)
1792         continue;
1793 
1794       // The shuffle must choose the inserted scalar exactly once.
1795       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1796         return false;
1797 
1798       // The shuffle is placing the inserted scalar into element i.
1799       NewInsIndex = i;
1800     }
1801 
1802     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1803 
1804     // Index is updated to the potentially translated insertion lane.
1805     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1806     return true;
1807   };
1808 
1809   // If the shuffle is unnecessary, insert the scalar operand directly into
1810   // operand 1 of the shuffle. Example:
1811   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1812   Value *Scalar;
1813   ConstantInt *IndexC;
1814   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1815     return InsertElementInst::Create(V1, Scalar, IndexC);
1816 
1817   // Try again after commuting shuffle. Example:
1818   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1819   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1820   std::swap(V0, V1);
1821   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1822   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1823     return InsertElementInst::Create(V1, Scalar, IndexC);
1824 
1825   return nullptr;
1826 }
1827 
1828 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1829   // Match the operands as identity with padding (also known as concatenation
1830   // with undef) shuffles of the same source type. The backend is expected to
1831   // recreate these concatenations from a shuffle of narrow operands.
1832   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1833   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1834   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1835       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1836     return nullptr;
1837 
1838   // We limit this transform to power-of-2 types because we expect that the
1839   // backend can convert the simplified IR patterns to identical nodes as the
1840   // original IR.
1841   // TODO: If we can verify the same behavior for arbitrary types, the
1842   //       power-of-2 checks can be removed.
1843   Value *X = Shuffle0->getOperand(0);
1844   Value *Y = Shuffle1->getOperand(0);
1845   if (X->getType() != Y->getType() ||
1846       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1847       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1848       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1849       isa<UndefValue>(X) || isa<UndefValue>(Y))
1850     return nullptr;
1851   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1852          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1853          "Unexpected operand for identity shuffle");
1854 
1855   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1856   // operands directly by adjusting the shuffle mask to account for the narrower
1857   // types:
1858   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1859   int NarrowElts = X->getType()->getVectorNumElements();
1860   int WideElts = Shuffle0->getType()->getVectorNumElements();
1861   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1862 
1863   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1864   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1865   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1866   for (int i = 0, e = Mask.size(); i != e; ++i) {
1867     if (Mask[i] == -1)
1868       continue;
1869 
1870     // If this shuffle is choosing an undef element from 1 of the sources, that
1871     // element is undef.
1872     if (Mask[i] < WideElts) {
1873       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1874         continue;
1875     } else {
1876       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1877         continue;
1878     }
1879 
1880     // If this shuffle is choosing from the 1st narrow op, the mask element is
1881     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1882     // element is offset down to adjust for the narrow vector widths.
1883     if (Mask[i] < WideElts) {
1884       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1885       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1886     } else {
1887       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1888       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1889     }
1890   }
1891   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1892 }
1893 
1894 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1895   Value *LHS = SVI.getOperand(0);
1896   Value *RHS = SVI.getOperand(1);
1897   if (auto *V = SimplifyShuffleVectorInst(
1898           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1899     return replaceInstUsesWith(SVI, V);
1900 
1901   // shuffle x, x, mask --> shuffle x, undef, mask'
1902   unsigned VWidth = SVI.getType()->getVectorNumElements();
1903   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1904   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1905   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1906   if (LHS == RHS) {
1907     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
1908     // Remap any references to RHS to use LHS.
1909     SmallVector<Constant*, 16> Elts;
1910     for (unsigned i = 0; i != VWidth; ++i) {
1911       // Propagate undef elements or force mask to LHS.
1912       if (Mask[i] < 0)
1913         Elts.push_back(UndefValue::get(Int32Ty));
1914       else
1915         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth));
1916     }
1917     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()),
1918                                  ConstantVector::get(Elts));
1919   }
1920 
1921   // shuffle undef, x, mask --> shuffle x, undef, mask'
1922   if (isa<UndefValue>(LHS)) {
1923     SVI.commute();
1924     return &SVI;
1925   }
1926 
1927   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1928     return I;
1929 
1930   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1931     return I;
1932 
1933   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1934     return I;
1935 
1936   APInt UndefElts(VWidth, 0);
1937   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1938   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1939     if (V != &SVI)
1940       return replaceInstUsesWith(SVI, V);
1941     return &SVI;
1942   }
1943 
1944   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1945     return I;
1946 
1947   // These transforms have the potential to lose undef knowledge, so they are
1948   // intentionally placed after SimplifyDemandedVectorElts().
1949   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
1950     return I;
1951   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1952     return I;
1953 
1954   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1955     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1956     return replaceInstUsesWith(SVI, V);
1957   }
1958 
1959   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1960   // a non-vector type. We can instead bitcast the original vector followed by
1961   // an extract of the desired element:
1962   //
1963   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1964   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1965   //   %1 = bitcast <4 x i8> %sroa to i32
1966   // Becomes:
1967   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1968   //   %ext = extractelement <4 x i32> %bc, i32 0
1969   //
1970   // If the shuffle is extracting a contiguous range of values from the input
1971   // vector then each use which is a bitcast of the extracted size can be
1972   // replaced. This will work if the vector types are compatible, and the begin
1973   // index is aligned to a value in the casted vector type. If the begin index
1974   // isn't aligned then we can shuffle the original vector (keeping the same
1975   // vector type) before extracting.
1976   //
1977   // This code will bail out if the target type is fundamentally incompatible
1978   // with vectors of the source type.
1979   //
1980   // Example of <16 x i8>, target type i32:
1981   // Index range [4,8):         v-----------v Will work.
1982   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1983   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1984   //     <4 x i32>: |           |           |           |           |
1985   //                +-----------+-----------+-----------+-----------+
1986   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1987   // Target type i40:           ^--------------^ Won't work, bail.
1988   bool MadeChange = false;
1989   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1990     Value *V = LHS;
1991     unsigned MaskElems = Mask.size();
1992     VectorType *SrcTy = cast<VectorType>(V->getType());
1993     unsigned VecBitWidth = SrcTy->getBitWidth();
1994     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1995     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1996     unsigned SrcNumElems = SrcTy->getNumElements();
1997     SmallVector<BitCastInst *, 8> BCs;
1998     DenseMap<Type *, Value *> NewBCs;
1999     for (User *U : SVI.users())
2000       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2001         if (!BC->use_empty())
2002           // Only visit bitcasts that weren't previously handled.
2003           BCs.push_back(BC);
2004     for (BitCastInst *BC : BCs) {
2005       unsigned BegIdx = Mask.front();
2006       Type *TgtTy = BC->getDestTy();
2007       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2008       if (!TgtElemBitWidth)
2009         continue;
2010       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2011       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2012       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2013       if (!VecBitWidthsEqual)
2014         continue;
2015       if (!VectorType::isValidElementType(TgtTy))
2016         continue;
2017       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2018       if (!BegIsAligned) {
2019         // Shuffle the input so [0,NumElements) contains the output, and
2020         // [NumElems,SrcNumElems) is undef.
2021         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2022                                                 UndefValue::get(Int32Ty));
2023         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2024           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2025         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2026                                         ConstantVector::get(ShuffleMask),
2027                                         SVI.getName() + ".extract");
2028         BegIdx = 0;
2029       }
2030       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2031       assert(SrcElemsPerTgtElem);
2032       BegIdx /= SrcElemsPerTgtElem;
2033       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2034       auto *NewBC =
2035           BCAlreadyExists
2036               ? NewBCs[CastSrcTy]
2037               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2038       if (!BCAlreadyExists)
2039         NewBCs[CastSrcTy] = NewBC;
2040       auto *Ext = Builder.CreateExtractElement(
2041           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2042       // The shufflevector isn't being replaced: the bitcast that used it
2043       // is. InstCombine will visit the newly-created instructions.
2044       replaceInstUsesWith(*BC, Ext);
2045       MadeChange = true;
2046     }
2047   }
2048 
2049   // If the LHS is a shufflevector itself, see if we can combine it with this
2050   // one without producing an unusual shuffle.
2051   // Cases that might be simplified:
2052   // 1.
2053   // x1=shuffle(v1,v2,mask1)
2054   //  x=shuffle(x1,undef,mask)
2055   //        ==>
2056   //  x=shuffle(v1,undef,newMask)
2057   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2058   // 2.
2059   // x1=shuffle(v1,undef,mask1)
2060   //  x=shuffle(x1,x2,mask)
2061   // where v1.size() == mask1.size()
2062   //        ==>
2063   //  x=shuffle(v1,x2,newMask)
2064   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2065   // 3.
2066   // x2=shuffle(v2,undef,mask2)
2067   //  x=shuffle(x1,x2,mask)
2068   // where v2.size() == mask2.size()
2069   //        ==>
2070   //  x=shuffle(x1,v2,newMask)
2071   // newMask[i] = (mask[i] < x1.size())
2072   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2073   // 4.
2074   // x1=shuffle(v1,undef,mask1)
2075   // x2=shuffle(v2,undef,mask2)
2076   //  x=shuffle(x1,x2,mask)
2077   // where v1.size() == v2.size()
2078   //        ==>
2079   //  x=shuffle(v1,v2,newMask)
2080   // newMask[i] = (mask[i] < x1.size())
2081   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2082   //
2083   // Here we are really conservative:
2084   // we are absolutely afraid of producing a shuffle mask not in the input
2085   // program, because the code gen may not be smart enough to turn a merged
2086   // shuffle into two specific shuffles: it may produce worse code.  As such,
2087   // we only merge two shuffles if the result is either a splat or one of the
2088   // input shuffle masks.  In this case, merging the shuffles just removes
2089   // one instruction, which we know is safe.  This is good for things like
2090   // turning: (splat(splat)) -> splat, or
2091   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2092   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2093   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2094   if (LHSShuffle)
2095     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2096       LHSShuffle = nullptr;
2097   if (RHSShuffle)
2098     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2099       RHSShuffle = nullptr;
2100   if (!LHSShuffle && !RHSShuffle)
2101     return MadeChange ? &SVI : nullptr;
2102 
2103   Value* LHSOp0 = nullptr;
2104   Value* LHSOp1 = nullptr;
2105   Value* RHSOp0 = nullptr;
2106   unsigned LHSOp0Width = 0;
2107   unsigned RHSOp0Width = 0;
2108   if (LHSShuffle) {
2109     LHSOp0 = LHSShuffle->getOperand(0);
2110     LHSOp1 = LHSShuffle->getOperand(1);
2111     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2112   }
2113   if (RHSShuffle) {
2114     RHSOp0 = RHSShuffle->getOperand(0);
2115     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2116   }
2117   Value* newLHS = LHS;
2118   Value* newRHS = RHS;
2119   if (LHSShuffle) {
2120     // case 1
2121     if (isa<UndefValue>(RHS)) {
2122       newLHS = LHSOp0;
2123       newRHS = LHSOp1;
2124     }
2125     // case 2 or 4
2126     else if (LHSOp0Width == LHSWidth) {
2127       newLHS = LHSOp0;
2128     }
2129   }
2130   // case 3 or 4
2131   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2132     newRHS = RHSOp0;
2133   }
2134   // case 4
2135   if (LHSOp0 == RHSOp0) {
2136     newLHS = LHSOp0;
2137     newRHS = nullptr;
2138   }
2139 
2140   if (newLHS == LHS && newRHS == RHS)
2141     return MadeChange ? &SVI : nullptr;
2142 
2143   SmallVector<int, 16> LHSMask;
2144   SmallVector<int, 16> RHSMask;
2145   if (newLHS != LHS)
2146     LHSMask = LHSShuffle->getShuffleMask();
2147   if (RHSShuffle && newRHS != RHS)
2148     RHSMask = RHSShuffle->getShuffleMask();
2149 
2150   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2151   SmallVector<int, 16> newMask;
2152   bool isSplat = true;
2153   int SplatElt = -1;
2154   // Create a new mask for the new ShuffleVectorInst so that the new
2155   // ShuffleVectorInst is equivalent to the original one.
2156   for (unsigned i = 0; i < VWidth; ++i) {
2157     int eltMask;
2158     if (Mask[i] < 0) {
2159       // This element is an undef value.
2160       eltMask = -1;
2161     } else if (Mask[i] < (int)LHSWidth) {
2162       // This element is from left hand side vector operand.
2163       //
2164       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2165       // new mask value for the element.
2166       if (newLHS != LHS) {
2167         eltMask = LHSMask[Mask[i]];
2168         // If the value selected is an undef value, explicitly specify it
2169         // with a -1 mask value.
2170         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2171           eltMask = -1;
2172       } else
2173         eltMask = Mask[i];
2174     } else {
2175       // This element is from right hand side vector operand
2176       //
2177       // If the value selected is an undef value, explicitly specify it
2178       // with a -1 mask value. (case 1)
2179       if (isa<UndefValue>(RHS))
2180         eltMask = -1;
2181       // If RHS is going to be replaced (case 3 or 4), calculate the
2182       // new mask value for the element.
2183       else if (newRHS != RHS) {
2184         eltMask = RHSMask[Mask[i]-LHSWidth];
2185         // If the value selected is an undef value, explicitly specify it
2186         // with a -1 mask value.
2187         if (eltMask >= (int)RHSOp0Width) {
2188           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2189                  && "should have been check above");
2190           eltMask = -1;
2191         }
2192       } else
2193         eltMask = Mask[i]-LHSWidth;
2194 
2195       // If LHS's width is changed, shift the mask value accordingly.
2196       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2197       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2198       // If newRHS == newLHS, we want to remap any references from newRHS to
2199       // newLHS so that we can properly identify splats that may occur due to
2200       // obfuscation across the two vectors.
2201       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2202         eltMask += newLHSWidth;
2203     }
2204 
2205     // Check if this could still be a splat.
2206     if (eltMask >= 0) {
2207       if (SplatElt >= 0 && SplatElt != eltMask)
2208         isSplat = false;
2209       SplatElt = eltMask;
2210     }
2211 
2212     newMask.push_back(eltMask);
2213   }
2214 
2215   // If the result mask is equal to one of the original shuffle masks,
2216   // or is a splat, do the replacement.
2217   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2218     SmallVector<Constant*, 16> Elts;
2219     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2220       if (newMask[i] < 0) {
2221         Elts.push_back(UndefValue::get(Int32Ty));
2222       } else {
2223         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2224       }
2225     }
2226     if (!newRHS)
2227       newRHS = UndefValue::get(newLHS->getType());
2228     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2229   }
2230 
2231   return MadeChange ? &SVI : nullptr;
2232 }
2233