1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/User.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <iterator> 40 #include <utility> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "instcombine" 46 47 /// Return true if the value is cheaper to scalarize than it is to leave as a 48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 49 /// one known element from a vector constant. 50 /// 51 /// FIXME: It's possible to create more instructions than previously existed. 52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 53 // If we can pick a scalar constant value out of a vector, that is free. 54 if (auto *C = dyn_cast<Constant>(V)) 55 return IsConstantExtractIndex || C->getSplatValue(); 56 57 // An insertelement to the same constant index as our extract will simplify 58 // to the scalar inserted element. An insertelement to a different constant 59 // index is irrelevant to our extract. 60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 61 return IsConstantExtractIndex; 62 63 if (match(V, m_OneUse(m_Load(m_Value())))) 64 return true; 65 66 Value *V0, *V1; 67 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 68 if (cheapToScalarize(V0, IsConstantExtractIndex) || 69 cheapToScalarize(V1, IsConstantExtractIndex)) 70 return true; 71 72 CmpInst::Predicate UnusedPred; 73 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 74 if (cheapToScalarize(V0, IsConstantExtractIndex) || 75 cheapToScalarize(V1, IsConstantExtractIndex)) 76 return true; 77 78 return false; 79 } 80 81 // If we have a PHI node with a vector type that is only used to feed 82 // itself and be an operand of extractelement at a constant location, 83 // try to replace the PHI of the vector type with a PHI of a scalar type. 84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 85 SmallVector<Instruction *, 2> Extracts; 86 // The users we want the PHI to have are: 87 // 1) The EI ExtractElement (we already know this) 88 // 2) Possibly more ExtractElements with the same index. 89 // 3) Another operand, which will feed back into the PHI. 90 Instruction *PHIUser = nullptr; 91 for (auto U : PN->users()) { 92 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 93 if (EI.getIndexOperand() == EU->getIndexOperand()) 94 Extracts.push_back(EU); 95 else 96 return nullptr; 97 } else if (!PHIUser) { 98 PHIUser = cast<Instruction>(U); 99 } else { 100 return nullptr; 101 } 102 } 103 104 if (!PHIUser) 105 return nullptr; 106 107 // Verify that this PHI user has one use, which is the PHI itself, 108 // and that it is a binary operation which is cheap to scalarize. 109 // otherwise return nullptr. 110 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 111 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 112 return nullptr; 113 114 // Create a scalar PHI node that will replace the vector PHI node 115 // just before the current PHI node. 116 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 117 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 118 // Scalarize each PHI operand. 119 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 120 Value *PHIInVal = PN->getIncomingValue(i); 121 BasicBlock *inBB = PN->getIncomingBlock(i); 122 Value *Elt = EI.getIndexOperand(); 123 // If the operand is the PHI induction variable: 124 if (PHIInVal == PHIUser) { 125 // Scalarize the binary operation. Its first operand is the 126 // scalar PHI, and the second operand is extracted from the other 127 // vector operand. 128 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 129 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 130 Value *Op = InsertNewInstWith( 131 ExtractElementInst::Create(B0->getOperand(opId), Elt, 132 B0->getOperand(opId)->getName() + ".Elt"), 133 *B0); 134 Value *newPHIUser = InsertNewInstWith( 135 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 136 scalarPHI, Op, B0), *B0); 137 scalarPHI->addIncoming(newPHIUser, inBB); 138 } else { 139 // Scalarize PHI input: 140 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 141 // Insert the new instruction into the predecessor basic block. 142 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 143 BasicBlock::iterator InsertPos; 144 if (pos && !isa<PHINode>(pos)) { 145 InsertPos = ++pos->getIterator(); 146 } else { 147 InsertPos = inBB->getFirstInsertionPt(); 148 } 149 150 InsertNewInstWith(newEI, *InsertPos); 151 152 scalarPHI->addIncoming(newEI, inBB); 153 } 154 } 155 156 for (auto E : Extracts) 157 replaceInstUsesWith(*E, scalarPHI); 158 159 return &EI; 160 } 161 162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 163 InstCombiner::BuilderTy &Builder, 164 bool IsBigEndian) { 165 Value *X; 166 uint64_t ExtIndexC; 167 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 168 !X->getType()->isVectorTy() || 169 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 170 return nullptr; 171 172 // If this extractelement is using a bitcast from a vector of the same number 173 // of elements, see if we can find the source element from the source vector: 174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 175 Type *SrcTy = X->getType(); 176 Type *DestTy = Ext.getType(); 177 unsigned NumSrcElts = SrcTy->getVectorNumElements(); 178 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 179 if (NumSrcElts == NumElts) 180 if (Value *Elt = findScalarElement(X, ExtIndexC)) 181 return new BitCastInst(Elt, DestTy); 182 183 // If the source elements are wider than the destination, try to shift and 184 // truncate a subset of scalar bits of an insert op. 185 if (NumSrcElts < NumElts) { 186 Value *Scalar; 187 uint64_t InsIndexC; 188 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 189 m_ConstantInt(InsIndexC)))) 190 return nullptr; 191 192 // The extract must be from the subset of vector elements that we inserted 193 // into. Example: if we inserted element 1 of a <2 x i64> and we are 194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 195 // of elements 4-7 of the bitcasted vector. 196 unsigned NarrowingRatio = NumElts / NumSrcElts; 197 if (ExtIndexC / NarrowingRatio != InsIndexC) 198 return nullptr; 199 200 // We are extracting part of the original scalar. How that scalar is 201 // inserted into the vector depends on the endian-ness. Example: 202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 203 // +--+--+--+--+--+--+--+--+ 204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 205 // extelt <4 x i16> V', 3: | |S2|S3| 206 // +--+--+--+--+--+--+--+--+ 207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 209 // In this example, we must right-shift little-endian. Big-endian is just a 210 // truncate. 211 unsigned Chunk = ExtIndexC % NarrowingRatio; 212 if (IsBigEndian) 213 Chunk = NarrowingRatio - 1 - Chunk; 214 215 // Bail out if this is an FP vector to FP vector sequence. That would take 216 // more instructions than we started with unless there is no shift, and it 217 // may not be handled as well in the backend. 218 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 219 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 220 if (NeedSrcBitcast && NeedDestBitcast) 221 return nullptr; 222 223 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 224 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 225 unsigned ShAmt = Chunk * DestWidth; 226 227 // TODO: This limitation is more strict than necessary. We could sum the 228 // number of new instructions and subtract the number eliminated to know if 229 // we can proceed. 230 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 231 if (NeedSrcBitcast || NeedDestBitcast) 232 return nullptr; 233 234 if (NeedSrcBitcast) { 235 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 236 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 237 } 238 239 if (ShAmt) { 240 // Bail out if we could end with more instructions than we started with. 241 if (!Ext.getVectorOperand()->hasOneUse()) 242 return nullptr; 243 Scalar = Builder.CreateLShr(Scalar, ShAmt); 244 } 245 246 if (NeedDestBitcast) { 247 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 248 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 249 } 250 return new TruncInst(Scalar, DestTy); 251 } 252 253 return nullptr; 254 } 255 256 /// Find elements of V demanded by UserInstr. 257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 258 unsigned VWidth = V->getType()->getVectorNumElements(); 259 260 // Conservatively assume that all elements are needed. 261 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 262 263 switch (UserInstr->getOpcode()) { 264 case Instruction::ExtractElement: { 265 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 266 assert(EEI->getVectorOperand() == V); 267 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 268 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 269 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 270 } 271 break; 272 } 273 case Instruction::ShuffleVector: { 274 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 275 unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements(); 276 277 UsedElts = APInt(VWidth, 0); 278 for (unsigned i = 0; i < MaskNumElts; i++) { 279 unsigned MaskVal = Shuffle->getMaskValue(i); 280 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 281 continue; 282 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 283 UsedElts.setBit(MaskVal); 284 if (Shuffle->getOperand(1) == V && 285 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 286 UsedElts.setBit(MaskVal - VWidth); 287 } 288 break; 289 } 290 default: 291 break; 292 } 293 return UsedElts; 294 } 295 296 /// Find union of elements of V demanded by all its users. 297 /// If it is known by querying findDemandedEltsBySingleUser that 298 /// no user demands an element of V, then the corresponding bit 299 /// remains unset in the returned value. 300 static APInt findDemandedEltsByAllUsers(Value *V) { 301 unsigned VWidth = V->getType()->getVectorNumElements(); 302 303 APInt UnionUsedElts(VWidth, 0); 304 for (const Use &U : V->uses()) { 305 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 306 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 307 } else { 308 UnionUsedElts = APInt::getAllOnesValue(VWidth); 309 break; 310 } 311 312 if (UnionUsedElts.isAllOnesValue()) 313 break; 314 } 315 316 return UnionUsedElts; 317 } 318 319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 320 Value *SrcVec = EI.getVectorOperand(); 321 Value *Index = EI.getIndexOperand(); 322 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 323 SQ.getWithInstruction(&EI))) 324 return replaceInstUsesWith(EI, V); 325 326 // If extracting a specified index from the vector, see if we can recursively 327 // find a previously computed scalar that was inserted into the vector. 328 auto *IndexC = dyn_cast<ConstantInt>(Index); 329 if (IndexC) { 330 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 331 332 // InstSimplify should handle cases where the index is invalid. 333 if (!IndexC->getValue().ule(NumElts)) 334 return nullptr; 335 336 // This instruction only demands the single element from the input vector. 337 if (NumElts != 1) { 338 // If the input vector has a single use, simplify it based on this use 339 // property. 340 if (SrcVec->hasOneUse()) { 341 APInt UndefElts(NumElts, 0); 342 APInt DemandedElts(NumElts, 0); 343 DemandedElts.setBit(IndexC->getZExtValue()); 344 if (Value *V = 345 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) { 346 EI.setOperand(0, V); 347 return &EI; 348 } 349 } else { 350 // If the input vector has multiple uses, simplify it based on a union 351 // of all elements used. 352 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 353 if (!DemandedElts.isAllOnesValue()) { 354 APInt UndefElts(NumElts, 0); 355 if (Value *V = SimplifyDemandedVectorElts( 356 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 357 true /* AllowMultipleUsers */)) { 358 if (V != SrcVec) { 359 SrcVec->replaceAllUsesWith(V); 360 return &EI; 361 } 362 } 363 } 364 } 365 } 366 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 367 return I; 368 369 // If there's a vector PHI feeding a scalar use through this extractelement 370 // instruction, try to scalarize the PHI. 371 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 372 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 373 return ScalarPHI; 374 } 375 376 BinaryOperator *BO; 377 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 378 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 379 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 380 Value *E0 = Builder.CreateExtractElement(X, Index); 381 Value *E1 = Builder.CreateExtractElement(Y, Index); 382 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 383 } 384 385 Value *X, *Y; 386 CmpInst::Predicate Pred; 387 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 388 cheapToScalarize(SrcVec, IndexC)) { 389 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 390 Value *E0 = Builder.CreateExtractElement(X, Index); 391 Value *E1 = Builder.CreateExtractElement(Y, Index); 392 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 393 } 394 395 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 396 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 397 // Extracting the inserted element? 398 if (IE->getOperand(2) == Index) 399 return replaceInstUsesWith(EI, IE->getOperand(1)); 400 // If the inserted and extracted elements are constants, they must not 401 // be the same value, extract from the pre-inserted value instead. 402 if (isa<Constant>(IE->getOperand(2)) && IndexC) 403 return replaceOperand(EI, 0, IE->getOperand(0)); 404 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 405 // If this is extracting an element from a shufflevector, figure out where 406 // it came from and extract from the appropriate input element instead. 407 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 408 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 409 Value *Src; 410 unsigned LHSWidth = 411 SVI->getOperand(0)->getType()->getVectorNumElements(); 412 413 if (SrcIdx < 0) 414 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 415 if (SrcIdx < (int)LHSWidth) 416 Src = SVI->getOperand(0); 417 else { 418 SrcIdx -= LHSWidth; 419 Src = SVI->getOperand(1); 420 } 421 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 422 return ExtractElementInst::Create(Src, 423 ConstantInt::get(Int32Ty, 424 SrcIdx, false)); 425 } 426 } else if (auto *CI = dyn_cast<CastInst>(I)) { 427 // Canonicalize extractelement(cast) -> cast(extractelement). 428 // Bitcasts can change the number of vector elements, and they cost 429 // nothing. 430 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 431 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 432 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 433 } 434 } 435 } 436 return nullptr; 437 } 438 439 /// If V is a shuffle of values that ONLY returns elements from either LHS or 440 /// RHS, return the shuffle mask and true. Otherwise, return false. 441 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 442 SmallVectorImpl<Constant*> &Mask) { 443 assert(LHS->getType() == RHS->getType() && 444 "Invalid CollectSingleShuffleElements"); 445 unsigned NumElts = V->getType()->getVectorNumElements(); 446 447 if (isa<UndefValue>(V)) { 448 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 449 return true; 450 } 451 452 if (V == LHS) { 453 for (unsigned i = 0; i != NumElts; ++i) 454 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 455 return true; 456 } 457 458 if (V == RHS) { 459 for (unsigned i = 0; i != NumElts; ++i) 460 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 461 i+NumElts)); 462 return true; 463 } 464 465 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 466 // If this is an insert of an extract from some other vector, include it. 467 Value *VecOp = IEI->getOperand(0); 468 Value *ScalarOp = IEI->getOperand(1); 469 Value *IdxOp = IEI->getOperand(2); 470 471 if (!isa<ConstantInt>(IdxOp)) 472 return false; 473 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 474 475 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 476 // We can handle this if the vector we are inserting into is 477 // transitively ok. 478 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 479 // If so, update the mask to reflect the inserted undef. 480 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 481 return true; 482 } 483 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 484 if (isa<ConstantInt>(EI->getOperand(1))) { 485 unsigned ExtractedIdx = 486 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 487 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 488 489 // This must be extracting from either LHS or RHS. 490 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 491 // We can handle this if the vector we are inserting into is 492 // transitively ok. 493 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 494 // If so, update the mask to reflect the inserted value. 495 if (EI->getOperand(0) == LHS) { 496 Mask[InsertedIdx % NumElts] = 497 ConstantInt::get(Type::getInt32Ty(V->getContext()), 498 ExtractedIdx); 499 } else { 500 assert(EI->getOperand(0) == RHS); 501 Mask[InsertedIdx % NumElts] = 502 ConstantInt::get(Type::getInt32Ty(V->getContext()), 503 ExtractedIdx + NumLHSElts); 504 } 505 return true; 506 } 507 } 508 } 509 } 510 } 511 512 return false; 513 } 514 515 /// If we have insertion into a vector that is wider than the vector that we 516 /// are extracting from, try to widen the source vector to allow a single 517 /// shufflevector to replace one or more insert/extract pairs. 518 static void replaceExtractElements(InsertElementInst *InsElt, 519 ExtractElementInst *ExtElt, 520 InstCombiner &IC) { 521 VectorType *InsVecType = InsElt->getType(); 522 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 523 unsigned NumInsElts = InsVecType->getVectorNumElements(); 524 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 525 526 // The inserted-to vector must be wider than the extracted-from vector. 527 if (InsVecType->getElementType() != ExtVecType->getElementType() || 528 NumExtElts >= NumInsElts) 529 return; 530 531 // Create a shuffle mask to widen the extended-from vector using undefined 532 // values. The mask selects all of the values of the original vector followed 533 // by as many undefined values as needed to create a vector of the same length 534 // as the inserted-to vector. 535 SmallVector<Constant *, 16> ExtendMask; 536 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 537 for (unsigned i = 0; i < NumExtElts; ++i) 538 ExtendMask.push_back(ConstantInt::get(IntType, i)); 539 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 540 ExtendMask.push_back(UndefValue::get(IntType)); 541 542 Value *ExtVecOp = ExtElt->getVectorOperand(); 543 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 544 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 545 ? ExtVecOpInst->getParent() 546 : ExtElt->getParent(); 547 548 // TODO: This restriction matches the basic block check below when creating 549 // new extractelement instructions. If that limitation is removed, this one 550 // could also be removed. But for now, we just bail out to ensure that we 551 // will replace the extractelement instruction that is feeding our 552 // insertelement instruction. This allows the insertelement to then be 553 // replaced by a shufflevector. If the insertelement is not replaced, we can 554 // induce infinite looping because there's an optimization for extractelement 555 // that will delete our widening shuffle. This would trigger another attempt 556 // here to create that shuffle, and we spin forever. 557 if (InsertionBlock != InsElt->getParent()) 558 return; 559 560 // TODO: This restriction matches the check in visitInsertElementInst() and 561 // prevents an infinite loop caused by not turning the extract/insert pair 562 // into a shuffle. We really should not need either check, but we're lacking 563 // folds for shufflevectors because we're afraid to generate shuffle masks 564 // that the backend can't handle. 565 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 566 return; 567 568 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 569 ConstantVector::get(ExtendMask)); 570 571 // Insert the new shuffle after the vector operand of the extract is defined 572 // (as long as it's not a PHI) or at the start of the basic block of the 573 // extract, so any subsequent extracts in the same basic block can use it. 574 // TODO: Insert before the earliest ExtractElementInst that is replaced. 575 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 576 WideVec->insertAfter(ExtVecOpInst); 577 else 578 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 579 580 // Replace extracts from the original narrow vector with extracts from the new 581 // wide vector. 582 for (User *U : ExtVecOp->users()) { 583 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 584 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 585 continue; 586 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 587 NewExt->insertAfter(OldExt); 588 IC.replaceInstUsesWith(*OldExt, NewExt); 589 } 590 } 591 592 /// We are building a shuffle to create V, which is a sequence of insertelement, 593 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 594 /// not rely on the second vector source. Return a std::pair containing the 595 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 596 /// parameter as required. 597 /// 598 /// Note: we intentionally don't try to fold earlier shuffles since they have 599 /// often been chosen carefully to be efficiently implementable on the target. 600 using ShuffleOps = std::pair<Value *, Value *>; 601 602 static ShuffleOps collectShuffleElements(Value *V, 603 SmallVectorImpl<Constant *> &Mask, 604 Value *PermittedRHS, 605 InstCombiner &IC) { 606 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 607 unsigned NumElts = V->getType()->getVectorNumElements(); 608 609 if (isa<UndefValue>(V)) { 610 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 611 return std::make_pair( 612 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 613 } 614 615 if (isa<ConstantAggregateZero>(V)) { 616 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 617 return std::make_pair(V, nullptr); 618 } 619 620 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 621 // If this is an insert of an extract from some other vector, include it. 622 Value *VecOp = IEI->getOperand(0); 623 Value *ScalarOp = IEI->getOperand(1); 624 Value *IdxOp = IEI->getOperand(2); 625 626 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 627 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 628 unsigned ExtractedIdx = 629 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 630 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 631 632 // Either the extracted from or inserted into vector must be RHSVec, 633 // otherwise we'd end up with a shuffle of three inputs. 634 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 635 Value *RHS = EI->getOperand(0); 636 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 637 assert(LR.second == nullptr || LR.second == RHS); 638 639 if (LR.first->getType() != RHS->getType()) { 640 // Although we are giving up for now, see if we can create extracts 641 // that match the inserts for another round of combining. 642 replaceExtractElements(IEI, EI, IC); 643 644 // We tried our best, but we can't find anything compatible with RHS 645 // further up the chain. Return a trivial shuffle. 646 for (unsigned i = 0; i < NumElts; ++i) 647 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 648 return std::make_pair(V, nullptr); 649 } 650 651 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 652 Mask[InsertedIdx % NumElts] = 653 ConstantInt::get(Type::getInt32Ty(V->getContext()), 654 NumLHSElts+ExtractedIdx); 655 return std::make_pair(LR.first, RHS); 656 } 657 658 if (VecOp == PermittedRHS) { 659 // We've gone as far as we can: anything on the other side of the 660 // extractelement will already have been converted into a shuffle. 661 unsigned NumLHSElts = 662 EI->getOperand(0)->getType()->getVectorNumElements(); 663 for (unsigned i = 0; i != NumElts; ++i) 664 Mask.push_back(ConstantInt::get( 665 Type::getInt32Ty(V->getContext()), 666 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 667 return std::make_pair(EI->getOperand(0), PermittedRHS); 668 } 669 670 // If this insertelement is a chain that comes from exactly these two 671 // vectors, return the vector and the effective shuffle. 672 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 673 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 674 Mask)) 675 return std::make_pair(EI->getOperand(0), PermittedRHS); 676 } 677 } 678 } 679 680 // Otherwise, we can't do anything fancy. Return an identity vector. 681 for (unsigned i = 0; i != NumElts; ++i) 682 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 683 return std::make_pair(V, nullptr); 684 } 685 686 /// Try to find redundant insertvalue instructions, like the following ones: 687 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 688 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 689 /// Here the second instruction inserts values at the same indices, as the 690 /// first one, making the first one redundant. 691 /// It should be transformed to: 692 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 693 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 694 bool IsRedundant = false; 695 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 696 697 // If there is a chain of insertvalue instructions (each of them except the 698 // last one has only one use and it's another insertvalue insn from this 699 // chain), check if any of the 'children' uses the same indices as the first 700 // instruction. In this case, the first one is redundant. 701 Value *V = &I; 702 unsigned Depth = 0; 703 while (V->hasOneUse() && Depth < 10) { 704 User *U = V->user_back(); 705 auto UserInsInst = dyn_cast<InsertValueInst>(U); 706 if (!UserInsInst || U->getOperand(0) != V) 707 break; 708 if (UserInsInst->getIndices() == FirstIndices) { 709 IsRedundant = true; 710 break; 711 } 712 V = UserInsInst; 713 Depth++; 714 } 715 716 if (IsRedundant) 717 return replaceInstUsesWith(I, I.getOperand(0)); 718 return nullptr; 719 } 720 721 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 722 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 723 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 724 725 // A vector select does not change the size of the operands. 726 if (MaskSize != VecSize) 727 return false; 728 729 // Each mask element must be undefined or choose a vector element from one of 730 // the source operands without crossing vector lanes. 731 for (int i = 0; i != MaskSize; ++i) { 732 int Elt = Shuf.getMaskValue(i); 733 if (Elt != -1 && Elt != i && Elt != i + VecSize) 734 return false; 735 } 736 737 return true; 738 } 739 740 /// Turn a chain of inserts that splats a value into an insert + shuffle: 741 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 742 /// shufflevector(insertelt(X, %k, 0), undef, zero) 743 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 744 // We are interested in the last insert in a chain. So if this insert has a 745 // single user and that user is an insert, bail. 746 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 747 return nullptr; 748 749 auto *VecTy = cast<VectorType>(InsElt.getType()); 750 unsigned NumElements = VecTy->getNumElements(); 751 752 // Do not try to do this for a one-element vector, since that's a nop, 753 // and will cause an inf-loop. 754 if (NumElements == 1) 755 return nullptr; 756 757 Value *SplatVal = InsElt.getOperand(1); 758 InsertElementInst *CurrIE = &InsElt; 759 SmallVector<bool, 16> ElementPresent(NumElements, false); 760 InsertElementInst *FirstIE = nullptr; 761 762 // Walk the chain backwards, keeping track of which indices we inserted into, 763 // until we hit something that isn't an insert of the splatted value. 764 while (CurrIE) { 765 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 766 if (!Idx || CurrIE->getOperand(1) != SplatVal) 767 return nullptr; 768 769 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 770 // Check none of the intermediate steps have any additional uses, except 771 // for the root insertelement instruction, which can be re-used, if it 772 // inserts at position 0. 773 if (CurrIE != &InsElt && 774 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 775 return nullptr; 776 777 ElementPresent[Idx->getZExtValue()] = true; 778 FirstIE = CurrIE; 779 CurrIE = NextIE; 780 } 781 782 // If this is just a single insertelement (not a sequence), we are done. 783 if (FirstIE == &InsElt) 784 return nullptr; 785 786 // If we are not inserting into an undef vector, make sure we've seen an 787 // insert into every element. 788 // TODO: If the base vector is not undef, it might be better to create a splat 789 // and then a select-shuffle (blend) with the base vector. 790 if (!isa<UndefValue>(FirstIE->getOperand(0))) 791 if (any_of(ElementPresent, [](bool Present) { return !Present; })) 792 return nullptr; 793 794 // Create the insert + shuffle. 795 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 796 UndefValue *UndefVec = UndefValue::get(VecTy); 797 Constant *Zero = ConstantInt::get(Int32Ty, 0); 798 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 799 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 800 801 // Splat from element 0, but replace absent elements with undef in the mask. 802 SmallVector<Constant *, 16> Mask(NumElements, Zero); 803 for (unsigned i = 0; i != NumElements; ++i) 804 if (!ElementPresent[i]) 805 Mask[i] = UndefValue::get(Int32Ty); 806 807 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); 808 } 809 810 /// Try to fold an insert element into an existing splat shuffle by changing 811 /// the shuffle's mask to include the index of this insert element. 812 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 813 // Check if the vector operand of this insert is a canonical splat shuffle. 814 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 815 if (!Shuf || !Shuf->isZeroEltSplat()) 816 return nullptr; 817 818 // Check for a constant insertion index. 819 uint64_t IdxC; 820 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 821 return nullptr; 822 823 // Check if the splat shuffle's input is the same as this insert's scalar op. 824 Value *X = InsElt.getOperand(1); 825 Value *Op0 = Shuf->getOperand(0); 826 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 827 return nullptr; 828 829 // Replace the shuffle mask element at the index of this insert with a zero. 830 // For example: 831 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 832 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 833 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); 834 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); 835 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); 836 Constant *Zero = ConstantInt::getNullValue(I32Ty); 837 for (unsigned i = 0; i != NumMaskElts; ++i) 838 NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i); 839 840 Constant *NewMask = ConstantVector::get(NewMaskVec); 841 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 842 } 843 844 /// Try to fold an extract+insert element into an existing identity shuffle by 845 /// changing the shuffle's mask to include the index of this insert element. 846 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 847 // Check if the vector operand of this insert is an identity shuffle. 848 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 849 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 850 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 851 return nullptr; 852 853 // Check for a constant insertion index. 854 uint64_t IdxC; 855 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 856 return nullptr; 857 858 // Check if this insert's scalar op is extracted from the identity shuffle's 859 // input vector. 860 Value *Scalar = InsElt.getOperand(1); 861 Value *X = Shuf->getOperand(0); 862 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 863 return nullptr; 864 865 // Replace the shuffle mask element at the index of this extract+insert with 866 // that same index value. 867 // For example: 868 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 869 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); 870 SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); 871 Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); 872 Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC); 873 Constant *OldMask = Shuf->getMask(); 874 for (unsigned i = 0; i != NumMaskElts; ++i) { 875 if (i != IdxC) { 876 // All mask elements besides the inserted element remain the same. 877 NewMaskVec[i] = OldMask->getAggregateElement(i); 878 } else if (OldMask->getAggregateElement(i) == NewMaskEltC) { 879 // If the mask element was already set, there's nothing to do 880 // (demanded elements analysis may unset it later). 881 return nullptr; 882 } else { 883 assert(isa<UndefValue>(OldMask->getAggregateElement(i)) && 884 "Unexpected shuffle mask element for identity shuffle"); 885 NewMaskVec[i] = NewMaskEltC; 886 } 887 } 888 889 Constant *NewMask = ConstantVector::get(NewMaskVec); 890 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 891 } 892 893 /// If we have an insertelement instruction feeding into another insertelement 894 /// and the 2nd is inserting a constant into the vector, canonicalize that 895 /// constant insertion before the insertion of a variable: 896 /// 897 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 898 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 899 /// 900 /// This has the potential of eliminating the 2nd insertelement instruction 901 /// via constant folding of the scalar constant into a vector constant. 902 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 903 InstCombiner::BuilderTy &Builder) { 904 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 905 if (!InsElt1 || !InsElt1->hasOneUse()) 906 return nullptr; 907 908 Value *X, *Y; 909 Constant *ScalarC; 910 ConstantInt *IdxC1, *IdxC2; 911 if (match(InsElt1->getOperand(0), m_Value(X)) && 912 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 913 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 914 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 915 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 916 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 917 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 918 } 919 920 return nullptr; 921 } 922 923 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 924 /// --> shufflevector X, CVec', Mask' 925 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 926 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 927 // Bail out if the parent has more than one use. In that case, we'd be 928 // replacing the insertelt with a shuffle, and that's not a clear win. 929 if (!Inst || !Inst->hasOneUse()) 930 return nullptr; 931 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 932 // The shuffle must have a constant vector operand. The insertelt must have 933 // a constant scalar being inserted at a constant position in the vector. 934 Constant *ShufConstVec, *InsEltScalar; 935 uint64_t InsEltIndex; 936 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 937 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 938 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 939 return nullptr; 940 941 // Adding an element to an arbitrary shuffle could be expensive, but a 942 // shuffle that selects elements from vectors without crossing lanes is 943 // assumed cheap. 944 // If we're just adding a constant into that shuffle, it will still be 945 // cheap. 946 if (!isShuffleEquivalentToSelect(*Shuf)) 947 return nullptr; 948 949 // From the above 'select' check, we know that the mask has the same number 950 // of elements as the vector input operands. We also know that each constant 951 // input element is used in its lane and can not be used more than once by 952 // the shuffle. Therefore, replace the constant in the shuffle's constant 953 // vector with the insertelt constant. Replace the constant in the shuffle's 954 // mask vector with the insertelt index plus the length of the vector 955 // (because the constant vector operand of a shuffle is always the 2nd 956 // operand). 957 Constant *Mask = Shuf->getMask(); 958 unsigned NumElts = Mask->getType()->getVectorNumElements(); 959 SmallVector<Constant *, 16> NewShufElts(NumElts); 960 SmallVector<Constant *, 16> NewMaskElts(NumElts); 961 for (unsigned I = 0; I != NumElts; ++I) { 962 if (I == InsEltIndex) { 963 NewShufElts[I] = InsEltScalar; 964 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 965 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 966 } else { 967 // Copy over the existing values. 968 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 969 NewMaskElts[I] = Mask->getAggregateElement(I); 970 } 971 } 972 973 // Create new operands for a shuffle that includes the constant of the 974 // original insertelt. The old shuffle will be dead now. 975 return new ShuffleVectorInst(Shuf->getOperand(0), 976 ConstantVector::get(NewShufElts), 977 ConstantVector::get(NewMaskElts)); 978 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 979 // Transform sequences of insertelements ops with constant data/indexes into 980 // a single shuffle op. 981 unsigned NumElts = InsElt.getType()->getNumElements(); 982 983 uint64_t InsertIdx[2]; 984 Constant *Val[2]; 985 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 986 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 987 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 988 !match(IEI->getOperand(1), m_Constant(Val[1]))) 989 return nullptr; 990 SmallVector<Constant *, 16> Values(NumElts); 991 SmallVector<Constant *, 16> Mask(NumElts); 992 auto ValI = std::begin(Val); 993 // Generate new constant vector and mask. 994 // We have 2 values/masks from the insertelements instructions. Insert them 995 // into new value/mask vectors. 996 for (uint64_t I : InsertIdx) { 997 if (!Values[I]) { 998 assert(!Mask[I]); 999 Values[I] = *ValI; 1000 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 1001 NumElts + I); 1002 } 1003 ++ValI; 1004 } 1005 // Remaining values are filled with 'undef' values. 1006 for (unsigned I = 0; I < NumElts; ++I) { 1007 if (!Values[I]) { 1008 assert(!Mask[I]); 1009 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1010 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 1011 } 1012 } 1013 // Create new operands for a shuffle that includes the constant of the 1014 // original insertelt. 1015 return new ShuffleVectorInst(IEI->getOperand(0), 1016 ConstantVector::get(Values), 1017 ConstantVector::get(Mask)); 1018 } 1019 return nullptr; 1020 } 1021 1022 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1023 Value *VecOp = IE.getOperand(0); 1024 Value *ScalarOp = IE.getOperand(1); 1025 Value *IdxOp = IE.getOperand(2); 1026 1027 if (auto *V = SimplifyInsertElementInst( 1028 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1029 return replaceInstUsesWith(IE, V); 1030 1031 // If the vector and scalar are both bitcast from the same element type, do 1032 // the insert in that source type followed by bitcast. 1033 Value *VecSrc, *ScalarSrc; 1034 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1035 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1036 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1037 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1038 VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) { 1039 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1040 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1041 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1042 return new BitCastInst(NewInsElt, IE.getType()); 1043 } 1044 1045 // If the inserted element was extracted from some other vector and both 1046 // indexes are valid constants, try to turn this into a shuffle. 1047 uint64_t InsertedIdx, ExtractedIdx; 1048 Value *ExtVecOp; 1049 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 1050 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), 1051 m_ConstantInt(ExtractedIdx))) && 1052 ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) { 1053 // TODO: Looking at the user(s) to determine if this insert is a 1054 // fold-to-shuffle opportunity does not match the usual instcombine 1055 // constraints. We should decide if the transform is worthy based only 1056 // on this instruction and its operands, but that may not work currently. 1057 // 1058 // Here, we are trying to avoid creating shuffles before reaching 1059 // the end of a chain of extract-insert pairs. This is complicated because 1060 // we do not generally form arbitrary shuffle masks in instcombine 1061 // (because those may codegen poorly), but collectShuffleElements() does 1062 // exactly that. 1063 // 1064 // The rules for determining what is an acceptable target-independent 1065 // shuffle mask are fuzzy because they evolve based on the backend's 1066 // capabilities and real-world impact. 1067 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1068 if (!Insert.hasOneUse()) 1069 return true; 1070 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1071 if (!InsertUser) 1072 return true; 1073 return false; 1074 }; 1075 1076 // Try to form a shuffle from a chain of extract-insert ops. 1077 if (isShuffleRootCandidate(IE)) { 1078 SmallVector<Constant*, 16> Mask; 1079 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1080 1081 // The proposed shuffle may be trivial, in which case we shouldn't 1082 // perform the combine. 1083 if (LR.first != &IE && LR.second != &IE) { 1084 // We now have a shuffle of LHS, RHS, Mask. 1085 if (LR.second == nullptr) 1086 LR.second = UndefValue::get(LR.first->getType()); 1087 return new ShuffleVectorInst(LR.first, LR.second, 1088 ConstantVector::get(Mask)); 1089 } 1090 } 1091 } 1092 1093 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 1094 APInt UndefElts(VWidth, 0); 1095 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1096 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1097 if (V != &IE) 1098 return replaceInstUsesWith(IE, V); 1099 return &IE; 1100 } 1101 1102 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1103 return Shuf; 1104 1105 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1106 return NewInsElt; 1107 1108 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1109 return Broadcast; 1110 1111 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1112 return Splat; 1113 1114 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1115 return IdentityShuf; 1116 1117 return nullptr; 1118 } 1119 1120 /// Return true if we can evaluate the specified expression tree if the vector 1121 /// elements were shuffled in a different order. 1122 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1123 unsigned Depth = 5) { 1124 // We can always reorder the elements of a constant. 1125 if (isa<Constant>(V)) 1126 return true; 1127 1128 // We won't reorder vector arguments. No IPO here. 1129 Instruction *I = dyn_cast<Instruction>(V); 1130 if (!I) return false; 1131 1132 // Two users may expect different orders of the elements. Don't try it. 1133 if (!I->hasOneUse()) 1134 return false; 1135 1136 if (Depth == 0) return false; 1137 1138 switch (I->getOpcode()) { 1139 case Instruction::UDiv: 1140 case Instruction::SDiv: 1141 case Instruction::URem: 1142 case Instruction::SRem: 1143 // Propagating an undefined shuffle mask element to integer div/rem is not 1144 // allowed because those opcodes can create immediate undefined behavior 1145 // from an undefined element in an operand. 1146 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1147 return false; 1148 LLVM_FALLTHROUGH; 1149 case Instruction::Add: 1150 case Instruction::FAdd: 1151 case Instruction::Sub: 1152 case Instruction::FSub: 1153 case Instruction::Mul: 1154 case Instruction::FMul: 1155 case Instruction::FDiv: 1156 case Instruction::FRem: 1157 case Instruction::Shl: 1158 case Instruction::LShr: 1159 case Instruction::AShr: 1160 case Instruction::And: 1161 case Instruction::Or: 1162 case Instruction::Xor: 1163 case Instruction::ICmp: 1164 case Instruction::FCmp: 1165 case Instruction::Trunc: 1166 case Instruction::ZExt: 1167 case Instruction::SExt: 1168 case Instruction::FPToUI: 1169 case Instruction::FPToSI: 1170 case Instruction::UIToFP: 1171 case Instruction::SIToFP: 1172 case Instruction::FPTrunc: 1173 case Instruction::FPExt: 1174 case Instruction::GetElementPtr: { 1175 // Bail out if we would create longer vector ops. We could allow creating 1176 // longer vector ops, but that may result in more expensive codegen. 1177 Type *ITy = I->getType(); 1178 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) 1179 return false; 1180 for (Value *Operand : I->operands()) { 1181 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1182 return false; 1183 } 1184 return true; 1185 } 1186 case Instruction::InsertElement: { 1187 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1188 if (!CI) return false; 1189 int ElementNumber = CI->getLimitedValue(); 1190 1191 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1192 // can't put an element into multiple indices. 1193 bool SeenOnce = false; 1194 for (int i = 0, e = Mask.size(); i != e; ++i) { 1195 if (Mask[i] == ElementNumber) { 1196 if (SeenOnce) 1197 return false; 1198 SeenOnce = true; 1199 } 1200 } 1201 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1202 } 1203 } 1204 return false; 1205 } 1206 1207 /// Rebuild a new instruction just like 'I' but with the new operands given. 1208 /// In the event of type mismatch, the type of the operands is correct. 1209 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1210 // We don't want to use the IRBuilder here because we want the replacement 1211 // instructions to appear next to 'I', not the builder's insertion point. 1212 switch (I->getOpcode()) { 1213 case Instruction::Add: 1214 case Instruction::FAdd: 1215 case Instruction::Sub: 1216 case Instruction::FSub: 1217 case Instruction::Mul: 1218 case Instruction::FMul: 1219 case Instruction::UDiv: 1220 case Instruction::SDiv: 1221 case Instruction::FDiv: 1222 case Instruction::URem: 1223 case Instruction::SRem: 1224 case Instruction::FRem: 1225 case Instruction::Shl: 1226 case Instruction::LShr: 1227 case Instruction::AShr: 1228 case Instruction::And: 1229 case Instruction::Or: 1230 case Instruction::Xor: { 1231 BinaryOperator *BO = cast<BinaryOperator>(I); 1232 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1233 BinaryOperator *New = 1234 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1235 NewOps[0], NewOps[1], "", BO); 1236 if (isa<OverflowingBinaryOperator>(BO)) { 1237 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1238 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1239 } 1240 if (isa<PossiblyExactOperator>(BO)) { 1241 New->setIsExact(BO->isExact()); 1242 } 1243 if (isa<FPMathOperator>(BO)) 1244 New->copyFastMathFlags(I); 1245 return New; 1246 } 1247 case Instruction::ICmp: 1248 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1249 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1250 NewOps[0], NewOps[1]); 1251 case Instruction::FCmp: 1252 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1253 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1254 NewOps[0], NewOps[1]); 1255 case Instruction::Trunc: 1256 case Instruction::ZExt: 1257 case Instruction::SExt: 1258 case Instruction::FPToUI: 1259 case Instruction::FPToSI: 1260 case Instruction::UIToFP: 1261 case Instruction::SIToFP: 1262 case Instruction::FPTrunc: 1263 case Instruction::FPExt: { 1264 // It's possible that the mask has a different number of elements from 1265 // the original cast. We recompute the destination type to match the mask. 1266 Type *DestTy = 1267 VectorType::get(I->getType()->getScalarType(), 1268 NewOps[0]->getType()->getVectorNumElements()); 1269 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1270 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1271 "", I); 1272 } 1273 case Instruction::GetElementPtr: { 1274 Value *Ptr = NewOps[0]; 1275 ArrayRef<Value*> Idx = NewOps.slice(1); 1276 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1277 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1278 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1279 return GEP; 1280 } 1281 } 1282 llvm_unreachable("failed to rebuild vector instructions"); 1283 } 1284 1285 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1286 // Mask.size() does not need to be equal to the number of vector elements. 1287 1288 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1289 Type *EltTy = V->getType()->getScalarType(); 1290 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1291 if (isa<UndefValue>(V)) 1292 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1293 1294 if (isa<ConstantAggregateZero>(V)) 1295 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1296 1297 if (Constant *C = dyn_cast<Constant>(V)) { 1298 SmallVector<Constant *, 16> MaskValues; 1299 for (int i = 0, e = Mask.size(); i != e; ++i) { 1300 if (Mask[i] == -1) 1301 MaskValues.push_back(UndefValue::get(I32Ty)); 1302 else 1303 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i])); 1304 } 1305 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1306 ConstantVector::get(MaskValues)); 1307 } 1308 1309 Instruction *I = cast<Instruction>(V); 1310 switch (I->getOpcode()) { 1311 case Instruction::Add: 1312 case Instruction::FAdd: 1313 case Instruction::Sub: 1314 case Instruction::FSub: 1315 case Instruction::Mul: 1316 case Instruction::FMul: 1317 case Instruction::UDiv: 1318 case Instruction::SDiv: 1319 case Instruction::FDiv: 1320 case Instruction::URem: 1321 case Instruction::SRem: 1322 case Instruction::FRem: 1323 case Instruction::Shl: 1324 case Instruction::LShr: 1325 case Instruction::AShr: 1326 case Instruction::And: 1327 case Instruction::Or: 1328 case Instruction::Xor: 1329 case Instruction::ICmp: 1330 case Instruction::FCmp: 1331 case Instruction::Trunc: 1332 case Instruction::ZExt: 1333 case Instruction::SExt: 1334 case Instruction::FPToUI: 1335 case Instruction::FPToSI: 1336 case Instruction::UIToFP: 1337 case Instruction::SIToFP: 1338 case Instruction::FPTrunc: 1339 case Instruction::FPExt: 1340 case Instruction::Select: 1341 case Instruction::GetElementPtr: { 1342 SmallVector<Value*, 8> NewOps; 1343 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1344 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1345 Value *V; 1346 // Recursively call evaluateInDifferentElementOrder on vector arguments 1347 // as well. E.g. GetElementPtr may have scalar operands even if the 1348 // return value is a vector, so we need to examine the operand type. 1349 if (I->getOperand(i)->getType()->isVectorTy()) 1350 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1351 else 1352 V = I->getOperand(i); 1353 NewOps.push_back(V); 1354 NeedsRebuild |= (V != I->getOperand(i)); 1355 } 1356 if (NeedsRebuild) { 1357 return buildNew(I, NewOps); 1358 } 1359 return I; 1360 } 1361 case Instruction::InsertElement: { 1362 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1363 1364 // The insertelement was inserting at Element. Figure out which element 1365 // that becomes after shuffling. The answer is guaranteed to be unique 1366 // by CanEvaluateShuffled. 1367 bool Found = false; 1368 int Index = 0; 1369 for (int e = Mask.size(); Index != e; ++Index) { 1370 if (Mask[Index] == Element) { 1371 Found = true; 1372 break; 1373 } 1374 } 1375 1376 // If element is not in Mask, no need to handle the operand 1 (element to 1377 // be inserted). Just evaluate values in operand 0 according to Mask. 1378 if (!Found) 1379 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1380 1381 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1382 return InsertElementInst::Create(V, I->getOperand(1), 1383 ConstantInt::get(I32Ty, Index), "", I); 1384 } 1385 } 1386 llvm_unreachable("failed to reorder elements of vector instruction!"); 1387 } 1388 1389 // Returns true if the shuffle is extracting a contiguous range of values from 1390 // LHS, for example: 1391 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1392 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1393 // Shuffles to: |EE|FF|GG|HH| 1394 // +--+--+--+--+ 1395 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1396 SmallVector<int, 16> &Mask) { 1397 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1398 unsigned MaskElems = Mask.size(); 1399 unsigned BegIdx = Mask.front(); 1400 unsigned EndIdx = Mask.back(); 1401 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1402 return false; 1403 for (unsigned I = 0; I != MaskElems; ++I) 1404 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1405 return false; 1406 return true; 1407 } 1408 1409 /// These are the ingredients in an alternate form binary operator as described 1410 /// below. 1411 struct BinopElts { 1412 BinaryOperator::BinaryOps Opcode; 1413 Value *Op0; 1414 Value *Op1; 1415 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1416 Value *V0 = nullptr, Value *V1 = nullptr) : 1417 Opcode(Opc), Op0(V0), Op1(V1) {} 1418 operator bool() const { return Opcode != 0; } 1419 }; 1420 1421 /// Binops may be transformed into binops with different opcodes and operands. 1422 /// Reverse the usual canonicalization to enable folds with the non-canonical 1423 /// form of the binop. If a transform is possible, return the elements of the 1424 /// new binop. If not, return invalid elements. 1425 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1426 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1427 Type *Ty = BO->getType(); 1428 switch (BO->getOpcode()) { 1429 case Instruction::Shl: { 1430 // shl X, C --> mul X, (1 << C) 1431 Constant *C; 1432 if (match(BO1, m_Constant(C))) { 1433 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1434 return { Instruction::Mul, BO0, ShlOne }; 1435 } 1436 break; 1437 } 1438 case Instruction::Or: { 1439 // or X, C --> add X, C (when X and C have no common bits set) 1440 const APInt *C; 1441 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1442 return { Instruction::Add, BO0, BO1 }; 1443 break; 1444 } 1445 default: 1446 break; 1447 } 1448 return {}; 1449 } 1450 1451 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1452 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1453 1454 // Are we shuffling together some value and that same value after it has been 1455 // modified by a binop with a constant? 1456 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1457 Constant *C; 1458 bool Op0IsBinop; 1459 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1460 Op0IsBinop = true; 1461 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1462 Op0IsBinop = false; 1463 else 1464 return nullptr; 1465 1466 // The identity constant for a binop leaves a variable operand unchanged. For 1467 // a vector, this is a splat of something like 0, -1, or 1. 1468 // If there's no identity constant for this binop, we're done. 1469 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1470 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1471 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1472 if (!IdC) 1473 return nullptr; 1474 1475 // Shuffle identity constants into the lanes that return the original value. 1476 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1477 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1478 // The existing binop constant vector remains in the same operand position. 1479 Constant *Mask = Shuf.getMask(); 1480 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1481 ConstantExpr::getShuffleVector(IdC, C, Mask); 1482 1483 bool MightCreatePoisonOrUB = 1484 Mask->containsUndefElement() && 1485 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1486 if (MightCreatePoisonOrUB) 1487 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1488 1489 // shuf (bop X, C), X, M --> bop X, C' 1490 // shuf X, (bop X, C), M --> bop X, C' 1491 Value *X = Op0IsBinop ? Op1 : Op0; 1492 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1493 NewBO->copyIRFlags(BO); 1494 1495 // An undef shuffle mask element may propagate as an undef constant element in 1496 // the new binop. That would produce poison where the original code might not. 1497 // If we already made a safe constant, then there's no danger. 1498 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1499 NewBO->dropPoisonGeneratingFlags(); 1500 return NewBO; 1501 } 1502 1503 /// If we have an insert of a scalar to a non-zero element of an undefined 1504 /// vector and then shuffle that value, that's the same as inserting to the zero 1505 /// element and shuffling. Splatting from the zero element is recognized as the 1506 /// canonical form of splat. 1507 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1508 InstCombiner::BuilderTy &Builder) { 1509 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1510 Constant *Mask = Shuf.getMask(); 1511 Value *X; 1512 uint64_t IndexC; 1513 1514 // Match a shuffle that is a splat to a non-zero element. 1515 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1516 m_ConstantInt(IndexC)))) || 1517 !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0) 1518 return nullptr; 1519 1520 // Insert into element 0 of an undef vector. 1521 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1522 Constant *Zero = Builder.getInt32(0); 1523 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1524 1525 // Splat from element 0. Any mask element that is undefined remains undefined. 1526 // For example: 1527 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1528 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1529 unsigned NumMaskElts = Shuf.getType()->getVectorNumElements(); 1530 SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero); 1531 for (unsigned i = 0; i != NumMaskElts; ++i) 1532 if (isa<UndefValue>(Mask->getAggregateElement(i))) 1533 NewMask[i] = Mask->getAggregateElement(i); 1534 1535 return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask)); 1536 } 1537 1538 /// Try to fold shuffles that are the equivalent of a vector select. 1539 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1540 InstCombiner::BuilderTy &Builder, 1541 const DataLayout &DL) { 1542 if (!Shuf.isSelect()) 1543 return nullptr; 1544 1545 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1546 // Commuting undef to operand 0 conflicts with another canonicalization. 1547 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1548 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1549 Shuf.getMaskValue(0) >= (int)NumElts) { 1550 // TODO: Can we assert that both operands of a shuffle-select are not undef 1551 // (otherwise, it would have been folded by instsimplify? 1552 Shuf.commute(); 1553 return &Shuf; 1554 } 1555 1556 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1557 return I; 1558 1559 BinaryOperator *B0, *B1; 1560 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1561 !match(Shuf.getOperand(1), m_BinOp(B1))) 1562 return nullptr; 1563 1564 Value *X, *Y; 1565 Constant *C0, *C1; 1566 bool ConstantsAreOp1; 1567 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1568 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1569 ConstantsAreOp1 = true; 1570 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1571 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1572 ConstantsAreOp1 = false; 1573 else 1574 return nullptr; 1575 1576 // We need matching binops to fold the lanes together. 1577 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1578 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1579 bool DropNSW = false; 1580 if (ConstantsAreOp1 && Opc0 != Opc1) { 1581 // TODO: We drop "nsw" if shift is converted into multiply because it may 1582 // not be correct when the shift amount is BitWidth - 1. We could examine 1583 // each vector element to determine if it is safe to keep that flag. 1584 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1585 DropNSW = true; 1586 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1587 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1588 Opc0 = AltB0.Opcode; 1589 C0 = cast<Constant>(AltB0.Op1); 1590 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1591 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1592 Opc1 = AltB1.Opcode; 1593 C1 = cast<Constant>(AltB1.Op1); 1594 } 1595 } 1596 1597 if (Opc0 != Opc1) 1598 return nullptr; 1599 1600 // The opcodes must be the same. Use a new name to make that clear. 1601 BinaryOperator::BinaryOps BOpc = Opc0; 1602 1603 // Select the constant elements needed for the single binop. 1604 Constant *Mask = Shuf.getMask(); 1605 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1606 1607 // We are moving a binop after a shuffle. When a shuffle has an undefined 1608 // mask element, the result is undefined, but it is not poison or undefined 1609 // behavior. That is not necessarily true for div/rem/shift. 1610 bool MightCreatePoisonOrUB = 1611 Mask->containsUndefElement() && 1612 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1613 if (MightCreatePoisonOrUB) 1614 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1615 1616 Value *V; 1617 if (X == Y) { 1618 // Remove a binop and the shuffle by rearranging the constant: 1619 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1620 // shuffle (op C0, V), (op C1, V), M --> op C', V 1621 V = X; 1622 } else { 1623 // If there are 2 different variable operands, we must create a new shuffle 1624 // (select) first, so check uses to ensure that we don't end up with more 1625 // instructions than we started with. 1626 if (!B0->hasOneUse() && !B1->hasOneUse()) 1627 return nullptr; 1628 1629 // If we use the original shuffle mask and op1 is *variable*, we would be 1630 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1631 // poison. We do not have to guard against UB when *constants* are op1 1632 // because safe constants guarantee that we do not overflow sdiv/srem (and 1633 // there's no danger for other opcodes). 1634 // TODO: To allow this case, create a new shuffle mask with no undefs. 1635 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1636 return nullptr; 1637 1638 // Note: In general, we do not create new shuffles in InstCombine because we 1639 // do not know if a target can lower an arbitrary shuffle optimally. In this 1640 // case, the shuffle uses the existing mask, so there is no additional risk. 1641 1642 // Select the variable vectors first, then perform the binop: 1643 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1644 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1645 V = Builder.CreateShuffleVector(X, Y, Mask); 1646 } 1647 1648 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1649 BinaryOperator::Create(BOpc, NewC, V); 1650 1651 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1652 // 1. If we changed an opcode, poison conditions might have changed. 1653 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1654 // where the original code did not. But if we already made a safe constant, 1655 // then there's no danger. 1656 NewBO->copyIRFlags(B0); 1657 NewBO->andIRFlags(B1); 1658 if (DropNSW) 1659 NewBO->setHasNoSignedWrap(false); 1660 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) 1661 NewBO->dropPoisonGeneratingFlags(); 1662 return NewBO; 1663 } 1664 1665 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1666 /// narrowing (concatenating with undef and extracting back to the original 1667 /// length). This allows replacing the wide select with a narrow select. 1668 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1669 InstCombiner::BuilderTy &Builder) { 1670 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1671 // of the 1st vector operand of a shuffle. 1672 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1673 return nullptr; 1674 1675 // The vector being shuffled must be a vector select that we can eliminate. 1676 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1677 Value *Cond, *X, *Y; 1678 if (!match(Shuf.getOperand(0), 1679 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1680 return nullptr; 1681 1682 // We need a narrow condition value. It must be extended with undef elements 1683 // and have the same number of elements as this shuffle. 1684 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); 1685 Value *NarrowCond; 1686 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(), 1687 m_Constant()))) || 1688 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || 1689 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1690 return nullptr; 1691 1692 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1693 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1694 Value *Undef = UndefValue::get(X->getType()); 1695 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask()); 1696 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask()); 1697 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1698 } 1699 1700 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1701 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1702 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1703 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1704 return nullptr; 1705 1706 Value *X, *Y; 1707 Constant *Mask; 1708 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask)))) 1709 return nullptr; 1710 1711 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1712 // then combining may result in worse codegen. 1713 if (!Op0->hasOneUse()) 1714 return nullptr; 1715 1716 // We are extracting a subvector from a shuffle. Remove excess elements from 1717 // the 1st shuffle mask to eliminate the extract. 1718 // 1719 // This transform is conservatively limited to identity extracts because we do 1720 // not allow arbitrary shuffle mask creation as a target-independent transform 1721 // (because we can't guarantee that will lower efficiently). 1722 // 1723 // If the extracting shuffle has an undef mask element, it transfers to the 1724 // new shuffle mask. Otherwise, copy the original mask element. Example: 1725 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1726 // shuf X, Y, <C0, undef, C2, undef> 1727 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1728 SmallVector<Constant *, 16> NewMask(NumElts); 1729 assert(NumElts < Mask->getType()->getVectorNumElements() && 1730 "Identity with extract must have less elements than its inputs"); 1731 1732 for (unsigned i = 0; i != NumElts; ++i) { 1733 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i); 1734 Constant *MaskElt = Mask->getAggregateElement(i); 1735 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt; 1736 } 1737 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1738 } 1739 1740 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1741 /// operand with the operand of an insertelement. 1742 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1743 InstCombiner &IC) { 1744 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1745 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1746 1747 // The shuffle must not change vector sizes. 1748 // TODO: This restriction could be removed if the insert has only one use 1749 // (because the transform would require a new length-changing shuffle). 1750 int NumElts = Mask.size(); 1751 if (NumElts != (int)(V0->getType()->getVectorNumElements())) 1752 return nullptr; 1753 1754 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1755 // not be able to handle it there if the insertelement has >1 use. 1756 // If the shuffle has an insertelement operand but does not choose the 1757 // inserted scalar element from that value, then we can replace that shuffle 1758 // operand with the source vector of the insertelement. 1759 Value *X; 1760 uint64_t IdxC; 1761 if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1762 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1763 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1764 return IC.replaceOperand(Shuf, 0, X); 1765 } 1766 if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1767 // Offset the index constant by the vector width because we are checking for 1768 // accesses to the 2nd vector input of the shuffle. 1769 IdxC += NumElts; 1770 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1771 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1772 return IC.replaceOperand(Shuf, 1, X); 1773 } 1774 1775 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1776 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1777 // We need an insertelement with a constant index. 1778 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1779 m_ConstantInt(IndexC)))) 1780 return false; 1781 1782 // Test the shuffle mask to see if it splices the inserted scalar into the 1783 // operand 1 vector of the shuffle. 1784 int NewInsIndex = -1; 1785 for (int i = 0; i != NumElts; ++i) { 1786 // Ignore undef mask elements. 1787 if (Mask[i] == -1) 1788 continue; 1789 1790 // The shuffle takes elements of operand 1 without lane changes. 1791 if (Mask[i] == NumElts + i) 1792 continue; 1793 1794 // The shuffle must choose the inserted scalar exactly once. 1795 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1796 return false; 1797 1798 // The shuffle is placing the inserted scalar into element i. 1799 NewInsIndex = i; 1800 } 1801 1802 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1803 1804 // Index is updated to the potentially translated insertion lane. 1805 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1806 return true; 1807 }; 1808 1809 // If the shuffle is unnecessary, insert the scalar operand directly into 1810 // operand 1 of the shuffle. Example: 1811 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1812 Value *Scalar; 1813 ConstantInt *IndexC; 1814 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1815 return InsertElementInst::Create(V1, Scalar, IndexC); 1816 1817 // Try again after commuting shuffle. Example: 1818 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1819 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1820 std::swap(V0, V1); 1821 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1822 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1823 return InsertElementInst::Create(V1, Scalar, IndexC); 1824 1825 return nullptr; 1826 } 1827 1828 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1829 // Match the operands as identity with padding (also known as concatenation 1830 // with undef) shuffles of the same source type. The backend is expected to 1831 // recreate these concatenations from a shuffle of narrow operands. 1832 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1833 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1834 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1835 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1836 return nullptr; 1837 1838 // We limit this transform to power-of-2 types because we expect that the 1839 // backend can convert the simplified IR patterns to identical nodes as the 1840 // original IR. 1841 // TODO: If we can verify the same behavior for arbitrary types, the 1842 // power-of-2 checks can be removed. 1843 Value *X = Shuffle0->getOperand(0); 1844 Value *Y = Shuffle1->getOperand(0); 1845 if (X->getType() != Y->getType() || 1846 !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) || 1847 !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) || 1848 !isPowerOf2_32(X->getType()->getVectorNumElements()) || 1849 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1850 return nullptr; 1851 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1852 isa<UndefValue>(Shuffle1->getOperand(1)) && 1853 "Unexpected operand for identity shuffle"); 1854 1855 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1856 // operands directly by adjusting the shuffle mask to account for the narrower 1857 // types: 1858 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1859 int NarrowElts = X->getType()->getVectorNumElements(); 1860 int WideElts = Shuffle0->getType()->getVectorNumElements(); 1861 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1862 1863 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); 1864 SmallVector<int, 16> Mask = Shuf.getShuffleMask(); 1865 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); 1866 for (int i = 0, e = Mask.size(); i != e; ++i) { 1867 if (Mask[i] == -1) 1868 continue; 1869 1870 // If this shuffle is choosing an undef element from 1 of the sources, that 1871 // element is undef. 1872 if (Mask[i] < WideElts) { 1873 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1874 continue; 1875 } else { 1876 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1877 continue; 1878 } 1879 1880 // If this shuffle is choosing from the 1st narrow op, the mask element is 1881 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1882 // element is offset down to adjust for the narrow vector widths. 1883 if (Mask[i] < WideElts) { 1884 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1885 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); 1886 } else { 1887 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1888 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); 1889 } 1890 } 1891 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1892 } 1893 1894 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1895 Value *LHS = SVI.getOperand(0); 1896 Value *RHS = SVI.getOperand(1); 1897 if (auto *V = SimplifyShuffleVectorInst( 1898 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) 1899 return replaceInstUsesWith(SVI, V); 1900 1901 // shuffle x, x, mask --> shuffle x, undef, mask' 1902 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1903 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1904 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1905 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1906 if (LHS == RHS) { 1907 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 1908 // Remap any references to RHS to use LHS. 1909 SmallVector<Constant*, 16> Elts; 1910 for (unsigned i = 0; i != VWidth; ++i) { 1911 // Propagate undef elements or force mask to LHS. 1912 if (Mask[i] < 0) 1913 Elts.push_back(UndefValue::get(Int32Ty)); 1914 else 1915 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth)); 1916 } 1917 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), 1918 ConstantVector::get(Elts)); 1919 } 1920 1921 // shuffle undef, x, mask --> shuffle x, undef, mask' 1922 if (isa<UndefValue>(LHS)) { 1923 SVI.commute(); 1924 return &SVI; 1925 } 1926 1927 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 1928 return I; 1929 1930 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 1931 return I; 1932 1933 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 1934 return I; 1935 1936 APInt UndefElts(VWidth, 0); 1937 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1938 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1939 if (V != &SVI) 1940 return replaceInstUsesWith(SVI, V); 1941 return &SVI; 1942 } 1943 1944 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 1945 return I; 1946 1947 // These transforms have the potential to lose undef knowledge, so they are 1948 // intentionally placed after SimplifyDemandedVectorElts(). 1949 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 1950 return I; 1951 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 1952 return I; 1953 1954 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 1955 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 1956 return replaceInstUsesWith(SVI, V); 1957 } 1958 1959 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1960 // a non-vector type. We can instead bitcast the original vector followed by 1961 // an extract of the desired element: 1962 // 1963 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1964 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1965 // %1 = bitcast <4 x i8> %sroa to i32 1966 // Becomes: 1967 // %bc = bitcast <16 x i8> %in to <4 x i32> 1968 // %ext = extractelement <4 x i32> %bc, i32 0 1969 // 1970 // If the shuffle is extracting a contiguous range of values from the input 1971 // vector then each use which is a bitcast of the extracted size can be 1972 // replaced. This will work if the vector types are compatible, and the begin 1973 // index is aligned to a value in the casted vector type. If the begin index 1974 // isn't aligned then we can shuffle the original vector (keeping the same 1975 // vector type) before extracting. 1976 // 1977 // This code will bail out if the target type is fundamentally incompatible 1978 // with vectors of the source type. 1979 // 1980 // Example of <16 x i8>, target type i32: 1981 // Index range [4,8): v-----------v Will work. 1982 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1983 // <16 x i8>: | | | | | | | | | | | | | | | | | 1984 // <4 x i32>: | | | | | 1985 // +-----------+-----------+-----------+-----------+ 1986 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1987 // Target type i40: ^--------------^ Won't work, bail. 1988 bool MadeChange = false; 1989 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1990 Value *V = LHS; 1991 unsigned MaskElems = Mask.size(); 1992 VectorType *SrcTy = cast<VectorType>(V->getType()); 1993 unsigned VecBitWidth = SrcTy->getBitWidth(); 1994 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1995 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1996 unsigned SrcNumElems = SrcTy->getNumElements(); 1997 SmallVector<BitCastInst *, 8> BCs; 1998 DenseMap<Type *, Value *> NewBCs; 1999 for (User *U : SVI.users()) 2000 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2001 if (!BC->use_empty()) 2002 // Only visit bitcasts that weren't previously handled. 2003 BCs.push_back(BC); 2004 for (BitCastInst *BC : BCs) { 2005 unsigned BegIdx = Mask.front(); 2006 Type *TgtTy = BC->getDestTy(); 2007 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2008 if (!TgtElemBitWidth) 2009 continue; 2010 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2011 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2012 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2013 if (!VecBitWidthsEqual) 2014 continue; 2015 if (!VectorType::isValidElementType(TgtTy)) 2016 continue; 2017 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2018 if (!BegIsAligned) { 2019 // Shuffle the input so [0,NumElements) contains the output, and 2020 // [NumElems,SrcNumElems) is undef. 2021 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 2022 UndefValue::get(Int32Ty)); 2023 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2024 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 2025 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2026 ConstantVector::get(ShuffleMask), 2027 SVI.getName() + ".extract"); 2028 BegIdx = 0; 2029 } 2030 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2031 assert(SrcElemsPerTgtElem); 2032 BegIdx /= SrcElemsPerTgtElem; 2033 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2034 auto *NewBC = 2035 BCAlreadyExists 2036 ? NewBCs[CastSrcTy] 2037 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2038 if (!BCAlreadyExists) 2039 NewBCs[CastSrcTy] = NewBC; 2040 auto *Ext = Builder.CreateExtractElement( 2041 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2042 // The shufflevector isn't being replaced: the bitcast that used it 2043 // is. InstCombine will visit the newly-created instructions. 2044 replaceInstUsesWith(*BC, Ext); 2045 MadeChange = true; 2046 } 2047 } 2048 2049 // If the LHS is a shufflevector itself, see if we can combine it with this 2050 // one without producing an unusual shuffle. 2051 // Cases that might be simplified: 2052 // 1. 2053 // x1=shuffle(v1,v2,mask1) 2054 // x=shuffle(x1,undef,mask) 2055 // ==> 2056 // x=shuffle(v1,undef,newMask) 2057 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2058 // 2. 2059 // x1=shuffle(v1,undef,mask1) 2060 // x=shuffle(x1,x2,mask) 2061 // where v1.size() == mask1.size() 2062 // ==> 2063 // x=shuffle(v1,x2,newMask) 2064 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2065 // 3. 2066 // x2=shuffle(v2,undef,mask2) 2067 // x=shuffle(x1,x2,mask) 2068 // where v2.size() == mask2.size() 2069 // ==> 2070 // x=shuffle(x1,v2,newMask) 2071 // newMask[i] = (mask[i] < x1.size()) 2072 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2073 // 4. 2074 // x1=shuffle(v1,undef,mask1) 2075 // x2=shuffle(v2,undef,mask2) 2076 // x=shuffle(x1,x2,mask) 2077 // where v1.size() == v2.size() 2078 // ==> 2079 // x=shuffle(v1,v2,newMask) 2080 // newMask[i] = (mask[i] < x1.size()) 2081 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2082 // 2083 // Here we are really conservative: 2084 // we are absolutely afraid of producing a shuffle mask not in the input 2085 // program, because the code gen may not be smart enough to turn a merged 2086 // shuffle into two specific shuffles: it may produce worse code. As such, 2087 // we only merge two shuffles if the result is either a splat or one of the 2088 // input shuffle masks. In this case, merging the shuffles just removes 2089 // one instruction, which we know is safe. This is good for things like 2090 // turning: (splat(splat)) -> splat, or 2091 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2092 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2093 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2094 if (LHSShuffle) 2095 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2096 LHSShuffle = nullptr; 2097 if (RHSShuffle) 2098 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2099 RHSShuffle = nullptr; 2100 if (!LHSShuffle && !RHSShuffle) 2101 return MadeChange ? &SVI : nullptr; 2102 2103 Value* LHSOp0 = nullptr; 2104 Value* LHSOp1 = nullptr; 2105 Value* RHSOp0 = nullptr; 2106 unsigned LHSOp0Width = 0; 2107 unsigned RHSOp0Width = 0; 2108 if (LHSShuffle) { 2109 LHSOp0 = LHSShuffle->getOperand(0); 2110 LHSOp1 = LHSShuffle->getOperand(1); 2111 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 2112 } 2113 if (RHSShuffle) { 2114 RHSOp0 = RHSShuffle->getOperand(0); 2115 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 2116 } 2117 Value* newLHS = LHS; 2118 Value* newRHS = RHS; 2119 if (LHSShuffle) { 2120 // case 1 2121 if (isa<UndefValue>(RHS)) { 2122 newLHS = LHSOp0; 2123 newRHS = LHSOp1; 2124 } 2125 // case 2 or 4 2126 else if (LHSOp0Width == LHSWidth) { 2127 newLHS = LHSOp0; 2128 } 2129 } 2130 // case 3 or 4 2131 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2132 newRHS = RHSOp0; 2133 } 2134 // case 4 2135 if (LHSOp0 == RHSOp0) { 2136 newLHS = LHSOp0; 2137 newRHS = nullptr; 2138 } 2139 2140 if (newLHS == LHS && newRHS == RHS) 2141 return MadeChange ? &SVI : nullptr; 2142 2143 SmallVector<int, 16> LHSMask; 2144 SmallVector<int, 16> RHSMask; 2145 if (newLHS != LHS) 2146 LHSMask = LHSShuffle->getShuffleMask(); 2147 if (RHSShuffle && newRHS != RHS) 2148 RHSMask = RHSShuffle->getShuffleMask(); 2149 2150 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2151 SmallVector<int, 16> newMask; 2152 bool isSplat = true; 2153 int SplatElt = -1; 2154 // Create a new mask for the new ShuffleVectorInst so that the new 2155 // ShuffleVectorInst is equivalent to the original one. 2156 for (unsigned i = 0; i < VWidth; ++i) { 2157 int eltMask; 2158 if (Mask[i] < 0) { 2159 // This element is an undef value. 2160 eltMask = -1; 2161 } else if (Mask[i] < (int)LHSWidth) { 2162 // This element is from left hand side vector operand. 2163 // 2164 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2165 // new mask value for the element. 2166 if (newLHS != LHS) { 2167 eltMask = LHSMask[Mask[i]]; 2168 // If the value selected is an undef value, explicitly specify it 2169 // with a -1 mask value. 2170 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2171 eltMask = -1; 2172 } else 2173 eltMask = Mask[i]; 2174 } else { 2175 // This element is from right hand side vector operand 2176 // 2177 // If the value selected is an undef value, explicitly specify it 2178 // with a -1 mask value. (case 1) 2179 if (isa<UndefValue>(RHS)) 2180 eltMask = -1; 2181 // If RHS is going to be replaced (case 3 or 4), calculate the 2182 // new mask value for the element. 2183 else if (newRHS != RHS) { 2184 eltMask = RHSMask[Mask[i]-LHSWidth]; 2185 // If the value selected is an undef value, explicitly specify it 2186 // with a -1 mask value. 2187 if (eltMask >= (int)RHSOp0Width) { 2188 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2189 && "should have been check above"); 2190 eltMask = -1; 2191 } 2192 } else 2193 eltMask = Mask[i]-LHSWidth; 2194 2195 // If LHS's width is changed, shift the mask value accordingly. 2196 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2197 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2198 // If newRHS == newLHS, we want to remap any references from newRHS to 2199 // newLHS so that we can properly identify splats that may occur due to 2200 // obfuscation across the two vectors. 2201 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2202 eltMask += newLHSWidth; 2203 } 2204 2205 // Check if this could still be a splat. 2206 if (eltMask >= 0) { 2207 if (SplatElt >= 0 && SplatElt != eltMask) 2208 isSplat = false; 2209 SplatElt = eltMask; 2210 } 2211 2212 newMask.push_back(eltMask); 2213 } 2214 2215 // If the result mask is equal to one of the original shuffle masks, 2216 // or is a splat, do the replacement. 2217 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2218 SmallVector<Constant*, 16> Elts; 2219 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2220 if (newMask[i] < 0) { 2221 Elts.push_back(UndefValue::get(Int32Ty)); 2222 } else { 2223 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2224 } 2225 } 2226 if (!newRHS) 2227 newRHS = UndefValue::get(newLHS->getType()); 2228 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2229 } 2230 2231 return MadeChange ? &SVI : nullptr; 2232 } 2233