1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Return true if the value is cheaper to scalarize than it is to leave as a 26 /// vector operation. isConstant indicates whether we're extracting one known 27 /// element. If false we're extracting a variable index. 28 static bool CheapToScalarize(Value *V, bool isConstant) { 29 if (Constant *C = dyn_cast<Constant>(V)) { 30 if (isConstant) return true; 31 32 // If all elts are the same, we can extract it and use any of the values. 33 if (Constant *Op0 = C->getAggregateElement(0U)) { 34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; 35 ++i) 36 if (C->getAggregateElement(i) != Op0) 37 return false; 38 return true; 39 } 40 } 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (!I) return false; 43 44 // Insert element gets simplified to the inserted element or is deleted if 45 // this is constant idx extract element and its a constant idx insertelt. 46 if (I->getOpcode() == Instruction::InsertElement && isConstant && 47 isa<ConstantInt>(I->getOperand(2))) 48 return true; 49 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 50 return true; 51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 52 if (BO->hasOneUse() && 53 (CheapToScalarize(BO->getOperand(0), isConstant) || 54 CheapToScalarize(BO->getOperand(1), isConstant))) 55 return true; 56 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 57 if (CI->hasOneUse() && 58 (CheapToScalarize(CI->getOperand(0), isConstant) || 59 CheapToScalarize(CI->getOperand(1), isConstant))) 60 return true; 61 62 return false; 63 } 64 65 // If we have a PHI node with a vector type that has only 2 uses: feed 66 // itself and be an operand of extractelement at a constant location, 67 // try to replace the PHI of the vector type with a PHI of a scalar type. 68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 69 // Verify that the PHI node has exactly 2 uses. Otherwise return NULL. 70 if (!PN->hasNUses(2)) 71 return nullptr; 72 73 // If so, it's known at this point that one operand is PHI and the other is 74 // an extractelement node. Find the PHI user that is not the extractelement 75 // node. 76 auto iu = PN->user_begin(); 77 Instruction *PHIUser = dyn_cast<Instruction>(*iu); 78 if (PHIUser == cast<Instruction>(&EI)) 79 PHIUser = cast<Instruction>(*(++iu)); 80 81 // Verify that this PHI user has one use, which is the PHI itself, 82 // and that it is a binary operation which is cheap to scalarize. 83 // otherwise return NULL. 84 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 85 !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true)) 86 return nullptr; 87 88 // Create a scalar PHI node that will replace the vector PHI node 89 // just before the current PHI node. 90 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 91 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 92 // Scalarize each PHI operand. 93 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 94 Value *PHIInVal = PN->getIncomingValue(i); 95 BasicBlock *inBB = PN->getIncomingBlock(i); 96 Value *Elt = EI.getIndexOperand(); 97 // If the operand is the PHI induction variable: 98 if (PHIInVal == PHIUser) { 99 // Scalarize the binary operation. Its first operand is the 100 // scalar PHI, and the second operand is extracted from the other 101 // vector operand. 102 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 103 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 104 Value *Op = InsertNewInstWith( 105 ExtractElementInst::Create(B0->getOperand(opId), Elt, 106 B0->getOperand(opId)->getName() + ".Elt"), 107 *B0); 108 Value *newPHIUser = InsertNewInstWith( 109 BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0); 110 scalarPHI->addIncoming(newPHIUser, inBB); 111 } else { 112 // Scalarize PHI input: 113 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 114 // Insert the new instruction into the predecessor basic block. 115 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 116 BasicBlock::iterator InsertPos; 117 if (pos && !isa<PHINode>(pos)) { 118 InsertPos = pos; 119 ++InsertPos; 120 } else { 121 InsertPos = inBB->getFirstInsertionPt(); 122 } 123 124 InsertNewInstWith(newEI, *InsertPos); 125 126 scalarPHI->addIncoming(newEI, inBB); 127 } 128 } 129 return ReplaceInstUsesWith(EI, scalarPHI); 130 } 131 132 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 133 if (Value *V = SimplifyExtractElementInst( 134 EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC)) 135 return ReplaceInstUsesWith(EI, V); 136 137 // If vector val is constant with all elements the same, replace EI with 138 // that element. We handle a known element # below. 139 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) 140 if (CheapToScalarize(C, false)) 141 return ReplaceInstUsesWith(EI, C->getAggregateElement(0U)); 142 143 // If extracting a specified index from the vector, see if we can recursively 144 // find a previously computed scalar that was inserted into the vector. 145 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { 146 unsigned IndexVal = IdxC->getZExtValue(); 147 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); 148 149 // InstSimplify handles cases where the index is invalid. 150 assert(IndexVal < VectorWidth); 151 152 // This instruction only demands the single element from the input vector. 153 // If the input vector has a single use, simplify it based on this use 154 // property. 155 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { 156 APInt UndefElts(VectorWidth, 0); 157 APInt DemandedMask(VectorWidth, 0); 158 DemandedMask.setBit(IndexVal); 159 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, 160 UndefElts)) { 161 EI.setOperand(0, V); 162 return &EI; 163 } 164 } 165 166 // If the this extractelement is directly using a bitcast from a vector of 167 // the same number of elements, see if we can find the source element from 168 // it. In this case, we will end up needing to bitcast the scalars. 169 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { 170 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) 171 if (VT->getNumElements() == VectorWidth) 172 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) 173 return new BitCastInst(Elt, EI.getType()); 174 } 175 176 // If there's a vector PHI feeding a scalar use through this extractelement 177 // instruction, try to scalarize the PHI. 178 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { 179 Instruction *scalarPHI = scalarizePHI(EI, PN); 180 if (scalarPHI) 181 return scalarPHI; 182 } 183 } 184 185 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { 186 // Push extractelement into predecessor operation if legal and 187 // profitable to do so 188 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 189 if (I->hasOneUse() && 190 CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { 191 Value *newEI0 = 192 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), 193 EI.getName()+".lhs"); 194 Value *newEI1 = 195 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), 196 EI.getName()+".rhs"); 197 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); 198 } 199 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { 200 // Extracting the inserted element? 201 if (IE->getOperand(2) == EI.getOperand(1)) 202 return ReplaceInstUsesWith(EI, IE->getOperand(1)); 203 // If the inserted and extracted elements are constants, they must not 204 // be the same value, extract from the pre-inserted value instead. 205 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { 206 Worklist.AddValue(EI.getOperand(0)); 207 EI.setOperand(0, IE->getOperand(0)); 208 return &EI; 209 } 210 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 211 // If this is extracting an element from a shufflevector, figure out where 212 // it came from and extract from the appropriate input element instead. 213 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { 214 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 215 Value *Src; 216 unsigned LHSWidth = 217 SVI->getOperand(0)->getType()->getVectorNumElements(); 218 219 if (SrcIdx < 0) 220 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); 221 if (SrcIdx < (int)LHSWidth) 222 Src = SVI->getOperand(0); 223 else { 224 SrcIdx -= LHSWidth; 225 Src = SVI->getOperand(1); 226 } 227 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 228 return ExtractElementInst::Create(Src, 229 ConstantInt::get(Int32Ty, 230 SrcIdx, false)); 231 } 232 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 233 // Canonicalize extractelement(cast) -> cast(extractelement) 234 // bitcasts can change the number of vector elements and they cost nothing 235 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 236 Value *EE = Builder->CreateExtractElement(CI->getOperand(0), 237 EI.getIndexOperand()); 238 Worklist.AddValue(EE); 239 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 240 } 241 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 242 if (SI->hasOneUse()) { 243 // TODO: For a select on vectors, it might be useful to do this if it 244 // has multiple extractelement uses. For vector select, that seems to 245 // fight the vectorizer. 246 247 // If we are extracting an element from a vector select or a select on 248 // vectors, a select on the scalars extracted from the vector arguments. 249 Value *TrueVal = SI->getTrueValue(); 250 Value *FalseVal = SI->getFalseValue(); 251 252 Value *Cond = SI->getCondition(); 253 if (Cond->getType()->isVectorTy()) { 254 Cond = Builder->CreateExtractElement(Cond, 255 EI.getIndexOperand(), 256 Cond->getName() + ".elt"); 257 } 258 259 Value *V1Elem 260 = Builder->CreateExtractElement(TrueVal, 261 EI.getIndexOperand(), 262 TrueVal->getName() + ".elt"); 263 264 Value *V2Elem 265 = Builder->CreateExtractElement(FalseVal, 266 EI.getIndexOperand(), 267 FalseVal->getName() + ".elt"); 268 return SelectInst::Create(Cond, 269 V1Elem, 270 V2Elem, 271 SI->getName() + ".elt"); 272 } 273 } 274 } 275 return nullptr; 276 } 277 278 /// If V is a shuffle of values that ONLY returns elements from either LHS or 279 /// RHS, return the shuffle mask and true. Otherwise, return false. 280 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 281 SmallVectorImpl<Constant*> &Mask) { 282 assert(LHS->getType() == RHS->getType() && 283 "Invalid CollectSingleShuffleElements"); 284 unsigned NumElts = V->getType()->getVectorNumElements(); 285 286 if (isa<UndefValue>(V)) { 287 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 288 return true; 289 } 290 291 if (V == LHS) { 292 for (unsigned i = 0; i != NumElts; ++i) 293 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 294 return true; 295 } 296 297 if (V == RHS) { 298 for (unsigned i = 0; i != NumElts; ++i) 299 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 300 i+NumElts)); 301 return true; 302 } 303 304 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 305 // If this is an insert of an extract from some other vector, include it. 306 Value *VecOp = IEI->getOperand(0); 307 Value *ScalarOp = IEI->getOperand(1); 308 Value *IdxOp = IEI->getOperand(2); 309 310 if (!isa<ConstantInt>(IdxOp)) 311 return false; 312 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 313 314 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 315 // We can handle this if the vector we are inserting into is 316 // transitively ok. 317 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 318 // If so, update the mask to reflect the inserted undef. 319 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 320 return true; 321 } 322 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 323 if (isa<ConstantInt>(EI->getOperand(1))) { 324 unsigned ExtractedIdx = 325 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 326 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 327 328 // This must be extracting from either LHS or RHS. 329 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 330 // We can handle this if the vector we are inserting into is 331 // transitively ok. 332 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 333 // If so, update the mask to reflect the inserted value. 334 if (EI->getOperand(0) == LHS) { 335 Mask[InsertedIdx % NumElts] = 336 ConstantInt::get(Type::getInt32Ty(V->getContext()), 337 ExtractedIdx); 338 } else { 339 assert(EI->getOperand(0) == RHS); 340 Mask[InsertedIdx % NumElts] = 341 ConstantInt::get(Type::getInt32Ty(V->getContext()), 342 ExtractedIdx + NumLHSElts); 343 } 344 return true; 345 } 346 } 347 } 348 } 349 } 350 351 return false; 352 } 353 354 355 /// We are building a shuffle to create V, which is a sequence of insertelement, 356 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 357 /// not rely on the second vector source. Return a std::pair containing the 358 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 359 /// parameter as required. 360 /// 361 /// Note: we intentionally don't try to fold earlier shuffles since they have 362 /// often been chosen carefully to be efficiently implementable on the target. 363 typedef std::pair<Value *, Value *> ShuffleOps; 364 365 static ShuffleOps CollectShuffleElements(Value *V, 366 SmallVectorImpl<Constant *> &Mask, 367 Value *PermittedRHS) { 368 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 369 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 370 371 if (isa<UndefValue>(V)) { 372 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 373 return std::make_pair( 374 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 375 } 376 377 if (isa<ConstantAggregateZero>(V)) { 378 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 379 return std::make_pair(V, nullptr); 380 } 381 382 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 383 // If this is an insert of an extract from some other vector, include it. 384 Value *VecOp = IEI->getOperand(0); 385 Value *ScalarOp = IEI->getOperand(1); 386 Value *IdxOp = IEI->getOperand(2); 387 388 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 389 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 390 unsigned ExtractedIdx = 391 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 392 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 393 394 // Either the extracted from or inserted into vector must be RHSVec, 395 // otherwise we'd end up with a shuffle of three inputs. 396 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 397 Value *RHS = EI->getOperand(0); 398 ShuffleOps LR = CollectShuffleElements(VecOp, Mask, RHS); 399 assert(LR.second == nullptr || LR.second == RHS); 400 401 if (LR.first->getType() != RHS->getType()) { 402 // We tried our best, but we can't find anything compatible with RHS 403 // further up the chain. Return a trivial shuffle. 404 for (unsigned i = 0; i < NumElts; ++i) 405 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 406 return std::make_pair(V, nullptr); 407 } 408 409 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 410 Mask[InsertedIdx % NumElts] = 411 ConstantInt::get(Type::getInt32Ty(V->getContext()), 412 NumLHSElts+ExtractedIdx); 413 return std::make_pair(LR.first, RHS); 414 } 415 416 if (VecOp == PermittedRHS) { 417 // We've gone as far as we can: anything on the other side of the 418 // extractelement will already have been converted into a shuffle. 419 unsigned NumLHSElts = 420 EI->getOperand(0)->getType()->getVectorNumElements(); 421 for (unsigned i = 0; i != NumElts; ++i) 422 Mask.push_back(ConstantInt::get( 423 Type::getInt32Ty(V->getContext()), 424 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 425 return std::make_pair(EI->getOperand(0), PermittedRHS); 426 } 427 428 // If this insertelement is a chain that comes from exactly these two 429 // vectors, return the vector and the effective shuffle. 430 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 431 CollectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 432 Mask)) 433 return std::make_pair(EI->getOperand(0), PermittedRHS); 434 } 435 } 436 } 437 438 // Otherwise, can't do anything fancy. Return an identity vector. 439 for (unsigned i = 0; i != NumElts; ++i) 440 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 441 return std::make_pair(V, nullptr); 442 } 443 444 /// Try to find redundant insertvalue instructions, like the following ones: 445 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 446 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 447 /// Here the second instruction inserts values at the same indices, as the 448 /// first one, making the first one redundant. 449 /// It should be transformed to: 450 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 451 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 452 bool IsRedundant = false; 453 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 454 455 // If there is a chain of insertvalue instructions (each of them except the 456 // last one has only one use and it's another insertvalue insn from this 457 // chain), check if any of the 'children' uses the same indices as the first 458 // instruction. In this case, the first one is redundant. 459 Value *V = &I; 460 unsigned Depth = 0; 461 while (V->hasOneUse() && Depth < 10) { 462 User *U = V->user_back(); 463 auto UserInsInst = dyn_cast<InsertValueInst>(U); 464 if (!UserInsInst || U->getOperand(0) != V) 465 break; 466 if (UserInsInst->getIndices() == FirstIndices) { 467 IsRedundant = true; 468 break; 469 } 470 V = UserInsInst; 471 Depth++; 472 } 473 474 if (IsRedundant) 475 return ReplaceInstUsesWith(I, I.getOperand(0)); 476 return nullptr; 477 } 478 479 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 480 Value *VecOp = IE.getOperand(0); 481 Value *ScalarOp = IE.getOperand(1); 482 Value *IdxOp = IE.getOperand(2); 483 484 // Inserting an undef or into an undefined place, remove this. 485 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 486 ReplaceInstUsesWith(IE, VecOp); 487 488 // If the inserted element was extracted from some other vector, and if the 489 // indexes are constant, try to turn this into a shufflevector operation. 490 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 491 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 492 unsigned NumInsertVectorElts = IE.getType()->getNumElements(); 493 unsigned NumExtractVectorElts = 494 EI->getOperand(0)->getType()->getVectorNumElements(); 495 unsigned ExtractedIdx = 496 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 497 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 498 499 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. 500 return ReplaceInstUsesWith(IE, VecOp); 501 502 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. 503 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); 504 505 // If we are extracting a value from a vector, then inserting it right 506 // back into the same place, just use the input vector. 507 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) 508 return ReplaceInstUsesWith(IE, VecOp); 509 510 // If this insertelement isn't used by some other insertelement, turn it 511 // (and any insertelements it points to), into one big shuffle. 512 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { 513 SmallVector<Constant*, 16> Mask; 514 ShuffleOps LR = CollectShuffleElements(&IE, Mask, nullptr); 515 516 // The proposed shuffle may be trivial, in which case we shouldn't 517 // perform the combine. 518 if (LR.first != &IE && LR.second != &IE) { 519 // We now have a shuffle of LHS, RHS, Mask. 520 if (LR.second == nullptr) 521 LR.second = UndefValue::get(LR.first->getType()); 522 return new ShuffleVectorInst(LR.first, LR.second, 523 ConstantVector::get(Mask)); 524 } 525 } 526 } 527 } 528 529 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); 530 APInt UndefElts(VWidth, 0); 531 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 532 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 533 if (V != &IE) 534 return ReplaceInstUsesWith(IE, V); 535 return &IE; 536 } 537 538 return nullptr; 539 } 540 541 /// Return true if we can evaluate the specified expression tree if the vector 542 /// elements were shuffled in a different order. 543 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, 544 unsigned Depth = 5) { 545 // We can always reorder the elements of a constant. 546 if (isa<Constant>(V)) 547 return true; 548 549 // We won't reorder vector arguments. No IPO here. 550 Instruction *I = dyn_cast<Instruction>(V); 551 if (!I) return false; 552 553 // Two users may expect different orders of the elements. Don't try it. 554 if (!I->hasOneUse()) 555 return false; 556 557 if (Depth == 0) return false; 558 559 switch (I->getOpcode()) { 560 case Instruction::Add: 561 case Instruction::FAdd: 562 case Instruction::Sub: 563 case Instruction::FSub: 564 case Instruction::Mul: 565 case Instruction::FMul: 566 case Instruction::UDiv: 567 case Instruction::SDiv: 568 case Instruction::FDiv: 569 case Instruction::URem: 570 case Instruction::SRem: 571 case Instruction::FRem: 572 case Instruction::Shl: 573 case Instruction::LShr: 574 case Instruction::AShr: 575 case Instruction::And: 576 case Instruction::Or: 577 case Instruction::Xor: 578 case Instruction::ICmp: 579 case Instruction::FCmp: 580 case Instruction::Trunc: 581 case Instruction::ZExt: 582 case Instruction::SExt: 583 case Instruction::FPToUI: 584 case Instruction::FPToSI: 585 case Instruction::UIToFP: 586 case Instruction::SIToFP: 587 case Instruction::FPTrunc: 588 case Instruction::FPExt: 589 case Instruction::GetElementPtr: { 590 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 591 if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1)) 592 return false; 593 } 594 return true; 595 } 596 case Instruction::InsertElement: { 597 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 598 if (!CI) return false; 599 int ElementNumber = CI->getLimitedValue(); 600 601 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 602 // can't put an element into multiple indices. 603 bool SeenOnce = false; 604 for (int i = 0, e = Mask.size(); i != e; ++i) { 605 if (Mask[i] == ElementNumber) { 606 if (SeenOnce) 607 return false; 608 SeenOnce = true; 609 } 610 } 611 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); 612 } 613 } 614 return false; 615 } 616 617 /// Rebuild a new instruction just like 'I' but with the new operands given. 618 /// In the event of type mismatch, the type of the operands is correct. 619 static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) { 620 // We don't want to use the IRBuilder here because we want the replacement 621 // instructions to appear next to 'I', not the builder's insertion point. 622 switch (I->getOpcode()) { 623 case Instruction::Add: 624 case Instruction::FAdd: 625 case Instruction::Sub: 626 case Instruction::FSub: 627 case Instruction::Mul: 628 case Instruction::FMul: 629 case Instruction::UDiv: 630 case Instruction::SDiv: 631 case Instruction::FDiv: 632 case Instruction::URem: 633 case Instruction::SRem: 634 case Instruction::FRem: 635 case Instruction::Shl: 636 case Instruction::LShr: 637 case Instruction::AShr: 638 case Instruction::And: 639 case Instruction::Or: 640 case Instruction::Xor: { 641 BinaryOperator *BO = cast<BinaryOperator>(I); 642 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 643 BinaryOperator *New = 644 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 645 NewOps[0], NewOps[1], "", BO); 646 if (isa<OverflowingBinaryOperator>(BO)) { 647 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 648 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 649 } 650 if (isa<PossiblyExactOperator>(BO)) { 651 New->setIsExact(BO->isExact()); 652 } 653 if (isa<FPMathOperator>(BO)) 654 New->copyFastMathFlags(I); 655 return New; 656 } 657 case Instruction::ICmp: 658 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 659 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 660 NewOps[0], NewOps[1]); 661 case Instruction::FCmp: 662 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 663 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 664 NewOps[0], NewOps[1]); 665 case Instruction::Trunc: 666 case Instruction::ZExt: 667 case Instruction::SExt: 668 case Instruction::FPToUI: 669 case Instruction::FPToSI: 670 case Instruction::UIToFP: 671 case Instruction::SIToFP: 672 case Instruction::FPTrunc: 673 case Instruction::FPExt: { 674 // It's possible that the mask has a different number of elements from 675 // the original cast. We recompute the destination type to match the mask. 676 Type *DestTy = 677 VectorType::get(I->getType()->getScalarType(), 678 NewOps[0]->getType()->getVectorNumElements()); 679 assert(NewOps.size() == 1 && "cast with #ops != 1"); 680 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 681 "", I); 682 } 683 case Instruction::GetElementPtr: { 684 Value *Ptr = NewOps[0]; 685 ArrayRef<Value*> Idx = NewOps.slice(1); 686 GetElementPtrInst *GEP = GetElementPtrInst::Create( 687 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 688 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 689 return GEP; 690 } 691 } 692 llvm_unreachable("failed to rebuild vector instructions"); 693 } 694 695 Value * 696 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 697 // Mask.size() does not need to be equal to the number of vector elements. 698 699 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 700 if (isa<UndefValue>(V)) { 701 return UndefValue::get(VectorType::get(V->getType()->getScalarType(), 702 Mask.size())); 703 } 704 if (isa<ConstantAggregateZero>(V)) { 705 return ConstantAggregateZero::get( 706 VectorType::get(V->getType()->getScalarType(), 707 Mask.size())); 708 } 709 if (Constant *C = dyn_cast<Constant>(V)) { 710 SmallVector<Constant *, 16> MaskValues; 711 for (int i = 0, e = Mask.size(); i != e; ++i) { 712 if (Mask[i] == -1) 713 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty())); 714 else 715 MaskValues.push_back(Builder->getInt32(Mask[i])); 716 } 717 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 718 ConstantVector::get(MaskValues)); 719 } 720 721 Instruction *I = cast<Instruction>(V); 722 switch (I->getOpcode()) { 723 case Instruction::Add: 724 case Instruction::FAdd: 725 case Instruction::Sub: 726 case Instruction::FSub: 727 case Instruction::Mul: 728 case Instruction::FMul: 729 case Instruction::UDiv: 730 case Instruction::SDiv: 731 case Instruction::FDiv: 732 case Instruction::URem: 733 case Instruction::SRem: 734 case Instruction::FRem: 735 case Instruction::Shl: 736 case Instruction::LShr: 737 case Instruction::AShr: 738 case Instruction::And: 739 case Instruction::Or: 740 case Instruction::Xor: 741 case Instruction::ICmp: 742 case Instruction::FCmp: 743 case Instruction::Trunc: 744 case Instruction::ZExt: 745 case Instruction::SExt: 746 case Instruction::FPToUI: 747 case Instruction::FPToSI: 748 case Instruction::UIToFP: 749 case Instruction::SIToFP: 750 case Instruction::FPTrunc: 751 case Instruction::FPExt: 752 case Instruction::Select: 753 case Instruction::GetElementPtr: { 754 SmallVector<Value*, 8> NewOps; 755 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 756 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 757 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); 758 NewOps.push_back(V); 759 NeedsRebuild |= (V != I->getOperand(i)); 760 } 761 if (NeedsRebuild) { 762 return BuildNew(I, NewOps); 763 } 764 return I; 765 } 766 case Instruction::InsertElement: { 767 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 768 769 // The insertelement was inserting at Element. Figure out which element 770 // that becomes after shuffling. The answer is guaranteed to be unique 771 // by CanEvaluateShuffled. 772 bool Found = false; 773 int Index = 0; 774 for (int e = Mask.size(); Index != e; ++Index) { 775 if (Mask[Index] == Element) { 776 Found = true; 777 break; 778 } 779 } 780 781 // If element is not in Mask, no need to handle the operand 1 (element to 782 // be inserted). Just evaluate values in operand 0 according to Mask. 783 if (!Found) 784 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 785 786 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 787 return InsertElementInst::Create(V, I->getOperand(1), 788 Builder->getInt32(Index), "", I); 789 } 790 } 791 llvm_unreachable("failed to reorder elements of vector instruction!"); 792 } 793 794 static void RecognizeIdentityMask(const SmallVectorImpl<int> &Mask, 795 bool &isLHSID, bool &isRHSID) { 796 isLHSID = isRHSID = true; 797 798 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 799 if (Mask[i] < 0) continue; // Ignore undef values. 800 // Is this an identity shuffle of the LHS value? 801 isLHSID &= (Mask[i] == (int)i); 802 803 // Is this an identity shuffle of the RHS value? 804 isRHSID &= (Mask[i]-e == i); 805 } 806 } 807 808 // Returns true if the shuffle is extracting a contiguous range of values from 809 // LHS, for example: 810 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 811 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 812 // Shuffles to: |EE|FF|GG|HH| 813 // +--+--+--+--+ 814 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 815 SmallVector<int, 16> &Mask) { 816 unsigned LHSElems = 817 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 818 unsigned MaskElems = Mask.size(); 819 unsigned BegIdx = Mask.front(); 820 unsigned EndIdx = Mask.back(); 821 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 822 return false; 823 for (unsigned I = 0; I != MaskElems; ++I) 824 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 825 return false; 826 return true; 827 } 828 829 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 830 Value *LHS = SVI.getOperand(0); 831 Value *RHS = SVI.getOperand(1); 832 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 833 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 834 835 bool MadeChange = false; 836 837 // Undefined shuffle mask -> undefined value. 838 if (isa<UndefValue>(SVI.getOperand(2))) 839 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); 840 841 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements(); 842 843 APInt UndefElts(VWidth, 0); 844 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 845 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 846 if (V != &SVI) 847 return ReplaceInstUsesWith(SVI, V); 848 LHS = SVI.getOperand(0); 849 RHS = SVI.getOperand(1); 850 MadeChange = true; 851 } 852 853 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 854 855 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 856 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 857 if (LHS == RHS || isa<UndefValue>(LHS)) { 858 if (isa<UndefValue>(LHS) && LHS == RHS) { 859 // shuffle(undef,undef,mask) -> undef. 860 Value *Result = (VWidth == LHSWidth) 861 ? LHS : UndefValue::get(SVI.getType()); 862 return ReplaceInstUsesWith(SVI, Result); 863 } 864 865 // Remap any references to RHS to use LHS. 866 SmallVector<Constant*, 16> Elts; 867 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 868 if (Mask[i] < 0) { 869 Elts.push_back(UndefValue::get(Int32Ty)); 870 continue; 871 } 872 873 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 874 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 875 Mask[i] = -1; // Turn into undef. 876 Elts.push_back(UndefValue::get(Int32Ty)); 877 } else { 878 Mask[i] = Mask[i] % e; // Force to LHS. 879 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 880 } 881 } 882 SVI.setOperand(0, SVI.getOperand(1)); 883 SVI.setOperand(1, UndefValue::get(RHS->getType())); 884 SVI.setOperand(2, ConstantVector::get(Elts)); 885 LHS = SVI.getOperand(0); 886 RHS = SVI.getOperand(1); 887 MadeChange = true; 888 } 889 890 if (VWidth == LHSWidth) { 891 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 892 bool isLHSID, isRHSID; 893 RecognizeIdentityMask(Mask, isLHSID, isRHSID); 894 895 // Eliminate identity shuffles. 896 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); 897 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); 898 } 899 900 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { 901 Value *V = EvaluateInDifferentElementOrder(LHS, Mask); 902 return ReplaceInstUsesWith(SVI, V); 903 } 904 905 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 906 // a non-vector type. We can instead bitcast the original vector followed by 907 // an extract of the desired element: 908 // 909 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 910 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 911 // %1 = bitcast <4 x i8> %sroa to i32 912 // Becomes: 913 // %bc = bitcast <16 x i8> %in to <4 x i32> 914 // %ext = extractelement <4 x i32> %bc, i32 0 915 // 916 // If the shuffle is extracting a contiguous range of values from the input 917 // vector then each use which is a bitcast of the extracted size can be 918 // replaced. This will work if the vector types are compatible, and the begin 919 // index is aligned to a value in the casted vector type. If the begin index 920 // isn't aligned then we can shuffle the original vector (keeping the same 921 // vector type) before extracting. 922 // 923 // This code will bail out if the target type is fundamentally incompatible 924 // with vectors of the source type. 925 // 926 // Example of <16 x i8>, target type i32: 927 // Index range [4,8): v-----------v Will work. 928 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 929 // <16 x i8>: | | | | | | | | | | | | | | | | | 930 // <4 x i32>: | | | | | 931 // +-----------+-----------+-----------+-----------+ 932 // Index range [6,10): ^-----------^ Needs an extra shuffle. 933 // Target type i40: ^--------------^ Won't work, bail. 934 if (isShuffleExtractingFromLHS(SVI, Mask)) { 935 Value *V = LHS; 936 unsigned MaskElems = Mask.size(); 937 unsigned BegIdx = Mask.front(); 938 VectorType *SrcTy = cast<VectorType>(V->getType()); 939 unsigned VecBitWidth = SrcTy->getBitWidth(); 940 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 941 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 942 unsigned SrcNumElems = SrcTy->getNumElements(); 943 SmallVector<BitCastInst *, 8> BCs; 944 DenseMap<Type *, Value *> NewBCs; 945 for (User *U : SVI.users()) 946 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 947 if (!BC->use_empty()) 948 // Only visit bitcasts that weren't previously handled. 949 BCs.push_back(BC); 950 for (BitCastInst *BC : BCs) { 951 Type *TgtTy = BC->getDestTy(); 952 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 953 if (!TgtElemBitWidth) 954 continue; 955 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 956 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 957 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 958 if (!VecBitWidthsEqual) 959 continue; 960 if (!VectorType::isValidElementType(TgtTy)) 961 continue; 962 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 963 if (!BegIsAligned) { 964 // Shuffle the input so [0,NumElements) contains the output, and 965 // [NumElems,SrcNumElems) is undef. 966 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 967 UndefValue::get(Int32Ty)); 968 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 969 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 970 V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()), 971 ConstantVector::get(ShuffleMask), 972 SVI.getName() + ".extract"); 973 BegIdx = 0; 974 } 975 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 976 assert(SrcElemsPerTgtElem); 977 BegIdx /= SrcElemsPerTgtElem; 978 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 979 auto *NewBC = 980 BCAlreadyExists 981 ? NewBCs[CastSrcTy] 982 : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 983 if (!BCAlreadyExists) 984 NewBCs[CastSrcTy] = NewBC; 985 auto *Ext = Builder->CreateExtractElement( 986 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 987 // The shufflevector isn't being replaced: the bitcast that used it 988 // is. InstCombine will visit the newly-created instructions. 989 ReplaceInstUsesWith(*BC, Ext); 990 MadeChange = true; 991 } 992 } 993 994 // If the LHS is a shufflevector itself, see if we can combine it with this 995 // one without producing an unusual shuffle. 996 // Cases that might be simplified: 997 // 1. 998 // x1=shuffle(v1,v2,mask1) 999 // x=shuffle(x1,undef,mask) 1000 // ==> 1001 // x=shuffle(v1,undef,newMask) 1002 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1003 // 2. 1004 // x1=shuffle(v1,undef,mask1) 1005 // x=shuffle(x1,x2,mask) 1006 // where v1.size() == mask1.size() 1007 // ==> 1008 // x=shuffle(v1,x2,newMask) 1009 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1010 // 3. 1011 // x2=shuffle(v2,undef,mask2) 1012 // x=shuffle(x1,x2,mask) 1013 // where v2.size() == mask2.size() 1014 // ==> 1015 // x=shuffle(x1,v2,newMask) 1016 // newMask[i] = (mask[i] < x1.size()) 1017 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1018 // 4. 1019 // x1=shuffle(v1,undef,mask1) 1020 // x2=shuffle(v2,undef,mask2) 1021 // x=shuffle(x1,x2,mask) 1022 // where v1.size() == v2.size() 1023 // ==> 1024 // x=shuffle(v1,v2,newMask) 1025 // newMask[i] = (mask[i] < x1.size()) 1026 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1027 // 1028 // Here we are really conservative: 1029 // we are absolutely afraid of producing a shuffle mask not in the input 1030 // program, because the code gen may not be smart enough to turn a merged 1031 // shuffle into two specific shuffles: it may produce worse code. As such, 1032 // we only merge two shuffles if the result is either a splat or one of the 1033 // input shuffle masks. In this case, merging the shuffles just removes 1034 // one instruction, which we know is safe. This is good for things like 1035 // turning: (splat(splat)) -> splat, or 1036 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1037 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1038 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1039 if (LHSShuffle) 1040 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1041 LHSShuffle = nullptr; 1042 if (RHSShuffle) 1043 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1044 RHSShuffle = nullptr; 1045 if (!LHSShuffle && !RHSShuffle) 1046 return MadeChange ? &SVI : nullptr; 1047 1048 Value* LHSOp0 = nullptr; 1049 Value* LHSOp1 = nullptr; 1050 Value* RHSOp0 = nullptr; 1051 unsigned LHSOp0Width = 0; 1052 unsigned RHSOp0Width = 0; 1053 if (LHSShuffle) { 1054 LHSOp0 = LHSShuffle->getOperand(0); 1055 LHSOp1 = LHSShuffle->getOperand(1); 1056 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 1057 } 1058 if (RHSShuffle) { 1059 RHSOp0 = RHSShuffle->getOperand(0); 1060 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 1061 } 1062 Value* newLHS = LHS; 1063 Value* newRHS = RHS; 1064 if (LHSShuffle) { 1065 // case 1 1066 if (isa<UndefValue>(RHS)) { 1067 newLHS = LHSOp0; 1068 newRHS = LHSOp1; 1069 } 1070 // case 2 or 4 1071 else if (LHSOp0Width == LHSWidth) { 1072 newLHS = LHSOp0; 1073 } 1074 } 1075 // case 3 or 4 1076 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1077 newRHS = RHSOp0; 1078 } 1079 // case 4 1080 if (LHSOp0 == RHSOp0) { 1081 newLHS = LHSOp0; 1082 newRHS = nullptr; 1083 } 1084 1085 if (newLHS == LHS && newRHS == RHS) 1086 return MadeChange ? &SVI : nullptr; 1087 1088 SmallVector<int, 16> LHSMask; 1089 SmallVector<int, 16> RHSMask; 1090 if (newLHS != LHS) 1091 LHSMask = LHSShuffle->getShuffleMask(); 1092 if (RHSShuffle && newRHS != RHS) 1093 RHSMask = RHSShuffle->getShuffleMask(); 1094 1095 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1096 SmallVector<int, 16> newMask; 1097 bool isSplat = true; 1098 int SplatElt = -1; 1099 // Create a new mask for the new ShuffleVectorInst so that the new 1100 // ShuffleVectorInst is equivalent to the original one. 1101 for (unsigned i = 0; i < VWidth; ++i) { 1102 int eltMask; 1103 if (Mask[i] < 0) { 1104 // This element is an undef value. 1105 eltMask = -1; 1106 } else if (Mask[i] < (int)LHSWidth) { 1107 // This element is from left hand side vector operand. 1108 // 1109 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1110 // new mask value for the element. 1111 if (newLHS != LHS) { 1112 eltMask = LHSMask[Mask[i]]; 1113 // If the value selected is an undef value, explicitly specify it 1114 // with a -1 mask value. 1115 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1116 eltMask = -1; 1117 } else 1118 eltMask = Mask[i]; 1119 } else { 1120 // This element is from right hand side vector operand 1121 // 1122 // If the value selected is an undef value, explicitly specify it 1123 // with a -1 mask value. (case 1) 1124 if (isa<UndefValue>(RHS)) 1125 eltMask = -1; 1126 // If RHS is going to be replaced (case 3 or 4), calculate the 1127 // new mask value for the element. 1128 else if (newRHS != RHS) { 1129 eltMask = RHSMask[Mask[i]-LHSWidth]; 1130 // If the value selected is an undef value, explicitly specify it 1131 // with a -1 mask value. 1132 if (eltMask >= (int)RHSOp0Width) { 1133 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1134 && "should have been check above"); 1135 eltMask = -1; 1136 } 1137 } else 1138 eltMask = Mask[i]-LHSWidth; 1139 1140 // If LHS's width is changed, shift the mask value accordingly. 1141 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any 1142 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1143 // If newRHS == newLHS, we want to remap any references from newRHS to 1144 // newLHS so that we can properly identify splats that may occur due to 1145 // obfuscation across the two vectors. 1146 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1147 eltMask += newLHSWidth; 1148 } 1149 1150 // Check if this could still be a splat. 1151 if (eltMask >= 0) { 1152 if (SplatElt >= 0 && SplatElt != eltMask) 1153 isSplat = false; 1154 SplatElt = eltMask; 1155 } 1156 1157 newMask.push_back(eltMask); 1158 } 1159 1160 // If the result mask is equal to one of the original shuffle masks, 1161 // or is a splat, do the replacement. 1162 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 1163 SmallVector<Constant*, 16> Elts; 1164 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1165 if (newMask[i] < 0) { 1166 Elts.push_back(UndefValue::get(Int32Ty)); 1167 } else { 1168 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1169 } 1170 } 1171 if (!newRHS) 1172 newRHS = UndefValue::get(newLHS->getType()); 1173 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1174 } 1175 1176 // If the result mask is an identity, replace uses of this instruction with 1177 // corresponding argument. 1178 bool isLHSID, isRHSID; 1179 RecognizeIdentityMask(newMask, isLHSID, isRHSID); 1180 if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS); 1181 if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS); 1182 1183 return MadeChange ? &SVI : nullptr; 1184 } 1185