1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 ElementCount NumSrcElts = SrcTy->getElementCount(); 189 ElementCount NumElts = 190 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 191 if (NumSrcElts == NumElts) 192 if (Value *Elt = findScalarElement(X, ExtIndexC)) 193 return new BitCastInst(Elt, DestTy); 194 195 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 196 "Src and Dst must be the same sort of vector type"); 197 198 // If the source elements are wider than the destination, try to shift and 199 // truncate a subset of scalar bits of an insert op. 200 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 201 Value *Scalar; 202 uint64_t InsIndexC; 203 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 204 m_ConstantInt(InsIndexC)))) 205 return nullptr; 206 207 // The extract must be from the subset of vector elements that we inserted 208 // into. Example: if we inserted element 1 of a <2 x i64> and we are 209 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 210 // of elements 4-7 of the bitcasted vector. 211 unsigned NarrowingRatio = 212 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 213 if (ExtIndexC / NarrowingRatio != InsIndexC) 214 return nullptr; 215 216 // We are extracting part of the original scalar. How that scalar is 217 // inserted into the vector depends on the endian-ness. Example: 218 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 219 // +--+--+--+--+--+--+--+--+ 220 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 221 // extelt <4 x i16> V', 3: | |S2|S3| 222 // +--+--+--+--+--+--+--+--+ 223 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 224 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 225 // In this example, we must right-shift little-endian. Big-endian is just a 226 // truncate. 227 unsigned Chunk = ExtIndexC % NarrowingRatio; 228 if (IsBigEndian) 229 Chunk = NarrowingRatio - 1 - Chunk; 230 231 // Bail out if this is an FP vector to FP vector sequence. That would take 232 // more instructions than we started with unless there is no shift, and it 233 // may not be handled as well in the backend. 234 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 235 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 236 if (NeedSrcBitcast && NeedDestBitcast) 237 return nullptr; 238 239 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 240 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 241 unsigned ShAmt = Chunk * DestWidth; 242 243 // TODO: This limitation is more strict than necessary. We could sum the 244 // number of new instructions and subtract the number eliminated to know if 245 // we can proceed. 246 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 247 if (NeedSrcBitcast || NeedDestBitcast) 248 return nullptr; 249 250 if (NeedSrcBitcast) { 251 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 252 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 253 } 254 255 if (ShAmt) { 256 // Bail out if we could end with more instructions than we started with. 257 if (!Ext.getVectorOperand()->hasOneUse()) 258 return nullptr; 259 Scalar = Builder.CreateLShr(Scalar, ShAmt); 260 } 261 262 if (NeedDestBitcast) { 263 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 264 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 265 } 266 return new TruncInst(Scalar, DestTy); 267 } 268 269 return nullptr; 270 } 271 272 /// Find elements of V demanded by UserInstr. 273 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 274 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 275 276 // Conservatively assume that all elements are needed. 277 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 278 279 switch (UserInstr->getOpcode()) { 280 case Instruction::ExtractElement: { 281 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 282 assert(EEI->getVectorOperand() == V); 283 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 284 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 285 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 286 } 287 break; 288 } 289 case Instruction::ShuffleVector: { 290 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 291 unsigned MaskNumElts = 292 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 293 294 UsedElts = APInt(VWidth, 0); 295 for (unsigned i = 0; i < MaskNumElts; i++) { 296 unsigned MaskVal = Shuffle->getMaskValue(i); 297 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 298 continue; 299 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 300 UsedElts.setBit(MaskVal); 301 if (Shuffle->getOperand(1) == V && 302 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 303 UsedElts.setBit(MaskVal - VWidth); 304 } 305 break; 306 } 307 default: 308 break; 309 } 310 return UsedElts; 311 } 312 313 /// Find union of elements of V demanded by all its users. 314 /// If it is known by querying findDemandedEltsBySingleUser that 315 /// no user demands an element of V, then the corresponding bit 316 /// remains unset in the returned value. 317 static APInt findDemandedEltsByAllUsers(Value *V) { 318 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 319 320 APInt UnionUsedElts(VWidth, 0); 321 for (const Use &U : V->uses()) { 322 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 323 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 324 } else { 325 UnionUsedElts = APInt::getAllOnesValue(VWidth); 326 break; 327 } 328 329 if (UnionUsedElts.isAllOnesValue()) 330 break; 331 } 332 333 return UnionUsedElts; 334 } 335 336 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 337 Value *SrcVec = EI.getVectorOperand(); 338 Value *Index = EI.getIndexOperand(); 339 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 340 SQ.getWithInstruction(&EI))) 341 return replaceInstUsesWith(EI, V); 342 343 // If extracting a specified index from the vector, see if we can recursively 344 // find a previously computed scalar that was inserted into the vector. 345 auto *IndexC = dyn_cast<ConstantInt>(Index); 346 if (IndexC) { 347 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 348 unsigned NumElts = EC.getKnownMinValue(); 349 350 // InstSimplify should handle cases where the index is invalid. 351 // For fixed-length vector, it's invalid to extract out-of-range element. 352 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 353 return nullptr; 354 355 // This instruction only demands the single element from the input vector. 356 // Skip for scalable type, the number of elements is unknown at 357 // compile-time. 358 if (!EC.isScalable() && NumElts != 1) { 359 // If the input vector has a single use, simplify it based on this use 360 // property. 361 if (SrcVec->hasOneUse()) { 362 APInt UndefElts(NumElts, 0); 363 APInt DemandedElts(NumElts, 0); 364 DemandedElts.setBit(IndexC->getZExtValue()); 365 if (Value *V = 366 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 367 return replaceOperand(EI, 0, V); 368 } else { 369 // If the input vector has multiple uses, simplify it based on a union 370 // of all elements used. 371 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 372 if (!DemandedElts.isAllOnesValue()) { 373 APInt UndefElts(NumElts, 0); 374 if (Value *V = SimplifyDemandedVectorElts( 375 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 376 true /* AllowMultipleUsers */)) { 377 if (V != SrcVec) { 378 SrcVec->replaceAllUsesWith(V); 379 return &EI; 380 } 381 } 382 } 383 } 384 } 385 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 386 return I; 387 388 // If there's a vector PHI feeding a scalar use through this extractelement 389 // instruction, try to scalarize the PHI. 390 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 391 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 392 return ScalarPHI; 393 } 394 395 // TODO come up with a n-ary matcher that subsumes both unary and 396 // binary matchers. 397 UnaryOperator *UO; 398 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 399 // extelt (unop X), Index --> unop (extelt X, Index) 400 Value *X = UO->getOperand(0); 401 Value *E = Builder.CreateExtractElement(X, Index); 402 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 403 } 404 405 BinaryOperator *BO; 406 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 407 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 408 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 409 Value *E0 = Builder.CreateExtractElement(X, Index); 410 Value *E1 = Builder.CreateExtractElement(Y, Index); 411 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 412 } 413 414 Value *X, *Y; 415 CmpInst::Predicate Pred; 416 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 417 cheapToScalarize(SrcVec, IndexC)) { 418 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 419 Value *E0 = Builder.CreateExtractElement(X, Index); 420 Value *E1 = Builder.CreateExtractElement(Y, Index); 421 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 422 } 423 424 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 425 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 426 // Extracting the inserted element? 427 if (IE->getOperand(2) == Index) 428 return replaceInstUsesWith(EI, IE->getOperand(1)); 429 // If the inserted and extracted elements are constants, they must not 430 // be the same value, extract from the pre-inserted value instead. 431 if (isa<Constant>(IE->getOperand(2)) && IndexC) 432 return replaceOperand(EI, 0, IE->getOperand(0)); 433 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 434 auto *VecType = cast<VectorType>(GEP->getType()); 435 ElementCount EC = VecType->getElementCount(); 436 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 437 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 438 // Find out why we have a vector result - these are a few examples: 439 // 1. We have a scalar pointer and a vector of indices, or 440 // 2. We have a vector of pointers and a scalar index, or 441 // 3. We have a vector of pointers and a vector of indices, etc. 442 // Here we only consider combining when there is exactly one vector 443 // operand, since the optimization is less obviously a win due to 444 // needing more than one extractelements. 445 446 unsigned VectorOps = 447 llvm::count_if(GEP->operands(), [](const Value *V) { 448 return isa<VectorType>(V->getType()); 449 }); 450 if (VectorOps > 1) 451 return nullptr; 452 assert(VectorOps == 1 && "Expected exactly one vector GEP operand!"); 453 454 Value *NewPtr = GEP->getPointerOperand(); 455 if (isa<VectorType>(NewPtr->getType())) 456 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 457 458 SmallVector<Value *> NewOps; 459 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 460 Value *Op = GEP->getOperand(I); 461 if (isa<VectorType>(Op->getType())) 462 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 463 else 464 NewOps.push_back(Op); 465 } 466 467 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 468 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 469 NewOps); 470 NewGEP->setIsInBounds(GEP->isInBounds()); 471 return NewGEP; 472 } 473 return nullptr; 474 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 475 // If this is extracting an element from a shufflevector, figure out where 476 // it came from and extract from the appropriate input element instead. 477 // Restrict the following transformation to fixed-length vector. 478 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 479 int SrcIdx = 480 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 481 Value *Src; 482 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 483 ->getNumElements(); 484 485 if (SrcIdx < 0) 486 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 487 if (SrcIdx < (int)LHSWidth) 488 Src = SVI->getOperand(0); 489 else { 490 SrcIdx -= LHSWidth; 491 Src = SVI->getOperand(1); 492 } 493 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 494 return ExtractElementInst::Create( 495 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 496 } 497 } else if (auto *CI = dyn_cast<CastInst>(I)) { 498 // Canonicalize extractelement(cast) -> cast(extractelement). 499 // Bitcasts can change the number of vector elements, and they cost 500 // nothing. 501 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 502 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 503 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 504 } 505 } 506 } 507 return nullptr; 508 } 509 510 /// If V is a shuffle of values that ONLY returns elements from either LHS or 511 /// RHS, return the shuffle mask and true. Otherwise, return false. 512 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 513 SmallVectorImpl<int> &Mask) { 514 assert(LHS->getType() == RHS->getType() && 515 "Invalid CollectSingleShuffleElements"); 516 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 517 518 if (match(V, m_Undef())) { 519 Mask.assign(NumElts, -1); 520 return true; 521 } 522 523 if (V == LHS) { 524 for (unsigned i = 0; i != NumElts; ++i) 525 Mask.push_back(i); 526 return true; 527 } 528 529 if (V == RHS) { 530 for (unsigned i = 0; i != NumElts; ++i) 531 Mask.push_back(i + NumElts); 532 return true; 533 } 534 535 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 536 // If this is an insert of an extract from some other vector, include it. 537 Value *VecOp = IEI->getOperand(0); 538 Value *ScalarOp = IEI->getOperand(1); 539 Value *IdxOp = IEI->getOperand(2); 540 541 if (!isa<ConstantInt>(IdxOp)) 542 return false; 543 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 544 545 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 546 // We can handle this if the vector we are inserting into is 547 // transitively ok. 548 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 549 // If so, update the mask to reflect the inserted undef. 550 Mask[InsertedIdx] = -1; 551 return true; 552 } 553 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 554 if (isa<ConstantInt>(EI->getOperand(1))) { 555 unsigned ExtractedIdx = 556 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 557 unsigned NumLHSElts = 558 cast<FixedVectorType>(LHS->getType())->getNumElements(); 559 560 // This must be extracting from either LHS or RHS. 561 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 562 // We can handle this if the vector we are inserting into is 563 // transitively ok. 564 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 565 // If so, update the mask to reflect the inserted value. 566 if (EI->getOperand(0) == LHS) { 567 Mask[InsertedIdx % NumElts] = ExtractedIdx; 568 } else { 569 assert(EI->getOperand(0) == RHS); 570 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 571 } 572 return true; 573 } 574 } 575 } 576 } 577 } 578 579 return false; 580 } 581 582 /// If we have insertion into a vector that is wider than the vector that we 583 /// are extracting from, try to widen the source vector to allow a single 584 /// shufflevector to replace one or more insert/extract pairs. 585 static void replaceExtractElements(InsertElementInst *InsElt, 586 ExtractElementInst *ExtElt, 587 InstCombinerImpl &IC) { 588 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 589 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 590 unsigned NumInsElts = InsVecType->getNumElements(); 591 unsigned NumExtElts = ExtVecType->getNumElements(); 592 593 // The inserted-to vector must be wider than the extracted-from vector. 594 if (InsVecType->getElementType() != ExtVecType->getElementType() || 595 NumExtElts >= NumInsElts) 596 return; 597 598 // Create a shuffle mask to widen the extended-from vector using undefined 599 // values. The mask selects all of the values of the original vector followed 600 // by as many undefined values as needed to create a vector of the same length 601 // as the inserted-to vector. 602 SmallVector<int, 16> ExtendMask; 603 for (unsigned i = 0; i < NumExtElts; ++i) 604 ExtendMask.push_back(i); 605 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 606 ExtendMask.push_back(-1); 607 608 Value *ExtVecOp = ExtElt->getVectorOperand(); 609 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 610 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 611 ? ExtVecOpInst->getParent() 612 : ExtElt->getParent(); 613 614 // TODO: This restriction matches the basic block check below when creating 615 // new extractelement instructions. If that limitation is removed, this one 616 // could also be removed. But for now, we just bail out to ensure that we 617 // will replace the extractelement instruction that is feeding our 618 // insertelement instruction. This allows the insertelement to then be 619 // replaced by a shufflevector. If the insertelement is not replaced, we can 620 // induce infinite looping because there's an optimization for extractelement 621 // that will delete our widening shuffle. This would trigger another attempt 622 // here to create that shuffle, and we spin forever. 623 if (InsertionBlock != InsElt->getParent()) 624 return; 625 626 // TODO: This restriction matches the check in visitInsertElementInst() and 627 // prevents an infinite loop caused by not turning the extract/insert pair 628 // into a shuffle. We really should not need either check, but we're lacking 629 // folds for shufflevectors because we're afraid to generate shuffle masks 630 // that the backend can't handle. 631 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 632 return; 633 634 auto *WideVec = 635 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 636 637 // Insert the new shuffle after the vector operand of the extract is defined 638 // (as long as it's not a PHI) or at the start of the basic block of the 639 // extract, so any subsequent extracts in the same basic block can use it. 640 // TODO: Insert before the earliest ExtractElementInst that is replaced. 641 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 642 WideVec->insertAfter(ExtVecOpInst); 643 else 644 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 645 646 // Replace extracts from the original narrow vector with extracts from the new 647 // wide vector. 648 for (User *U : ExtVecOp->users()) { 649 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 650 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 651 continue; 652 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 653 NewExt->insertAfter(OldExt); 654 IC.replaceInstUsesWith(*OldExt, NewExt); 655 } 656 } 657 658 /// We are building a shuffle to create V, which is a sequence of insertelement, 659 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 660 /// not rely on the second vector source. Return a std::pair containing the 661 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 662 /// parameter as required. 663 /// 664 /// Note: we intentionally don't try to fold earlier shuffles since they have 665 /// often been chosen carefully to be efficiently implementable on the target. 666 using ShuffleOps = std::pair<Value *, Value *>; 667 668 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 669 Value *PermittedRHS, 670 InstCombinerImpl &IC) { 671 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 672 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 673 674 if (match(V, m_Undef())) { 675 Mask.assign(NumElts, -1); 676 return std::make_pair( 677 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 678 } 679 680 if (isa<ConstantAggregateZero>(V)) { 681 Mask.assign(NumElts, 0); 682 return std::make_pair(V, nullptr); 683 } 684 685 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 686 // If this is an insert of an extract from some other vector, include it. 687 Value *VecOp = IEI->getOperand(0); 688 Value *ScalarOp = IEI->getOperand(1); 689 Value *IdxOp = IEI->getOperand(2); 690 691 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 692 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 693 unsigned ExtractedIdx = 694 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 695 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 696 697 // Either the extracted from or inserted into vector must be RHSVec, 698 // otherwise we'd end up with a shuffle of three inputs. 699 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 700 Value *RHS = EI->getOperand(0); 701 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 702 assert(LR.second == nullptr || LR.second == RHS); 703 704 if (LR.first->getType() != RHS->getType()) { 705 // Although we are giving up for now, see if we can create extracts 706 // that match the inserts for another round of combining. 707 replaceExtractElements(IEI, EI, IC); 708 709 // We tried our best, but we can't find anything compatible with RHS 710 // further up the chain. Return a trivial shuffle. 711 for (unsigned i = 0; i < NumElts; ++i) 712 Mask[i] = i; 713 return std::make_pair(V, nullptr); 714 } 715 716 unsigned NumLHSElts = 717 cast<FixedVectorType>(RHS->getType())->getNumElements(); 718 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 719 return std::make_pair(LR.first, RHS); 720 } 721 722 if (VecOp == PermittedRHS) { 723 // We've gone as far as we can: anything on the other side of the 724 // extractelement will already have been converted into a shuffle. 725 unsigned NumLHSElts = 726 cast<FixedVectorType>(EI->getOperand(0)->getType()) 727 ->getNumElements(); 728 for (unsigned i = 0; i != NumElts; ++i) 729 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 730 return std::make_pair(EI->getOperand(0), PermittedRHS); 731 } 732 733 // If this insertelement is a chain that comes from exactly these two 734 // vectors, return the vector and the effective shuffle. 735 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 736 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 737 Mask)) 738 return std::make_pair(EI->getOperand(0), PermittedRHS); 739 } 740 } 741 } 742 743 // Otherwise, we can't do anything fancy. Return an identity vector. 744 for (unsigned i = 0; i != NumElts; ++i) 745 Mask.push_back(i); 746 return std::make_pair(V, nullptr); 747 } 748 749 /// Look for chain of insertvalue's that fully define an aggregate, and trace 750 /// back the values inserted, see if they are all were extractvalue'd from 751 /// the same source aggregate from the exact same element indexes. 752 /// If they were, just reuse the source aggregate. 753 /// This potentially deals with PHI indirections. 754 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 755 InsertValueInst &OrigIVI) { 756 Type *AggTy = OrigIVI.getType(); 757 unsigned NumAggElts; 758 switch (AggTy->getTypeID()) { 759 case Type::StructTyID: 760 NumAggElts = AggTy->getStructNumElements(); 761 break; 762 case Type::ArrayTyID: 763 NumAggElts = AggTy->getArrayNumElements(); 764 break; 765 default: 766 llvm_unreachable("Unhandled aggregate type?"); 767 } 768 769 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 770 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 771 // FIXME: any interesting patterns to be caught with larger limit? 772 assert(NumAggElts > 0 && "Aggregate should have elements."); 773 if (NumAggElts > 2) 774 return nullptr; 775 776 static constexpr auto NotFound = None; 777 static constexpr auto FoundMismatch = nullptr; 778 779 // Try to find a value of each element of an aggregate. 780 // FIXME: deal with more complex, not one-dimensional, aggregate types 781 SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound); 782 783 // Do we know values for each element of the aggregate? 784 auto KnowAllElts = [&AggElts]() { 785 return all_of(AggElts, 786 [](Optional<Value *> Elt) { return Elt != NotFound; }); 787 }; 788 789 int Depth = 0; 790 791 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 792 // every element being overwritten twice, which should never happen. 793 static const int DepthLimit = 2 * NumAggElts; 794 795 // Recurse up the chain of `insertvalue` aggregate operands until either we've 796 // reconstructed full initializer or can't visit any more `insertvalue`'s. 797 for (InsertValueInst *CurrIVI = &OrigIVI; 798 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 799 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 800 ++Depth) { 801 Value *InsertedValue = CurrIVI->getInsertedValueOperand(); 802 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 803 804 // Don't bother with more than single-level aggregates. 805 if (Indices.size() != 1) 806 return nullptr; // FIXME: deal with more complex aggregates? 807 808 // Now, we may have already previously recorded the value for this element 809 // of an aggregate. If we did, that means the CurrIVI will later be 810 // overwritten with the already-recorded value. But if not, let's record it! 811 Optional<Value *> &Elt = AggElts[Indices.front()]; 812 Elt = Elt.getValueOr(InsertedValue); 813 814 // FIXME: should we handle chain-terminating undef base operand? 815 } 816 817 // Was that sufficient to deduce the full initializer for the aggregate? 818 if (!KnowAllElts()) 819 return nullptr; // Give up then. 820 821 // We now want to find the source[s] of the aggregate elements we've found. 822 // And with "source" we mean the original aggregate[s] from which 823 // the inserted elements were extracted. This may require PHI translation. 824 825 enum class AggregateDescription { 826 /// When analyzing the value that was inserted into an aggregate, we did 827 /// not manage to find defining `extractvalue` instruction to analyze. 828 NotFound, 829 /// When analyzing the value that was inserted into an aggregate, we did 830 /// manage to find defining `extractvalue` instruction[s], and everything 831 /// matched perfectly - aggregate type, element insertion/extraction index. 832 Found, 833 /// When analyzing the value that was inserted into an aggregate, we did 834 /// manage to find defining `extractvalue` instruction, but there was 835 /// a mismatch: either the source type from which the extraction was didn't 836 /// match the aggregate type into which the insertion was, 837 /// or the extraction/insertion channels mismatched, 838 /// or different elements had different source aggregates. 839 FoundMismatch 840 }; 841 auto Describe = [](Optional<Value *> SourceAggregate) { 842 if (SourceAggregate == NotFound) 843 return AggregateDescription::NotFound; 844 if (*SourceAggregate == FoundMismatch) 845 return AggregateDescription::FoundMismatch; 846 return AggregateDescription::Found; 847 }; 848 849 // Given the value \p Elt that was being inserted into element \p EltIdx of an 850 // aggregate AggTy, see if \p Elt was originally defined by an 851 // appropriate extractvalue (same element index, same aggregate type). 852 // If found, return the source aggregate from which the extraction was. 853 // If \p PredBB is provided, does PHI translation of an \p Elt first. 854 auto FindSourceAggregate = 855 [&](Value *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 856 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 857 // For now(?), only deal with, at most, a single level of PHI indirection. 858 if (UseBB && PredBB) 859 Elt = Elt->DoPHITranslation(*UseBB, *PredBB); 860 // FIXME: deal with multiple levels of PHI indirection? 861 862 // Did we find an extraction? 863 auto *EVI = dyn_cast<ExtractValueInst>(Elt); 864 if (!EVI) 865 return NotFound; 866 867 Value *SourceAggregate = EVI->getAggregateOperand(); 868 869 // Is the extraction from the same type into which the insertion was? 870 if (SourceAggregate->getType() != AggTy) 871 return FoundMismatch; 872 // And the element index doesn't change between extraction and insertion? 873 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 874 return FoundMismatch; 875 876 return SourceAggregate; // AggregateDescription::Found 877 }; 878 879 // Given elements AggElts that were constructing an aggregate OrigIVI, 880 // see if we can find appropriate source aggregate for each of the elements, 881 // and see it's the same aggregate for each element. If so, return it. 882 auto FindCommonSourceAggregate = 883 [&](Optional<BasicBlock *> UseBB, 884 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 885 Optional<Value *> SourceAggregate; 886 887 for (auto I : enumerate(AggElts)) { 888 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 889 "We don't store nullptr in SourceAggregate!"); 890 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 891 (I.index() != 0) && 892 "SourceAggregate should be valid after the the first element,"); 893 894 // For this element, is there a plausible source aggregate? 895 // FIXME: we could special-case undef element, IFF we know that in the 896 // source aggregate said element isn't poison. 897 Optional<Value *> SourceAggregateForElement = 898 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 899 900 // Okay, what have we found? Does that correlate with previous findings? 901 902 // Regardless of whether or not we have previously found source 903 // aggregate for previous elements (if any), if we didn't find one for 904 // this element, passthrough whatever we have just found. 905 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 906 return SourceAggregateForElement; 907 908 // Okay, we have found source aggregate for this element. 909 // Let's see what we already know from previous elements, if any. 910 switch (Describe(SourceAggregate)) { 911 case AggregateDescription::NotFound: 912 // This is apparently the first element that we have examined. 913 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 914 continue; // Great, now look at next element. 915 case AggregateDescription::Found: 916 // We have previously already successfully examined other elements. 917 // Is this the same source aggregate we've found for other elements? 918 if (*SourceAggregateForElement != *SourceAggregate) 919 return FoundMismatch; 920 continue; // Still the same aggregate, look at next element. 921 case AggregateDescription::FoundMismatch: 922 llvm_unreachable("Can't happen. We would have early-exited then."); 923 }; 924 } 925 926 assert(Describe(SourceAggregate) == AggregateDescription::Found && 927 "Must be a valid Value"); 928 return *SourceAggregate; 929 }; 930 931 Optional<Value *> SourceAggregate; 932 933 // Can we find the source aggregate without looking at predecessors? 934 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 935 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 936 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 937 return nullptr; // Conflicting source aggregates! 938 ++NumAggregateReconstructionsSimplified; 939 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 940 } 941 942 // Okay, apparently we need to look at predecessors. 943 944 // We should be smart about picking the "use" basic block, which will be the 945 // merge point for aggregate, where we'll insert the final PHI that will be 946 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 947 // We should look in which blocks each of the AggElts is being defined, 948 // they all should be defined in the same basic block. 949 BasicBlock *UseBB = nullptr; 950 951 for (const Optional<Value *> &Elt : AggElts) { 952 // If this element's value was not defined by an instruction, ignore it. 953 auto *I = dyn_cast<Instruction>(*Elt); 954 if (!I) 955 continue; 956 // Otherwise, in which basic block is this instruction located? 957 BasicBlock *BB = I->getParent(); 958 // If it's the first instruction we've encountered, record the basic block. 959 if (!UseBB) { 960 UseBB = BB; 961 continue; 962 } 963 // Otherwise, this must be the same basic block we've seen previously. 964 if (UseBB != BB) 965 return nullptr; 966 } 967 968 // If *all* of the elements are basic-block-independent, meaning they are 969 // either function arguments, or constant expressions, then if we didn't 970 // handle them without predecessor-aware handling, we won't handle them now. 971 if (!UseBB) 972 return nullptr; 973 974 // If we didn't manage to find source aggregate without looking at 975 // predecessors, and there are no predecessors to look at, then we're done. 976 if (pred_empty(UseBB)) 977 return nullptr; 978 979 // Arbitrary predecessor count limit. 980 static const int PredCountLimit = 64; 981 982 // Cache the (non-uniqified!) list of predecessors in a vector, 983 // checking the limit at the same time for efficiency. 984 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 985 for (BasicBlock *Pred : predecessors(UseBB)) { 986 // Don't bother if there are too many predecessors. 987 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 988 return nullptr; 989 Preds.emplace_back(Pred); 990 } 991 992 // For each predecessor, what is the source aggregate, 993 // from which all the elements were originally extracted from? 994 // Note that we want for the map to have stable iteration order! 995 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 996 for (BasicBlock *Pred : Preds) { 997 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 998 SourceAggregates.insert({Pred, nullptr}); 999 // Did we already evaluate this predecessor? 1000 if (!IV.second) 1001 continue; 1002 1003 // Let's hope that when coming from predecessor Pred, all elements of the 1004 // aggregate produced by OrigIVI must have been originally extracted from 1005 // the same aggregate. Is that so? Can we find said original aggregate? 1006 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1007 if (Describe(SourceAggregate) != AggregateDescription::Found) 1008 return nullptr; // Give up. 1009 IV.first->second = *SourceAggregate; 1010 } 1011 1012 // All good! Now we just need to thread the source aggregates here. 1013 // Note that we have to insert the new PHI here, ourselves, because we can't 1014 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1015 // Note that the same block can be a predecessor more than once, 1016 // and we need to preserve that invariant for the PHI node. 1017 BuilderTy::InsertPointGuard Guard(Builder); 1018 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1019 auto *PHI = 1020 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1021 for (BasicBlock *Pred : Preds) 1022 PHI->addIncoming(SourceAggregates[Pred], Pred); 1023 1024 ++NumAggregateReconstructionsSimplified; 1025 return replaceInstUsesWith(OrigIVI, PHI); 1026 } 1027 1028 /// Try to find redundant insertvalue instructions, like the following ones: 1029 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1030 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1031 /// Here the second instruction inserts values at the same indices, as the 1032 /// first one, making the first one redundant. 1033 /// It should be transformed to: 1034 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1035 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1036 bool IsRedundant = false; 1037 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1038 1039 // If there is a chain of insertvalue instructions (each of them except the 1040 // last one has only one use and it's another insertvalue insn from this 1041 // chain), check if any of the 'children' uses the same indices as the first 1042 // instruction. In this case, the first one is redundant. 1043 Value *V = &I; 1044 unsigned Depth = 0; 1045 while (V->hasOneUse() && Depth < 10) { 1046 User *U = V->user_back(); 1047 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1048 if (!UserInsInst || U->getOperand(0) != V) 1049 break; 1050 if (UserInsInst->getIndices() == FirstIndices) { 1051 IsRedundant = true; 1052 break; 1053 } 1054 V = UserInsInst; 1055 Depth++; 1056 } 1057 1058 if (IsRedundant) 1059 return replaceInstUsesWith(I, I.getOperand(0)); 1060 1061 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1062 return NewI; 1063 1064 return nullptr; 1065 } 1066 1067 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1068 // Can not analyze scalable type, the number of elements is not a compile-time 1069 // constant. 1070 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1071 return false; 1072 1073 int MaskSize = Shuf.getShuffleMask().size(); 1074 int VecSize = 1075 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1076 1077 // A vector select does not change the size of the operands. 1078 if (MaskSize != VecSize) 1079 return false; 1080 1081 // Each mask element must be undefined or choose a vector element from one of 1082 // the source operands without crossing vector lanes. 1083 for (int i = 0; i != MaskSize; ++i) { 1084 int Elt = Shuf.getMaskValue(i); 1085 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1086 return false; 1087 } 1088 1089 return true; 1090 } 1091 1092 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1093 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1094 /// shufflevector(insertelt(X, %k, 0), undef, zero) 1095 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1096 // We are interested in the last insert in a chain. So if this insert has a 1097 // single user and that user is an insert, bail. 1098 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1099 return nullptr; 1100 1101 VectorType *VecTy = InsElt.getType(); 1102 // Can not handle scalable type, the number of elements is not a compile-time 1103 // constant. 1104 if (isa<ScalableVectorType>(VecTy)) 1105 return nullptr; 1106 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1107 1108 // Do not try to do this for a one-element vector, since that's a nop, 1109 // and will cause an inf-loop. 1110 if (NumElements == 1) 1111 return nullptr; 1112 1113 Value *SplatVal = InsElt.getOperand(1); 1114 InsertElementInst *CurrIE = &InsElt; 1115 SmallBitVector ElementPresent(NumElements, false); 1116 InsertElementInst *FirstIE = nullptr; 1117 1118 // Walk the chain backwards, keeping track of which indices we inserted into, 1119 // until we hit something that isn't an insert of the splatted value. 1120 while (CurrIE) { 1121 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1122 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1123 return nullptr; 1124 1125 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1126 // Check none of the intermediate steps have any additional uses, except 1127 // for the root insertelement instruction, which can be re-used, if it 1128 // inserts at position 0. 1129 if (CurrIE != &InsElt && 1130 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1131 return nullptr; 1132 1133 ElementPresent[Idx->getZExtValue()] = true; 1134 FirstIE = CurrIE; 1135 CurrIE = NextIE; 1136 } 1137 1138 // If this is just a single insertelement (not a sequence), we are done. 1139 if (FirstIE == &InsElt) 1140 return nullptr; 1141 1142 // If we are not inserting into an undef vector, make sure we've seen an 1143 // insert into every element. 1144 // TODO: If the base vector is not undef, it might be better to create a splat 1145 // and then a select-shuffle (blend) with the base vector. 1146 if (!match(FirstIE->getOperand(0), m_Undef())) 1147 if (!ElementPresent.all()) 1148 return nullptr; 1149 1150 // Create the insert + shuffle. 1151 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1152 UndefValue *UndefVec = UndefValue::get(VecTy); 1153 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1154 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1155 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 1156 1157 // Splat from element 0, but replace absent elements with undef in the mask. 1158 SmallVector<int, 16> Mask(NumElements, 0); 1159 for (unsigned i = 0; i != NumElements; ++i) 1160 if (!ElementPresent[i]) 1161 Mask[i] = -1; 1162 1163 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 1164 } 1165 1166 /// Try to fold an insert element into an existing splat shuffle by changing 1167 /// the shuffle's mask to include the index of this insert element. 1168 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1169 // Check if the vector operand of this insert is a canonical splat shuffle. 1170 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1171 if (!Shuf || !Shuf->isZeroEltSplat()) 1172 return nullptr; 1173 1174 // Bail out early if shuffle is scalable type. The number of elements in 1175 // shuffle mask is unknown at compile-time. 1176 if (isa<ScalableVectorType>(Shuf->getType())) 1177 return nullptr; 1178 1179 // Check for a constant insertion index. 1180 uint64_t IdxC; 1181 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1182 return nullptr; 1183 1184 // Check if the splat shuffle's input is the same as this insert's scalar op. 1185 Value *X = InsElt.getOperand(1); 1186 Value *Op0 = Shuf->getOperand(0); 1187 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1188 return nullptr; 1189 1190 // Replace the shuffle mask element at the index of this insert with a zero. 1191 // For example: 1192 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1193 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1194 unsigned NumMaskElts = 1195 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1196 SmallVector<int, 16> NewMask(NumMaskElts); 1197 for (unsigned i = 0; i != NumMaskElts; ++i) 1198 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1199 1200 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1201 } 1202 1203 /// Try to fold an extract+insert element into an existing identity shuffle by 1204 /// changing the shuffle's mask to include the index of this insert element. 1205 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1206 // Check if the vector operand of this insert is an identity shuffle. 1207 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1208 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1209 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1210 return nullptr; 1211 1212 // Bail out early if shuffle is scalable type. The number of elements in 1213 // shuffle mask is unknown at compile-time. 1214 if (isa<ScalableVectorType>(Shuf->getType())) 1215 return nullptr; 1216 1217 // Check for a constant insertion index. 1218 uint64_t IdxC; 1219 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1220 return nullptr; 1221 1222 // Check if this insert's scalar op is extracted from the identity shuffle's 1223 // input vector. 1224 Value *Scalar = InsElt.getOperand(1); 1225 Value *X = Shuf->getOperand(0); 1226 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1227 return nullptr; 1228 1229 // Replace the shuffle mask element at the index of this extract+insert with 1230 // that same index value. 1231 // For example: 1232 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1233 unsigned NumMaskElts = 1234 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1235 SmallVector<int, 16> NewMask(NumMaskElts); 1236 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1237 for (unsigned i = 0; i != NumMaskElts; ++i) { 1238 if (i != IdxC) { 1239 // All mask elements besides the inserted element remain the same. 1240 NewMask[i] = OldMask[i]; 1241 } else if (OldMask[i] == (int)IdxC) { 1242 // If the mask element was already set, there's nothing to do 1243 // (demanded elements analysis may unset it later). 1244 return nullptr; 1245 } else { 1246 assert(OldMask[i] == UndefMaskElem && 1247 "Unexpected shuffle mask element for identity shuffle"); 1248 NewMask[i] = IdxC; 1249 } 1250 } 1251 1252 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1253 } 1254 1255 /// If we have an insertelement instruction feeding into another insertelement 1256 /// and the 2nd is inserting a constant into the vector, canonicalize that 1257 /// constant insertion before the insertion of a variable: 1258 /// 1259 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1260 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1261 /// 1262 /// This has the potential of eliminating the 2nd insertelement instruction 1263 /// via constant folding of the scalar constant into a vector constant. 1264 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1265 InstCombiner::BuilderTy &Builder) { 1266 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1267 if (!InsElt1 || !InsElt1->hasOneUse()) 1268 return nullptr; 1269 1270 Value *X, *Y; 1271 Constant *ScalarC; 1272 ConstantInt *IdxC1, *IdxC2; 1273 if (match(InsElt1->getOperand(0), m_Value(X)) && 1274 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1275 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1276 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1277 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1278 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1279 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1280 } 1281 1282 return nullptr; 1283 } 1284 1285 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1286 /// --> shufflevector X, CVec', Mask' 1287 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1288 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1289 // Bail out if the parent has more than one use. In that case, we'd be 1290 // replacing the insertelt with a shuffle, and that's not a clear win. 1291 if (!Inst || !Inst->hasOneUse()) 1292 return nullptr; 1293 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1294 // The shuffle must have a constant vector operand. The insertelt must have 1295 // a constant scalar being inserted at a constant position in the vector. 1296 Constant *ShufConstVec, *InsEltScalar; 1297 uint64_t InsEltIndex; 1298 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1299 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1300 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1301 return nullptr; 1302 1303 // Adding an element to an arbitrary shuffle could be expensive, but a 1304 // shuffle that selects elements from vectors without crossing lanes is 1305 // assumed cheap. 1306 // If we're just adding a constant into that shuffle, it will still be 1307 // cheap. 1308 if (!isShuffleEquivalentToSelect(*Shuf)) 1309 return nullptr; 1310 1311 // From the above 'select' check, we know that the mask has the same number 1312 // of elements as the vector input operands. We also know that each constant 1313 // input element is used in its lane and can not be used more than once by 1314 // the shuffle. Therefore, replace the constant in the shuffle's constant 1315 // vector with the insertelt constant. Replace the constant in the shuffle's 1316 // mask vector with the insertelt index plus the length of the vector 1317 // (because the constant vector operand of a shuffle is always the 2nd 1318 // operand). 1319 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1320 unsigned NumElts = Mask.size(); 1321 SmallVector<Constant *, 16> NewShufElts(NumElts); 1322 SmallVector<int, 16> NewMaskElts(NumElts); 1323 for (unsigned I = 0; I != NumElts; ++I) { 1324 if (I == InsEltIndex) { 1325 NewShufElts[I] = InsEltScalar; 1326 NewMaskElts[I] = InsEltIndex + NumElts; 1327 } else { 1328 // Copy over the existing values. 1329 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1330 NewMaskElts[I] = Mask[I]; 1331 } 1332 } 1333 1334 // Create new operands for a shuffle that includes the constant of the 1335 // original insertelt. The old shuffle will be dead now. 1336 return new ShuffleVectorInst(Shuf->getOperand(0), 1337 ConstantVector::get(NewShufElts), NewMaskElts); 1338 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1339 // Transform sequences of insertelements ops with constant data/indexes into 1340 // a single shuffle op. 1341 // Can not handle scalable type, the number of elements needed to create 1342 // shuffle mask is not a compile-time constant. 1343 if (isa<ScalableVectorType>(InsElt.getType())) 1344 return nullptr; 1345 unsigned NumElts = 1346 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1347 1348 uint64_t InsertIdx[2]; 1349 Constant *Val[2]; 1350 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1351 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1352 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1353 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1354 return nullptr; 1355 SmallVector<Constant *, 16> Values(NumElts); 1356 SmallVector<int, 16> Mask(NumElts); 1357 auto ValI = std::begin(Val); 1358 // Generate new constant vector and mask. 1359 // We have 2 values/masks from the insertelements instructions. Insert them 1360 // into new value/mask vectors. 1361 for (uint64_t I : InsertIdx) { 1362 if (!Values[I]) { 1363 Values[I] = *ValI; 1364 Mask[I] = NumElts + I; 1365 } 1366 ++ValI; 1367 } 1368 // Remaining values are filled with 'undef' values. 1369 for (unsigned I = 0; I < NumElts; ++I) { 1370 if (!Values[I]) { 1371 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1372 Mask[I] = I; 1373 } 1374 } 1375 // Create new operands for a shuffle that includes the constant of the 1376 // original insertelt. 1377 return new ShuffleVectorInst(IEI->getOperand(0), 1378 ConstantVector::get(Values), Mask); 1379 } 1380 return nullptr; 1381 } 1382 1383 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1384 Value *VecOp = IE.getOperand(0); 1385 Value *ScalarOp = IE.getOperand(1); 1386 Value *IdxOp = IE.getOperand(2); 1387 1388 if (auto *V = SimplifyInsertElementInst( 1389 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1390 return replaceInstUsesWith(IE, V); 1391 1392 // If the scalar is bitcast and inserted into undef, do the insert in the 1393 // source type followed by bitcast. 1394 // TODO: Generalize for insert into any constant, not just undef? 1395 Value *ScalarSrc; 1396 if (match(VecOp, m_Undef()) && 1397 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1398 (ScalarSrc->getType()->isIntegerTy() || 1399 ScalarSrc->getType()->isFloatingPointTy())) { 1400 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1401 // bitcast (inselt undef, ScalarSrc, IdxOp) 1402 Type *ScalarTy = ScalarSrc->getType(); 1403 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1404 UndefValue *NewUndef = UndefValue::get(VecTy); 1405 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1406 return new BitCastInst(NewInsElt, IE.getType()); 1407 } 1408 1409 // If the vector and scalar are both bitcast from the same element type, do 1410 // the insert in that source type followed by bitcast. 1411 Value *VecSrc; 1412 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1413 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1414 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1415 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1416 cast<VectorType>(VecSrc->getType())->getElementType() == 1417 ScalarSrc->getType()) { 1418 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1419 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1420 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1421 return new BitCastInst(NewInsElt, IE.getType()); 1422 } 1423 1424 // If the inserted element was extracted from some other fixed-length vector 1425 // and both indexes are valid constants, try to turn this into a shuffle. 1426 // Can not handle scalable vector type, the number of elements needed to 1427 // create shuffle mask is not a compile-time constant. 1428 uint64_t InsertedIdx, ExtractedIdx; 1429 Value *ExtVecOp; 1430 if (isa<FixedVectorType>(IE.getType()) && 1431 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1432 match(ScalarOp, 1433 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1434 isa<FixedVectorType>(ExtVecOp->getType()) && 1435 ExtractedIdx < 1436 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1437 // TODO: Looking at the user(s) to determine if this insert is a 1438 // fold-to-shuffle opportunity does not match the usual instcombine 1439 // constraints. We should decide if the transform is worthy based only 1440 // on this instruction and its operands, but that may not work currently. 1441 // 1442 // Here, we are trying to avoid creating shuffles before reaching 1443 // the end of a chain of extract-insert pairs. This is complicated because 1444 // we do not generally form arbitrary shuffle masks in instcombine 1445 // (because those may codegen poorly), but collectShuffleElements() does 1446 // exactly that. 1447 // 1448 // The rules for determining what is an acceptable target-independent 1449 // shuffle mask are fuzzy because they evolve based on the backend's 1450 // capabilities and real-world impact. 1451 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1452 if (!Insert.hasOneUse()) 1453 return true; 1454 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1455 if (!InsertUser) 1456 return true; 1457 return false; 1458 }; 1459 1460 // Try to form a shuffle from a chain of extract-insert ops. 1461 if (isShuffleRootCandidate(IE)) { 1462 SmallVector<int, 16> Mask; 1463 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1464 1465 // The proposed shuffle may be trivial, in which case we shouldn't 1466 // perform the combine. 1467 if (LR.first != &IE && LR.second != &IE) { 1468 // We now have a shuffle of LHS, RHS, Mask. 1469 if (LR.second == nullptr) 1470 LR.second = UndefValue::get(LR.first->getType()); 1471 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1472 } 1473 } 1474 } 1475 1476 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1477 unsigned VWidth = VecTy->getNumElements(); 1478 APInt UndefElts(VWidth, 0); 1479 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1480 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1481 if (V != &IE) 1482 return replaceInstUsesWith(IE, V); 1483 return &IE; 1484 } 1485 } 1486 1487 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1488 return Shuf; 1489 1490 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1491 return NewInsElt; 1492 1493 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1494 return Broadcast; 1495 1496 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1497 return Splat; 1498 1499 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1500 return IdentityShuf; 1501 1502 return nullptr; 1503 } 1504 1505 /// Return true if we can evaluate the specified expression tree if the vector 1506 /// elements were shuffled in a different order. 1507 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1508 unsigned Depth = 5) { 1509 // We can always reorder the elements of a constant. 1510 if (isa<Constant>(V)) 1511 return true; 1512 1513 // We won't reorder vector arguments. No IPO here. 1514 Instruction *I = dyn_cast<Instruction>(V); 1515 if (!I) return false; 1516 1517 // Two users may expect different orders of the elements. Don't try it. 1518 if (!I->hasOneUse()) 1519 return false; 1520 1521 if (Depth == 0) return false; 1522 1523 switch (I->getOpcode()) { 1524 case Instruction::UDiv: 1525 case Instruction::SDiv: 1526 case Instruction::URem: 1527 case Instruction::SRem: 1528 // Propagating an undefined shuffle mask element to integer div/rem is not 1529 // allowed because those opcodes can create immediate undefined behavior 1530 // from an undefined element in an operand. 1531 if (llvm::is_contained(Mask, -1)) 1532 return false; 1533 LLVM_FALLTHROUGH; 1534 case Instruction::Add: 1535 case Instruction::FAdd: 1536 case Instruction::Sub: 1537 case Instruction::FSub: 1538 case Instruction::Mul: 1539 case Instruction::FMul: 1540 case Instruction::FDiv: 1541 case Instruction::FRem: 1542 case Instruction::Shl: 1543 case Instruction::LShr: 1544 case Instruction::AShr: 1545 case Instruction::And: 1546 case Instruction::Or: 1547 case Instruction::Xor: 1548 case Instruction::ICmp: 1549 case Instruction::FCmp: 1550 case Instruction::Trunc: 1551 case Instruction::ZExt: 1552 case Instruction::SExt: 1553 case Instruction::FPToUI: 1554 case Instruction::FPToSI: 1555 case Instruction::UIToFP: 1556 case Instruction::SIToFP: 1557 case Instruction::FPTrunc: 1558 case Instruction::FPExt: 1559 case Instruction::GetElementPtr: { 1560 // Bail out if we would create longer vector ops. We could allow creating 1561 // longer vector ops, but that may result in more expensive codegen. 1562 Type *ITy = I->getType(); 1563 if (ITy->isVectorTy() && 1564 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1565 return false; 1566 for (Value *Operand : I->operands()) { 1567 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1568 return false; 1569 } 1570 return true; 1571 } 1572 case Instruction::InsertElement: { 1573 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1574 if (!CI) return false; 1575 int ElementNumber = CI->getLimitedValue(); 1576 1577 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1578 // can't put an element into multiple indices. 1579 bool SeenOnce = false; 1580 for (int i = 0, e = Mask.size(); i != e; ++i) { 1581 if (Mask[i] == ElementNumber) { 1582 if (SeenOnce) 1583 return false; 1584 SeenOnce = true; 1585 } 1586 } 1587 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1588 } 1589 } 1590 return false; 1591 } 1592 1593 /// Rebuild a new instruction just like 'I' but with the new operands given. 1594 /// In the event of type mismatch, the type of the operands is correct. 1595 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1596 // We don't want to use the IRBuilder here because we want the replacement 1597 // instructions to appear next to 'I', not the builder's insertion point. 1598 switch (I->getOpcode()) { 1599 case Instruction::Add: 1600 case Instruction::FAdd: 1601 case Instruction::Sub: 1602 case Instruction::FSub: 1603 case Instruction::Mul: 1604 case Instruction::FMul: 1605 case Instruction::UDiv: 1606 case Instruction::SDiv: 1607 case Instruction::FDiv: 1608 case Instruction::URem: 1609 case Instruction::SRem: 1610 case Instruction::FRem: 1611 case Instruction::Shl: 1612 case Instruction::LShr: 1613 case Instruction::AShr: 1614 case Instruction::And: 1615 case Instruction::Or: 1616 case Instruction::Xor: { 1617 BinaryOperator *BO = cast<BinaryOperator>(I); 1618 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1619 BinaryOperator *New = 1620 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1621 NewOps[0], NewOps[1], "", BO); 1622 if (isa<OverflowingBinaryOperator>(BO)) { 1623 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1624 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1625 } 1626 if (isa<PossiblyExactOperator>(BO)) { 1627 New->setIsExact(BO->isExact()); 1628 } 1629 if (isa<FPMathOperator>(BO)) 1630 New->copyFastMathFlags(I); 1631 return New; 1632 } 1633 case Instruction::ICmp: 1634 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1635 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1636 NewOps[0], NewOps[1]); 1637 case Instruction::FCmp: 1638 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1639 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1640 NewOps[0], NewOps[1]); 1641 case Instruction::Trunc: 1642 case Instruction::ZExt: 1643 case Instruction::SExt: 1644 case Instruction::FPToUI: 1645 case Instruction::FPToSI: 1646 case Instruction::UIToFP: 1647 case Instruction::SIToFP: 1648 case Instruction::FPTrunc: 1649 case Instruction::FPExt: { 1650 // It's possible that the mask has a different number of elements from 1651 // the original cast. We recompute the destination type to match the mask. 1652 Type *DestTy = VectorType::get( 1653 I->getType()->getScalarType(), 1654 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1655 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1656 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1657 "", I); 1658 } 1659 case Instruction::GetElementPtr: { 1660 Value *Ptr = NewOps[0]; 1661 ArrayRef<Value*> Idx = NewOps.slice(1); 1662 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1663 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1664 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1665 return GEP; 1666 } 1667 } 1668 llvm_unreachable("failed to rebuild vector instructions"); 1669 } 1670 1671 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1672 // Mask.size() does not need to be equal to the number of vector elements. 1673 1674 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1675 Type *EltTy = V->getType()->getScalarType(); 1676 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1677 if (match(V, m_Undef())) 1678 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1679 1680 if (isa<ConstantAggregateZero>(V)) 1681 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1682 1683 if (Constant *C = dyn_cast<Constant>(V)) 1684 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1685 Mask); 1686 1687 Instruction *I = cast<Instruction>(V); 1688 switch (I->getOpcode()) { 1689 case Instruction::Add: 1690 case Instruction::FAdd: 1691 case Instruction::Sub: 1692 case Instruction::FSub: 1693 case Instruction::Mul: 1694 case Instruction::FMul: 1695 case Instruction::UDiv: 1696 case Instruction::SDiv: 1697 case Instruction::FDiv: 1698 case Instruction::URem: 1699 case Instruction::SRem: 1700 case Instruction::FRem: 1701 case Instruction::Shl: 1702 case Instruction::LShr: 1703 case Instruction::AShr: 1704 case Instruction::And: 1705 case Instruction::Or: 1706 case Instruction::Xor: 1707 case Instruction::ICmp: 1708 case Instruction::FCmp: 1709 case Instruction::Trunc: 1710 case Instruction::ZExt: 1711 case Instruction::SExt: 1712 case Instruction::FPToUI: 1713 case Instruction::FPToSI: 1714 case Instruction::UIToFP: 1715 case Instruction::SIToFP: 1716 case Instruction::FPTrunc: 1717 case Instruction::FPExt: 1718 case Instruction::Select: 1719 case Instruction::GetElementPtr: { 1720 SmallVector<Value*, 8> NewOps; 1721 bool NeedsRebuild = 1722 (Mask.size() != 1723 cast<FixedVectorType>(I->getType())->getNumElements()); 1724 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1725 Value *V; 1726 // Recursively call evaluateInDifferentElementOrder on vector arguments 1727 // as well. E.g. GetElementPtr may have scalar operands even if the 1728 // return value is a vector, so we need to examine the operand type. 1729 if (I->getOperand(i)->getType()->isVectorTy()) 1730 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1731 else 1732 V = I->getOperand(i); 1733 NewOps.push_back(V); 1734 NeedsRebuild |= (V != I->getOperand(i)); 1735 } 1736 if (NeedsRebuild) { 1737 return buildNew(I, NewOps); 1738 } 1739 return I; 1740 } 1741 case Instruction::InsertElement: { 1742 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1743 1744 // The insertelement was inserting at Element. Figure out which element 1745 // that becomes after shuffling. The answer is guaranteed to be unique 1746 // by CanEvaluateShuffled. 1747 bool Found = false; 1748 int Index = 0; 1749 for (int e = Mask.size(); Index != e; ++Index) { 1750 if (Mask[Index] == Element) { 1751 Found = true; 1752 break; 1753 } 1754 } 1755 1756 // If element is not in Mask, no need to handle the operand 1 (element to 1757 // be inserted). Just evaluate values in operand 0 according to Mask. 1758 if (!Found) 1759 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1760 1761 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1762 return InsertElementInst::Create(V, I->getOperand(1), 1763 ConstantInt::get(I32Ty, Index), "", I); 1764 } 1765 } 1766 llvm_unreachable("failed to reorder elements of vector instruction!"); 1767 } 1768 1769 // Returns true if the shuffle is extracting a contiguous range of values from 1770 // LHS, for example: 1771 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1772 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1773 // Shuffles to: |EE|FF|GG|HH| 1774 // +--+--+--+--+ 1775 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1776 ArrayRef<int> Mask) { 1777 unsigned LHSElems = 1778 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1779 unsigned MaskElems = Mask.size(); 1780 unsigned BegIdx = Mask.front(); 1781 unsigned EndIdx = Mask.back(); 1782 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1783 return false; 1784 for (unsigned I = 0; I != MaskElems; ++I) 1785 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1786 return false; 1787 return true; 1788 } 1789 1790 /// These are the ingredients in an alternate form binary operator as described 1791 /// below. 1792 struct BinopElts { 1793 BinaryOperator::BinaryOps Opcode; 1794 Value *Op0; 1795 Value *Op1; 1796 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1797 Value *V0 = nullptr, Value *V1 = nullptr) : 1798 Opcode(Opc), Op0(V0), Op1(V1) {} 1799 operator bool() const { return Opcode != 0; } 1800 }; 1801 1802 /// Binops may be transformed into binops with different opcodes and operands. 1803 /// Reverse the usual canonicalization to enable folds with the non-canonical 1804 /// form of the binop. If a transform is possible, return the elements of the 1805 /// new binop. If not, return invalid elements. 1806 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1807 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1808 Type *Ty = BO->getType(); 1809 switch (BO->getOpcode()) { 1810 case Instruction::Shl: { 1811 // shl X, C --> mul X, (1 << C) 1812 Constant *C; 1813 if (match(BO1, m_Constant(C))) { 1814 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1815 return { Instruction::Mul, BO0, ShlOne }; 1816 } 1817 break; 1818 } 1819 case Instruction::Or: { 1820 // or X, C --> add X, C (when X and C have no common bits set) 1821 const APInt *C; 1822 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1823 return { Instruction::Add, BO0, BO1 }; 1824 break; 1825 } 1826 default: 1827 break; 1828 } 1829 return {}; 1830 } 1831 1832 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1833 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1834 1835 // Are we shuffling together some value and that same value after it has been 1836 // modified by a binop with a constant? 1837 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1838 Constant *C; 1839 bool Op0IsBinop; 1840 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1841 Op0IsBinop = true; 1842 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1843 Op0IsBinop = false; 1844 else 1845 return nullptr; 1846 1847 // The identity constant for a binop leaves a variable operand unchanged. For 1848 // a vector, this is a splat of something like 0, -1, or 1. 1849 // If there's no identity constant for this binop, we're done. 1850 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1851 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1852 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1853 if (!IdC) 1854 return nullptr; 1855 1856 // Shuffle identity constants into the lanes that return the original value. 1857 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1858 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1859 // The existing binop constant vector remains in the same operand position. 1860 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1861 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1862 ConstantExpr::getShuffleVector(IdC, C, Mask); 1863 1864 bool MightCreatePoisonOrUB = 1865 is_contained(Mask, UndefMaskElem) && 1866 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1867 if (MightCreatePoisonOrUB) 1868 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1869 1870 // shuf (bop X, C), X, M --> bop X, C' 1871 // shuf X, (bop X, C), M --> bop X, C' 1872 Value *X = Op0IsBinop ? Op1 : Op0; 1873 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1874 NewBO->copyIRFlags(BO); 1875 1876 // An undef shuffle mask element may propagate as an undef constant element in 1877 // the new binop. That would produce poison where the original code might not. 1878 // If we already made a safe constant, then there's no danger. 1879 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1880 NewBO->dropPoisonGeneratingFlags(); 1881 return NewBO; 1882 } 1883 1884 /// If we have an insert of a scalar to a non-zero element of an undefined 1885 /// vector and then shuffle that value, that's the same as inserting to the zero 1886 /// element and shuffling. Splatting from the zero element is recognized as the 1887 /// canonical form of splat. 1888 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1889 InstCombiner::BuilderTy &Builder) { 1890 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1891 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1892 Value *X; 1893 uint64_t IndexC; 1894 1895 // Match a shuffle that is a splat to a non-zero element. 1896 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1897 m_ConstantInt(IndexC)))) || 1898 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1899 return nullptr; 1900 1901 // Insert into element 0 of an undef vector. 1902 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1903 Constant *Zero = Builder.getInt32(0); 1904 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1905 1906 // Splat from element 0. Any mask element that is undefined remains undefined. 1907 // For example: 1908 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1909 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1910 unsigned NumMaskElts = 1911 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1912 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1913 for (unsigned i = 0; i != NumMaskElts; ++i) 1914 if (Mask[i] == UndefMaskElem) 1915 NewMask[i] = Mask[i]; 1916 1917 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1918 } 1919 1920 /// Try to fold shuffles that are the equivalent of a vector select. 1921 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1922 InstCombiner::BuilderTy &Builder, 1923 const DataLayout &DL) { 1924 if (!Shuf.isSelect()) 1925 return nullptr; 1926 1927 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1928 // Commuting undef to operand 0 conflicts with another canonicalization. 1929 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1930 if (!match(Shuf.getOperand(1), m_Undef()) && 1931 Shuf.getMaskValue(0) >= (int)NumElts) { 1932 // TODO: Can we assert that both operands of a shuffle-select are not undef 1933 // (otherwise, it would have been folded by instsimplify? 1934 Shuf.commute(); 1935 return &Shuf; 1936 } 1937 1938 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1939 return I; 1940 1941 BinaryOperator *B0, *B1; 1942 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1943 !match(Shuf.getOperand(1), m_BinOp(B1))) 1944 return nullptr; 1945 1946 Value *X, *Y; 1947 Constant *C0, *C1; 1948 bool ConstantsAreOp1; 1949 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1950 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1951 ConstantsAreOp1 = true; 1952 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1953 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1954 ConstantsAreOp1 = false; 1955 else 1956 return nullptr; 1957 1958 // We need matching binops to fold the lanes together. 1959 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1960 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1961 bool DropNSW = false; 1962 if (ConstantsAreOp1 && Opc0 != Opc1) { 1963 // TODO: We drop "nsw" if shift is converted into multiply because it may 1964 // not be correct when the shift amount is BitWidth - 1. We could examine 1965 // each vector element to determine if it is safe to keep that flag. 1966 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1967 DropNSW = true; 1968 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1969 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1970 Opc0 = AltB0.Opcode; 1971 C0 = cast<Constant>(AltB0.Op1); 1972 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1973 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1974 Opc1 = AltB1.Opcode; 1975 C1 = cast<Constant>(AltB1.Op1); 1976 } 1977 } 1978 1979 if (Opc0 != Opc1) 1980 return nullptr; 1981 1982 // The opcodes must be the same. Use a new name to make that clear. 1983 BinaryOperator::BinaryOps BOpc = Opc0; 1984 1985 // Select the constant elements needed for the single binop. 1986 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1987 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1988 1989 // We are moving a binop after a shuffle. When a shuffle has an undefined 1990 // mask element, the result is undefined, but it is not poison or undefined 1991 // behavior. That is not necessarily true for div/rem/shift. 1992 bool MightCreatePoisonOrUB = 1993 is_contained(Mask, UndefMaskElem) && 1994 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1995 if (MightCreatePoisonOrUB) 1996 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 1997 ConstantsAreOp1); 1998 1999 Value *V; 2000 if (X == Y) { 2001 // Remove a binop and the shuffle by rearranging the constant: 2002 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2003 // shuffle (op C0, V), (op C1, V), M --> op C', V 2004 V = X; 2005 } else { 2006 // If there are 2 different variable operands, we must create a new shuffle 2007 // (select) first, so check uses to ensure that we don't end up with more 2008 // instructions than we started with. 2009 if (!B0->hasOneUse() && !B1->hasOneUse()) 2010 return nullptr; 2011 2012 // If we use the original shuffle mask and op1 is *variable*, we would be 2013 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2014 // poison. We do not have to guard against UB when *constants* are op1 2015 // because safe constants guarantee that we do not overflow sdiv/srem (and 2016 // there's no danger for other opcodes). 2017 // TODO: To allow this case, create a new shuffle mask with no undefs. 2018 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2019 return nullptr; 2020 2021 // Note: In general, we do not create new shuffles in InstCombine because we 2022 // do not know if a target can lower an arbitrary shuffle optimally. In this 2023 // case, the shuffle uses the existing mask, so there is no additional risk. 2024 2025 // Select the variable vectors first, then perform the binop: 2026 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2027 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2028 V = Builder.CreateShuffleVector(X, Y, Mask); 2029 } 2030 2031 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 2032 BinaryOperator::Create(BOpc, NewC, V); 2033 2034 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2035 // 1. If we changed an opcode, poison conditions might have changed. 2036 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2037 // where the original code did not. But if we already made a safe constant, 2038 // then there's no danger. 2039 NewBO->copyIRFlags(B0); 2040 NewBO->andIRFlags(B1); 2041 if (DropNSW) 2042 NewBO->setHasNoSignedWrap(false); 2043 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2044 NewBO->dropPoisonGeneratingFlags(); 2045 return NewBO; 2046 } 2047 2048 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2049 /// Example (little endian): 2050 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2051 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2052 bool IsBigEndian) { 2053 // This must be a bitcasted shuffle of 1 vector integer operand. 2054 Type *DestType = Shuf.getType(); 2055 Value *X; 2056 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2057 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2058 return nullptr; 2059 2060 // The source type must have the same number of elements as the shuffle, 2061 // and the source element type must be larger than the shuffle element type. 2062 Type *SrcType = X->getType(); 2063 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2064 cast<FixedVectorType>(SrcType)->getNumElements() != 2065 cast<FixedVectorType>(DestType)->getNumElements() || 2066 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2067 return nullptr; 2068 2069 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2070 "Expected a shuffle that decreases length"); 2071 2072 // Last, check that the mask chooses the correct low bits for each narrow 2073 // element in the result. 2074 uint64_t TruncRatio = 2075 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2076 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2077 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2078 if (Mask[i] == UndefMaskElem) 2079 continue; 2080 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2081 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2082 if (Mask[i] != (int)LSBIndex) 2083 return nullptr; 2084 } 2085 2086 return new TruncInst(X, DestType); 2087 } 2088 2089 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2090 /// narrowing (concatenating with undef and extracting back to the original 2091 /// length). This allows replacing the wide select with a narrow select. 2092 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2093 InstCombiner::BuilderTy &Builder) { 2094 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2095 // of the 1st vector operand of a shuffle. 2096 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2097 return nullptr; 2098 2099 // The vector being shuffled must be a vector select that we can eliminate. 2100 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2101 Value *Cond, *X, *Y; 2102 if (!match(Shuf.getOperand(0), 2103 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2104 return nullptr; 2105 2106 // We need a narrow condition value. It must be extended with undef elements 2107 // and have the same number of elements as this shuffle. 2108 unsigned NarrowNumElts = 2109 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2110 Value *NarrowCond; 2111 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2112 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2113 NarrowNumElts || 2114 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2115 return nullptr; 2116 2117 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2118 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2119 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2120 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2121 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2122 } 2123 2124 /// Try to fold an extract subvector operation. 2125 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2126 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2127 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2128 return nullptr; 2129 2130 // Check if we are extracting all bits of an inserted scalar: 2131 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2132 Value *X; 2133 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2134 X->getType()->getPrimitiveSizeInBits() == 2135 Shuf.getType()->getPrimitiveSizeInBits()) 2136 return new BitCastInst(X, Shuf.getType()); 2137 2138 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2139 Value *Y; 2140 ArrayRef<int> Mask; 2141 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2142 return nullptr; 2143 2144 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2145 // then combining may result in worse codegen. 2146 if (!Op0->hasOneUse()) 2147 return nullptr; 2148 2149 // We are extracting a subvector from a shuffle. Remove excess elements from 2150 // the 1st shuffle mask to eliminate the extract. 2151 // 2152 // This transform is conservatively limited to identity extracts because we do 2153 // not allow arbitrary shuffle mask creation as a target-independent transform 2154 // (because we can't guarantee that will lower efficiently). 2155 // 2156 // If the extracting shuffle has an undef mask element, it transfers to the 2157 // new shuffle mask. Otherwise, copy the original mask element. Example: 2158 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2159 // shuf X, Y, <C0, undef, C2, undef> 2160 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2161 SmallVector<int, 16> NewMask(NumElts); 2162 assert(NumElts < Mask.size() && 2163 "Identity with extract must have less elements than its inputs"); 2164 2165 for (unsigned i = 0; i != NumElts; ++i) { 2166 int ExtractMaskElt = Shuf.getMaskValue(i); 2167 int MaskElt = Mask[i]; 2168 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2169 } 2170 return new ShuffleVectorInst(X, Y, NewMask); 2171 } 2172 2173 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2174 /// operand with the operand of an insertelement. 2175 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2176 InstCombinerImpl &IC) { 2177 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2178 SmallVector<int, 16> Mask; 2179 Shuf.getShuffleMask(Mask); 2180 2181 // The shuffle must not change vector sizes. 2182 // TODO: This restriction could be removed if the insert has only one use 2183 // (because the transform would require a new length-changing shuffle). 2184 int NumElts = Mask.size(); 2185 if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements())) 2186 return nullptr; 2187 2188 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2189 // not be able to handle it there if the insertelement has >1 use. 2190 // If the shuffle has an insertelement operand but does not choose the 2191 // inserted scalar element from that value, then we can replace that shuffle 2192 // operand with the source vector of the insertelement. 2193 Value *X; 2194 uint64_t IdxC; 2195 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2196 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2197 if (!is_contained(Mask, (int)IdxC)) 2198 return IC.replaceOperand(Shuf, 0, X); 2199 } 2200 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2201 // Offset the index constant by the vector width because we are checking for 2202 // accesses to the 2nd vector input of the shuffle. 2203 IdxC += NumElts; 2204 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2205 if (!is_contained(Mask, (int)IdxC)) 2206 return IC.replaceOperand(Shuf, 1, X); 2207 } 2208 2209 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2210 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2211 // We need an insertelement with a constant index. 2212 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2213 m_ConstantInt(IndexC)))) 2214 return false; 2215 2216 // Test the shuffle mask to see if it splices the inserted scalar into the 2217 // operand 1 vector of the shuffle. 2218 int NewInsIndex = -1; 2219 for (int i = 0; i != NumElts; ++i) { 2220 // Ignore undef mask elements. 2221 if (Mask[i] == -1) 2222 continue; 2223 2224 // The shuffle takes elements of operand 1 without lane changes. 2225 if (Mask[i] == NumElts + i) 2226 continue; 2227 2228 // The shuffle must choose the inserted scalar exactly once. 2229 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2230 return false; 2231 2232 // The shuffle is placing the inserted scalar into element i. 2233 NewInsIndex = i; 2234 } 2235 2236 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2237 2238 // Index is updated to the potentially translated insertion lane. 2239 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2240 return true; 2241 }; 2242 2243 // If the shuffle is unnecessary, insert the scalar operand directly into 2244 // operand 1 of the shuffle. Example: 2245 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2246 Value *Scalar; 2247 ConstantInt *IndexC; 2248 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2249 return InsertElementInst::Create(V1, Scalar, IndexC); 2250 2251 // Try again after commuting shuffle. Example: 2252 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2253 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2254 std::swap(V0, V1); 2255 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2256 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2257 return InsertElementInst::Create(V1, Scalar, IndexC); 2258 2259 return nullptr; 2260 } 2261 2262 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2263 // Match the operands as identity with padding (also known as concatenation 2264 // with undef) shuffles of the same source type. The backend is expected to 2265 // recreate these concatenations from a shuffle of narrow operands. 2266 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2267 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2268 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2269 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2270 return nullptr; 2271 2272 // We limit this transform to power-of-2 types because we expect that the 2273 // backend can convert the simplified IR patterns to identical nodes as the 2274 // original IR. 2275 // TODO: If we can verify the same behavior for arbitrary types, the 2276 // power-of-2 checks can be removed. 2277 Value *X = Shuffle0->getOperand(0); 2278 Value *Y = Shuffle1->getOperand(0); 2279 if (X->getType() != Y->getType() || 2280 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2281 !isPowerOf2_32( 2282 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2283 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2284 match(X, m_Undef()) || match(Y, m_Undef())) 2285 return nullptr; 2286 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2287 match(Shuffle1->getOperand(1), m_Undef()) && 2288 "Unexpected operand for identity shuffle"); 2289 2290 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2291 // operands directly by adjusting the shuffle mask to account for the narrower 2292 // types: 2293 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2294 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2295 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2296 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2297 2298 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2299 SmallVector<int, 16> NewMask(Mask.size(), -1); 2300 for (int i = 0, e = Mask.size(); i != e; ++i) { 2301 if (Mask[i] == -1) 2302 continue; 2303 2304 // If this shuffle is choosing an undef element from 1 of the sources, that 2305 // element is undef. 2306 if (Mask[i] < WideElts) { 2307 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2308 continue; 2309 } else { 2310 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2311 continue; 2312 } 2313 2314 // If this shuffle is choosing from the 1st narrow op, the mask element is 2315 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2316 // element is offset down to adjust for the narrow vector widths. 2317 if (Mask[i] < WideElts) { 2318 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2319 NewMask[i] = Mask[i]; 2320 } else { 2321 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2322 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2323 } 2324 } 2325 return new ShuffleVectorInst(X, Y, NewMask); 2326 } 2327 2328 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2329 Value *LHS = SVI.getOperand(0); 2330 Value *RHS = SVI.getOperand(1); 2331 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2332 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2333 SVI.getType(), ShufQuery)) 2334 return replaceInstUsesWith(SVI, V); 2335 2336 // Bail out for scalable vectors 2337 if (isa<ScalableVectorType>(LHS->getType())) 2338 return nullptr; 2339 2340 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2341 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2342 2343 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2344 // 2345 // if X and Y are of the same (vector) type, and the element size is not 2346 // changed by the bitcasts, we can distribute the bitcasts through the 2347 // shuffle, hopefully reducing the number of instructions. We make sure that 2348 // at least one bitcast only has one use, so we don't *increase* the number of 2349 // instructions here. 2350 Value *X, *Y; 2351 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2352 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2353 X->getType()->getScalarSizeInBits() == 2354 SVI.getType()->getScalarSizeInBits() && 2355 (LHS->hasOneUse() || RHS->hasOneUse())) { 2356 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2357 SVI.getName() + ".uncasted"); 2358 return new BitCastInst(V, SVI.getType()); 2359 } 2360 2361 ArrayRef<int> Mask = SVI.getShuffleMask(); 2362 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2363 2364 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2365 // simulated shuffle can simplify, then this shuffle is unnecessary: 2366 // shuf (bitcast X), undef, Mask --> bitcast X' 2367 // TODO: This could be extended to allow length-changing shuffles. 2368 // The transform might also be obsoleted if we allowed canonicalization 2369 // of bitcasted shuffles. 2370 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2371 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2372 // Try to create a scaled mask constant. 2373 auto *XType = cast<FixedVectorType>(X->getType()); 2374 unsigned XNumElts = XType->getNumElements(); 2375 SmallVector<int, 16> ScaledMask; 2376 if (XNumElts >= VWidth) { 2377 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2378 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2379 } else { 2380 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2381 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2382 ScaledMask.clear(); 2383 } 2384 if (!ScaledMask.empty()) { 2385 // If the shuffled source vector simplifies, cast that value to this 2386 // shuffle's type. 2387 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2388 ScaledMask, XType, ShufQuery)) 2389 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2390 } 2391 } 2392 2393 // shuffle x, x, mask --> shuffle x, undef, mask' 2394 if (LHS == RHS) { 2395 assert(!match(RHS, m_Undef()) && 2396 "Shuffle with 2 undef ops not simplified?"); 2397 // Remap any references to RHS to use LHS. 2398 SmallVector<int, 16> Elts; 2399 for (unsigned i = 0; i != VWidth; ++i) { 2400 // Propagate undef elements or force mask to LHS. 2401 if (Mask[i] < 0) 2402 Elts.push_back(UndefMaskElem); 2403 else 2404 Elts.push_back(Mask[i] % LHSWidth); 2405 } 2406 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2407 } 2408 2409 // shuffle undef, x, mask --> shuffle x, undef, mask' 2410 if (match(LHS, m_Undef())) { 2411 SVI.commute(); 2412 return &SVI; 2413 } 2414 2415 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2416 return I; 2417 2418 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2419 return I; 2420 2421 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2422 return I; 2423 2424 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2425 return I; 2426 2427 APInt UndefElts(VWidth, 0); 2428 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2429 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2430 if (V != &SVI) 2431 return replaceInstUsesWith(SVI, V); 2432 return &SVI; 2433 } 2434 2435 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2436 return I; 2437 2438 // These transforms have the potential to lose undef knowledge, so they are 2439 // intentionally placed after SimplifyDemandedVectorElts(). 2440 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2441 return I; 2442 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2443 return I; 2444 2445 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2446 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2447 return replaceInstUsesWith(SVI, V); 2448 } 2449 2450 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2451 // a non-vector type. We can instead bitcast the original vector followed by 2452 // an extract of the desired element: 2453 // 2454 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2455 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2456 // %1 = bitcast <4 x i8> %sroa to i32 2457 // Becomes: 2458 // %bc = bitcast <16 x i8> %in to <4 x i32> 2459 // %ext = extractelement <4 x i32> %bc, i32 0 2460 // 2461 // If the shuffle is extracting a contiguous range of values from the input 2462 // vector then each use which is a bitcast of the extracted size can be 2463 // replaced. This will work if the vector types are compatible, and the begin 2464 // index is aligned to a value in the casted vector type. If the begin index 2465 // isn't aligned then we can shuffle the original vector (keeping the same 2466 // vector type) before extracting. 2467 // 2468 // This code will bail out if the target type is fundamentally incompatible 2469 // with vectors of the source type. 2470 // 2471 // Example of <16 x i8>, target type i32: 2472 // Index range [4,8): v-----------v Will work. 2473 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2474 // <16 x i8>: | | | | | | | | | | | | | | | | | 2475 // <4 x i32>: | | | | | 2476 // +-----------+-----------+-----------+-----------+ 2477 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2478 // Target type i40: ^--------------^ Won't work, bail. 2479 bool MadeChange = false; 2480 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2481 Value *V = LHS; 2482 unsigned MaskElems = Mask.size(); 2483 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2484 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2485 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2486 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2487 unsigned SrcNumElems = SrcTy->getNumElements(); 2488 SmallVector<BitCastInst *, 8> BCs; 2489 DenseMap<Type *, Value *> NewBCs; 2490 for (User *U : SVI.users()) 2491 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2492 if (!BC->use_empty()) 2493 // Only visit bitcasts that weren't previously handled. 2494 BCs.push_back(BC); 2495 for (BitCastInst *BC : BCs) { 2496 unsigned BegIdx = Mask.front(); 2497 Type *TgtTy = BC->getDestTy(); 2498 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2499 if (!TgtElemBitWidth) 2500 continue; 2501 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2502 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2503 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2504 if (!VecBitWidthsEqual) 2505 continue; 2506 if (!VectorType::isValidElementType(TgtTy)) 2507 continue; 2508 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2509 if (!BegIsAligned) { 2510 // Shuffle the input so [0,NumElements) contains the output, and 2511 // [NumElems,SrcNumElems) is undef. 2512 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2513 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2514 ShuffleMask[I] = Idx; 2515 V = Builder.CreateShuffleVector(V, ShuffleMask, 2516 SVI.getName() + ".extract"); 2517 BegIdx = 0; 2518 } 2519 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2520 assert(SrcElemsPerTgtElem); 2521 BegIdx /= SrcElemsPerTgtElem; 2522 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2523 auto *NewBC = 2524 BCAlreadyExists 2525 ? NewBCs[CastSrcTy] 2526 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2527 if (!BCAlreadyExists) 2528 NewBCs[CastSrcTy] = NewBC; 2529 auto *Ext = Builder.CreateExtractElement( 2530 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2531 // The shufflevector isn't being replaced: the bitcast that used it 2532 // is. InstCombine will visit the newly-created instructions. 2533 replaceInstUsesWith(*BC, Ext); 2534 MadeChange = true; 2535 } 2536 } 2537 2538 // If the LHS is a shufflevector itself, see if we can combine it with this 2539 // one without producing an unusual shuffle. 2540 // Cases that might be simplified: 2541 // 1. 2542 // x1=shuffle(v1,v2,mask1) 2543 // x=shuffle(x1,undef,mask) 2544 // ==> 2545 // x=shuffle(v1,undef,newMask) 2546 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2547 // 2. 2548 // x1=shuffle(v1,undef,mask1) 2549 // x=shuffle(x1,x2,mask) 2550 // where v1.size() == mask1.size() 2551 // ==> 2552 // x=shuffle(v1,x2,newMask) 2553 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2554 // 3. 2555 // x2=shuffle(v2,undef,mask2) 2556 // x=shuffle(x1,x2,mask) 2557 // where v2.size() == mask2.size() 2558 // ==> 2559 // x=shuffle(x1,v2,newMask) 2560 // newMask[i] = (mask[i] < x1.size()) 2561 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2562 // 4. 2563 // x1=shuffle(v1,undef,mask1) 2564 // x2=shuffle(v2,undef,mask2) 2565 // x=shuffle(x1,x2,mask) 2566 // where v1.size() == v2.size() 2567 // ==> 2568 // x=shuffle(v1,v2,newMask) 2569 // newMask[i] = (mask[i] < x1.size()) 2570 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2571 // 2572 // Here we are really conservative: 2573 // we are absolutely afraid of producing a shuffle mask not in the input 2574 // program, because the code gen may not be smart enough to turn a merged 2575 // shuffle into two specific shuffles: it may produce worse code. As such, 2576 // we only merge two shuffles if the result is either a splat or one of the 2577 // input shuffle masks. In this case, merging the shuffles just removes 2578 // one instruction, which we know is safe. This is good for things like 2579 // turning: (splat(splat)) -> splat, or 2580 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2581 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2582 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2583 if (LHSShuffle) 2584 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2585 LHSShuffle = nullptr; 2586 if (RHSShuffle) 2587 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2588 RHSShuffle = nullptr; 2589 if (!LHSShuffle && !RHSShuffle) 2590 return MadeChange ? &SVI : nullptr; 2591 2592 Value* LHSOp0 = nullptr; 2593 Value* LHSOp1 = nullptr; 2594 Value* RHSOp0 = nullptr; 2595 unsigned LHSOp0Width = 0; 2596 unsigned RHSOp0Width = 0; 2597 if (LHSShuffle) { 2598 LHSOp0 = LHSShuffle->getOperand(0); 2599 LHSOp1 = LHSShuffle->getOperand(1); 2600 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2601 } 2602 if (RHSShuffle) { 2603 RHSOp0 = RHSShuffle->getOperand(0); 2604 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2605 } 2606 Value* newLHS = LHS; 2607 Value* newRHS = RHS; 2608 if (LHSShuffle) { 2609 // case 1 2610 if (match(RHS, m_Undef())) { 2611 newLHS = LHSOp0; 2612 newRHS = LHSOp1; 2613 } 2614 // case 2 or 4 2615 else if (LHSOp0Width == LHSWidth) { 2616 newLHS = LHSOp0; 2617 } 2618 } 2619 // case 3 or 4 2620 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2621 newRHS = RHSOp0; 2622 } 2623 // case 4 2624 if (LHSOp0 == RHSOp0) { 2625 newLHS = LHSOp0; 2626 newRHS = nullptr; 2627 } 2628 2629 if (newLHS == LHS && newRHS == RHS) 2630 return MadeChange ? &SVI : nullptr; 2631 2632 ArrayRef<int> LHSMask; 2633 ArrayRef<int> RHSMask; 2634 if (newLHS != LHS) 2635 LHSMask = LHSShuffle->getShuffleMask(); 2636 if (RHSShuffle && newRHS != RHS) 2637 RHSMask = RHSShuffle->getShuffleMask(); 2638 2639 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2640 SmallVector<int, 16> newMask; 2641 bool isSplat = true; 2642 int SplatElt = -1; 2643 // Create a new mask for the new ShuffleVectorInst so that the new 2644 // ShuffleVectorInst is equivalent to the original one. 2645 for (unsigned i = 0; i < VWidth; ++i) { 2646 int eltMask; 2647 if (Mask[i] < 0) { 2648 // This element is an undef value. 2649 eltMask = -1; 2650 } else if (Mask[i] < (int)LHSWidth) { 2651 // This element is from left hand side vector operand. 2652 // 2653 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2654 // new mask value for the element. 2655 if (newLHS != LHS) { 2656 eltMask = LHSMask[Mask[i]]; 2657 // If the value selected is an undef value, explicitly specify it 2658 // with a -1 mask value. 2659 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2660 eltMask = -1; 2661 } else 2662 eltMask = Mask[i]; 2663 } else { 2664 // This element is from right hand side vector operand 2665 // 2666 // If the value selected is an undef value, explicitly specify it 2667 // with a -1 mask value. (case 1) 2668 if (match(RHS, m_Undef())) 2669 eltMask = -1; 2670 // If RHS is going to be replaced (case 3 or 4), calculate the 2671 // new mask value for the element. 2672 else if (newRHS != RHS) { 2673 eltMask = RHSMask[Mask[i]-LHSWidth]; 2674 // If the value selected is an undef value, explicitly specify it 2675 // with a -1 mask value. 2676 if (eltMask >= (int)RHSOp0Width) { 2677 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2678 "should have been check above"); 2679 eltMask = -1; 2680 } 2681 } else 2682 eltMask = Mask[i]-LHSWidth; 2683 2684 // If LHS's width is changed, shift the mask value accordingly. 2685 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2686 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2687 // If newRHS == newLHS, we want to remap any references from newRHS to 2688 // newLHS so that we can properly identify splats that may occur due to 2689 // obfuscation across the two vectors. 2690 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2691 eltMask += newLHSWidth; 2692 } 2693 2694 // Check if this could still be a splat. 2695 if (eltMask >= 0) { 2696 if (SplatElt >= 0 && SplatElt != eltMask) 2697 isSplat = false; 2698 SplatElt = eltMask; 2699 } 2700 2701 newMask.push_back(eltMask); 2702 } 2703 2704 // If the result mask is equal to one of the original shuffle masks, 2705 // or is a splat, do the replacement. 2706 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2707 if (!newRHS) 2708 newRHS = UndefValue::get(newLHS->getType()); 2709 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2710 } 2711 2712 return MadeChange ? &SVI : nullptr; 2713 } 2714