1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
257   Value *SrcVec = EI.getVectorOperand();
258   Value *Index = EI.getIndexOperand();
259   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
260                                             SQ.getWithInstruction(&EI)))
261     return replaceInstUsesWith(EI, V);
262 
263   // If extracting a specified index from the vector, see if we can recursively
264   // find a previously computed scalar that was inserted into the vector.
265   auto *IndexC = dyn_cast<ConstantInt>(Index);
266   if (IndexC) {
267     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
268 
269     // InstSimplify should handle cases where the index is invalid.
270     if (!IndexC->getValue().ule(NumElts))
271       return nullptr;
272 
273     // This instruction only demands the single element from the input vector.
274     // If the input vector has a single use, simplify it based on this use
275     // property.
276     if (SrcVec->hasOneUse() && NumElts != 1) {
277       APInt UndefElts(NumElts, 0);
278       APInt DemandedElts(NumElts, 0);
279       DemandedElts.setBit(IndexC->getZExtValue());
280       if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
281                                                 UndefElts)) {
282         EI.setOperand(0, V);
283         return &EI;
284       }
285     }
286 
287     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
288       return I;
289 
290     // If there's a vector PHI feeding a scalar use through this extractelement
291     // instruction, try to scalarize the PHI.
292     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
293       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
294         return ScalarPHI;
295   }
296 
297   BinaryOperator *BO;
298   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
299     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
300     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
301     Value *E0 = Builder.CreateExtractElement(X, Index);
302     Value *E1 = Builder.CreateExtractElement(Y, Index);
303     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
304   }
305 
306   Value *X, *Y;
307   CmpInst::Predicate Pred;
308   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
309       cheapToScalarize(SrcVec, IndexC)) {
310     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
311     Value *E0 = Builder.CreateExtractElement(X, Index);
312     Value *E1 = Builder.CreateExtractElement(Y, Index);
313     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
314   }
315 
316   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
317     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
318       // Extracting the inserted element?
319       if (IE->getOperand(2) == Index)
320         return replaceInstUsesWith(EI, IE->getOperand(1));
321       // If the inserted and extracted elements are constants, they must not
322       // be the same value, extract from the pre-inserted value instead.
323       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
324         Worklist.AddValue(SrcVec);
325         EI.setOperand(0, IE->getOperand(0));
326         return &EI;
327       }
328     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
329       // If this is extracting an element from a shufflevector, figure out where
330       // it came from and extract from the appropriate input element instead.
331       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
332         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
333         Value *Src;
334         unsigned LHSWidth =
335           SVI->getOperand(0)->getType()->getVectorNumElements();
336 
337         if (SrcIdx < 0)
338           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
339         if (SrcIdx < (int)LHSWidth)
340           Src = SVI->getOperand(0);
341         else {
342           SrcIdx -= LHSWidth;
343           Src = SVI->getOperand(1);
344         }
345         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
346         return ExtractElementInst::Create(Src,
347                                           ConstantInt::get(Int32Ty,
348                                                            SrcIdx, false));
349       }
350     } else if (auto *CI = dyn_cast<CastInst>(I)) {
351       // Canonicalize extractelement(cast) -> cast(extractelement).
352       // Bitcasts can change the number of vector elements, and they cost
353       // nothing.
354       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
355         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
356         Worklist.AddValue(EE);
357         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
358       }
359     }
360   }
361   return nullptr;
362 }
363 
364 /// If V is a shuffle of values that ONLY returns elements from either LHS or
365 /// RHS, return the shuffle mask and true. Otherwise, return false.
366 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
367                                          SmallVectorImpl<Constant*> &Mask) {
368   assert(LHS->getType() == RHS->getType() &&
369          "Invalid CollectSingleShuffleElements");
370   unsigned NumElts = V->getType()->getVectorNumElements();
371 
372   if (isa<UndefValue>(V)) {
373     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374     return true;
375   }
376 
377   if (V == LHS) {
378     for (unsigned i = 0; i != NumElts; ++i)
379       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
380     return true;
381   }
382 
383   if (V == RHS) {
384     for (unsigned i = 0; i != NumElts; ++i)
385       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
386                                       i+NumElts));
387     return true;
388   }
389 
390   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
391     // If this is an insert of an extract from some other vector, include it.
392     Value *VecOp    = IEI->getOperand(0);
393     Value *ScalarOp = IEI->getOperand(1);
394     Value *IdxOp    = IEI->getOperand(2);
395 
396     if (!isa<ConstantInt>(IdxOp))
397       return false;
398     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
399 
400     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
401       // We can handle this if the vector we are inserting into is
402       // transitively ok.
403       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
404         // If so, update the mask to reflect the inserted undef.
405         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
406         return true;
407       }
408     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
409       if (isa<ConstantInt>(EI->getOperand(1))) {
410         unsigned ExtractedIdx =
411         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
412         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
413 
414         // This must be extracting from either LHS or RHS.
415         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
416           // We can handle this if the vector we are inserting into is
417           // transitively ok.
418           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
419             // If so, update the mask to reflect the inserted value.
420             if (EI->getOperand(0) == LHS) {
421               Mask[InsertedIdx % NumElts] =
422               ConstantInt::get(Type::getInt32Ty(V->getContext()),
423                                ExtractedIdx);
424             } else {
425               assert(EI->getOperand(0) == RHS);
426               Mask[InsertedIdx % NumElts] =
427               ConstantInt::get(Type::getInt32Ty(V->getContext()),
428                                ExtractedIdx + NumLHSElts);
429             }
430             return true;
431           }
432         }
433       }
434     }
435   }
436 
437   return false;
438 }
439 
440 /// If we have insertion into a vector that is wider than the vector that we
441 /// are extracting from, try to widen the source vector to allow a single
442 /// shufflevector to replace one or more insert/extract pairs.
443 static void replaceExtractElements(InsertElementInst *InsElt,
444                                    ExtractElementInst *ExtElt,
445                                    InstCombiner &IC) {
446   VectorType *InsVecType = InsElt->getType();
447   VectorType *ExtVecType = ExtElt->getVectorOperandType();
448   unsigned NumInsElts = InsVecType->getVectorNumElements();
449   unsigned NumExtElts = ExtVecType->getVectorNumElements();
450 
451   // The inserted-to vector must be wider than the extracted-from vector.
452   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
453       NumExtElts >= NumInsElts)
454     return;
455 
456   // Create a shuffle mask to widen the extended-from vector using undefined
457   // values. The mask selects all of the values of the original vector followed
458   // by as many undefined values as needed to create a vector of the same length
459   // as the inserted-to vector.
460   SmallVector<Constant *, 16> ExtendMask;
461   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
462   for (unsigned i = 0; i < NumExtElts; ++i)
463     ExtendMask.push_back(ConstantInt::get(IntType, i));
464   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
465     ExtendMask.push_back(UndefValue::get(IntType));
466 
467   Value *ExtVecOp = ExtElt->getVectorOperand();
468   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
469   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
470                                    ? ExtVecOpInst->getParent()
471                                    : ExtElt->getParent();
472 
473   // TODO: This restriction matches the basic block check below when creating
474   // new extractelement instructions. If that limitation is removed, this one
475   // could also be removed. But for now, we just bail out to ensure that we
476   // will replace the extractelement instruction that is feeding our
477   // insertelement instruction. This allows the insertelement to then be
478   // replaced by a shufflevector. If the insertelement is not replaced, we can
479   // induce infinite looping because there's an optimization for extractelement
480   // that will delete our widening shuffle. This would trigger another attempt
481   // here to create that shuffle, and we spin forever.
482   if (InsertionBlock != InsElt->getParent())
483     return;
484 
485   // TODO: This restriction matches the check in visitInsertElementInst() and
486   // prevents an infinite loop caused by not turning the extract/insert pair
487   // into a shuffle. We really should not need either check, but we're lacking
488   // folds for shufflevectors because we're afraid to generate shuffle masks
489   // that the backend can't handle.
490   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
491     return;
492 
493   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
494                                         ConstantVector::get(ExtendMask));
495 
496   // Insert the new shuffle after the vector operand of the extract is defined
497   // (as long as it's not a PHI) or at the start of the basic block of the
498   // extract, so any subsequent extracts in the same basic block can use it.
499   // TODO: Insert before the earliest ExtractElementInst that is replaced.
500   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
501     WideVec->insertAfter(ExtVecOpInst);
502   else
503     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
504 
505   // Replace extracts from the original narrow vector with extracts from the new
506   // wide vector.
507   for (User *U : ExtVecOp->users()) {
508     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
509     if (!OldExt || OldExt->getParent() != WideVec->getParent())
510       continue;
511     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
512     NewExt->insertAfter(OldExt);
513     IC.replaceInstUsesWith(*OldExt, NewExt);
514   }
515 }
516 
517 /// We are building a shuffle to create V, which is a sequence of insertelement,
518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
519 /// not rely on the second vector source. Return a std::pair containing the
520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
521 /// parameter as required.
522 ///
523 /// Note: we intentionally don't try to fold earlier shuffles since they have
524 /// often been chosen carefully to be efficiently implementable on the target.
525 using ShuffleOps = std::pair<Value *, Value *>;
526 
527 static ShuffleOps collectShuffleElements(Value *V,
528                                          SmallVectorImpl<Constant *> &Mask,
529                                          Value *PermittedRHS,
530                                          InstCombiner &IC) {
531   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
532   unsigned NumElts = V->getType()->getVectorNumElements();
533 
534   if (isa<UndefValue>(V)) {
535     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
536     return std::make_pair(
537         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
538   }
539 
540   if (isa<ConstantAggregateZero>(V)) {
541     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
542     return std::make_pair(V, nullptr);
543   }
544 
545   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
546     // If this is an insert of an extract from some other vector, include it.
547     Value *VecOp    = IEI->getOperand(0);
548     Value *ScalarOp = IEI->getOperand(1);
549     Value *IdxOp    = IEI->getOperand(2);
550 
551     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
552       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
553         unsigned ExtractedIdx =
554           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
555         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
556 
557         // Either the extracted from or inserted into vector must be RHSVec,
558         // otherwise we'd end up with a shuffle of three inputs.
559         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
560           Value *RHS = EI->getOperand(0);
561           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
562           assert(LR.second == nullptr || LR.second == RHS);
563 
564           if (LR.first->getType() != RHS->getType()) {
565             // Although we are giving up for now, see if we can create extracts
566             // that match the inserts for another round of combining.
567             replaceExtractElements(IEI, EI, IC);
568 
569             // We tried our best, but we can't find anything compatible with RHS
570             // further up the chain. Return a trivial shuffle.
571             for (unsigned i = 0; i < NumElts; ++i)
572               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
573             return std::make_pair(V, nullptr);
574           }
575 
576           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
577           Mask[InsertedIdx % NumElts] =
578             ConstantInt::get(Type::getInt32Ty(V->getContext()),
579                              NumLHSElts+ExtractedIdx);
580           return std::make_pair(LR.first, RHS);
581         }
582 
583         if (VecOp == PermittedRHS) {
584           // We've gone as far as we can: anything on the other side of the
585           // extractelement will already have been converted into a shuffle.
586           unsigned NumLHSElts =
587               EI->getOperand(0)->getType()->getVectorNumElements();
588           for (unsigned i = 0; i != NumElts; ++i)
589             Mask.push_back(ConstantInt::get(
590                 Type::getInt32Ty(V->getContext()),
591                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
592           return std::make_pair(EI->getOperand(0), PermittedRHS);
593         }
594 
595         // If this insertelement is a chain that comes from exactly these two
596         // vectors, return the vector and the effective shuffle.
597         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
598             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
599                                          Mask))
600           return std::make_pair(EI->getOperand(0), PermittedRHS);
601       }
602     }
603   }
604 
605   // Otherwise, we can't do anything fancy. Return an identity vector.
606   for (unsigned i = 0; i != NumElts; ++i)
607     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
608   return std::make_pair(V, nullptr);
609 }
610 
611 /// Try to find redundant insertvalue instructions, like the following ones:
612 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
613 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
614 /// Here the second instruction inserts values at the same indices, as the
615 /// first one, making the first one redundant.
616 /// It should be transformed to:
617 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
618 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
619   bool IsRedundant = false;
620   ArrayRef<unsigned int> FirstIndices = I.getIndices();
621 
622   // If there is a chain of insertvalue instructions (each of them except the
623   // last one has only one use and it's another insertvalue insn from this
624   // chain), check if any of the 'children' uses the same indices as the first
625   // instruction. In this case, the first one is redundant.
626   Value *V = &I;
627   unsigned Depth = 0;
628   while (V->hasOneUse() && Depth < 10) {
629     User *U = V->user_back();
630     auto UserInsInst = dyn_cast<InsertValueInst>(U);
631     if (!UserInsInst || U->getOperand(0) != V)
632       break;
633     if (UserInsInst->getIndices() == FirstIndices) {
634       IsRedundant = true;
635       break;
636     }
637     V = UserInsInst;
638     Depth++;
639   }
640 
641   if (IsRedundant)
642     return replaceInstUsesWith(I, I.getOperand(0));
643   return nullptr;
644 }
645 
646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
647   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
648   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
649 
650   // A vector select does not change the size of the operands.
651   if (MaskSize != VecSize)
652     return false;
653 
654   // Each mask element must be undefined or choose a vector element from one of
655   // the source operands without crossing vector lanes.
656   for (int i = 0; i != MaskSize; ++i) {
657     int Elt = Shuf.getMaskValue(i);
658     if (Elt != -1 && Elt != i && Elt != i + VecSize)
659       return false;
660   }
661 
662   return true;
663 }
664 
665 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
666 // splat. That is:
667 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
668 // shufflevector(insertelt(X, %k, 0), undef, zero)
669 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
670   // We are interested in the last insert in a chain. So, if this insert
671   // has a single user, and that user is an insert, bail.
672   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
673     return nullptr;
674 
675   VectorType *VT = cast<VectorType>(InsElt.getType());
676   int NumElements = VT->getNumElements();
677 
678   // Do not try to do this for a one-element vector, since that's a nop,
679   // and will cause an inf-loop.
680   if (NumElements == 1)
681     return nullptr;
682 
683   Value *SplatVal = InsElt.getOperand(1);
684   InsertElementInst *CurrIE = &InsElt;
685   SmallVector<bool, 16> ElementPresent(NumElements, false);
686   InsertElementInst *FirstIE = nullptr;
687 
688   // Walk the chain backwards, keeping track of which indices we inserted into,
689   // until we hit something that isn't an insert of the splatted value.
690   while (CurrIE) {
691     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
692     if (!Idx || CurrIE->getOperand(1) != SplatVal)
693       return nullptr;
694 
695     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
696     // Check none of the intermediate steps have any additional uses, except
697     // for the root insertelement instruction, which can be re-used, if it
698     // inserts at position 0.
699     if (CurrIE != &InsElt &&
700         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
701       return nullptr;
702 
703     ElementPresent[Idx->getZExtValue()] = true;
704     FirstIE = CurrIE;
705     CurrIE = NextIE;
706   }
707 
708   // Make sure we've seen an insert into every element.
709   if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
710     return nullptr;
711 
712   // All right, create the insert + shuffle.
713   Instruction *InsertFirst;
714   if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
715     InsertFirst = FirstIE;
716   else
717     InsertFirst = InsertElementInst::Create(
718         UndefValue::get(VT), SplatVal,
719         ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0),
720         "", &InsElt);
721 
722   Constant *ZeroMask = ConstantAggregateZero::get(
723       VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
724 
725   return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
726 }
727 
728 /// If we have an insertelement instruction feeding into another insertelement
729 /// and the 2nd is inserting a constant into the vector, canonicalize that
730 /// constant insertion before the insertion of a variable:
731 ///
732 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
733 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
734 ///
735 /// This has the potential of eliminating the 2nd insertelement instruction
736 /// via constant folding of the scalar constant into a vector constant.
737 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
738                                      InstCombiner::BuilderTy &Builder) {
739   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
740   if (!InsElt1 || !InsElt1->hasOneUse())
741     return nullptr;
742 
743   Value *X, *Y;
744   Constant *ScalarC;
745   ConstantInt *IdxC1, *IdxC2;
746   if (match(InsElt1->getOperand(0), m_Value(X)) &&
747       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
748       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
749       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
750       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
751     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
752     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
753   }
754 
755   return nullptr;
756 }
757 
758 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
759 /// --> shufflevector X, CVec', Mask'
760 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
761   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
762   // Bail out if the parent has more than one use. In that case, we'd be
763   // replacing the insertelt with a shuffle, and that's not a clear win.
764   if (!Inst || !Inst->hasOneUse())
765     return nullptr;
766   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
767     // The shuffle must have a constant vector operand. The insertelt must have
768     // a constant scalar being inserted at a constant position in the vector.
769     Constant *ShufConstVec, *InsEltScalar;
770     uint64_t InsEltIndex;
771     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
772         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
773         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
774       return nullptr;
775 
776     // Adding an element to an arbitrary shuffle could be expensive, but a
777     // shuffle that selects elements from vectors without crossing lanes is
778     // assumed cheap.
779     // If we're just adding a constant into that shuffle, it will still be
780     // cheap.
781     if (!isShuffleEquivalentToSelect(*Shuf))
782       return nullptr;
783 
784     // From the above 'select' check, we know that the mask has the same number
785     // of elements as the vector input operands. We also know that each constant
786     // input element is used in its lane and can not be used more than once by
787     // the shuffle. Therefore, replace the constant in the shuffle's constant
788     // vector with the insertelt constant. Replace the constant in the shuffle's
789     // mask vector with the insertelt index plus the length of the vector
790     // (because the constant vector operand of a shuffle is always the 2nd
791     // operand).
792     Constant *Mask = Shuf->getMask();
793     unsigned NumElts = Mask->getType()->getVectorNumElements();
794     SmallVector<Constant *, 16> NewShufElts(NumElts);
795     SmallVector<Constant *, 16> NewMaskElts(NumElts);
796     for (unsigned I = 0; I != NumElts; ++I) {
797       if (I == InsEltIndex) {
798         NewShufElts[I] = InsEltScalar;
799         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
800         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
801       } else {
802         // Copy over the existing values.
803         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
804         NewMaskElts[I] = Mask->getAggregateElement(I);
805       }
806     }
807 
808     // Create new operands for a shuffle that includes the constant of the
809     // original insertelt. The old shuffle will be dead now.
810     return new ShuffleVectorInst(Shuf->getOperand(0),
811                                  ConstantVector::get(NewShufElts),
812                                  ConstantVector::get(NewMaskElts));
813   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
814     // Transform sequences of insertelements ops with constant data/indexes into
815     // a single shuffle op.
816     unsigned NumElts = InsElt.getType()->getNumElements();
817 
818     uint64_t InsertIdx[2];
819     Constant *Val[2];
820     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
821         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
822         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
823         !match(IEI->getOperand(1), m_Constant(Val[1])))
824       return nullptr;
825     SmallVector<Constant *, 16> Values(NumElts);
826     SmallVector<Constant *, 16> Mask(NumElts);
827     auto ValI = std::begin(Val);
828     // Generate new constant vector and mask.
829     // We have 2 values/masks from the insertelements instructions. Insert them
830     // into new value/mask vectors.
831     for (uint64_t I : InsertIdx) {
832       if (!Values[I]) {
833         assert(!Mask[I]);
834         Values[I] = *ValI;
835         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
836                                    NumElts + I);
837       }
838       ++ValI;
839     }
840     // Remaining values are filled with 'undef' values.
841     for (unsigned I = 0; I < NumElts; ++I) {
842       if (!Values[I]) {
843         assert(!Mask[I]);
844         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
845         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
846       }
847     }
848     // Create new operands for a shuffle that includes the constant of the
849     // original insertelt.
850     return new ShuffleVectorInst(IEI->getOperand(0),
851                                  ConstantVector::get(Values),
852                                  ConstantVector::get(Mask));
853   }
854   return nullptr;
855 }
856 
857 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
858   Value *VecOp    = IE.getOperand(0);
859   Value *ScalarOp = IE.getOperand(1);
860   Value *IdxOp    = IE.getOperand(2);
861 
862   if (auto *V = SimplifyInsertElementInst(
863           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
864     return replaceInstUsesWith(IE, V);
865 
866   // Inserting an undef or into an undefined place, remove this.
867   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
868     replaceInstUsesWith(IE, VecOp);
869 
870   // If the vector and scalar are both bitcast from the same element type, do
871   // the insert in that source type followed by bitcast.
872   Value *VecSrc, *ScalarSrc;
873   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
874       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
875       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
876       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
877       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
878     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
879     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
880     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
881     return new BitCastInst(NewInsElt, IE.getType());
882   }
883 
884   // If the inserted element was extracted from some other vector and both
885   // indexes are constant, try to turn this into a shuffle.
886   uint64_t InsertedIdx, ExtractedIdx;
887   Value *ExtVecOp;
888   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
889       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
890                                        m_ConstantInt(ExtractedIdx)))) {
891     unsigned NumInsertVectorElts = IE.getType()->getNumElements();
892     unsigned NumExtractVectorElts = ExtVecOp->getType()->getVectorNumElements();
893     if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
894       return replaceInstUsesWith(IE, VecOp);
895 
896     if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
897       return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
898 
899     // If we are extracting a value from a vector, then inserting it right
900     // back into the same place, just use the input vector.
901     if (ExtVecOp == VecOp && ExtractedIdx == InsertedIdx)
902       return replaceInstUsesWith(IE, VecOp);
903 
904     // TODO: Looking at the user(s) to determine if this insert is a
905     // fold-to-shuffle opportunity does not match the usual instcombine
906     // constraints. We should decide if the transform is worthy based only
907     // on this instruction and its operands, but that may not work currently.
908     //
909     // Here, we are trying to avoid creating shuffles before reaching
910     // the end of a chain of extract-insert pairs. This is complicated because
911     // we do not generally form arbitrary shuffle masks in instcombine
912     // (because those may codegen poorly), but collectShuffleElements() does
913     // exactly that.
914     //
915     // The rules for determining what is an acceptable target-independent
916     // shuffle mask are fuzzy because they evolve based on the backend's
917     // capabilities and real-world impact.
918     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
919       if (!Insert.hasOneUse())
920         return true;
921       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
922       if (!InsertUser)
923         return true;
924       return false;
925     };
926 
927     // Try to form a shuffle from a chain of extract-insert ops.
928     if (isShuffleRootCandidate(IE)) {
929       SmallVector<Constant*, 16> Mask;
930       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
931 
932       // The proposed shuffle may be trivial, in which case we shouldn't
933       // perform the combine.
934       if (LR.first != &IE && LR.second != &IE) {
935         // We now have a shuffle of LHS, RHS, Mask.
936         if (LR.second == nullptr)
937           LR.second = UndefValue::get(LR.first->getType());
938         return new ShuffleVectorInst(LR.first, LR.second,
939                                      ConstantVector::get(Mask));
940       }
941     }
942   }
943 
944   unsigned VWidth = VecOp->getType()->getVectorNumElements();
945   APInt UndefElts(VWidth, 0);
946   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
947   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
948     if (V != &IE)
949       return replaceInstUsesWith(IE, V);
950     return &IE;
951   }
952 
953   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
954     return Shuf;
955 
956   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
957     return NewInsElt;
958 
959   // Turn a sequence of inserts that broadcasts a scalar into a single
960   // insert + shufflevector.
961   if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
962     return Broadcast;
963 
964   return nullptr;
965 }
966 
967 /// Return true if we can evaluate the specified expression tree if the vector
968 /// elements were shuffled in a different order.
969 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
970                                 unsigned Depth = 5) {
971   // We can always reorder the elements of a constant.
972   if (isa<Constant>(V))
973     return true;
974 
975   // We won't reorder vector arguments. No IPO here.
976   Instruction *I = dyn_cast<Instruction>(V);
977   if (!I) return false;
978 
979   // Two users may expect different orders of the elements. Don't try it.
980   if (!I->hasOneUse())
981     return false;
982 
983   if (Depth == 0) return false;
984 
985   switch (I->getOpcode()) {
986     case Instruction::Add:
987     case Instruction::FAdd:
988     case Instruction::Sub:
989     case Instruction::FSub:
990     case Instruction::Mul:
991     case Instruction::FMul:
992     case Instruction::UDiv:
993     case Instruction::SDiv:
994     case Instruction::FDiv:
995     case Instruction::URem:
996     case Instruction::SRem:
997     case Instruction::FRem:
998     case Instruction::Shl:
999     case Instruction::LShr:
1000     case Instruction::AShr:
1001     case Instruction::And:
1002     case Instruction::Or:
1003     case Instruction::Xor:
1004     case Instruction::ICmp:
1005     case Instruction::FCmp:
1006     case Instruction::Trunc:
1007     case Instruction::ZExt:
1008     case Instruction::SExt:
1009     case Instruction::FPToUI:
1010     case Instruction::FPToSI:
1011     case Instruction::UIToFP:
1012     case Instruction::SIToFP:
1013     case Instruction::FPTrunc:
1014     case Instruction::FPExt:
1015     case Instruction::GetElementPtr: {
1016       // Bail out if we would create longer vector ops. We could allow creating
1017       // longer vector ops, but that may result in more expensive codegen. We
1018       // would also need to limit the transform to avoid undefined behavior for
1019       // integer div/rem.
1020       Type *ITy = I->getType();
1021       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1022         return false;
1023       for (Value *Operand : I->operands()) {
1024         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1025           return false;
1026       }
1027       return true;
1028     }
1029     case Instruction::InsertElement: {
1030       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1031       if (!CI) return false;
1032       int ElementNumber = CI->getLimitedValue();
1033 
1034       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1035       // can't put an element into multiple indices.
1036       bool SeenOnce = false;
1037       for (int i = 0, e = Mask.size(); i != e; ++i) {
1038         if (Mask[i] == ElementNumber) {
1039           if (SeenOnce)
1040             return false;
1041           SeenOnce = true;
1042         }
1043       }
1044       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1045     }
1046   }
1047   return false;
1048 }
1049 
1050 /// Rebuild a new instruction just like 'I' but with the new operands given.
1051 /// In the event of type mismatch, the type of the operands is correct.
1052 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1053   // We don't want to use the IRBuilder here because we want the replacement
1054   // instructions to appear next to 'I', not the builder's insertion point.
1055   switch (I->getOpcode()) {
1056     case Instruction::Add:
1057     case Instruction::FAdd:
1058     case Instruction::Sub:
1059     case Instruction::FSub:
1060     case Instruction::Mul:
1061     case Instruction::FMul:
1062     case Instruction::UDiv:
1063     case Instruction::SDiv:
1064     case Instruction::FDiv:
1065     case Instruction::URem:
1066     case Instruction::SRem:
1067     case Instruction::FRem:
1068     case Instruction::Shl:
1069     case Instruction::LShr:
1070     case Instruction::AShr:
1071     case Instruction::And:
1072     case Instruction::Or:
1073     case Instruction::Xor: {
1074       BinaryOperator *BO = cast<BinaryOperator>(I);
1075       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1076       BinaryOperator *New =
1077           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1078                                  NewOps[0], NewOps[1], "", BO);
1079       if (isa<OverflowingBinaryOperator>(BO)) {
1080         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1081         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1082       }
1083       if (isa<PossiblyExactOperator>(BO)) {
1084         New->setIsExact(BO->isExact());
1085       }
1086       if (isa<FPMathOperator>(BO))
1087         New->copyFastMathFlags(I);
1088       return New;
1089     }
1090     case Instruction::ICmp:
1091       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1092       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1093                           NewOps[0], NewOps[1]);
1094     case Instruction::FCmp:
1095       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1096       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1097                           NewOps[0], NewOps[1]);
1098     case Instruction::Trunc:
1099     case Instruction::ZExt:
1100     case Instruction::SExt:
1101     case Instruction::FPToUI:
1102     case Instruction::FPToSI:
1103     case Instruction::UIToFP:
1104     case Instruction::SIToFP:
1105     case Instruction::FPTrunc:
1106     case Instruction::FPExt: {
1107       // It's possible that the mask has a different number of elements from
1108       // the original cast. We recompute the destination type to match the mask.
1109       Type *DestTy =
1110           VectorType::get(I->getType()->getScalarType(),
1111                           NewOps[0]->getType()->getVectorNumElements());
1112       assert(NewOps.size() == 1 && "cast with #ops != 1");
1113       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1114                               "", I);
1115     }
1116     case Instruction::GetElementPtr: {
1117       Value *Ptr = NewOps[0];
1118       ArrayRef<Value*> Idx = NewOps.slice(1);
1119       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1120           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1121       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1122       return GEP;
1123     }
1124   }
1125   llvm_unreachable("failed to rebuild vector instructions");
1126 }
1127 
1128 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1129   // Mask.size() does not need to be equal to the number of vector elements.
1130 
1131   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1132   Type *EltTy = V->getType()->getScalarType();
1133   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1134   if (isa<UndefValue>(V))
1135     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1136 
1137   if (isa<ConstantAggregateZero>(V))
1138     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1139 
1140   if (Constant *C = dyn_cast<Constant>(V)) {
1141     SmallVector<Constant *, 16> MaskValues;
1142     for (int i = 0, e = Mask.size(); i != e; ++i) {
1143       if (Mask[i] == -1)
1144         MaskValues.push_back(UndefValue::get(I32Ty));
1145       else
1146         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1147     }
1148     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1149                                           ConstantVector::get(MaskValues));
1150   }
1151 
1152   Instruction *I = cast<Instruction>(V);
1153   switch (I->getOpcode()) {
1154     case Instruction::Add:
1155     case Instruction::FAdd:
1156     case Instruction::Sub:
1157     case Instruction::FSub:
1158     case Instruction::Mul:
1159     case Instruction::FMul:
1160     case Instruction::UDiv:
1161     case Instruction::SDiv:
1162     case Instruction::FDiv:
1163     case Instruction::URem:
1164     case Instruction::SRem:
1165     case Instruction::FRem:
1166     case Instruction::Shl:
1167     case Instruction::LShr:
1168     case Instruction::AShr:
1169     case Instruction::And:
1170     case Instruction::Or:
1171     case Instruction::Xor:
1172     case Instruction::ICmp:
1173     case Instruction::FCmp:
1174     case Instruction::Trunc:
1175     case Instruction::ZExt:
1176     case Instruction::SExt:
1177     case Instruction::FPToUI:
1178     case Instruction::FPToSI:
1179     case Instruction::UIToFP:
1180     case Instruction::SIToFP:
1181     case Instruction::FPTrunc:
1182     case Instruction::FPExt:
1183     case Instruction::Select:
1184     case Instruction::GetElementPtr: {
1185       SmallVector<Value*, 8> NewOps;
1186       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1187       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1188         Value *V;
1189         // Recursively call evaluateInDifferentElementOrder on vector arguments
1190         // as well. E.g. GetElementPtr may have scalar operands even if the
1191         // return value is a vector, so we need to examine the operand type.
1192         if (I->getOperand(i)->getType()->isVectorTy())
1193           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1194         else
1195           V = I->getOperand(i);
1196         NewOps.push_back(V);
1197         NeedsRebuild |= (V != I->getOperand(i));
1198       }
1199       if (NeedsRebuild) {
1200         return buildNew(I, NewOps);
1201       }
1202       return I;
1203     }
1204     case Instruction::InsertElement: {
1205       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1206 
1207       // The insertelement was inserting at Element. Figure out which element
1208       // that becomes after shuffling. The answer is guaranteed to be unique
1209       // by CanEvaluateShuffled.
1210       bool Found = false;
1211       int Index = 0;
1212       for (int e = Mask.size(); Index != e; ++Index) {
1213         if (Mask[Index] == Element) {
1214           Found = true;
1215           break;
1216         }
1217       }
1218 
1219       // If element is not in Mask, no need to handle the operand 1 (element to
1220       // be inserted). Just evaluate values in operand 0 according to Mask.
1221       if (!Found)
1222         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1223 
1224       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1225       return InsertElementInst::Create(V, I->getOperand(1),
1226                                        ConstantInt::get(I32Ty, Index), "", I);
1227     }
1228   }
1229   llvm_unreachable("failed to reorder elements of vector instruction!");
1230 }
1231 
1232 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1233                                   bool &isLHSID, bool &isRHSID) {
1234   isLHSID = isRHSID = true;
1235 
1236   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1237     if (Mask[i] < 0) continue;  // Ignore undef values.
1238     // Is this an identity shuffle of the LHS value?
1239     isLHSID &= (Mask[i] == (int)i);
1240 
1241     // Is this an identity shuffle of the RHS value?
1242     isRHSID &= (Mask[i]-e == i);
1243   }
1244 }
1245 
1246 // Returns true if the shuffle is extracting a contiguous range of values from
1247 // LHS, for example:
1248 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1249 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1250 //   Shuffles to:  |EE|FF|GG|HH|
1251 //                 +--+--+--+--+
1252 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1253                                        SmallVector<int, 16> &Mask) {
1254   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1255   unsigned MaskElems = Mask.size();
1256   unsigned BegIdx = Mask.front();
1257   unsigned EndIdx = Mask.back();
1258   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1259     return false;
1260   for (unsigned I = 0; I != MaskElems; ++I)
1261     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1262       return false;
1263   return true;
1264 }
1265 
1266 /// These are the ingredients in an alternate form binary operator as described
1267 /// below.
1268 struct BinopElts {
1269   BinaryOperator::BinaryOps Opcode;
1270   Value *Op0;
1271   Value *Op1;
1272   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1273             Value *V0 = nullptr, Value *V1 = nullptr) :
1274       Opcode(Opc), Op0(V0), Op1(V1) {}
1275   operator bool() const { return Opcode != 0; }
1276 };
1277 
1278 /// Binops may be transformed into binops with different opcodes and operands.
1279 /// Reverse the usual canonicalization to enable folds with the non-canonical
1280 /// form of the binop. If a transform is possible, return the elements of the
1281 /// new binop. If not, return invalid elements.
1282 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1283   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1284   Type *Ty = BO->getType();
1285   switch (BO->getOpcode()) {
1286     case Instruction::Shl: {
1287       // shl X, C --> mul X, (1 << C)
1288       Constant *C;
1289       if (match(BO1, m_Constant(C))) {
1290         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1291         return { Instruction::Mul, BO0, ShlOne };
1292       }
1293       break;
1294     }
1295     case Instruction::Or: {
1296       // or X, C --> add X, C (when X and C have no common bits set)
1297       const APInt *C;
1298       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1299         return { Instruction::Add, BO0, BO1 };
1300       break;
1301     }
1302     default:
1303       break;
1304   }
1305   return {};
1306 }
1307 
1308 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1309   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1310 
1311   // Are we shuffling together some value and that same value after it has been
1312   // modified by a binop with a constant?
1313   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1314   Constant *C;
1315   bool Op0IsBinop;
1316   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1317     Op0IsBinop = true;
1318   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1319     Op0IsBinop = false;
1320   else
1321     return nullptr;
1322 
1323   // The identity constant for a binop leaves a variable operand unchanged. For
1324   // a vector, this is a splat of something like 0, -1, or 1.
1325   // If there's no identity constant for this binop, we're done.
1326   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1327   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1328   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1329   if (!IdC)
1330     return nullptr;
1331 
1332   // Shuffle identity constants into the lanes that return the original value.
1333   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1334   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1335   // The existing binop constant vector remains in the same operand position.
1336   Constant *Mask = Shuf.getMask();
1337   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1338                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1339 
1340   bool MightCreatePoisonOrUB =
1341       Mask->containsUndefElement() &&
1342       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1343   if (MightCreatePoisonOrUB)
1344     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1345 
1346   // shuf (bop X, C), X, M --> bop X, C'
1347   // shuf X, (bop X, C), M --> bop X, C'
1348   Value *X = Op0IsBinop ? Op1 : Op0;
1349   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1350   NewBO->copyIRFlags(BO);
1351 
1352   // An undef shuffle mask element may propagate as an undef constant element in
1353   // the new binop. That would produce poison where the original code might not.
1354   // If we already made a safe constant, then there's no danger.
1355   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1356     NewBO->dropPoisonGeneratingFlags();
1357   return NewBO;
1358 }
1359 
1360 /// Try to fold shuffles that are the equivalent of a vector select.
1361 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1362                                       InstCombiner::BuilderTy &Builder,
1363                                       const DataLayout &DL) {
1364   if (!Shuf.isSelect())
1365     return nullptr;
1366 
1367   // Canonicalize to choose from operand 0 first.
1368   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1369   if (Shuf.getMaskValue(0) >= (int)NumElts) {
1370     // TODO: Can we assert that both operands of a shuffle-select are not undef
1371     // (otherwise, it would have been folded by instsimplify?
1372     Shuf.commute();
1373     return &Shuf;
1374   }
1375 
1376   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1377     return I;
1378 
1379   BinaryOperator *B0, *B1;
1380   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1381       !match(Shuf.getOperand(1), m_BinOp(B1)))
1382     return nullptr;
1383 
1384   Value *X, *Y;
1385   Constant *C0, *C1;
1386   bool ConstantsAreOp1;
1387   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1388       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1389     ConstantsAreOp1 = true;
1390   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1391            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1392     ConstantsAreOp1 = false;
1393   else
1394     return nullptr;
1395 
1396   // We need matching binops to fold the lanes together.
1397   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1398   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1399   bool DropNSW = false;
1400   if (ConstantsAreOp1 && Opc0 != Opc1) {
1401     // TODO: We drop "nsw" if shift is converted into multiply because it may
1402     // not be correct when the shift amount is BitWidth - 1. We could examine
1403     // each vector element to determine if it is safe to keep that flag.
1404     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1405       DropNSW = true;
1406     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1407       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1408       Opc0 = AltB0.Opcode;
1409       C0 = cast<Constant>(AltB0.Op1);
1410     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1411       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1412       Opc1 = AltB1.Opcode;
1413       C1 = cast<Constant>(AltB1.Op1);
1414     }
1415   }
1416 
1417   if (Opc0 != Opc1)
1418     return nullptr;
1419 
1420   // The opcodes must be the same. Use a new name to make that clear.
1421   BinaryOperator::BinaryOps BOpc = Opc0;
1422 
1423   // Select the constant elements needed for the single binop.
1424   Constant *Mask = Shuf.getMask();
1425   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1426 
1427   // We are moving a binop after a shuffle. When a shuffle has an undefined
1428   // mask element, the result is undefined, but it is not poison or undefined
1429   // behavior. That is not necessarily true for div/rem/shift.
1430   bool MightCreatePoisonOrUB =
1431       Mask->containsUndefElement() &&
1432       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1433   if (MightCreatePoisonOrUB)
1434     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1435 
1436   Value *V;
1437   if (X == Y) {
1438     // Remove a binop and the shuffle by rearranging the constant:
1439     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1440     // shuffle (op C0, V), (op C1, V), M --> op C', V
1441     V = X;
1442   } else {
1443     // If there are 2 different variable operands, we must create a new shuffle
1444     // (select) first, so check uses to ensure that we don't end up with more
1445     // instructions than we started with.
1446     if (!B0->hasOneUse() && !B1->hasOneUse())
1447       return nullptr;
1448 
1449     // If we use the original shuffle mask and op1 is *variable*, we would be
1450     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1451     // poison. We do not have to guard against UB when *constants* are op1
1452     // because safe constants guarantee that we do not overflow sdiv/srem (and
1453     // there's no danger for other opcodes).
1454     // TODO: To allow this case, create a new shuffle mask with no undefs.
1455     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1456       return nullptr;
1457 
1458     // Note: In general, we do not create new shuffles in InstCombine because we
1459     // do not know if a target can lower an arbitrary shuffle optimally. In this
1460     // case, the shuffle uses the existing mask, so there is no additional risk.
1461 
1462     // Select the variable vectors first, then perform the binop:
1463     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1464     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1465     V = Builder.CreateShuffleVector(X, Y, Mask);
1466   }
1467 
1468   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1469                                          BinaryOperator::Create(BOpc, NewC, V);
1470 
1471   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1472   // 1. If we changed an opcode, poison conditions might have changed.
1473   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1474   //    where the original code did not. But if we already made a safe constant,
1475   //    then there's no danger.
1476   NewBO->copyIRFlags(B0);
1477   NewBO->andIRFlags(B1);
1478   if (DropNSW)
1479     NewBO->setHasNoSignedWrap(false);
1480   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1481     NewBO->dropPoisonGeneratingFlags();
1482   return NewBO;
1483 }
1484 
1485 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1486 /// narrowing (concatenating with undef and extracting back to the original
1487 /// length). This allows replacing the wide select with a narrow select.
1488 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1489                                        InstCombiner::BuilderTy &Builder) {
1490   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1491   // of the 1st vector operand of a shuffle.
1492   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1493     return nullptr;
1494 
1495   // The vector being shuffled must be a vector select that we can eliminate.
1496   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1497   Value *Cond, *X, *Y;
1498   if (!match(Shuf.getOperand(0),
1499              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1500     return nullptr;
1501 
1502   // We need a narrow condition value. It must be extended with undef elements
1503   // and have the same number of elements as this shuffle.
1504   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1505   Value *NarrowCond;
1506   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1507                                             m_Constant()))) ||
1508       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1509       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1510     return nullptr;
1511 
1512   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1513   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1514   Value *Undef = UndefValue::get(X->getType());
1515   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1516   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1517   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1518 }
1519 
1520 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1521 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1522   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1523   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1524     return nullptr;
1525 
1526   Value *X, *Y;
1527   Constant *Mask;
1528   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1529     return nullptr;
1530 
1531   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1532   // then combining may result in worse codegen.
1533   if (!Op0->hasOneUse())
1534     return nullptr;
1535 
1536   // We are extracting a subvector from a shuffle. Remove excess elements from
1537   // the 1st shuffle mask to eliminate the extract.
1538   //
1539   // This transform is conservatively limited to identity extracts because we do
1540   // not allow arbitrary shuffle mask creation as a target-independent transform
1541   // (because we can't guarantee that will lower efficiently).
1542   //
1543   // If the extracting shuffle has an undef mask element, it transfers to the
1544   // new shuffle mask. Otherwise, copy the original mask element. Example:
1545   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1546   //   shuf X, Y, <C0, undef, C2, undef>
1547   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1548   SmallVector<Constant *, 16> NewMask(NumElts);
1549   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1550          "Identity with extract must have less elements than its inputs");
1551 
1552   for (unsigned i = 0; i != NumElts; ++i) {
1553     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1554     Constant *MaskElt = Mask->getAggregateElement(i);
1555     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1556   }
1557   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1558 }
1559 
1560 /// Try to replace a shuffle with an insertelement.
1561 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1562   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1563   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1564 
1565   // The shuffle must not change vector sizes.
1566   // TODO: This restriction could be removed if the insert has only one use
1567   //       (because the transform would require a new length-changing shuffle).
1568   int NumElts = Mask.size();
1569   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1570     return nullptr;
1571 
1572   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1573   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1574     // We need an insertelement with a constant index.
1575     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1576                                    m_ConstantInt(IndexC))))
1577       return false;
1578 
1579     // Test the shuffle mask to see if it splices the inserted scalar into the
1580     // operand 1 vector of the shuffle.
1581     int NewInsIndex = -1;
1582     for (int i = 0; i != NumElts; ++i) {
1583       // Ignore undef mask elements.
1584       if (Mask[i] == -1)
1585         continue;
1586 
1587       // The shuffle takes elements of operand 1 without lane changes.
1588       if (Mask[i] == NumElts + i)
1589         continue;
1590 
1591       // The shuffle must choose the inserted scalar exactly once.
1592       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1593         return false;
1594 
1595       // The shuffle is placing the inserted scalar into element i.
1596       NewInsIndex = i;
1597     }
1598 
1599     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1600 
1601     // Index is updated to the potentially translated insertion lane.
1602     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1603     return true;
1604   };
1605 
1606   // If the shuffle is unnecessary, insert the scalar operand directly into
1607   // operand 1 of the shuffle. Example:
1608   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1609   Value *Scalar;
1610   ConstantInt *IndexC;
1611   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1612     return InsertElementInst::Create(V1, Scalar, IndexC);
1613 
1614   // Try again after commuting shuffle. Example:
1615   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1616   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1617   std::swap(V0, V1);
1618   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1619   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1620     return InsertElementInst::Create(V1, Scalar, IndexC);
1621 
1622   return nullptr;
1623 }
1624 
1625 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1626   Value *LHS = SVI.getOperand(0);
1627   Value *RHS = SVI.getOperand(1);
1628   if (auto *V = SimplifyShuffleVectorInst(
1629           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1630     return replaceInstUsesWith(SVI, V);
1631 
1632   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1633   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1634   unsigned VWidth = SVI.getType()->getVectorNumElements();
1635   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1636   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1637   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1638   if (LHS == RHS || isa<UndefValue>(LHS)) {
1639     // Remap any references to RHS to use LHS.
1640     SmallVector<Constant*, 16> Elts;
1641     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1642       if (Mask[i] < 0) {
1643         Elts.push_back(UndefValue::get(Int32Ty));
1644         continue;
1645       }
1646 
1647       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1648           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1649         Mask[i] = -1;     // Turn into undef.
1650         Elts.push_back(UndefValue::get(Int32Ty));
1651       } else {
1652         Mask[i] = Mask[i] % e;  // Force to LHS.
1653         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1654       }
1655     }
1656     SVI.setOperand(0, SVI.getOperand(1));
1657     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1658     SVI.setOperand(2, ConstantVector::get(Elts));
1659     return &SVI;
1660   }
1661 
1662   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1663     return I;
1664 
1665   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1666     return I;
1667 
1668   APInt UndefElts(VWidth, 0);
1669   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1670   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1671     if (V != &SVI)
1672       return replaceInstUsesWith(SVI, V);
1673     return &SVI;
1674   }
1675 
1676   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1677     return I;
1678 
1679   // This transform has the potential to lose undef knowledge, so it is
1680   // intentionally placed after SimplifyDemandedVectorElts().
1681   if (Instruction *I = foldShuffleWithInsert(SVI))
1682     return I;
1683 
1684   if (VWidth == LHSWidth) {
1685     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1686     bool isLHSID, isRHSID;
1687     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1688 
1689     // Eliminate identity shuffles.
1690     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1691     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1692   }
1693 
1694   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1695     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1696     return replaceInstUsesWith(SVI, V);
1697   }
1698 
1699   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1700   // a non-vector type. We can instead bitcast the original vector followed by
1701   // an extract of the desired element:
1702   //
1703   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1704   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1705   //   %1 = bitcast <4 x i8> %sroa to i32
1706   // Becomes:
1707   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1708   //   %ext = extractelement <4 x i32> %bc, i32 0
1709   //
1710   // If the shuffle is extracting a contiguous range of values from the input
1711   // vector then each use which is a bitcast of the extracted size can be
1712   // replaced. This will work if the vector types are compatible, and the begin
1713   // index is aligned to a value in the casted vector type. If the begin index
1714   // isn't aligned then we can shuffle the original vector (keeping the same
1715   // vector type) before extracting.
1716   //
1717   // This code will bail out if the target type is fundamentally incompatible
1718   // with vectors of the source type.
1719   //
1720   // Example of <16 x i8>, target type i32:
1721   // Index range [4,8):         v-----------v Will work.
1722   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1723   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1724   //     <4 x i32>: |           |           |           |           |
1725   //                +-----------+-----------+-----------+-----------+
1726   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1727   // Target type i40:           ^--------------^ Won't work, bail.
1728   bool MadeChange = false;
1729   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1730     Value *V = LHS;
1731     unsigned MaskElems = Mask.size();
1732     VectorType *SrcTy = cast<VectorType>(V->getType());
1733     unsigned VecBitWidth = SrcTy->getBitWidth();
1734     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1735     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1736     unsigned SrcNumElems = SrcTy->getNumElements();
1737     SmallVector<BitCastInst *, 8> BCs;
1738     DenseMap<Type *, Value *> NewBCs;
1739     for (User *U : SVI.users())
1740       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1741         if (!BC->use_empty())
1742           // Only visit bitcasts that weren't previously handled.
1743           BCs.push_back(BC);
1744     for (BitCastInst *BC : BCs) {
1745       unsigned BegIdx = Mask.front();
1746       Type *TgtTy = BC->getDestTy();
1747       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1748       if (!TgtElemBitWidth)
1749         continue;
1750       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1751       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1752       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1753       if (!VecBitWidthsEqual)
1754         continue;
1755       if (!VectorType::isValidElementType(TgtTy))
1756         continue;
1757       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1758       if (!BegIsAligned) {
1759         // Shuffle the input so [0,NumElements) contains the output, and
1760         // [NumElems,SrcNumElems) is undef.
1761         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1762                                                 UndefValue::get(Int32Ty));
1763         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1764           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1765         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1766                                         ConstantVector::get(ShuffleMask),
1767                                         SVI.getName() + ".extract");
1768         BegIdx = 0;
1769       }
1770       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1771       assert(SrcElemsPerTgtElem);
1772       BegIdx /= SrcElemsPerTgtElem;
1773       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1774       auto *NewBC =
1775           BCAlreadyExists
1776               ? NewBCs[CastSrcTy]
1777               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1778       if (!BCAlreadyExists)
1779         NewBCs[CastSrcTy] = NewBC;
1780       auto *Ext = Builder.CreateExtractElement(
1781           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1782       // The shufflevector isn't being replaced: the bitcast that used it
1783       // is. InstCombine will visit the newly-created instructions.
1784       replaceInstUsesWith(*BC, Ext);
1785       MadeChange = true;
1786     }
1787   }
1788 
1789   // If the LHS is a shufflevector itself, see if we can combine it with this
1790   // one without producing an unusual shuffle.
1791   // Cases that might be simplified:
1792   // 1.
1793   // x1=shuffle(v1,v2,mask1)
1794   //  x=shuffle(x1,undef,mask)
1795   //        ==>
1796   //  x=shuffle(v1,undef,newMask)
1797   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1798   // 2.
1799   // x1=shuffle(v1,undef,mask1)
1800   //  x=shuffle(x1,x2,mask)
1801   // where v1.size() == mask1.size()
1802   //        ==>
1803   //  x=shuffle(v1,x2,newMask)
1804   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1805   // 3.
1806   // x2=shuffle(v2,undef,mask2)
1807   //  x=shuffle(x1,x2,mask)
1808   // where v2.size() == mask2.size()
1809   //        ==>
1810   //  x=shuffle(x1,v2,newMask)
1811   // newMask[i] = (mask[i] < x1.size())
1812   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1813   // 4.
1814   // x1=shuffle(v1,undef,mask1)
1815   // x2=shuffle(v2,undef,mask2)
1816   //  x=shuffle(x1,x2,mask)
1817   // where v1.size() == v2.size()
1818   //        ==>
1819   //  x=shuffle(v1,v2,newMask)
1820   // newMask[i] = (mask[i] < x1.size())
1821   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1822   //
1823   // Here we are really conservative:
1824   // we are absolutely afraid of producing a shuffle mask not in the input
1825   // program, because the code gen may not be smart enough to turn a merged
1826   // shuffle into two specific shuffles: it may produce worse code.  As such,
1827   // we only merge two shuffles if the result is either a splat or one of the
1828   // input shuffle masks.  In this case, merging the shuffles just removes
1829   // one instruction, which we know is safe.  This is good for things like
1830   // turning: (splat(splat)) -> splat, or
1831   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1832   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1833   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1834   if (LHSShuffle)
1835     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1836       LHSShuffle = nullptr;
1837   if (RHSShuffle)
1838     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1839       RHSShuffle = nullptr;
1840   if (!LHSShuffle && !RHSShuffle)
1841     return MadeChange ? &SVI : nullptr;
1842 
1843   Value* LHSOp0 = nullptr;
1844   Value* LHSOp1 = nullptr;
1845   Value* RHSOp0 = nullptr;
1846   unsigned LHSOp0Width = 0;
1847   unsigned RHSOp0Width = 0;
1848   if (LHSShuffle) {
1849     LHSOp0 = LHSShuffle->getOperand(0);
1850     LHSOp1 = LHSShuffle->getOperand(1);
1851     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1852   }
1853   if (RHSShuffle) {
1854     RHSOp0 = RHSShuffle->getOperand(0);
1855     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1856   }
1857   Value* newLHS = LHS;
1858   Value* newRHS = RHS;
1859   if (LHSShuffle) {
1860     // case 1
1861     if (isa<UndefValue>(RHS)) {
1862       newLHS = LHSOp0;
1863       newRHS = LHSOp1;
1864     }
1865     // case 2 or 4
1866     else if (LHSOp0Width == LHSWidth) {
1867       newLHS = LHSOp0;
1868     }
1869   }
1870   // case 3 or 4
1871   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1872     newRHS = RHSOp0;
1873   }
1874   // case 4
1875   if (LHSOp0 == RHSOp0) {
1876     newLHS = LHSOp0;
1877     newRHS = nullptr;
1878   }
1879 
1880   if (newLHS == LHS && newRHS == RHS)
1881     return MadeChange ? &SVI : nullptr;
1882 
1883   SmallVector<int, 16> LHSMask;
1884   SmallVector<int, 16> RHSMask;
1885   if (newLHS != LHS)
1886     LHSMask = LHSShuffle->getShuffleMask();
1887   if (RHSShuffle && newRHS != RHS)
1888     RHSMask = RHSShuffle->getShuffleMask();
1889 
1890   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1891   SmallVector<int, 16> newMask;
1892   bool isSplat = true;
1893   int SplatElt = -1;
1894   // Create a new mask for the new ShuffleVectorInst so that the new
1895   // ShuffleVectorInst is equivalent to the original one.
1896   for (unsigned i = 0; i < VWidth; ++i) {
1897     int eltMask;
1898     if (Mask[i] < 0) {
1899       // This element is an undef value.
1900       eltMask = -1;
1901     } else if (Mask[i] < (int)LHSWidth) {
1902       // This element is from left hand side vector operand.
1903       //
1904       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1905       // new mask value for the element.
1906       if (newLHS != LHS) {
1907         eltMask = LHSMask[Mask[i]];
1908         // If the value selected is an undef value, explicitly specify it
1909         // with a -1 mask value.
1910         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1911           eltMask = -1;
1912       } else
1913         eltMask = Mask[i];
1914     } else {
1915       // This element is from right hand side vector operand
1916       //
1917       // If the value selected is an undef value, explicitly specify it
1918       // with a -1 mask value. (case 1)
1919       if (isa<UndefValue>(RHS))
1920         eltMask = -1;
1921       // If RHS is going to be replaced (case 3 or 4), calculate the
1922       // new mask value for the element.
1923       else if (newRHS != RHS) {
1924         eltMask = RHSMask[Mask[i]-LHSWidth];
1925         // If the value selected is an undef value, explicitly specify it
1926         // with a -1 mask value.
1927         if (eltMask >= (int)RHSOp0Width) {
1928           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1929                  && "should have been check above");
1930           eltMask = -1;
1931         }
1932       } else
1933         eltMask = Mask[i]-LHSWidth;
1934 
1935       // If LHS's width is changed, shift the mask value accordingly.
1936       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
1937       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1938       // If newRHS == newLHS, we want to remap any references from newRHS to
1939       // newLHS so that we can properly identify splats that may occur due to
1940       // obfuscation across the two vectors.
1941       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1942         eltMask += newLHSWidth;
1943     }
1944 
1945     // Check if this could still be a splat.
1946     if (eltMask >= 0) {
1947       if (SplatElt >= 0 && SplatElt != eltMask)
1948         isSplat = false;
1949       SplatElt = eltMask;
1950     }
1951 
1952     newMask.push_back(eltMask);
1953   }
1954 
1955   // If the result mask is equal to one of the original shuffle masks,
1956   // or is a splat, do the replacement.
1957   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1958     SmallVector<Constant*, 16> Elts;
1959     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1960       if (newMask[i] < 0) {
1961         Elts.push_back(UndefValue::get(Int32Ty));
1962       } else {
1963         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1964       }
1965     }
1966     if (!newRHS)
1967       newRHS = UndefValue::get(newLHS->getType());
1968     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1969   }
1970 
1971   // If the result mask is an identity, replace uses of this instruction with
1972   // corresponding argument.
1973   bool isLHSID, isRHSID;
1974   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1975   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1976   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1977 
1978   return MadeChange ? &SVI : nullptr;
1979 }
1980