1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
257   Value *SrcVec = EI.getVectorOperand();
258   Value *Index = EI.getIndexOperand();
259   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
260                                             SQ.getWithInstruction(&EI)))
261     return replaceInstUsesWith(EI, V);
262 
263   // If extracting a specified index from the vector, see if we can recursively
264   // find a previously computed scalar that was inserted into the vector.
265   auto *IndexC = dyn_cast<ConstantInt>(Index);
266   if (IndexC) {
267     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
268 
269     // InstSimplify should handle cases where the index is invalid.
270     if (!IndexC->getValue().ule(NumElts))
271       return nullptr;
272 
273     // This instruction only demands the single element from the input vector.
274     // If the input vector has a single use, simplify it based on this use
275     // property.
276     if (SrcVec->hasOneUse() && NumElts != 1) {
277       APInt UndefElts(NumElts, 0);
278       APInt DemandedElts(NumElts, 0);
279       DemandedElts.setBit(IndexC->getZExtValue());
280       if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
281                                                 UndefElts)) {
282         EI.setOperand(0, V);
283         return &EI;
284       }
285     }
286 
287     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
288       return I;
289 
290     // If there's a vector PHI feeding a scalar use through this extractelement
291     // instruction, try to scalarize the PHI.
292     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
293       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
294         return ScalarPHI;
295   }
296 
297   BinaryOperator *BO;
298   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
299     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
300     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
301     Value *E0 = Builder.CreateExtractElement(X, Index);
302     Value *E1 = Builder.CreateExtractElement(Y, Index);
303     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
304   }
305 
306   Value *X, *Y;
307   CmpInst::Predicate Pred;
308   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
309       cheapToScalarize(SrcVec, IndexC)) {
310     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
311     Value *E0 = Builder.CreateExtractElement(X, Index);
312     Value *E1 = Builder.CreateExtractElement(Y, Index);
313     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
314   }
315 
316   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
317     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
318       // Extracting the inserted element?
319       if (IE->getOperand(2) == Index)
320         return replaceInstUsesWith(EI, IE->getOperand(1));
321       // If the inserted and extracted elements are constants, they must not
322       // be the same value, extract from the pre-inserted value instead.
323       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
324         Worklist.AddValue(SrcVec);
325         EI.setOperand(0, IE->getOperand(0));
326         return &EI;
327       }
328     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
329       // If this is extracting an element from a shufflevector, figure out where
330       // it came from and extract from the appropriate input element instead.
331       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
332         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
333         Value *Src;
334         unsigned LHSWidth =
335           SVI->getOperand(0)->getType()->getVectorNumElements();
336 
337         if (SrcIdx < 0)
338           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
339         if (SrcIdx < (int)LHSWidth)
340           Src = SVI->getOperand(0);
341         else {
342           SrcIdx -= LHSWidth;
343           Src = SVI->getOperand(1);
344         }
345         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
346         return ExtractElementInst::Create(Src,
347                                           ConstantInt::get(Int32Ty,
348                                                            SrcIdx, false));
349       }
350     } else if (auto *CI = dyn_cast<CastInst>(I)) {
351       // Canonicalize extractelement(cast) -> cast(extractelement).
352       // Bitcasts can change the number of vector elements, and they cost
353       // nothing.
354       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
355         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
356         Worklist.AddValue(EE);
357         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
358       }
359     }
360   }
361   return nullptr;
362 }
363 
364 /// If V is a shuffle of values that ONLY returns elements from either LHS or
365 /// RHS, return the shuffle mask and true. Otherwise, return false.
366 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
367                                          SmallVectorImpl<Constant*> &Mask) {
368   assert(LHS->getType() == RHS->getType() &&
369          "Invalid CollectSingleShuffleElements");
370   unsigned NumElts = V->getType()->getVectorNumElements();
371 
372   if (isa<UndefValue>(V)) {
373     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374     return true;
375   }
376 
377   if (V == LHS) {
378     for (unsigned i = 0; i != NumElts; ++i)
379       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
380     return true;
381   }
382 
383   if (V == RHS) {
384     for (unsigned i = 0; i != NumElts; ++i)
385       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
386                                       i+NumElts));
387     return true;
388   }
389 
390   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
391     // If this is an insert of an extract from some other vector, include it.
392     Value *VecOp    = IEI->getOperand(0);
393     Value *ScalarOp = IEI->getOperand(1);
394     Value *IdxOp    = IEI->getOperand(2);
395 
396     if (!isa<ConstantInt>(IdxOp))
397       return false;
398     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
399 
400     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
401       // We can handle this if the vector we are inserting into is
402       // transitively ok.
403       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
404         // If so, update the mask to reflect the inserted undef.
405         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
406         return true;
407       }
408     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
409       if (isa<ConstantInt>(EI->getOperand(1))) {
410         unsigned ExtractedIdx =
411         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
412         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
413 
414         // This must be extracting from either LHS or RHS.
415         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
416           // We can handle this if the vector we are inserting into is
417           // transitively ok.
418           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
419             // If so, update the mask to reflect the inserted value.
420             if (EI->getOperand(0) == LHS) {
421               Mask[InsertedIdx % NumElts] =
422               ConstantInt::get(Type::getInt32Ty(V->getContext()),
423                                ExtractedIdx);
424             } else {
425               assert(EI->getOperand(0) == RHS);
426               Mask[InsertedIdx % NumElts] =
427               ConstantInt::get(Type::getInt32Ty(V->getContext()),
428                                ExtractedIdx + NumLHSElts);
429             }
430             return true;
431           }
432         }
433       }
434     }
435   }
436 
437   return false;
438 }
439 
440 /// If we have insertion into a vector that is wider than the vector that we
441 /// are extracting from, try to widen the source vector to allow a single
442 /// shufflevector to replace one or more insert/extract pairs.
443 static void replaceExtractElements(InsertElementInst *InsElt,
444                                    ExtractElementInst *ExtElt,
445                                    InstCombiner &IC) {
446   VectorType *InsVecType = InsElt->getType();
447   VectorType *ExtVecType = ExtElt->getVectorOperandType();
448   unsigned NumInsElts = InsVecType->getVectorNumElements();
449   unsigned NumExtElts = ExtVecType->getVectorNumElements();
450 
451   // The inserted-to vector must be wider than the extracted-from vector.
452   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
453       NumExtElts >= NumInsElts)
454     return;
455 
456   // Create a shuffle mask to widen the extended-from vector using undefined
457   // values. The mask selects all of the values of the original vector followed
458   // by as many undefined values as needed to create a vector of the same length
459   // as the inserted-to vector.
460   SmallVector<Constant *, 16> ExtendMask;
461   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
462   for (unsigned i = 0; i < NumExtElts; ++i)
463     ExtendMask.push_back(ConstantInt::get(IntType, i));
464   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
465     ExtendMask.push_back(UndefValue::get(IntType));
466 
467   Value *ExtVecOp = ExtElt->getVectorOperand();
468   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
469   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
470                                    ? ExtVecOpInst->getParent()
471                                    : ExtElt->getParent();
472 
473   // TODO: This restriction matches the basic block check below when creating
474   // new extractelement instructions. If that limitation is removed, this one
475   // could also be removed. But for now, we just bail out to ensure that we
476   // will replace the extractelement instruction that is feeding our
477   // insertelement instruction. This allows the insertelement to then be
478   // replaced by a shufflevector. If the insertelement is not replaced, we can
479   // induce infinite looping because there's an optimization for extractelement
480   // that will delete our widening shuffle. This would trigger another attempt
481   // here to create that shuffle, and we spin forever.
482   if (InsertionBlock != InsElt->getParent())
483     return;
484 
485   // TODO: This restriction matches the check in visitInsertElementInst() and
486   // prevents an infinite loop caused by not turning the extract/insert pair
487   // into a shuffle. We really should not need either check, but we're lacking
488   // folds for shufflevectors because we're afraid to generate shuffle masks
489   // that the backend can't handle.
490   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
491     return;
492 
493   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
494                                         ConstantVector::get(ExtendMask));
495 
496   // Insert the new shuffle after the vector operand of the extract is defined
497   // (as long as it's not a PHI) or at the start of the basic block of the
498   // extract, so any subsequent extracts in the same basic block can use it.
499   // TODO: Insert before the earliest ExtractElementInst that is replaced.
500   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
501     WideVec->insertAfter(ExtVecOpInst);
502   else
503     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
504 
505   // Replace extracts from the original narrow vector with extracts from the new
506   // wide vector.
507   for (User *U : ExtVecOp->users()) {
508     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
509     if (!OldExt || OldExt->getParent() != WideVec->getParent())
510       continue;
511     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
512     NewExt->insertAfter(OldExt);
513     IC.replaceInstUsesWith(*OldExt, NewExt);
514   }
515 }
516 
517 /// We are building a shuffle to create V, which is a sequence of insertelement,
518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
519 /// not rely on the second vector source. Return a std::pair containing the
520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
521 /// parameter as required.
522 ///
523 /// Note: we intentionally don't try to fold earlier shuffles since they have
524 /// often been chosen carefully to be efficiently implementable on the target.
525 using ShuffleOps = std::pair<Value *, Value *>;
526 
527 static ShuffleOps collectShuffleElements(Value *V,
528                                          SmallVectorImpl<Constant *> &Mask,
529                                          Value *PermittedRHS,
530                                          InstCombiner &IC) {
531   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
532   unsigned NumElts = V->getType()->getVectorNumElements();
533 
534   if (isa<UndefValue>(V)) {
535     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
536     return std::make_pair(
537         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
538   }
539 
540   if (isa<ConstantAggregateZero>(V)) {
541     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
542     return std::make_pair(V, nullptr);
543   }
544 
545   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
546     // If this is an insert of an extract from some other vector, include it.
547     Value *VecOp    = IEI->getOperand(0);
548     Value *ScalarOp = IEI->getOperand(1);
549     Value *IdxOp    = IEI->getOperand(2);
550 
551     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
552       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
553         unsigned ExtractedIdx =
554           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
555         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
556 
557         // Either the extracted from or inserted into vector must be RHSVec,
558         // otherwise we'd end up with a shuffle of three inputs.
559         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
560           Value *RHS = EI->getOperand(0);
561           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
562           assert(LR.second == nullptr || LR.second == RHS);
563 
564           if (LR.first->getType() != RHS->getType()) {
565             // Although we are giving up for now, see if we can create extracts
566             // that match the inserts for another round of combining.
567             replaceExtractElements(IEI, EI, IC);
568 
569             // We tried our best, but we can't find anything compatible with RHS
570             // further up the chain. Return a trivial shuffle.
571             for (unsigned i = 0; i < NumElts; ++i)
572               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
573             return std::make_pair(V, nullptr);
574           }
575 
576           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
577           Mask[InsertedIdx % NumElts] =
578             ConstantInt::get(Type::getInt32Ty(V->getContext()),
579                              NumLHSElts+ExtractedIdx);
580           return std::make_pair(LR.first, RHS);
581         }
582 
583         if (VecOp == PermittedRHS) {
584           // We've gone as far as we can: anything on the other side of the
585           // extractelement will already have been converted into a shuffle.
586           unsigned NumLHSElts =
587               EI->getOperand(0)->getType()->getVectorNumElements();
588           for (unsigned i = 0; i != NumElts; ++i)
589             Mask.push_back(ConstantInt::get(
590                 Type::getInt32Ty(V->getContext()),
591                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
592           return std::make_pair(EI->getOperand(0), PermittedRHS);
593         }
594 
595         // If this insertelement is a chain that comes from exactly these two
596         // vectors, return the vector and the effective shuffle.
597         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
598             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
599                                          Mask))
600           return std::make_pair(EI->getOperand(0), PermittedRHS);
601       }
602     }
603   }
604 
605   // Otherwise, we can't do anything fancy. Return an identity vector.
606   for (unsigned i = 0; i != NumElts; ++i)
607     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
608   return std::make_pair(V, nullptr);
609 }
610 
611 /// Try to find redundant insertvalue instructions, like the following ones:
612 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
613 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
614 /// Here the second instruction inserts values at the same indices, as the
615 /// first one, making the first one redundant.
616 /// It should be transformed to:
617 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
618 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
619   bool IsRedundant = false;
620   ArrayRef<unsigned int> FirstIndices = I.getIndices();
621 
622   // If there is a chain of insertvalue instructions (each of them except the
623   // last one has only one use and it's another insertvalue insn from this
624   // chain), check if any of the 'children' uses the same indices as the first
625   // instruction. In this case, the first one is redundant.
626   Value *V = &I;
627   unsigned Depth = 0;
628   while (V->hasOneUse() && Depth < 10) {
629     User *U = V->user_back();
630     auto UserInsInst = dyn_cast<InsertValueInst>(U);
631     if (!UserInsInst || U->getOperand(0) != V)
632       break;
633     if (UserInsInst->getIndices() == FirstIndices) {
634       IsRedundant = true;
635       break;
636     }
637     V = UserInsInst;
638     Depth++;
639   }
640 
641   if (IsRedundant)
642     return replaceInstUsesWith(I, I.getOperand(0));
643   return nullptr;
644 }
645 
646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
647   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
648   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
649 
650   // A vector select does not change the size of the operands.
651   if (MaskSize != VecSize)
652     return false;
653 
654   // Each mask element must be undefined or choose a vector element from one of
655   // the source operands without crossing vector lanes.
656   for (int i = 0; i != MaskSize; ++i) {
657     int Elt = Shuf.getMaskValue(i);
658     if (Elt != -1 && Elt != i && Elt != i + VecSize)
659       return false;
660   }
661 
662   return true;
663 }
664 
665 /// Turn a chain of inserts that splats a value into an insert + shuffle:
666 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
667 /// shufflevector(insertelt(X, %k, 0), undef, zero)
668 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
669   // We are interested in the last insert in a chain. So if this insert has a
670   // single user and that user is an insert, bail.
671   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
672     return nullptr;
673 
674   auto *VecTy = cast<VectorType>(InsElt.getType());
675   unsigned NumElements = VecTy->getNumElements();
676 
677   // Do not try to do this for a one-element vector, since that's a nop,
678   // and will cause an inf-loop.
679   if (NumElements == 1)
680     return nullptr;
681 
682   Value *SplatVal = InsElt.getOperand(1);
683   InsertElementInst *CurrIE = &InsElt;
684   SmallVector<bool, 16> ElementPresent(NumElements, false);
685   InsertElementInst *FirstIE = nullptr;
686 
687   // Walk the chain backwards, keeping track of which indices we inserted into,
688   // until we hit something that isn't an insert of the splatted value.
689   while (CurrIE) {
690     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
691     if (!Idx || CurrIE->getOperand(1) != SplatVal)
692       return nullptr;
693 
694     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
695     // Check none of the intermediate steps have any additional uses, except
696     // for the root insertelement instruction, which can be re-used, if it
697     // inserts at position 0.
698     if (CurrIE != &InsElt &&
699         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
700       return nullptr;
701 
702     ElementPresent[Idx->getZExtValue()] = true;
703     FirstIE = CurrIE;
704     CurrIE = NextIE;
705   }
706 
707   // If this is just a single insertelement (not a sequence), we are done.
708   if (FirstIE == &InsElt)
709     return nullptr;
710 
711   // If we are not inserting into an undef vector, make sure we've seen an
712   // insert into every element.
713   // TODO: If the base vector is not undef, it might be better to create a splat
714   //       and then a select-shuffle (blend) with the base vector.
715   if (!isa<UndefValue>(FirstIE->getOperand(0)))
716     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
717       return nullptr;
718 
719   // Create the insert + shuffle.
720   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
721   UndefValue *UndefVec = UndefValue::get(VecTy);
722   Constant *Zero = ConstantInt::get(Int32Ty, 0);
723   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
724     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
725 
726   // Splat from element 0, but replace absent elements with undef in the mask.
727   SmallVector<Constant *, 16> Mask(NumElements, Zero);
728   for (unsigned i = 0; i != NumElements; ++i)
729     if (!ElementPresent[i])
730       Mask[i] = UndefValue::get(Int32Ty);
731 
732   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
733 }
734 
735 /// Try to fold an insert element into an existing splat shuffle by changing
736 /// the shuffle's mask to include the index of this insert element.
737 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
738   // Check if the vector operand of this insert is a canonical splat shuffle.
739   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
740   if (!Shuf || !Shuf->isZeroEltSplat())
741     return nullptr;
742 
743   // Check for a constant insertion index.
744   uint64_t IdxC;
745   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
746     return nullptr;
747 
748   // Check if the splat shuffle's input is the same as this insert's scalar op.
749   Value *X = InsElt.getOperand(1);
750   Value *Op0 = Shuf->getOperand(0);
751   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
752     return nullptr;
753 
754   // Replace the shuffle mask element at the index of this insert with a zero.
755   // For example:
756   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
757   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
758   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
759   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
760   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
761   Constant *Zero = ConstantInt::getNullValue(I32Ty);
762   for (unsigned i = 0; i != NumMaskElts; ++i)
763     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
764 
765   Constant *NewMask = ConstantVector::get(NewMaskVec);
766   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
767 }
768 
769 /// Try to fold an extract+insert element into an existing identity shuffle by
770 /// changing the shuffle's mask to include the index of this insert element.
771 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
772   // Check if the vector operand of this insert is an identity shuffle.
773   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
774   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
775       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
776     return nullptr;
777 
778   // Check for a constant insertion index.
779   uint64_t IdxC;
780   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
781     return nullptr;
782 
783   // Check if this insert's scalar op is extracted from the identity shuffle's
784   // input vector.
785   Value *Scalar = InsElt.getOperand(1);
786   Value *X = Shuf->getOperand(0);
787   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
788     return nullptr;
789 
790   // Replace the shuffle mask element at the index of this extract+insert with
791   // that same index value.
792   // For example:
793   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
794   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
795   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
796   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
797   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
798   Constant *OldMask = Shuf->getMask();
799   for (unsigned i = 0; i != NumMaskElts; ++i) {
800     if (i != IdxC) {
801       // All mask elements besides the inserted element remain the same.
802       NewMaskVec[i] = OldMask->getAggregateElement(i);
803     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
804       // If the mask element was already set, there's nothing to do
805       // (demanded elements analysis may unset it later).
806       return nullptr;
807     } else {
808       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
809              "Unexpected shuffle mask element for identity shuffle");
810       NewMaskVec[i] = NewMaskEltC;
811     }
812   }
813 
814   Constant *NewMask = ConstantVector::get(NewMaskVec);
815   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
816 }
817 
818 /// If we have an insertelement instruction feeding into another insertelement
819 /// and the 2nd is inserting a constant into the vector, canonicalize that
820 /// constant insertion before the insertion of a variable:
821 ///
822 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
823 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
824 ///
825 /// This has the potential of eliminating the 2nd insertelement instruction
826 /// via constant folding of the scalar constant into a vector constant.
827 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
828                                      InstCombiner::BuilderTy &Builder) {
829   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
830   if (!InsElt1 || !InsElt1->hasOneUse())
831     return nullptr;
832 
833   Value *X, *Y;
834   Constant *ScalarC;
835   ConstantInt *IdxC1, *IdxC2;
836   if (match(InsElt1->getOperand(0), m_Value(X)) &&
837       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
838       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
839       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
840       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
841     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
842     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
843   }
844 
845   return nullptr;
846 }
847 
848 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
849 /// --> shufflevector X, CVec', Mask'
850 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
851   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
852   // Bail out if the parent has more than one use. In that case, we'd be
853   // replacing the insertelt with a shuffle, and that's not a clear win.
854   if (!Inst || !Inst->hasOneUse())
855     return nullptr;
856   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
857     // The shuffle must have a constant vector operand. The insertelt must have
858     // a constant scalar being inserted at a constant position in the vector.
859     Constant *ShufConstVec, *InsEltScalar;
860     uint64_t InsEltIndex;
861     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
862         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
863         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
864       return nullptr;
865 
866     // Adding an element to an arbitrary shuffle could be expensive, but a
867     // shuffle that selects elements from vectors without crossing lanes is
868     // assumed cheap.
869     // If we're just adding a constant into that shuffle, it will still be
870     // cheap.
871     if (!isShuffleEquivalentToSelect(*Shuf))
872       return nullptr;
873 
874     // From the above 'select' check, we know that the mask has the same number
875     // of elements as the vector input operands. We also know that each constant
876     // input element is used in its lane and can not be used more than once by
877     // the shuffle. Therefore, replace the constant in the shuffle's constant
878     // vector with the insertelt constant. Replace the constant in the shuffle's
879     // mask vector with the insertelt index plus the length of the vector
880     // (because the constant vector operand of a shuffle is always the 2nd
881     // operand).
882     Constant *Mask = Shuf->getMask();
883     unsigned NumElts = Mask->getType()->getVectorNumElements();
884     SmallVector<Constant *, 16> NewShufElts(NumElts);
885     SmallVector<Constant *, 16> NewMaskElts(NumElts);
886     for (unsigned I = 0; I != NumElts; ++I) {
887       if (I == InsEltIndex) {
888         NewShufElts[I] = InsEltScalar;
889         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
890         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
891       } else {
892         // Copy over the existing values.
893         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
894         NewMaskElts[I] = Mask->getAggregateElement(I);
895       }
896     }
897 
898     // Create new operands for a shuffle that includes the constant of the
899     // original insertelt. The old shuffle will be dead now.
900     return new ShuffleVectorInst(Shuf->getOperand(0),
901                                  ConstantVector::get(NewShufElts),
902                                  ConstantVector::get(NewMaskElts));
903   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
904     // Transform sequences of insertelements ops with constant data/indexes into
905     // a single shuffle op.
906     unsigned NumElts = InsElt.getType()->getNumElements();
907 
908     uint64_t InsertIdx[2];
909     Constant *Val[2];
910     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
911         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
912         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
913         !match(IEI->getOperand(1), m_Constant(Val[1])))
914       return nullptr;
915     SmallVector<Constant *, 16> Values(NumElts);
916     SmallVector<Constant *, 16> Mask(NumElts);
917     auto ValI = std::begin(Val);
918     // Generate new constant vector and mask.
919     // We have 2 values/masks from the insertelements instructions. Insert them
920     // into new value/mask vectors.
921     for (uint64_t I : InsertIdx) {
922       if (!Values[I]) {
923         assert(!Mask[I]);
924         Values[I] = *ValI;
925         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
926                                    NumElts + I);
927       }
928       ++ValI;
929     }
930     // Remaining values are filled with 'undef' values.
931     for (unsigned I = 0; I < NumElts; ++I) {
932       if (!Values[I]) {
933         assert(!Mask[I]);
934         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
935         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
936       }
937     }
938     // Create new operands for a shuffle that includes the constant of the
939     // original insertelt.
940     return new ShuffleVectorInst(IEI->getOperand(0),
941                                  ConstantVector::get(Values),
942                                  ConstantVector::get(Mask));
943   }
944   return nullptr;
945 }
946 
947 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
948   Value *VecOp    = IE.getOperand(0);
949   Value *ScalarOp = IE.getOperand(1);
950   Value *IdxOp    = IE.getOperand(2);
951 
952   if (auto *V = SimplifyInsertElementInst(
953           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
954     return replaceInstUsesWith(IE, V);
955 
956   // If the vector and scalar are both bitcast from the same element type, do
957   // the insert in that source type followed by bitcast.
958   Value *VecSrc, *ScalarSrc;
959   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
960       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
961       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
962       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
963       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
964     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
965     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
966     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
967     return new BitCastInst(NewInsElt, IE.getType());
968   }
969 
970   // If the inserted element was extracted from some other vector and both
971   // indexes are valid constants, try to turn this into a shuffle.
972   uint64_t InsertedIdx, ExtractedIdx;
973   Value *ExtVecOp;
974   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
975       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
976                                        m_ConstantInt(ExtractedIdx))) &&
977       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
978     // TODO: Looking at the user(s) to determine if this insert is a
979     // fold-to-shuffle opportunity does not match the usual instcombine
980     // constraints. We should decide if the transform is worthy based only
981     // on this instruction and its operands, but that may not work currently.
982     //
983     // Here, we are trying to avoid creating shuffles before reaching
984     // the end of a chain of extract-insert pairs. This is complicated because
985     // we do not generally form arbitrary shuffle masks in instcombine
986     // (because those may codegen poorly), but collectShuffleElements() does
987     // exactly that.
988     //
989     // The rules for determining what is an acceptable target-independent
990     // shuffle mask are fuzzy because they evolve based on the backend's
991     // capabilities and real-world impact.
992     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
993       if (!Insert.hasOneUse())
994         return true;
995       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
996       if (!InsertUser)
997         return true;
998       return false;
999     };
1000 
1001     // Try to form a shuffle from a chain of extract-insert ops.
1002     if (isShuffleRootCandidate(IE)) {
1003       SmallVector<Constant*, 16> Mask;
1004       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1005 
1006       // The proposed shuffle may be trivial, in which case we shouldn't
1007       // perform the combine.
1008       if (LR.first != &IE && LR.second != &IE) {
1009         // We now have a shuffle of LHS, RHS, Mask.
1010         if (LR.second == nullptr)
1011           LR.second = UndefValue::get(LR.first->getType());
1012         return new ShuffleVectorInst(LR.first, LR.second,
1013                                      ConstantVector::get(Mask));
1014       }
1015     }
1016   }
1017 
1018   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1019   APInt UndefElts(VWidth, 0);
1020   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1021   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1022     if (V != &IE)
1023       return replaceInstUsesWith(IE, V);
1024     return &IE;
1025   }
1026 
1027   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1028     return Shuf;
1029 
1030   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1031     return NewInsElt;
1032 
1033   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1034     return Broadcast;
1035 
1036   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1037     return Splat;
1038 
1039   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1040     return IdentityShuf;
1041 
1042   return nullptr;
1043 }
1044 
1045 /// Return true if we can evaluate the specified expression tree if the vector
1046 /// elements were shuffled in a different order.
1047 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1048                                 unsigned Depth = 5) {
1049   // We can always reorder the elements of a constant.
1050   if (isa<Constant>(V))
1051     return true;
1052 
1053   // We won't reorder vector arguments. No IPO here.
1054   Instruction *I = dyn_cast<Instruction>(V);
1055   if (!I) return false;
1056 
1057   // Two users may expect different orders of the elements. Don't try it.
1058   if (!I->hasOneUse())
1059     return false;
1060 
1061   if (Depth == 0) return false;
1062 
1063   switch (I->getOpcode()) {
1064     case Instruction::Add:
1065     case Instruction::FAdd:
1066     case Instruction::Sub:
1067     case Instruction::FSub:
1068     case Instruction::Mul:
1069     case Instruction::FMul:
1070     case Instruction::UDiv:
1071     case Instruction::SDiv:
1072     case Instruction::FDiv:
1073     case Instruction::URem:
1074     case Instruction::SRem:
1075     case Instruction::FRem:
1076     case Instruction::Shl:
1077     case Instruction::LShr:
1078     case Instruction::AShr:
1079     case Instruction::And:
1080     case Instruction::Or:
1081     case Instruction::Xor:
1082     case Instruction::ICmp:
1083     case Instruction::FCmp:
1084     case Instruction::Trunc:
1085     case Instruction::ZExt:
1086     case Instruction::SExt:
1087     case Instruction::FPToUI:
1088     case Instruction::FPToSI:
1089     case Instruction::UIToFP:
1090     case Instruction::SIToFP:
1091     case Instruction::FPTrunc:
1092     case Instruction::FPExt:
1093     case Instruction::GetElementPtr: {
1094       // Bail out if we would create longer vector ops. We could allow creating
1095       // longer vector ops, but that may result in more expensive codegen. We
1096       // would also need to limit the transform to avoid undefined behavior for
1097       // integer div/rem.
1098       Type *ITy = I->getType();
1099       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1100         return false;
1101       for (Value *Operand : I->operands()) {
1102         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1103           return false;
1104       }
1105       return true;
1106     }
1107     case Instruction::InsertElement: {
1108       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1109       if (!CI) return false;
1110       int ElementNumber = CI->getLimitedValue();
1111 
1112       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1113       // can't put an element into multiple indices.
1114       bool SeenOnce = false;
1115       for (int i = 0, e = Mask.size(); i != e; ++i) {
1116         if (Mask[i] == ElementNumber) {
1117           if (SeenOnce)
1118             return false;
1119           SeenOnce = true;
1120         }
1121       }
1122       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1123     }
1124   }
1125   return false;
1126 }
1127 
1128 /// Rebuild a new instruction just like 'I' but with the new operands given.
1129 /// In the event of type mismatch, the type of the operands is correct.
1130 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1131   // We don't want to use the IRBuilder here because we want the replacement
1132   // instructions to appear next to 'I', not the builder's insertion point.
1133   switch (I->getOpcode()) {
1134     case Instruction::Add:
1135     case Instruction::FAdd:
1136     case Instruction::Sub:
1137     case Instruction::FSub:
1138     case Instruction::Mul:
1139     case Instruction::FMul:
1140     case Instruction::UDiv:
1141     case Instruction::SDiv:
1142     case Instruction::FDiv:
1143     case Instruction::URem:
1144     case Instruction::SRem:
1145     case Instruction::FRem:
1146     case Instruction::Shl:
1147     case Instruction::LShr:
1148     case Instruction::AShr:
1149     case Instruction::And:
1150     case Instruction::Or:
1151     case Instruction::Xor: {
1152       BinaryOperator *BO = cast<BinaryOperator>(I);
1153       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1154       BinaryOperator *New =
1155           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1156                                  NewOps[0], NewOps[1], "", BO);
1157       if (isa<OverflowingBinaryOperator>(BO)) {
1158         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1159         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1160       }
1161       if (isa<PossiblyExactOperator>(BO)) {
1162         New->setIsExact(BO->isExact());
1163       }
1164       if (isa<FPMathOperator>(BO))
1165         New->copyFastMathFlags(I);
1166       return New;
1167     }
1168     case Instruction::ICmp:
1169       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1170       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1171                           NewOps[0], NewOps[1]);
1172     case Instruction::FCmp:
1173       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1174       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1175                           NewOps[0], NewOps[1]);
1176     case Instruction::Trunc:
1177     case Instruction::ZExt:
1178     case Instruction::SExt:
1179     case Instruction::FPToUI:
1180     case Instruction::FPToSI:
1181     case Instruction::UIToFP:
1182     case Instruction::SIToFP:
1183     case Instruction::FPTrunc:
1184     case Instruction::FPExt: {
1185       // It's possible that the mask has a different number of elements from
1186       // the original cast. We recompute the destination type to match the mask.
1187       Type *DestTy =
1188           VectorType::get(I->getType()->getScalarType(),
1189                           NewOps[0]->getType()->getVectorNumElements());
1190       assert(NewOps.size() == 1 && "cast with #ops != 1");
1191       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1192                               "", I);
1193     }
1194     case Instruction::GetElementPtr: {
1195       Value *Ptr = NewOps[0];
1196       ArrayRef<Value*> Idx = NewOps.slice(1);
1197       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1198           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1199       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1200       return GEP;
1201     }
1202   }
1203   llvm_unreachable("failed to rebuild vector instructions");
1204 }
1205 
1206 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1207   // Mask.size() does not need to be equal to the number of vector elements.
1208 
1209   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1210   Type *EltTy = V->getType()->getScalarType();
1211   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1212   if (isa<UndefValue>(V))
1213     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1214 
1215   if (isa<ConstantAggregateZero>(V))
1216     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1217 
1218   if (Constant *C = dyn_cast<Constant>(V)) {
1219     SmallVector<Constant *, 16> MaskValues;
1220     for (int i = 0, e = Mask.size(); i != e; ++i) {
1221       if (Mask[i] == -1)
1222         MaskValues.push_back(UndefValue::get(I32Ty));
1223       else
1224         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1225     }
1226     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1227                                           ConstantVector::get(MaskValues));
1228   }
1229 
1230   Instruction *I = cast<Instruction>(V);
1231   switch (I->getOpcode()) {
1232     case Instruction::Add:
1233     case Instruction::FAdd:
1234     case Instruction::Sub:
1235     case Instruction::FSub:
1236     case Instruction::Mul:
1237     case Instruction::FMul:
1238     case Instruction::UDiv:
1239     case Instruction::SDiv:
1240     case Instruction::FDiv:
1241     case Instruction::URem:
1242     case Instruction::SRem:
1243     case Instruction::FRem:
1244     case Instruction::Shl:
1245     case Instruction::LShr:
1246     case Instruction::AShr:
1247     case Instruction::And:
1248     case Instruction::Or:
1249     case Instruction::Xor:
1250     case Instruction::ICmp:
1251     case Instruction::FCmp:
1252     case Instruction::Trunc:
1253     case Instruction::ZExt:
1254     case Instruction::SExt:
1255     case Instruction::FPToUI:
1256     case Instruction::FPToSI:
1257     case Instruction::UIToFP:
1258     case Instruction::SIToFP:
1259     case Instruction::FPTrunc:
1260     case Instruction::FPExt:
1261     case Instruction::Select:
1262     case Instruction::GetElementPtr: {
1263       SmallVector<Value*, 8> NewOps;
1264       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1265       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1266         Value *V;
1267         // Recursively call evaluateInDifferentElementOrder on vector arguments
1268         // as well. E.g. GetElementPtr may have scalar operands even if the
1269         // return value is a vector, so we need to examine the operand type.
1270         if (I->getOperand(i)->getType()->isVectorTy())
1271           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1272         else
1273           V = I->getOperand(i);
1274         NewOps.push_back(V);
1275         NeedsRebuild |= (V != I->getOperand(i));
1276       }
1277       if (NeedsRebuild) {
1278         return buildNew(I, NewOps);
1279       }
1280       return I;
1281     }
1282     case Instruction::InsertElement: {
1283       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1284 
1285       // The insertelement was inserting at Element. Figure out which element
1286       // that becomes after shuffling. The answer is guaranteed to be unique
1287       // by CanEvaluateShuffled.
1288       bool Found = false;
1289       int Index = 0;
1290       for (int e = Mask.size(); Index != e; ++Index) {
1291         if (Mask[Index] == Element) {
1292           Found = true;
1293           break;
1294         }
1295       }
1296 
1297       // If element is not in Mask, no need to handle the operand 1 (element to
1298       // be inserted). Just evaluate values in operand 0 according to Mask.
1299       if (!Found)
1300         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1301 
1302       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1303       return InsertElementInst::Create(V, I->getOperand(1),
1304                                        ConstantInt::get(I32Ty, Index), "", I);
1305     }
1306   }
1307   llvm_unreachable("failed to reorder elements of vector instruction!");
1308 }
1309 
1310 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1311                                   bool &isLHSID, bool &isRHSID) {
1312   isLHSID = isRHSID = true;
1313 
1314   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1315     if (Mask[i] < 0) continue;  // Ignore undef values.
1316     // Is this an identity shuffle of the LHS value?
1317     isLHSID &= (Mask[i] == (int)i);
1318 
1319     // Is this an identity shuffle of the RHS value?
1320     isRHSID &= (Mask[i]-e == i);
1321   }
1322 }
1323 
1324 // Returns true if the shuffle is extracting a contiguous range of values from
1325 // LHS, for example:
1326 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1327 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1328 //   Shuffles to:  |EE|FF|GG|HH|
1329 //                 +--+--+--+--+
1330 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1331                                        SmallVector<int, 16> &Mask) {
1332   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1333   unsigned MaskElems = Mask.size();
1334   unsigned BegIdx = Mask.front();
1335   unsigned EndIdx = Mask.back();
1336   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1337     return false;
1338   for (unsigned I = 0; I != MaskElems; ++I)
1339     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1340       return false;
1341   return true;
1342 }
1343 
1344 /// These are the ingredients in an alternate form binary operator as described
1345 /// below.
1346 struct BinopElts {
1347   BinaryOperator::BinaryOps Opcode;
1348   Value *Op0;
1349   Value *Op1;
1350   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1351             Value *V0 = nullptr, Value *V1 = nullptr) :
1352       Opcode(Opc), Op0(V0), Op1(V1) {}
1353   operator bool() const { return Opcode != 0; }
1354 };
1355 
1356 /// Binops may be transformed into binops with different opcodes and operands.
1357 /// Reverse the usual canonicalization to enable folds with the non-canonical
1358 /// form of the binop. If a transform is possible, return the elements of the
1359 /// new binop. If not, return invalid elements.
1360 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1361   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1362   Type *Ty = BO->getType();
1363   switch (BO->getOpcode()) {
1364     case Instruction::Shl: {
1365       // shl X, C --> mul X, (1 << C)
1366       Constant *C;
1367       if (match(BO1, m_Constant(C))) {
1368         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1369         return { Instruction::Mul, BO0, ShlOne };
1370       }
1371       break;
1372     }
1373     case Instruction::Or: {
1374       // or X, C --> add X, C (when X and C have no common bits set)
1375       const APInt *C;
1376       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1377         return { Instruction::Add, BO0, BO1 };
1378       break;
1379     }
1380     default:
1381       break;
1382   }
1383   return {};
1384 }
1385 
1386 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1387   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1388 
1389   // Are we shuffling together some value and that same value after it has been
1390   // modified by a binop with a constant?
1391   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1392   Constant *C;
1393   bool Op0IsBinop;
1394   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1395     Op0IsBinop = true;
1396   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1397     Op0IsBinop = false;
1398   else
1399     return nullptr;
1400 
1401   // The identity constant for a binop leaves a variable operand unchanged. For
1402   // a vector, this is a splat of something like 0, -1, or 1.
1403   // If there's no identity constant for this binop, we're done.
1404   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1405   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1406   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1407   if (!IdC)
1408     return nullptr;
1409 
1410   // Shuffle identity constants into the lanes that return the original value.
1411   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1412   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1413   // The existing binop constant vector remains in the same operand position.
1414   Constant *Mask = Shuf.getMask();
1415   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1416                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1417 
1418   bool MightCreatePoisonOrUB =
1419       Mask->containsUndefElement() &&
1420       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1421   if (MightCreatePoisonOrUB)
1422     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1423 
1424   // shuf (bop X, C), X, M --> bop X, C'
1425   // shuf X, (bop X, C), M --> bop X, C'
1426   Value *X = Op0IsBinop ? Op1 : Op0;
1427   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1428   NewBO->copyIRFlags(BO);
1429 
1430   // An undef shuffle mask element may propagate as an undef constant element in
1431   // the new binop. That would produce poison where the original code might not.
1432   // If we already made a safe constant, then there's no danger.
1433   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1434     NewBO->dropPoisonGeneratingFlags();
1435   return NewBO;
1436 }
1437 
1438 /// If we have an insert of a scalar to a non-zero element of an undefined
1439 /// vector and then shuffle that value, that's the same as inserting to the zero
1440 /// element and shuffling. Splatting from the zero element is recognized as the
1441 /// canonical form of splat.
1442 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1443                                             InstCombiner::BuilderTy &Builder) {
1444   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1445   Constant *Mask = Shuf.getMask();
1446   Value *X;
1447   uint64_t IndexC;
1448 
1449   // Match a shuffle that is a splat to a non-zero element.
1450   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1451                                            m_ConstantInt(IndexC)))) ||
1452       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1453     return nullptr;
1454 
1455   // Insert into element 0 of an undef vector.
1456   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1457   Constant *Zero = Builder.getInt32(0);
1458   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1459 
1460   // Splat from element 0. Any mask element that is undefined remains undefined.
1461   // For example:
1462   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1463   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1464   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1465   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1466   for (unsigned i = 0; i != NumMaskElts; ++i)
1467     if (isa<UndefValue>(Mask->getAggregateElement(i)))
1468       NewMask[i] = Mask->getAggregateElement(i);
1469 
1470   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1471 }
1472 
1473 /// Try to fold shuffles that are the equivalent of a vector select.
1474 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1475                                       InstCombiner::BuilderTy &Builder,
1476                                       const DataLayout &DL) {
1477   if (!Shuf.isSelect())
1478     return nullptr;
1479 
1480   // Canonicalize to choose from operand 0 first.
1481   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1482   if (Shuf.getMaskValue(0) >= (int)NumElts) {
1483     // TODO: Can we assert that both operands of a shuffle-select are not undef
1484     // (otherwise, it would have been folded by instsimplify?
1485     Shuf.commute();
1486     return &Shuf;
1487   }
1488 
1489   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1490     return I;
1491 
1492   BinaryOperator *B0, *B1;
1493   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1494       !match(Shuf.getOperand(1), m_BinOp(B1)))
1495     return nullptr;
1496 
1497   Value *X, *Y;
1498   Constant *C0, *C1;
1499   bool ConstantsAreOp1;
1500   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1501       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1502     ConstantsAreOp1 = true;
1503   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1504            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1505     ConstantsAreOp1 = false;
1506   else
1507     return nullptr;
1508 
1509   // We need matching binops to fold the lanes together.
1510   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1511   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1512   bool DropNSW = false;
1513   if (ConstantsAreOp1 && Opc0 != Opc1) {
1514     // TODO: We drop "nsw" if shift is converted into multiply because it may
1515     // not be correct when the shift amount is BitWidth - 1. We could examine
1516     // each vector element to determine if it is safe to keep that flag.
1517     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1518       DropNSW = true;
1519     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1520       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1521       Opc0 = AltB0.Opcode;
1522       C0 = cast<Constant>(AltB0.Op1);
1523     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1524       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1525       Opc1 = AltB1.Opcode;
1526       C1 = cast<Constant>(AltB1.Op1);
1527     }
1528   }
1529 
1530   if (Opc0 != Opc1)
1531     return nullptr;
1532 
1533   // The opcodes must be the same. Use a new name to make that clear.
1534   BinaryOperator::BinaryOps BOpc = Opc0;
1535 
1536   // Select the constant elements needed for the single binop.
1537   Constant *Mask = Shuf.getMask();
1538   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1539 
1540   // We are moving a binop after a shuffle. When a shuffle has an undefined
1541   // mask element, the result is undefined, but it is not poison or undefined
1542   // behavior. That is not necessarily true for div/rem/shift.
1543   bool MightCreatePoisonOrUB =
1544       Mask->containsUndefElement() &&
1545       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1546   if (MightCreatePoisonOrUB)
1547     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1548 
1549   Value *V;
1550   if (X == Y) {
1551     // Remove a binop and the shuffle by rearranging the constant:
1552     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1553     // shuffle (op C0, V), (op C1, V), M --> op C', V
1554     V = X;
1555   } else {
1556     // If there are 2 different variable operands, we must create a new shuffle
1557     // (select) first, so check uses to ensure that we don't end up with more
1558     // instructions than we started with.
1559     if (!B0->hasOneUse() && !B1->hasOneUse())
1560       return nullptr;
1561 
1562     // If we use the original shuffle mask and op1 is *variable*, we would be
1563     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1564     // poison. We do not have to guard against UB when *constants* are op1
1565     // because safe constants guarantee that we do not overflow sdiv/srem (and
1566     // there's no danger for other opcodes).
1567     // TODO: To allow this case, create a new shuffle mask with no undefs.
1568     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1569       return nullptr;
1570 
1571     // Note: In general, we do not create new shuffles in InstCombine because we
1572     // do not know if a target can lower an arbitrary shuffle optimally. In this
1573     // case, the shuffle uses the existing mask, so there is no additional risk.
1574 
1575     // Select the variable vectors first, then perform the binop:
1576     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1577     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1578     V = Builder.CreateShuffleVector(X, Y, Mask);
1579   }
1580 
1581   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1582                                          BinaryOperator::Create(BOpc, NewC, V);
1583 
1584   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1585   // 1. If we changed an opcode, poison conditions might have changed.
1586   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1587   //    where the original code did not. But if we already made a safe constant,
1588   //    then there's no danger.
1589   NewBO->copyIRFlags(B0);
1590   NewBO->andIRFlags(B1);
1591   if (DropNSW)
1592     NewBO->setHasNoSignedWrap(false);
1593   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1594     NewBO->dropPoisonGeneratingFlags();
1595   return NewBO;
1596 }
1597 
1598 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1599 /// narrowing (concatenating with undef and extracting back to the original
1600 /// length). This allows replacing the wide select with a narrow select.
1601 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1602                                        InstCombiner::BuilderTy &Builder) {
1603   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1604   // of the 1st vector operand of a shuffle.
1605   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1606     return nullptr;
1607 
1608   // The vector being shuffled must be a vector select that we can eliminate.
1609   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1610   Value *Cond, *X, *Y;
1611   if (!match(Shuf.getOperand(0),
1612              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1613     return nullptr;
1614 
1615   // We need a narrow condition value. It must be extended with undef elements
1616   // and have the same number of elements as this shuffle.
1617   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1618   Value *NarrowCond;
1619   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1620                                             m_Constant()))) ||
1621       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1622       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1623     return nullptr;
1624 
1625   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1626   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1627   Value *Undef = UndefValue::get(X->getType());
1628   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1629   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1630   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1631 }
1632 
1633 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1634 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1635   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1636   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1637     return nullptr;
1638 
1639   Value *X, *Y;
1640   Constant *Mask;
1641   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1642     return nullptr;
1643 
1644   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1645   // then combining may result in worse codegen.
1646   if (!Op0->hasOneUse())
1647     return nullptr;
1648 
1649   // We are extracting a subvector from a shuffle. Remove excess elements from
1650   // the 1st shuffle mask to eliminate the extract.
1651   //
1652   // This transform is conservatively limited to identity extracts because we do
1653   // not allow arbitrary shuffle mask creation as a target-independent transform
1654   // (because we can't guarantee that will lower efficiently).
1655   //
1656   // If the extracting shuffle has an undef mask element, it transfers to the
1657   // new shuffle mask. Otherwise, copy the original mask element. Example:
1658   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1659   //   shuf X, Y, <C0, undef, C2, undef>
1660   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1661   SmallVector<Constant *, 16> NewMask(NumElts);
1662   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1663          "Identity with extract must have less elements than its inputs");
1664 
1665   for (unsigned i = 0; i != NumElts; ++i) {
1666     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1667     Constant *MaskElt = Mask->getAggregateElement(i);
1668     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1669   }
1670   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1671 }
1672 
1673 /// Try to replace a shuffle with an insertelement.
1674 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1675   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1676   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1677 
1678   // The shuffle must not change vector sizes.
1679   // TODO: This restriction could be removed if the insert has only one use
1680   //       (because the transform would require a new length-changing shuffle).
1681   int NumElts = Mask.size();
1682   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1683     return nullptr;
1684 
1685   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1686   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1687     // We need an insertelement with a constant index.
1688     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1689                                    m_ConstantInt(IndexC))))
1690       return false;
1691 
1692     // Test the shuffle mask to see if it splices the inserted scalar into the
1693     // operand 1 vector of the shuffle.
1694     int NewInsIndex = -1;
1695     for (int i = 0; i != NumElts; ++i) {
1696       // Ignore undef mask elements.
1697       if (Mask[i] == -1)
1698         continue;
1699 
1700       // The shuffle takes elements of operand 1 without lane changes.
1701       if (Mask[i] == NumElts + i)
1702         continue;
1703 
1704       // The shuffle must choose the inserted scalar exactly once.
1705       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1706         return false;
1707 
1708       // The shuffle is placing the inserted scalar into element i.
1709       NewInsIndex = i;
1710     }
1711 
1712     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1713 
1714     // Index is updated to the potentially translated insertion lane.
1715     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1716     return true;
1717   };
1718 
1719   // If the shuffle is unnecessary, insert the scalar operand directly into
1720   // operand 1 of the shuffle. Example:
1721   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1722   Value *Scalar;
1723   ConstantInt *IndexC;
1724   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1725     return InsertElementInst::Create(V1, Scalar, IndexC);
1726 
1727   // Try again after commuting shuffle. Example:
1728   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1729   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1730   std::swap(V0, V1);
1731   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1732   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1733     return InsertElementInst::Create(V1, Scalar, IndexC);
1734 
1735   return nullptr;
1736 }
1737 
1738 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1739   // Match the operands as identity with padding (also known as concatenation
1740   // with undef) shuffles of the same source type. The backend is expected to
1741   // recreate these concatenations from a shuffle of narrow operands.
1742   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1743   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1744   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1745       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1746     return nullptr;
1747 
1748   // We limit this transform to power-of-2 types because we expect that the
1749   // backend can convert the simplified IR patterns to identical nodes as the
1750   // original IR.
1751   // TODO: If we can verify the same behavior for arbitrary types, the
1752   //       power-of-2 checks can be removed.
1753   Value *X = Shuffle0->getOperand(0);
1754   Value *Y = Shuffle1->getOperand(0);
1755   if (X->getType() != Y->getType() ||
1756       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1757       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1758       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1759       isa<UndefValue>(X) || isa<UndefValue>(Y))
1760     return nullptr;
1761   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1762          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1763          "Unexpected operand for identity shuffle");
1764 
1765   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1766   // operands directly by adjusting the shuffle mask to account for the narrower
1767   // types:
1768   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1769   int NarrowElts = X->getType()->getVectorNumElements();
1770   int WideElts = Shuffle0->getType()->getVectorNumElements();
1771   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1772 
1773   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1774   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1775   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1776   for (int i = 0, e = Mask.size(); i != e; ++i) {
1777     if (Mask[i] == -1)
1778       continue;
1779 
1780     // If this shuffle is choosing an undef element from 1 of the sources, that
1781     // element is undef.
1782     if (Mask[i] < WideElts) {
1783       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1784         continue;
1785     } else {
1786       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1787         continue;
1788     }
1789 
1790     // If this shuffle is choosing from the 1st narrow op, the mask element is
1791     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1792     // element is offset down to adjust for the narrow vector widths.
1793     if (Mask[i] < WideElts) {
1794       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1795       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1796     } else {
1797       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1798       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1799     }
1800   }
1801   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1802 }
1803 
1804 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1805   Value *LHS = SVI.getOperand(0);
1806   Value *RHS = SVI.getOperand(1);
1807   if (auto *V = SimplifyShuffleVectorInst(
1808           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1809     return replaceInstUsesWith(SVI, V);
1810 
1811   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1812   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1813   unsigned VWidth = SVI.getType()->getVectorNumElements();
1814   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1815   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1816   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1817   if (LHS == RHS || isa<UndefValue>(LHS)) {
1818     // Remap any references to RHS to use LHS.
1819     SmallVector<Constant*, 16> Elts;
1820     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1821       if (Mask[i] < 0) {
1822         Elts.push_back(UndefValue::get(Int32Ty));
1823         continue;
1824       }
1825 
1826       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1827           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1828         Mask[i] = -1;     // Turn into undef.
1829         Elts.push_back(UndefValue::get(Int32Ty));
1830       } else {
1831         Mask[i] = Mask[i] % e;  // Force to LHS.
1832         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1833       }
1834     }
1835     SVI.setOperand(0, SVI.getOperand(1));
1836     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1837     SVI.setOperand(2, ConstantVector::get(Elts));
1838     return &SVI;
1839   }
1840 
1841   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1842     return I;
1843 
1844   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1845     return I;
1846 
1847   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1848     return I;
1849 
1850   APInt UndefElts(VWidth, 0);
1851   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1852   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1853     if (V != &SVI)
1854       return replaceInstUsesWith(SVI, V);
1855     return &SVI;
1856   }
1857 
1858   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1859     return I;
1860 
1861   // These transforms have the potential to lose undef knowledge, so they are
1862   // intentionally placed after SimplifyDemandedVectorElts().
1863   if (Instruction *I = foldShuffleWithInsert(SVI))
1864     return I;
1865   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1866     return I;
1867 
1868   if (VWidth == LHSWidth) {
1869     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1870     bool isLHSID, isRHSID;
1871     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1872 
1873     // Eliminate identity shuffles.
1874     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1875     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1876   }
1877 
1878   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1879     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1880     return replaceInstUsesWith(SVI, V);
1881   }
1882 
1883   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1884   // a non-vector type. We can instead bitcast the original vector followed by
1885   // an extract of the desired element:
1886   //
1887   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1888   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1889   //   %1 = bitcast <4 x i8> %sroa to i32
1890   // Becomes:
1891   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1892   //   %ext = extractelement <4 x i32> %bc, i32 0
1893   //
1894   // If the shuffle is extracting a contiguous range of values from the input
1895   // vector then each use which is a bitcast of the extracted size can be
1896   // replaced. This will work if the vector types are compatible, and the begin
1897   // index is aligned to a value in the casted vector type. If the begin index
1898   // isn't aligned then we can shuffle the original vector (keeping the same
1899   // vector type) before extracting.
1900   //
1901   // This code will bail out if the target type is fundamentally incompatible
1902   // with vectors of the source type.
1903   //
1904   // Example of <16 x i8>, target type i32:
1905   // Index range [4,8):         v-----------v Will work.
1906   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1907   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1908   //     <4 x i32>: |           |           |           |           |
1909   //                +-----------+-----------+-----------+-----------+
1910   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1911   // Target type i40:           ^--------------^ Won't work, bail.
1912   bool MadeChange = false;
1913   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1914     Value *V = LHS;
1915     unsigned MaskElems = Mask.size();
1916     VectorType *SrcTy = cast<VectorType>(V->getType());
1917     unsigned VecBitWidth = SrcTy->getBitWidth();
1918     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1919     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1920     unsigned SrcNumElems = SrcTy->getNumElements();
1921     SmallVector<BitCastInst *, 8> BCs;
1922     DenseMap<Type *, Value *> NewBCs;
1923     for (User *U : SVI.users())
1924       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1925         if (!BC->use_empty())
1926           // Only visit bitcasts that weren't previously handled.
1927           BCs.push_back(BC);
1928     for (BitCastInst *BC : BCs) {
1929       unsigned BegIdx = Mask.front();
1930       Type *TgtTy = BC->getDestTy();
1931       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1932       if (!TgtElemBitWidth)
1933         continue;
1934       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1935       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1936       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1937       if (!VecBitWidthsEqual)
1938         continue;
1939       if (!VectorType::isValidElementType(TgtTy))
1940         continue;
1941       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1942       if (!BegIsAligned) {
1943         // Shuffle the input so [0,NumElements) contains the output, and
1944         // [NumElems,SrcNumElems) is undef.
1945         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1946                                                 UndefValue::get(Int32Ty));
1947         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1948           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1949         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1950                                         ConstantVector::get(ShuffleMask),
1951                                         SVI.getName() + ".extract");
1952         BegIdx = 0;
1953       }
1954       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1955       assert(SrcElemsPerTgtElem);
1956       BegIdx /= SrcElemsPerTgtElem;
1957       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1958       auto *NewBC =
1959           BCAlreadyExists
1960               ? NewBCs[CastSrcTy]
1961               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1962       if (!BCAlreadyExists)
1963         NewBCs[CastSrcTy] = NewBC;
1964       auto *Ext = Builder.CreateExtractElement(
1965           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1966       // The shufflevector isn't being replaced: the bitcast that used it
1967       // is. InstCombine will visit the newly-created instructions.
1968       replaceInstUsesWith(*BC, Ext);
1969       MadeChange = true;
1970     }
1971   }
1972 
1973   // If the LHS is a shufflevector itself, see if we can combine it with this
1974   // one without producing an unusual shuffle.
1975   // Cases that might be simplified:
1976   // 1.
1977   // x1=shuffle(v1,v2,mask1)
1978   //  x=shuffle(x1,undef,mask)
1979   //        ==>
1980   //  x=shuffle(v1,undef,newMask)
1981   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1982   // 2.
1983   // x1=shuffle(v1,undef,mask1)
1984   //  x=shuffle(x1,x2,mask)
1985   // where v1.size() == mask1.size()
1986   //        ==>
1987   //  x=shuffle(v1,x2,newMask)
1988   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1989   // 3.
1990   // x2=shuffle(v2,undef,mask2)
1991   //  x=shuffle(x1,x2,mask)
1992   // where v2.size() == mask2.size()
1993   //        ==>
1994   //  x=shuffle(x1,v2,newMask)
1995   // newMask[i] = (mask[i] < x1.size())
1996   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1997   // 4.
1998   // x1=shuffle(v1,undef,mask1)
1999   // x2=shuffle(v2,undef,mask2)
2000   //  x=shuffle(x1,x2,mask)
2001   // where v1.size() == v2.size()
2002   //        ==>
2003   //  x=shuffle(v1,v2,newMask)
2004   // newMask[i] = (mask[i] < x1.size())
2005   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2006   //
2007   // Here we are really conservative:
2008   // we are absolutely afraid of producing a shuffle mask not in the input
2009   // program, because the code gen may not be smart enough to turn a merged
2010   // shuffle into two specific shuffles: it may produce worse code.  As such,
2011   // we only merge two shuffles if the result is either a splat or one of the
2012   // input shuffle masks.  In this case, merging the shuffles just removes
2013   // one instruction, which we know is safe.  This is good for things like
2014   // turning: (splat(splat)) -> splat, or
2015   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2016   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2017   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2018   if (LHSShuffle)
2019     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2020       LHSShuffle = nullptr;
2021   if (RHSShuffle)
2022     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2023       RHSShuffle = nullptr;
2024   if (!LHSShuffle && !RHSShuffle)
2025     return MadeChange ? &SVI : nullptr;
2026 
2027   Value* LHSOp0 = nullptr;
2028   Value* LHSOp1 = nullptr;
2029   Value* RHSOp0 = nullptr;
2030   unsigned LHSOp0Width = 0;
2031   unsigned RHSOp0Width = 0;
2032   if (LHSShuffle) {
2033     LHSOp0 = LHSShuffle->getOperand(0);
2034     LHSOp1 = LHSShuffle->getOperand(1);
2035     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2036   }
2037   if (RHSShuffle) {
2038     RHSOp0 = RHSShuffle->getOperand(0);
2039     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2040   }
2041   Value* newLHS = LHS;
2042   Value* newRHS = RHS;
2043   if (LHSShuffle) {
2044     // case 1
2045     if (isa<UndefValue>(RHS)) {
2046       newLHS = LHSOp0;
2047       newRHS = LHSOp1;
2048     }
2049     // case 2 or 4
2050     else if (LHSOp0Width == LHSWidth) {
2051       newLHS = LHSOp0;
2052     }
2053   }
2054   // case 3 or 4
2055   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2056     newRHS = RHSOp0;
2057   }
2058   // case 4
2059   if (LHSOp0 == RHSOp0) {
2060     newLHS = LHSOp0;
2061     newRHS = nullptr;
2062   }
2063 
2064   if (newLHS == LHS && newRHS == RHS)
2065     return MadeChange ? &SVI : nullptr;
2066 
2067   SmallVector<int, 16> LHSMask;
2068   SmallVector<int, 16> RHSMask;
2069   if (newLHS != LHS)
2070     LHSMask = LHSShuffle->getShuffleMask();
2071   if (RHSShuffle && newRHS != RHS)
2072     RHSMask = RHSShuffle->getShuffleMask();
2073 
2074   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2075   SmallVector<int, 16> newMask;
2076   bool isSplat = true;
2077   int SplatElt = -1;
2078   // Create a new mask for the new ShuffleVectorInst so that the new
2079   // ShuffleVectorInst is equivalent to the original one.
2080   for (unsigned i = 0; i < VWidth; ++i) {
2081     int eltMask;
2082     if (Mask[i] < 0) {
2083       // This element is an undef value.
2084       eltMask = -1;
2085     } else if (Mask[i] < (int)LHSWidth) {
2086       // This element is from left hand side vector operand.
2087       //
2088       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2089       // new mask value for the element.
2090       if (newLHS != LHS) {
2091         eltMask = LHSMask[Mask[i]];
2092         // If the value selected is an undef value, explicitly specify it
2093         // with a -1 mask value.
2094         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2095           eltMask = -1;
2096       } else
2097         eltMask = Mask[i];
2098     } else {
2099       // This element is from right hand side vector operand
2100       //
2101       // If the value selected is an undef value, explicitly specify it
2102       // with a -1 mask value. (case 1)
2103       if (isa<UndefValue>(RHS))
2104         eltMask = -1;
2105       // If RHS is going to be replaced (case 3 or 4), calculate the
2106       // new mask value for the element.
2107       else if (newRHS != RHS) {
2108         eltMask = RHSMask[Mask[i]-LHSWidth];
2109         // If the value selected is an undef value, explicitly specify it
2110         // with a -1 mask value.
2111         if (eltMask >= (int)RHSOp0Width) {
2112           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2113                  && "should have been check above");
2114           eltMask = -1;
2115         }
2116       } else
2117         eltMask = Mask[i]-LHSWidth;
2118 
2119       // If LHS's width is changed, shift the mask value accordingly.
2120       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2121       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2122       // If newRHS == newLHS, we want to remap any references from newRHS to
2123       // newLHS so that we can properly identify splats that may occur due to
2124       // obfuscation across the two vectors.
2125       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2126         eltMask += newLHSWidth;
2127     }
2128 
2129     // Check if this could still be a splat.
2130     if (eltMask >= 0) {
2131       if (SplatElt >= 0 && SplatElt != eltMask)
2132         isSplat = false;
2133       SplatElt = eltMask;
2134     }
2135 
2136     newMask.push_back(eltMask);
2137   }
2138 
2139   // If the result mask is equal to one of the original shuffle masks,
2140   // or is a splat, do the replacement.
2141   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2142     SmallVector<Constant*, 16> Elts;
2143     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2144       if (newMask[i] < 0) {
2145         Elts.push_back(UndefValue::get(Int32Ty));
2146       } else {
2147         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2148       }
2149     }
2150     if (!newRHS)
2151       newRHS = UndefValue::get(newLHS->getType());
2152     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2153   }
2154 
2155   // If the result mask is an identity, replace uses of this instruction with
2156   // corresponding argument.
2157   bool isLHSID, isRHSID;
2158   recognizeIdentityMask(newMask, isLHSID, isRHSID);
2159   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
2160   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
2161 
2162   return MadeChange ? &SVI : nullptr;
2163 }
2164