1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 46 using namespace llvm; 47 using namespace PatternMatch; 48 49 STATISTIC(NumAggregateReconstructionsSimplified, 50 "Number of aggregate reconstructions turned into reuse of the " 51 "original aggregate"); 52 53 /// Return true if the value is cheaper to scalarize than it is to leave as a 54 /// vector operation. If the extract index \p EI is a constant integer then 55 /// some operations may be cheap to scalarize. 56 /// 57 /// FIXME: It's possible to create more instructions than previously existed. 58 static bool cheapToScalarize(Value *V, Value *EI) { 59 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 60 61 // If we can pick a scalar constant value out of a vector, that is free. 62 if (auto *C = dyn_cast<Constant>(V)) 63 return CEI || C->getSplatValue(); 64 65 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 66 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 67 // Index needs to be lower than the minimum size of the vector, because 68 // for scalable vector, the vector size is known at run time. 69 return CEI->getValue().ult(EC.getKnownMinValue()); 70 } 71 72 // An insertelement to the same constant index as our extract will simplify 73 // to the scalar inserted element. An insertelement to a different constant 74 // index is irrelevant to our extract. 75 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 76 return CEI; 77 78 if (match(V, m_OneUse(m_Load(m_Value())))) 79 return true; 80 81 if (match(V, m_OneUse(m_UnOp()))) 82 return true; 83 84 Value *V0, *V1; 85 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 86 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 87 return true; 88 89 CmpInst::Predicate UnusedPred; 90 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 91 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 92 return true; 93 94 return false; 95 } 96 97 // If we have a PHI node with a vector type that is only used to feed 98 // itself and be an operand of extractelement at a constant location, 99 // try to replace the PHI of the vector type with a PHI of a scalar type. 100 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 101 PHINode *PN) { 102 SmallVector<Instruction *, 2> Extracts; 103 // The users we want the PHI to have are: 104 // 1) The EI ExtractElement (we already know this) 105 // 2) Possibly more ExtractElements with the same index. 106 // 3) Another operand, which will feed back into the PHI. 107 Instruction *PHIUser = nullptr; 108 for (auto U : PN->users()) { 109 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 110 if (EI.getIndexOperand() == EU->getIndexOperand()) 111 Extracts.push_back(EU); 112 else 113 return nullptr; 114 } else if (!PHIUser) { 115 PHIUser = cast<Instruction>(U); 116 } else { 117 return nullptr; 118 } 119 } 120 121 if (!PHIUser) 122 return nullptr; 123 124 // Verify that this PHI user has one use, which is the PHI itself, 125 // and that it is a binary operation which is cheap to scalarize. 126 // otherwise return nullptr. 127 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 128 !(isa<BinaryOperator>(PHIUser)) || 129 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 130 return nullptr; 131 132 // Create a scalar PHI node that will replace the vector PHI node 133 // just before the current PHI node. 134 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 135 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 136 // Scalarize each PHI operand. 137 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 138 Value *PHIInVal = PN->getIncomingValue(i); 139 BasicBlock *inBB = PN->getIncomingBlock(i); 140 Value *Elt = EI.getIndexOperand(); 141 // If the operand is the PHI induction variable: 142 if (PHIInVal == PHIUser) { 143 // Scalarize the binary operation. Its first operand is the 144 // scalar PHI, and the second operand is extracted from the other 145 // vector operand. 146 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 147 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 148 Value *Op = InsertNewInstWith( 149 ExtractElementInst::Create(B0->getOperand(opId), Elt, 150 B0->getOperand(opId)->getName() + ".Elt"), 151 *B0); 152 Value *newPHIUser = InsertNewInstWith( 153 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 154 scalarPHI, Op, B0), *B0); 155 scalarPHI->addIncoming(newPHIUser, inBB); 156 } else { 157 // Scalarize PHI input: 158 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 159 // Insert the new instruction into the predecessor basic block. 160 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 161 BasicBlock::iterator InsertPos; 162 if (pos && !isa<PHINode>(pos)) { 163 InsertPos = ++pos->getIterator(); 164 } else { 165 InsertPos = inBB->getFirstInsertionPt(); 166 } 167 168 InsertNewInstWith(newEI, *InsertPos); 169 170 scalarPHI->addIncoming(newEI, inBB); 171 } 172 } 173 174 for (auto E : Extracts) 175 replaceInstUsesWith(*E, scalarPHI); 176 177 return &EI; 178 } 179 180 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 181 Value *X; 182 uint64_t ExtIndexC; 183 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 184 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 185 return nullptr; 186 187 ElementCount NumElts = 188 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 189 Type *DestTy = Ext.getType(); 190 bool IsBigEndian = DL.isBigEndian(); 191 192 // If we are casting an integer to vector and extracting a portion, that is 193 // a shift-right and truncate. 194 // TODO: Allow FP dest type by casting the trunc to FP? 195 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && 196 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { 197 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 198 "Expected fixed vector type for bitcast from scalar integer"); 199 200 // Big endian requires adjusting the extract index since MSB is at index 0. 201 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 202 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 203 if (IsBigEndian) 204 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 205 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); 206 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { 207 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 208 return new TruncInst(Lshr, DestTy); 209 } 210 } 211 212 if (!X->getType()->isVectorTy()) 213 return nullptr; 214 215 // If this extractelement is using a bitcast from a vector of the same number 216 // of elements, see if we can find the source element from the source vector: 217 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 218 auto *SrcTy = cast<VectorType>(X->getType()); 219 ElementCount NumSrcElts = SrcTy->getElementCount(); 220 if (NumSrcElts == NumElts) 221 if (Value *Elt = findScalarElement(X, ExtIndexC)) 222 return new BitCastInst(Elt, DestTy); 223 224 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 225 "Src and Dst must be the same sort of vector type"); 226 227 // If the source elements are wider than the destination, try to shift and 228 // truncate a subset of scalar bits of an insert op. 229 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 230 Value *Scalar; 231 uint64_t InsIndexC; 232 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 233 m_ConstantInt(InsIndexC)))) 234 return nullptr; 235 236 // The extract must be from the subset of vector elements that we inserted 237 // into. Example: if we inserted element 1 of a <2 x i64> and we are 238 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 239 // of elements 4-7 of the bitcasted vector. 240 unsigned NarrowingRatio = 241 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 242 if (ExtIndexC / NarrowingRatio != InsIndexC) 243 return nullptr; 244 245 // We are extracting part of the original scalar. How that scalar is 246 // inserted into the vector depends on the endian-ness. Example: 247 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 248 // +--+--+--+--+--+--+--+--+ 249 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 250 // extelt <4 x i16> V', 3: | |S2|S3| 251 // +--+--+--+--+--+--+--+--+ 252 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 253 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 254 // In this example, we must right-shift little-endian. Big-endian is just a 255 // truncate. 256 unsigned Chunk = ExtIndexC % NarrowingRatio; 257 if (IsBigEndian) 258 Chunk = NarrowingRatio - 1 - Chunk; 259 260 // Bail out if this is an FP vector to FP vector sequence. That would take 261 // more instructions than we started with unless there is no shift, and it 262 // may not be handled as well in the backend. 263 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 264 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 265 if (NeedSrcBitcast && NeedDestBitcast) 266 return nullptr; 267 268 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 269 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 270 unsigned ShAmt = Chunk * DestWidth; 271 272 // TODO: This limitation is more strict than necessary. We could sum the 273 // number of new instructions and subtract the number eliminated to know if 274 // we can proceed. 275 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 276 if (NeedSrcBitcast || NeedDestBitcast) 277 return nullptr; 278 279 if (NeedSrcBitcast) { 280 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 281 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 282 } 283 284 if (ShAmt) { 285 // Bail out if we could end with more instructions than we started with. 286 if (!Ext.getVectorOperand()->hasOneUse()) 287 return nullptr; 288 Scalar = Builder.CreateLShr(Scalar, ShAmt); 289 } 290 291 if (NeedDestBitcast) { 292 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 293 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 294 } 295 return new TruncInst(Scalar, DestTy); 296 } 297 298 return nullptr; 299 } 300 301 /// Find elements of V demanded by UserInstr. 302 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 303 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 304 305 // Conservatively assume that all elements are needed. 306 APInt UsedElts(APInt::getAllOnes(VWidth)); 307 308 switch (UserInstr->getOpcode()) { 309 case Instruction::ExtractElement: { 310 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 311 assert(EEI->getVectorOperand() == V); 312 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 313 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 314 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 315 } 316 break; 317 } 318 case Instruction::ShuffleVector: { 319 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 320 unsigned MaskNumElts = 321 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 322 323 UsedElts = APInt(VWidth, 0); 324 for (unsigned i = 0; i < MaskNumElts; i++) { 325 unsigned MaskVal = Shuffle->getMaskValue(i); 326 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 327 continue; 328 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 329 UsedElts.setBit(MaskVal); 330 if (Shuffle->getOperand(1) == V && 331 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 332 UsedElts.setBit(MaskVal - VWidth); 333 } 334 break; 335 } 336 default: 337 break; 338 } 339 return UsedElts; 340 } 341 342 /// Find union of elements of V demanded by all its users. 343 /// If it is known by querying findDemandedEltsBySingleUser that 344 /// no user demands an element of V, then the corresponding bit 345 /// remains unset in the returned value. 346 static APInt findDemandedEltsByAllUsers(Value *V) { 347 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 348 349 APInt UnionUsedElts(VWidth, 0); 350 for (const Use &U : V->uses()) { 351 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 352 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 353 } else { 354 UnionUsedElts = APInt::getAllOnes(VWidth); 355 break; 356 } 357 358 if (UnionUsedElts.isAllOnes()) 359 break; 360 } 361 362 return UnionUsedElts; 363 } 364 365 /// Given a constant index for a extractelement or insertelement instruction, 366 /// return it with the canonical type if it isn't already canonical. We 367 /// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't 368 /// matter, we just want a consistent type to simplify CSE. 369 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) { 370 const unsigned IndexBW = IndexC->getType()->getBitWidth(); 371 if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64) 372 return nullptr; 373 return ConstantInt::get(IndexC->getContext(), 374 IndexC->getValue().zextOrTrunc(64)); 375 } 376 377 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 378 Value *SrcVec = EI.getVectorOperand(); 379 Value *Index = EI.getIndexOperand(); 380 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 381 SQ.getWithInstruction(&EI))) 382 return replaceInstUsesWith(EI, V); 383 384 // If extracting a specified index from the vector, see if we can recursively 385 // find a previously computed scalar that was inserted into the vector. 386 auto *IndexC = dyn_cast<ConstantInt>(Index); 387 if (IndexC) { 388 // Canonicalize type of constant indices to i64 to simplify CSE 389 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 390 return replaceOperand(EI, 1, NewIdx); 391 392 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 393 unsigned NumElts = EC.getKnownMinValue(); 394 395 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 396 Intrinsic::ID IID = II->getIntrinsicID(); 397 // Index needs to be lower than the minimum size of the vector, because 398 // for scalable vector, the vector size is known at run time. 399 if (IID == Intrinsic::experimental_stepvector && 400 IndexC->getValue().ult(NumElts)) { 401 Type *Ty = EI.getType(); 402 unsigned BitWidth = Ty->getIntegerBitWidth(); 403 Value *Idx; 404 // Return index when its value does not exceed the allowed limit 405 // for the element type of the vector, otherwise return undefined. 406 if (IndexC->getValue().getActiveBits() <= BitWidth) 407 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 408 else 409 Idx = UndefValue::get(Ty); 410 return replaceInstUsesWith(EI, Idx); 411 } 412 } 413 414 // InstSimplify should handle cases where the index is invalid. 415 // For fixed-length vector, it's invalid to extract out-of-range element. 416 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 417 return nullptr; 418 419 if (Instruction *I = foldBitcastExtElt(EI)) 420 return I; 421 422 // If there's a vector PHI feeding a scalar use through this extractelement 423 // instruction, try to scalarize the PHI. 424 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 425 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 426 return ScalarPHI; 427 } 428 429 // TODO come up with a n-ary matcher that subsumes both unary and 430 // binary matchers. 431 UnaryOperator *UO; 432 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 433 // extelt (unop X), Index --> unop (extelt X, Index) 434 Value *X = UO->getOperand(0); 435 Value *E = Builder.CreateExtractElement(X, Index); 436 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 437 } 438 439 BinaryOperator *BO; 440 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 441 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 442 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 443 Value *E0 = Builder.CreateExtractElement(X, Index); 444 Value *E1 = Builder.CreateExtractElement(Y, Index); 445 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 446 } 447 448 Value *X, *Y; 449 CmpInst::Predicate Pred; 450 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 451 cheapToScalarize(SrcVec, Index)) { 452 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 453 Value *E0 = Builder.CreateExtractElement(X, Index); 454 Value *E1 = Builder.CreateExtractElement(Y, Index); 455 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 456 } 457 458 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 459 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 460 // instsimplify already handled the case where the indices are constants 461 // and equal by value, if both are constants, they must not be the same 462 // value, extract from the pre-inserted value instead. 463 if (isa<Constant>(IE->getOperand(2)) && IndexC) 464 return replaceOperand(EI, 0, IE->getOperand(0)); 465 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 466 auto *VecType = cast<VectorType>(GEP->getType()); 467 ElementCount EC = VecType->getElementCount(); 468 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 469 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 470 // Find out why we have a vector result - these are a few examples: 471 // 1. We have a scalar pointer and a vector of indices, or 472 // 2. We have a vector of pointers and a scalar index, or 473 // 3. We have a vector of pointers and a vector of indices, etc. 474 // Here we only consider combining when there is exactly one vector 475 // operand, since the optimization is less obviously a win due to 476 // needing more than one extractelements. 477 478 unsigned VectorOps = 479 llvm::count_if(GEP->operands(), [](const Value *V) { 480 return isa<VectorType>(V->getType()); 481 }); 482 if (VectorOps == 1) { 483 Value *NewPtr = GEP->getPointerOperand(); 484 if (isa<VectorType>(NewPtr->getType())) 485 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 486 487 SmallVector<Value *> NewOps; 488 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 489 Value *Op = GEP->getOperand(I); 490 if (isa<VectorType>(Op->getType())) 491 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 492 else 493 NewOps.push_back(Op); 494 } 495 496 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 497 GEP->getSourceElementType(), NewPtr, NewOps); 498 NewGEP->setIsInBounds(GEP->isInBounds()); 499 return NewGEP; 500 } 501 } 502 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 503 // If this is extracting an element from a shufflevector, figure out where 504 // it came from and extract from the appropriate input element instead. 505 // Restrict the following transformation to fixed-length vector. 506 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 507 int SrcIdx = 508 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 509 Value *Src; 510 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 511 ->getNumElements(); 512 513 if (SrcIdx < 0) 514 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 515 if (SrcIdx < (int)LHSWidth) 516 Src = SVI->getOperand(0); 517 else { 518 SrcIdx -= LHSWidth; 519 Src = SVI->getOperand(1); 520 } 521 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 522 return ExtractElementInst::Create( 523 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 524 } 525 } else if (auto *CI = dyn_cast<CastInst>(I)) { 526 // Canonicalize extractelement(cast) -> cast(extractelement). 527 // Bitcasts can change the number of vector elements, and they cost 528 // nothing. 529 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 530 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 531 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 532 } 533 } 534 } 535 536 // Run demanded elements after other transforms as this can drop flags on 537 // binops. If there's two paths to the same final result, we prefer the 538 // one which doesn't force us to drop flags. 539 if (IndexC) { 540 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 541 unsigned NumElts = EC.getKnownMinValue(); 542 // This instruction only demands the single element from the input vector. 543 // Skip for scalable type, the number of elements is unknown at 544 // compile-time. 545 if (!EC.isScalable() && NumElts != 1) { 546 // If the input vector has a single use, simplify it based on this use 547 // property. 548 if (SrcVec->hasOneUse()) { 549 APInt UndefElts(NumElts, 0); 550 APInt DemandedElts(NumElts, 0); 551 DemandedElts.setBit(IndexC->getZExtValue()); 552 if (Value *V = 553 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 554 return replaceOperand(EI, 0, V); 555 } else { 556 // If the input vector has multiple uses, simplify it based on a union 557 // of all elements used. 558 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 559 if (!DemandedElts.isAllOnes()) { 560 APInt UndefElts(NumElts, 0); 561 if (Value *V = SimplifyDemandedVectorElts( 562 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 563 true /* AllowMultipleUsers */)) { 564 if (V != SrcVec) { 565 SrcVec->replaceAllUsesWith(V); 566 return &EI; 567 } 568 } 569 } 570 } 571 } 572 } 573 return nullptr; 574 } 575 576 /// If V is a shuffle of values that ONLY returns elements from either LHS or 577 /// RHS, return the shuffle mask and true. Otherwise, return false. 578 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 579 SmallVectorImpl<int> &Mask) { 580 assert(LHS->getType() == RHS->getType() && 581 "Invalid CollectSingleShuffleElements"); 582 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 583 584 if (match(V, m_Undef())) { 585 Mask.assign(NumElts, -1); 586 return true; 587 } 588 589 if (V == LHS) { 590 for (unsigned i = 0; i != NumElts; ++i) 591 Mask.push_back(i); 592 return true; 593 } 594 595 if (V == RHS) { 596 for (unsigned i = 0; i != NumElts; ++i) 597 Mask.push_back(i + NumElts); 598 return true; 599 } 600 601 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 602 // If this is an insert of an extract from some other vector, include it. 603 Value *VecOp = IEI->getOperand(0); 604 Value *ScalarOp = IEI->getOperand(1); 605 Value *IdxOp = IEI->getOperand(2); 606 607 if (!isa<ConstantInt>(IdxOp)) 608 return false; 609 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 610 611 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 612 // We can handle this if the vector we are inserting into is 613 // transitively ok. 614 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 615 // If so, update the mask to reflect the inserted undef. 616 Mask[InsertedIdx] = -1; 617 return true; 618 } 619 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 620 if (isa<ConstantInt>(EI->getOperand(1))) { 621 unsigned ExtractedIdx = 622 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 623 unsigned NumLHSElts = 624 cast<FixedVectorType>(LHS->getType())->getNumElements(); 625 626 // This must be extracting from either LHS or RHS. 627 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 628 // We can handle this if the vector we are inserting into is 629 // transitively ok. 630 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 631 // If so, update the mask to reflect the inserted value. 632 if (EI->getOperand(0) == LHS) { 633 Mask[InsertedIdx % NumElts] = ExtractedIdx; 634 } else { 635 assert(EI->getOperand(0) == RHS); 636 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 637 } 638 return true; 639 } 640 } 641 } 642 } 643 } 644 645 return false; 646 } 647 648 /// If we have insertion into a vector that is wider than the vector that we 649 /// are extracting from, try to widen the source vector to allow a single 650 /// shufflevector to replace one or more insert/extract pairs. 651 static void replaceExtractElements(InsertElementInst *InsElt, 652 ExtractElementInst *ExtElt, 653 InstCombinerImpl &IC) { 654 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 655 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 656 unsigned NumInsElts = InsVecType->getNumElements(); 657 unsigned NumExtElts = ExtVecType->getNumElements(); 658 659 // The inserted-to vector must be wider than the extracted-from vector. 660 if (InsVecType->getElementType() != ExtVecType->getElementType() || 661 NumExtElts >= NumInsElts) 662 return; 663 664 // Create a shuffle mask to widen the extended-from vector using poison 665 // values. The mask selects all of the values of the original vector followed 666 // by as many poison values as needed to create a vector of the same length 667 // as the inserted-to vector. 668 SmallVector<int, 16> ExtendMask; 669 for (unsigned i = 0; i < NumExtElts; ++i) 670 ExtendMask.push_back(i); 671 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 672 ExtendMask.push_back(-1); 673 674 Value *ExtVecOp = ExtElt->getVectorOperand(); 675 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 676 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 677 ? ExtVecOpInst->getParent() 678 : ExtElt->getParent(); 679 680 // TODO: This restriction matches the basic block check below when creating 681 // new extractelement instructions. If that limitation is removed, this one 682 // could also be removed. But for now, we just bail out to ensure that we 683 // will replace the extractelement instruction that is feeding our 684 // insertelement instruction. This allows the insertelement to then be 685 // replaced by a shufflevector. If the insertelement is not replaced, we can 686 // induce infinite looping because there's an optimization for extractelement 687 // that will delete our widening shuffle. This would trigger another attempt 688 // here to create that shuffle, and we spin forever. 689 if (InsertionBlock != InsElt->getParent()) 690 return; 691 692 // TODO: This restriction matches the check in visitInsertElementInst() and 693 // prevents an infinite loop caused by not turning the extract/insert pair 694 // into a shuffle. We really should not need either check, but we're lacking 695 // folds for shufflevectors because we're afraid to generate shuffle masks 696 // that the backend can't handle. 697 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 698 return; 699 700 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 701 702 // Insert the new shuffle after the vector operand of the extract is defined 703 // (as long as it's not a PHI) or at the start of the basic block of the 704 // extract, so any subsequent extracts in the same basic block can use it. 705 // TODO: Insert before the earliest ExtractElementInst that is replaced. 706 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 707 WideVec->insertAfter(ExtVecOpInst); 708 else 709 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 710 711 // Replace extracts from the original narrow vector with extracts from the new 712 // wide vector. 713 for (User *U : ExtVecOp->users()) { 714 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 715 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 716 continue; 717 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 718 NewExt->insertAfter(OldExt); 719 IC.replaceInstUsesWith(*OldExt, NewExt); 720 } 721 } 722 723 /// We are building a shuffle to create V, which is a sequence of insertelement, 724 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 725 /// not rely on the second vector source. Return a std::pair containing the 726 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 727 /// parameter as required. 728 /// 729 /// Note: we intentionally don't try to fold earlier shuffles since they have 730 /// often been chosen carefully to be efficiently implementable on the target. 731 using ShuffleOps = std::pair<Value *, Value *>; 732 733 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 734 Value *PermittedRHS, 735 InstCombinerImpl &IC) { 736 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 737 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 738 739 if (match(V, m_Undef())) { 740 Mask.assign(NumElts, -1); 741 return std::make_pair( 742 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 743 } 744 745 if (isa<ConstantAggregateZero>(V)) { 746 Mask.assign(NumElts, 0); 747 return std::make_pair(V, nullptr); 748 } 749 750 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 751 // If this is an insert of an extract from some other vector, include it. 752 Value *VecOp = IEI->getOperand(0); 753 Value *ScalarOp = IEI->getOperand(1); 754 Value *IdxOp = IEI->getOperand(2); 755 756 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 757 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 758 unsigned ExtractedIdx = 759 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 760 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 761 762 // Either the extracted from or inserted into vector must be RHSVec, 763 // otherwise we'd end up with a shuffle of three inputs. 764 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 765 Value *RHS = EI->getOperand(0); 766 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 767 assert(LR.second == nullptr || LR.second == RHS); 768 769 if (LR.first->getType() != RHS->getType()) { 770 // Although we are giving up for now, see if we can create extracts 771 // that match the inserts for another round of combining. 772 replaceExtractElements(IEI, EI, IC); 773 774 // We tried our best, but we can't find anything compatible with RHS 775 // further up the chain. Return a trivial shuffle. 776 for (unsigned i = 0; i < NumElts; ++i) 777 Mask[i] = i; 778 return std::make_pair(V, nullptr); 779 } 780 781 unsigned NumLHSElts = 782 cast<FixedVectorType>(RHS->getType())->getNumElements(); 783 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 784 return std::make_pair(LR.first, RHS); 785 } 786 787 if (VecOp == PermittedRHS) { 788 // We've gone as far as we can: anything on the other side of the 789 // extractelement will already have been converted into a shuffle. 790 unsigned NumLHSElts = 791 cast<FixedVectorType>(EI->getOperand(0)->getType()) 792 ->getNumElements(); 793 for (unsigned i = 0; i != NumElts; ++i) 794 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 795 return std::make_pair(EI->getOperand(0), PermittedRHS); 796 } 797 798 // If this insertelement is a chain that comes from exactly these two 799 // vectors, return the vector and the effective shuffle. 800 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 801 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 802 Mask)) 803 return std::make_pair(EI->getOperand(0), PermittedRHS); 804 } 805 } 806 } 807 808 // Otherwise, we can't do anything fancy. Return an identity vector. 809 for (unsigned i = 0; i != NumElts; ++i) 810 Mask.push_back(i); 811 return std::make_pair(V, nullptr); 812 } 813 814 /// Look for chain of insertvalue's that fully define an aggregate, and trace 815 /// back the values inserted, see if they are all were extractvalue'd from 816 /// the same source aggregate from the exact same element indexes. 817 /// If they were, just reuse the source aggregate. 818 /// This potentially deals with PHI indirections. 819 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 820 InsertValueInst &OrigIVI) { 821 Type *AggTy = OrigIVI.getType(); 822 unsigned NumAggElts; 823 switch (AggTy->getTypeID()) { 824 case Type::StructTyID: 825 NumAggElts = AggTy->getStructNumElements(); 826 break; 827 case Type::ArrayTyID: 828 NumAggElts = AggTy->getArrayNumElements(); 829 break; 830 default: 831 llvm_unreachable("Unhandled aggregate type?"); 832 } 833 834 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 835 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 836 // FIXME: any interesting patterns to be caught with larger limit? 837 assert(NumAggElts > 0 && "Aggregate should have elements."); 838 if (NumAggElts > 2) 839 return nullptr; 840 841 static constexpr auto NotFound = None; 842 static constexpr auto FoundMismatch = nullptr; 843 844 // Try to find a value of each element of an aggregate. 845 // FIXME: deal with more complex, not one-dimensional, aggregate types 846 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 847 848 // Do we know values for each element of the aggregate? 849 auto KnowAllElts = [&AggElts]() { 850 return all_of(AggElts, 851 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 852 }; 853 854 int Depth = 0; 855 856 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 857 // every element being overwritten twice, which should never happen. 858 static const int DepthLimit = 2 * NumAggElts; 859 860 // Recurse up the chain of `insertvalue` aggregate operands until either we've 861 // reconstructed full initializer or can't visit any more `insertvalue`'s. 862 for (InsertValueInst *CurrIVI = &OrigIVI; 863 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 864 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 865 ++Depth) { 866 auto *InsertedValue = 867 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 868 if (!InsertedValue) 869 return nullptr; // Inserted value must be produced by an instruction. 870 871 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 872 873 // Don't bother with more than single-level aggregates. 874 if (Indices.size() != 1) 875 return nullptr; // FIXME: deal with more complex aggregates? 876 877 // Now, we may have already previously recorded the value for this element 878 // of an aggregate. If we did, that means the CurrIVI will later be 879 // overwritten with the already-recorded value. But if not, let's record it! 880 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 881 Elt = Elt.getValueOr(InsertedValue); 882 883 // FIXME: should we handle chain-terminating undef base operand? 884 } 885 886 // Was that sufficient to deduce the full initializer for the aggregate? 887 if (!KnowAllElts()) 888 return nullptr; // Give up then. 889 890 // We now want to find the source[s] of the aggregate elements we've found. 891 // And with "source" we mean the original aggregate[s] from which 892 // the inserted elements were extracted. This may require PHI translation. 893 894 enum class AggregateDescription { 895 /// When analyzing the value that was inserted into an aggregate, we did 896 /// not manage to find defining `extractvalue` instruction to analyze. 897 NotFound, 898 /// When analyzing the value that was inserted into an aggregate, we did 899 /// manage to find defining `extractvalue` instruction[s], and everything 900 /// matched perfectly - aggregate type, element insertion/extraction index. 901 Found, 902 /// When analyzing the value that was inserted into an aggregate, we did 903 /// manage to find defining `extractvalue` instruction, but there was 904 /// a mismatch: either the source type from which the extraction was didn't 905 /// match the aggregate type into which the insertion was, 906 /// or the extraction/insertion channels mismatched, 907 /// or different elements had different source aggregates. 908 FoundMismatch 909 }; 910 auto Describe = [](Optional<Value *> SourceAggregate) { 911 if (SourceAggregate == NotFound) 912 return AggregateDescription::NotFound; 913 if (*SourceAggregate == FoundMismatch) 914 return AggregateDescription::FoundMismatch; 915 return AggregateDescription::Found; 916 }; 917 918 // Given the value \p Elt that was being inserted into element \p EltIdx of an 919 // aggregate AggTy, see if \p Elt was originally defined by an 920 // appropriate extractvalue (same element index, same aggregate type). 921 // If found, return the source aggregate from which the extraction was. 922 // If \p PredBB is provided, does PHI translation of an \p Elt first. 923 auto FindSourceAggregate = 924 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 925 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 926 // For now(?), only deal with, at most, a single level of PHI indirection. 927 if (UseBB && PredBB) 928 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 929 // FIXME: deal with multiple levels of PHI indirection? 930 931 // Did we find an extraction? 932 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 933 if (!EVI) 934 return NotFound; 935 936 Value *SourceAggregate = EVI->getAggregateOperand(); 937 938 // Is the extraction from the same type into which the insertion was? 939 if (SourceAggregate->getType() != AggTy) 940 return FoundMismatch; 941 // And the element index doesn't change between extraction and insertion? 942 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 943 return FoundMismatch; 944 945 return SourceAggregate; // AggregateDescription::Found 946 }; 947 948 // Given elements AggElts that were constructing an aggregate OrigIVI, 949 // see if we can find appropriate source aggregate for each of the elements, 950 // and see it's the same aggregate for each element. If so, return it. 951 auto FindCommonSourceAggregate = 952 [&](Optional<BasicBlock *> UseBB, 953 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 954 Optional<Value *> SourceAggregate; 955 956 for (auto I : enumerate(AggElts)) { 957 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 958 "We don't store nullptr in SourceAggregate!"); 959 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 960 (I.index() != 0) && 961 "SourceAggregate should be valid after the first element,"); 962 963 // For this element, is there a plausible source aggregate? 964 // FIXME: we could special-case undef element, IFF we know that in the 965 // source aggregate said element isn't poison. 966 Optional<Value *> SourceAggregateForElement = 967 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 968 969 // Okay, what have we found? Does that correlate with previous findings? 970 971 // Regardless of whether or not we have previously found source 972 // aggregate for previous elements (if any), if we didn't find one for 973 // this element, passthrough whatever we have just found. 974 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 975 return SourceAggregateForElement; 976 977 // Okay, we have found source aggregate for this element. 978 // Let's see what we already know from previous elements, if any. 979 switch (Describe(SourceAggregate)) { 980 case AggregateDescription::NotFound: 981 // This is apparently the first element that we have examined. 982 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 983 continue; // Great, now look at next element. 984 case AggregateDescription::Found: 985 // We have previously already successfully examined other elements. 986 // Is this the same source aggregate we've found for other elements? 987 if (*SourceAggregateForElement != *SourceAggregate) 988 return FoundMismatch; 989 continue; // Still the same aggregate, look at next element. 990 case AggregateDescription::FoundMismatch: 991 llvm_unreachable("Can't happen. We would have early-exited then."); 992 }; 993 } 994 995 assert(Describe(SourceAggregate) == AggregateDescription::Found && 996 "Must be a valid Value"); 997 return *SourceAggregate; 998 }; 999 1000 Optional<Value *> SourceAggregate; 1001 1002 // Can we find the source aggregate without looking at predecessors? 1003 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 1004 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 1005 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 1006 return nullptr; // Conflicting source aggregates! 1007 ++NumAggregateReconstructionsSimplified; 1008 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 1009 } 1010 1011 // Okay, apparently we need to look at predecessors. 1012 1013 // We should be smart about picking the "use" basic block, which will be the 1014 // merge point for aggregate, where we'll insert the final PHI that will be 1015 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 1016 // We should look in which blocks each of the AggElts is being defined, 1017 // they all should be defined in the same basic block. 1018 BasicBlock *UseBB = nullptr; 1019 1020 for (const Optional<Instruction *> &I : AggElts) { 1021 BasicBlock *BB = (*I)->getParent(); 1022 // If it's the first instruction we've encountered, record the basic block. 1023 if (!UseBB) { 1024 UseBB = BB; 1025 continue; 1026 } 1027 // Otherwise, this must be the same basic block we've seen previously. 1028 if (UseBB != BB) 1029 return nullptr; 1030 } 1031 1032 // If *all* of the elements are basic-block-independent, meaning they are 1033 // either function arguments, or constant expressions, then if we didn't 1034 // handle them without predecessor-aware handling, we won't handle them now. 1035 if (!UseBB) 1036 return nullptr; 1037 1038 // If we didn't manage to find source aggregate without looking at 1039 // predecessors, and there are no predecessors to look at, then we're done. 1040 if (pred_empty(UseBB)) 1041 return nullptr; 1042 1043 // Arbitrary predecessor count limit. 1044 static const int PredCountLimit = 64; 1045 1046 // Cache the (non-uniqified!) list of predecessors in a vector, 1047 // checking the limit at the same time for efficiency. 1048 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1049 for (BasicBlock *Pred : predecessors(UseBB)) { 1050 // Don't bother if there are too many predecessors. 1051 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1052 return nullptr; 1053 Preds.emplace_back(Pred); 1054 } 1055 1056 // For each predecessor, what is the source aggregate, 1057 // from which all the elements were originally extracted from? 1058 // Note that we want for the map to have stable iteration order! 1059 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1060 for (BasicBlock *Pred : Preds) { 1061 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1062 SourceAggregates.insert({Pred, nullptr}); 1063 // Did we already evaluate this predecessor? 1064 if (!IV.second) 1065 continue; 1066 1067 // Let's hope that when coming from predecessor Pred, all elements of the 1068 // aggregate produced by OrigIVI must have been originally extracted from 1069 // the same aggregate. Is that so? Can we find said original aggregate? 1070 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1071 if (Describe(SourceAggregate) != AggregateDescription::Found) 1072 return nullptr; // Give up. 1073 IV.first->second = *SourceAggregate; 1074 } 1075 1076 // All good! Now we just need to thread the source aggregates here. 1077 // Note that we have to insert the new PHI here, ourselves, because we can't 1078 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1079 // Note that the same block can be a predecessor more than once, 1080 // and we need to preserve that invariant for the PHI node. 1081 BuilderTy::InsertPointGuard Guard(Builder); 1082 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1083 auto *PHI = 1084 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1085 for (BasicBlock *Pred : Preds) 1086 PHI->addIncoming(SourceAggregates[Pred], Pred); 1087 1088 ++NumAggregateReconstructionsSimplified; 1089 return replaceInstUsesWith(OrigIVI, PHI); 1090 } 1091 1092 /// Try to find redundant insertvalue instructions, like the following ones: 1093 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1094 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1095 /// Here the second instruction inserts values at the same indices, as the 1096 /// first one, making the first one redundant. 1097 /// It should be transformed to: 1098 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1099 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1100 bool IsRedundant = false; 1101 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1102 1103 // If there is a chain of insertvalue instructions (each of them except the 1104 // last one has only one use and it's another insertvalue insn from this 1105 // chain), check if any of the 'children' uses the same indices as the first 1106 // instruction. In this case, the first one is redundant. 1107 Value *V = &I; 1108 unsigned Depth = 0; 1109 while (V->hasOneUse() && Depth < 10) { 1110 User *U = V->user_back(); 1111 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1112 if (!UserInsInst || U->getOperand(0) != V) 1113 break; 1114 if (UserInsInst->getIndices() == FirstIndices) { 1115 IsRedundant = true; 1116 break; 1117 } 1118 V = UserInsInst; 1119 Depth++; 1120 } 1121 1122 if (IsRedundant) 1123 return replaceInstUsesWith(I, I.getOperand(0)); 1124 1125 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1126 return NewI; 1127 1128 return nullptr; 1129 } 1130 1131 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1132 // Can not analyze scalable type, the number of elements is not a compile-time 1133 // constant. 1134 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1135 return false; 1136 1137 int MaskSize = Shuf.getShuffleMask().size(); 1138 int VecSize = 1139 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1140 1141 // A vector select does not change the size of the operands. 1142 if (MaskSize != VecSize) 1143 return false; 1144 1145 // Each mask element must be undefined or choose a vector element from one of 1146 // the source operands without crossing vector lanes. 1147 for (int i = 0; i != MaskSize; ++i) { 1148 int Elt = Shuf.getMaskValue(i); 1149 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1150 return false; 1151 } 1152 1153 return true; 1154 } 1155 1156 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1157 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1158 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1159 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1160 // We are interested in the last insert in a chain. So if this insert has a 1161 // single user and that user is an insert, bail. 1162 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1163 return nullptr; 1164 1165 VectorType *VecTy = InsElt.getType(); 1166 // Can not handle scalable type, the number of elements is not a compile-time 1167 // constant. 1168 if (isa<ScalableVectorType>(VecTy)) 1169 return nullptr; 1170 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1171 1172 // Do not try to do this for a one-element vector, since that's a nop, 1173 // and will cause an inf-loop. 1174 if (NumElements == 1) 1175 return nullptr; 1176 1177 Value *SplatVal = InsElt.getOperand(1); 1178 InsertElementInst *CurrIE = &InsElt; 1179 SmallBitVector ElementPresent(NumElements, false); 1180 InsertElementInst *FirstIE = nullptr; 1181 1182 // Walk the chain backwards, keeping track of which indices we inserted into, 1183 // until we hit something that isn't an insert of the splatted value. 1184 while (CurrIE) { 1185 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1186 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1187 return nullptr; 1188 1189 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1190 // Check none of the intermediate steps have any additional uses, except 1191 // for the root insertelement instruction, which can be re-used, if it 1192 // inserts at position 0. 1193 if (CurrIE != &InsElt && 1194 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1195 return nullptr; 1196 1197 ElementPresent[Idx->getZExtValue()] = true; 1198 FirstIE = CurrIE; 1199 CurrIE = NextIE; 1200 } 1201 1202 // If this is just a single insertelement (not a sequence), we are done. 1203 if (FirstIE == &InsElt) 1204 return nullptr; 1205 1206 // If we are not inserting into an undef vector, make sure we've seen an 1207 // insert into every element. 1208 // TODO: If the base vector is not undef, it might be better to create a splat 1209 // and then a select-shuffle (blend) with the base vector. 1210 if (!match(FirstIE->getOperand(0), m_Undef())) 1211 if (!ElementPresent.all()) 1212 return nullptr; 1213 1214 // Create the insert + shuffle. 1215 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1216 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1217 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1218 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1219 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1220 1221 // Splat from element 0, but replace absent elements with undef in the mask. 1222 SmallVector<int, 16> Mask(NumElements, 0); 1223 for (unsigned i = 0; i != NumElements; ++i) 1224 if (!ElementPresent[i]) 1225 Mask[i] = -1; 1226 1227 return new ShuffleVectorInst(FirstIE, Mask); 1228 } 1229 1230 /// Try to fold an insert element into an existing splat shuffle by changing 1231 /// the shuffle's mask to include the index of this insert element. 1232 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1233 // Check if the vector operand of this insert is a canonical splat shuffle. 1234 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1235 if (!Shuf || !Shuf->isZeroEltSplat()) 1236 return nullptr; 1237 1238 // Bail out early if shuffle is scalable type. The number of elements in 1239 // shuffle mask is unknown at compile-time. 1240 if (isa<ScalableVectorType>(Shuf->getType())) 1241 return nullptr; 1242 1243 // Check for a constant insertion index. 1244 uint64_t IdxC; 1245 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1246 return nullptr; 1247 1248 // Check if the splat shuffle's input is the same as this insert's scalar op. 1249 Value *X = InsElt.getOperand(1); 1250 Value *Op0 = Shuf->getOperand(0); 1251 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1252 return nullptr; 1253 1254 // Replace the shuffle mask element at the index of this insert with a zero. 1255 // For example: 1256 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1257 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1258 unsigned NumMaskElts = 1259 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1260 SmallVector<int, 16> NewMask(NumMaskElts); 1261 for (unsigned i = 0; i != NumMaskElts; ++i) 1262 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1263 1264 return new ShuffleVectorInst(Op0, NewMask); 1265 } 1266 1267 /// Try to fold an extract+insert element into an existing identity shuffle by 1268 /// changing the shuffle's mask to include the index of this insert element. 1269 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1270 // Check if the vector operand of this insert is an identity shuffle. 1271 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1272 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1273 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1274 return nullptr; 1275 1276 // Bail out early if shuffle is scalable type. The number of elements in 1277 // shuffle mask is unknown at compile-time. 1278 if (isa<ScalableVectorType>(Shuf->getType())) 1279 return nullptr; 1280 1281 // Check for a constant insertion index. 1282 uint64_t IdxC; 1283 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1284 return nullptr; 1285 1286 // Check if this insert's scalar op is extracted from the identity shuffle's 1287 // input vector. 1288 Value *Scalar = InsElt.getOperand(1); 1289 Value *X = Shuf->getOperand(0); 1290 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1291 return nullptr; 1292 1293 // Replace the shuffle mask element at the index of this extract+insert with 1294 // that same index value. 1295 // For example: 1296 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1297 unsigned NumMaskElts = 1298 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1299 SmallVector<int, 16> NewMask(NumMaskElts); 1300 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1301 for (unsigned i = 0; i != NumMaskElts; ++i) { 1302 if (i != IdxC) { 1303 // All mask elements besides the inserted element remain the same. 1304 NewMask[i] = OldMask[i]; 1305 } else if (OldMask[i] == (int)IdxC) { 1306 // If the mask element was already set, there's nothing to do 1307 // (demanded elements analysis may unset it later). 1308 return nullptr; 1309 } else { 1310 assert(OldMask[i] == UndefMaskElem && 1311 "Unexpected shuffle mask element for identity shuffle"); 1312 NewMask[i] = IdxC; 1313 } 1314 } 1315 1316 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1317 } 1318 1319 /// If we have an insertelement instruction feeding into another insertelement 1320 /// and the 2nd is inserting a constant into the vector, canonicalize that 1321 /// constant insertion before the insertion of a variable: 1322 /// 1323 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1324 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1325 /// 1326 /// This has the potential of eliminating the 2nd insertelement instruction 1327 /// via constant folding of the scalar constant into a vector constant. 1328 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1329 InstCombiner::BuilderTy &Builder) { 1330 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1331 if (!InsElt1 || !InsElt1->hasOneUse()) 1332 return nullptr; 1333 1334 Value *X, *Y; 1335 Constant *ScalarC; 1336 ConstantInt *IdxC1, *IdxC2; 1337 if (match(InsElt1->getOperand(0), m_Value(X)) && 1338 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1339 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1340 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1341 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1342 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1343 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1344 } 1345 1346 return nullptr; 1347 } 1348 1349 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1350 /// --> shufflevector X, CVec', Mask' 1351 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1352 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1353 // Bail out if the parent has more than one use. In that case, we'd be 1354 // replacing the insertelt with a shuffle, and that's not a clear win. 1355 if (!Inst || !Inst->hasOneUse()) 1356 return nullptr; 1357 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1358 // The shuffle must have a constant vector operand. The insertelt must have 1359 // a constant scalar being inserted at a constant position in the vector. 1360 Constant *ShufConstVec, *InsEltScalar; 1361 uint64_t InsEltIndex; 1362 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1363 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1364 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1365 return nullptr; 1366 1367 // Adding an element to an arbitrary shuffle could be expensive, but a 1368 // shuffle that selects elements from vectors without crossing lanes is 1369 // assumed cheap. 1370 // If we're just adding a constant into that shuffle, it will still be 1371 // cheap. 1372 if (!isShuffleEquivalentToSelect(*Shuf)) 1373 return nullptr; 1374 1375 // From the above 'select' check, we know that the mask has the same number 1376 // of elements as the vector input operands. We also know that each constant 1377 // input element is used in its lane and can not be used more than once by 1378 // the shuffle. Therefore, replace the constant in the shuffle's constant 1379 // vector with the insertelt constant. Replace the constant in the shuffle's 1380 // mask vector with the insertelt index plus the length of the vector 1381 // (because the constant vector operand of a shuffle is always the 2nd 1382 // operand). 1383 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1384 unsigned NumElts = Mask.size(); 1385 SmallVector<Constant *, 16> NewShufElts(NumElts); 1386 SmallVector<int, 16> NewMaskElts(NumElts); 1387 for (unsigned I = 0; I != NumElts; ++I) { 1388 if (I == InsEltIndex) { 1389 NewShufElts[I] = InsEltScalar; 1390 NewMaskElts[I] = InsEltIndex + NumElts; 1391 } else { 1392 // Copy over the existing values. 1393 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1394 NewMaskElts[I] = Mask[I]; 1395 } 1396 1397 // Bail if we failed to find an element. 1398 if (!NewShufElts[I]) 1399 return nullptr; 1400 } 1401 1402 // Create new operands for a shuffle that includes the constant of the 1403 // original insertelt. The old shuffle will be dead now. 1404 return new ShuffleVectorInst(Shuf->getOperand(0), 1405 ConstantVector::get(NewShufElts), NewMaskElts); 1406 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1407 // Transform sequences of insertelements ops with constant data/indexes into 1408 // a single shuffle op. 1409 // Can not handle scalable type, the number of elements needed to create 1410 // shuffle mask is not a compile-time constant. 1411 if (isa<ScalableVectorType>(InsElt.getType())) 1412 return nullptr; 1413 unsigned NumElts = 1414 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1415 1416 uint64_t InsertIdx[2]; 1417 Constant *Val[2]; 1418 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1419 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1420 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1421 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1422 return nullptr; 1423 SmallVector<Constant *, 16> Values(NumElts); 1424 SmallVector<int, 16> Mask(NumElts); 1425 auto ValI = std::begin(Val); 1426 // Generate new constant vector and mask. 1427 // We have 2 values/masks from the insertelements instructions. Insert them 1428 // into new value/mask vectors. 1429 for (uint64_t I : InsertIdx) { 1430 if (!Values[I]) { 1431 Values[I] = *ValI; 1432 Mask[I] = NumElts + I; 1433 } 1434 ++ValI; 1435 } 1436 // Remaining values are filled with 'undef' values. 1437 for (unsigned I = 0; I < NumElts; ++I) { 1438 if (!Values[I]) { 1439 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1440 Mask[I] = I; 1441 } 1442 } 1443 // Create new operands for a shuffle that includes the constant of the 1444 // original insertelt. 1445 return new ShuffleVectorInst(IEI->getOperand(0), 1446 ConstantVector::get(Values), Mask); 1447 } 1448 return nullptr; 1449 } 1450 1451 /// If both the base vector and the inserted element are extended from the same 1452 /// type, do the insert element in the narrow source type followed by extend. 1453 /// TODO: This can be extended to include other cast opcodes, but particularly 1454 /// if we create a wider insertelement, make sure codegen is not harmed. 1455 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1456 InstCombiner::BuilderTy &Builder) { 1457 // We are creating a vector extend. If the original vector extend has another 1458 // use, that would mean we end up with 2 vector extends, so avoid that. 1459 // TODO: We could ease the use-clause to "if at least one op has one use" 1460 // (assuming that the source types match - see next TODO comment). 1461 Value *Vec = InsElt.getOperand(0); 1462 if (!Vec->hasOneUse()) 1463 return nullptr; 1464 1465 Value *Scalar = InsElt.getOperand(1); 1466 Value *X, *Y; 1467 CastInst::CastOps CastOpcode; 1468 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1469 CastOpcode = Instruction::FPExt; 1470 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1471 CastOpcode = Instruction::SExt; 1472 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1473 CastOpcode = Instruction::ZExt; 1474 else 1475 return nullptr; 1476 1477 // TODO: We can allow mismatched types by creating an intermediate cast. 1478 if (X->getType()->getScalarType() != Y->getType()) 1479 return nullptr; 1480 1481 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1482 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1483 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1484 } 1485 1486 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1487 Value *VecOp = IE.getOperand(0); 1488 Value *ScalarOp = IE.getOperand(1); 1489 Value *IdxOp = IE.getOperand(2); 1490 1491 if (auto *V = SimplifyInsertElementInst( 1492 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1493 return replaceInstUsesWith(IE, V); 1494 1495 // Canonicalize type of constant indices to i64 to simplify CSE 1496 if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) 1497 if (auto *NewIdx = getPreferredVectorIndex(IndexC)) 1498 return replaceOperand(IE, 2, NewIdx); 1499 1500 // If the scalar is bitcast and inserted into undef, do the insert in the 1501 // source type followed by bitcast. 1502 // TODO: Generalize for insert into any constant, not just undef? 1503 Value *ScalarSrc; 1504 if (match(VecOp, m_Undef()) && 1505 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1506 (ScalarSrc->getType()->isIntegerTy() || 1507 ScalarSrc->getType()->isFloatingPointTy())) { 1508 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1509 // bitcast (inselt undef, ScalarSrc, IdxOp) 1510 Type *ScalarTy = ScalarSrc->getType(); 1511 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1512 UndefValue *NewUndef = UndefValue::get(VecTy); 1513 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1514 return new BitCastInst(NewInsElt, IE.getType()); 1515 } 1516 1517 // If the vector and scalar are both bitcast from the same element type, do 1518 // the insert in that source type followed by bitcast. 1519 Value *VecSrc; 1520 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1521 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1522 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1523 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1524 cast<VectorType>(VecSrc->getType())->getElementType() == 1525 ScalarSrc->getType()) { 1526 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1527 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1528 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1529 return new BitCastInst(NewInsElt, IE.getType()); 1530 } 1531 1532 // If the inserted element was extracted from some other fixed-length vector 1533 // and both indexes are valid constants, try to turn this into a shuffle. 1534 // Can not handle scalable vector type, the number of elements needed to 1535 // create shuffle mask is not a compile-time constant. 1536 uint64_t InsertedIdx, ExtractedIdx; 1537 Value *ExtVecOp; 1538 if (isa<FixedVectorType>(IE.getType()) && 1539 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1540 match(ScalarOp, 1541 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1542 isa<FixedVectorType>(ExtVecOp->getType()) && 1543 ExtractedIdx < 1544 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1545 // TODO: Looking at the user(s) to determine if this insert is a 1546 // fold-to-shuffle opportunity does not match the usual instcombine 1547 // constraints. We should decide if the transform is worthy based only 1548 // on this instruction and its operands, but that may not work currently. 1549 // 1550 // Here, we are trying to avoid creating shuffles before reaching 1551 // the end of a chain of extract-insert pairs. This is complicated because 1552 // we do not generally form arbitrary shuffle masks in instcombine 1553 // (because those may codegen poorly), but collectShuffleElements() does 1554 // exactly that. 1555 // 1556 // The rules for determining what is an acceptable target-independent 1557 // shuffle mask are fuzzy because they evolve based on the backend's 1558 // capabilities and real-world impact. 1559 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1560 if (!Insert.hasOneUse()) 1561 return true; 1562 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1563 if (!InsertUser) 1564 return true; 1565 return false; 1566 }; 1567 1568 // Try to form a shuffle from a chain of extract-insert ops. 1569 if (isShuffleRootCandidate(IE)) { 1570 SmallVector<int, 16> Mask; 1571 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1572 1573 // The proposed shuffle may be trivial, in which case we shouldn't 1574 // perform the combine. 1575 if (LR.first != &IE && LR.second != &IE) { 1576 // We now have a shuffle of LHS, RHS, Mask. 1577 if (LR.second == nullptr) 1578 LR.second = UndefValue::get(LR.first->getType()); 1579 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1580 } 1581 } 1582 } 1583 1584 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1585 unsigned VWidth = VecTy->getNumElements(); 1586 APInt UndefElts(VWidth, 0); 1587 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1588 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1589 if (V != &IE) 1590 return replaceInstUsesWith(IE, V); 1591 return &IE; 1592 } 1593 } 1594 1595 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1596 return Shuf; 1597 1598 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1599 return NewInsElt; 1600 1601 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1602 return Broadcast; 1603 1604 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1605 return Splat; 1606 1607 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1608 return IdentityShuf; 1609 1610 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1611 return Ext; 1612 1613 return nullptr; 1614 } 1615 1616 /// Return true if we can evaluate the specified expression tree if the vector 1617 /// elements were shuffled in a different order. 1618 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1619 unsigned Depth = 5) { 1620 // We can always reorder the elements of a constant. 1621 if (isa<Constant>(V)) 1622 return true; 1623 1624 // We won't reorder vector arguments. No IPO here. 1625 Instruction *I = dyn_cast<Instruction>(V); 1626 if (!I) return false; 1627 1628 // Two users may expect different orders of the elements. Don't try it. 1629 if (!I->hasOneUse()) 1630 return false; 1631 1632 if (Depth == 0) return false; 1633 1634 switch (I->getOpcode()) { 1635 case Instruction::UDiv: 1636 case Instruction::SDiv: 1637 case Instruction::URem: 1638 case Instruction::SRem: 1639 // Propagating an undefined shuffle mask element to integer div/rem is not 1640 // allowed because those opcodes can create immediate undefined behavior 1641 // from an undefined element in an operand. 1642 if (llvm::is_contained(Mask, -1)) 1643 return false; 1644 LLVM_FALLTHROUGH; 1645 case Instruction::Add: 1646 case Instruction::FAdd: 1647 case Instruction::Sub: 1648 case Instruction::FSub: 1649 case Instruction::Mul: 1650 case Instruction::FMul: 1651 case Instruction::FDiv: 1652 case Instruction::FRem: 1653 case Instruction::Shl: 1654 case Instruction::LShr: 1655 case Instruction::AShr: 1656 case Instruction::And: 1657 case Instruction::Or: 1658 case Instruction::Xor: 1659 case Instruction::ICmp: 1660 case Instruction::FCmp: 1661 case Instruction::Trunc: 1662 case Instruction::ZExt: 1663 case Instruction::SExt: 1664 case Instruction::FPToUI: 1665 case Instruction::FPToSI: 1666 case Instruction::UIToFP: 1667 case Instruction::SIToFP: 1668 case Instruction::FPTrunc: 1669 case Instruction::FPExt: 1670 case Instruction::GetElementPtr: { 1671 // Bail out if we would create longer vector ops. We could allow creating 1672 // longer vector ops, but that may result in more expensive codegen. 1673 Type *ITy = I->getType(); 1674 if (ITy->isVectorTy() && 1675 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1676 return false; 1677 for (Value *Operand : I->operands()) { 1678 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1679 return false; 1680 } 1681 return true; 1682 } 1683 case Instruction::InsertElement: { 1684 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1685 if (!CI) return false; 1686 int ElementNumber = CI->getLimitedValue(); 1687 1688 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1689 // can't put an element into multiple indices. 1690 bool SeenOnce = false; 1691 for (int i = 0, e = Mask.size(); i != e; ++i) { 1692 if (Mask[i] == ElementNumber) { 1693 if (SeenOnce) 1694 return false; 1695 SeenOnce = true; 1696 } 1697 } 1698 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1699 } 1700 } 1701 return false; 1702 } 1703 1704 /// Rebuild a new instruction just like 'I' but with the new operands given. 1705 /// In the event of type mismatch, the type of the operands is correct. 1706 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1707 // We don't want to use the IRBuilder here because we want the replacement 1708 // instructions to appear next to 'I', not the builder's insertion point. 1709 switch (I->getOpcode()) { 1710 case Instruction::Add: 1711 case Instruction::FAdd: 1712 case Instruction::Sub: 1713 case Instruction::FSub: 1714 case Instruction::Mul: 1715 case Instruction::FMul: 1716 case Instruction::UDiv: 1717 case Instruction::SDiv: 1718 case Instruction::FDiv: 1719 case Instruction::URem: 1720 case Instruction::SRem: 1721 case Instruction::FRem: 1722 case Instruction::Shl: 1723 case Instruction::LShr: 1724 case Instruction::AShr: 1725 case Instruction::And: 1726 case Instruction::Or: 1727 case Instruction::Xor: { 1728 BinaryOperator *BO = cast<BinaryOperator>(I); 1729 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1730 BinaryOperator *New = 1731 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1732 NewOps[0], NewOps[1], "", BO); 1733 if (isa<OverflowingBinaryOperator>(BO)) { 1734 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1735 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1736 } 1737 if (isa<PossiblyExactOperator>(BO)) { 1738 New->setIsExact(BO->isExact()); 1739 } 1740 if (isa<FPMathOperator>(BO)) 1741 New->copyFastMathFlags(I); 1742 return New; 1743 } 1744 case Instruction::ICmp: 1745 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1746 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1747 NewOps[0], NewOps[1]); 1748 case Instruction::FCmp: 1749 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1750 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1751 NewOps[0], NewOps[1]); 1752 case Instruction::Trunc: 1753 case Instruction::ZExt: 1754 case Instruction::SExt: 1755 case Instruction::FPToUI: 1756 case Instruction::FPToSI: 1757 case Instruction::UIToFP: 1758 case Instruction::SIToFP: 1759 case Instruction::FPTrunc: 1760 case Instruction::FPExt: { 1761 // It's possible that the mask has a different number of elements from 1762 // the original cast. We recompute the destination type to match the mask. 1763 Type *DestTy = VectorType::get( 1764 I->getType()->getScalarType(), 1765 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1766 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1767 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1768 "", I); 1769 } 1770 case Instruction::GetElementPtr: { 1771 Value *Ptr = NewOps[0]; 1772 ArrayRef<Value*> Idx = NewOps.slice(1); 1773 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1774 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1775 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1776 return GEP; 1777 } 1778 } 1779 llvm_unreachable("failed to rebuild vector instructions"); 1780 } 1781 1782 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1783 // Mask.size() does not need to be equal to the number of vector elements. 1784 1785 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1786 Type *EltTy = V->getType()->getScalarType(); 1787 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1788 if (match(V, m_Undef())) 1789 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1790 1791 if (isa<ConstantAggregateZero>(V)) 1792 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1793 1794 if (Constant *C = dyn_cast<Constant>(V)) 1795 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1796 Mask); 1797 1798 Instruction *I = cast<Instruction>(V); 1799 switch (I->getOpcode()) { 1800 case Instruction::Add: 1801 case Instruction::FAdd: 1802 case Instruction::Sub: 1803 case Instruction::FSub: 1804 case Instruction::Mul: 1805 case Instruction::FMul: 1806 case Instruction::UDiv: 1807 case Instruction::SDiv: 1808 case Instruction::FDiv: 1809 case Instruction::URem: 1810 case Instruction::SRem: 1811 case Instruction::FRem: 1812 case Instruction::Shl: 1813 case Instruction::LShr: 1814 case Instruction::AShr: 1815 case Instruction::And: 1816 case Instruction::Or: 1817 case Instruction::Xor: 1818 case Instruction::ICmp: 1819 case Instruction::FCmp: 1820 case Instruction::Trunc: 1821 case Instruction::ZExt: 1822 case Instruction::SExt: 1823 case Instruction::FPToUI: 1824 case Instruction::FPToSI: 1825 case Instruction::UIToFP: 1826 case Instruction::SIToFP: 1827 case Instruction::FPTrunc: 1828 case Instruction::FPExt: 1829 case Instruction::Select: 1830 case Instruction::GetElementPtr: { 1831 SmallVector<Value*, 8> NewOps; 1832 bool NeedsRebuild = 1833 (Mask.size() != 1834 cast<FixedVectorType>(I->getType())->getNumElements()); 1835 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1836 Value *V; 1837 // Recursively call evaluateInDifferentElementOrder on vector arguments 1838 // as well. E.g. GetElementPtr may have scalar operands even if the 1839 // return value is a vector, so we need to examine the operand type. 1840 if (I->getOperand(i)->getType()->isVectorTy()) 1841 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1842 else 1843 V = I->getOperand(i); 1844 NewOps.push_back(V); 1845 NeedsRebuild |= (V != I->getOperand(i)); 1846 } 1847 if (NeedsRebuild) { 1848 return buildNew(I, NewOps); 1849 } 1850 return I; 1851 } 1852 case Instruction::InsertElement: { 1853 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1854 1855 // The insertelement was inserting at Element. Figure out which element 1856 // that becomes after shuffling. The answer is guaranteed to be unique 1857 // by CanEvaluateShuffled. 1858 bool Found = false; 1859 int Index = 0; 1860 for (int e = Mask.size(); Index != e; ++Index) { 1861 if (Mask[Index] == Element) { 1862 Found = true; 1863 break; 1864 } 1865 } 1866 1867 // If element is not in Mask, no need to handle the operand 1 (element to 1868 // be inserted). Just evaluate values in operand 0 according to Mask. 1869 if (!Found) 1870 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1871 1872 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1873 return InsertElementInst::Create(V, I->getOperand(1), 1874 ConstantInt::get(I32Ty, Index), "", I); 1875 } 1876 } 1877 llvm_unreachable("failed to reorder elements of vector instruction!"); 1878 } 1879 1880 // Returns true if the shuffle is extracting a contiguous range of values from 1881 // LHS, for example: 1882 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1883 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1884 // Shuffles to: |EE|FF|GG|HH| 1885 // +--+--+--+--+ 1886 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1887 ArrayRef<int> Mask) { 1888 unsigned LHSElems = 1889 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1890 unsigned MaskElems = Mask.size(); 1891 unsigned BegIdx = Mask.front(); 1892 unsigned EndIdx = Mask.back(); 1893 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1894 return false; 1895 for (unsigned I = 0; I != MaskElems; ++I) 1896 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1897 return false; 1898 return true; 1899 } 1900 1901 /// These are the ingredients in an alternate form binary operator as described 1902 /// below. 1903 struct BinopElts { 1904 BinaryOperator::BinaryOps Opcode; 1905 Value *Op0; 1906 Value *Op1; 1907 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1908 Value *V0 = nullptr, Value *V1 = nullptr) : 1909 Opcode(Opc), Op0(V0), Op1(V1) {} 1910 operator bool() const { return Opcode != 0; } 1911 }; 1912 1913 /// Binops may be transformed into binops with different opcodes and operands. 1914 /// Reverse the usual canonicalization to enable folds with the non-canonical 1915 /// form of the binop. If a transform is possible, return the elements of the 1916 /// new binop. If not, return invalid elements. 1917 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1918 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1919 Type *Ty = BO->getType(); 1920 switch (BO->getOpcode()) { 1921 case Instruction::Shl: { 1922 // shl X, C --> mul X, (1 << C) 1923 Constant *C; 1924 if (match(BO1, m_Constant(C))) { 1925 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1926 return {Instruction::Mul, BO0, ShlOne}; 1927 } 1928 break; 1929 } 1930 case Instruction::Or: { 1931 // or X, C --> add X, C (when X and C have no common bits set) 1932 const APInt *C; 1933 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1934 return {Instruction::Add, BO0, BO1}; 1935 break; 1936 } 1937 case Instruction::Sub: 1938 // sub 0, X --> mul X, -1 1939 if (match(BO0, m_ZeroInt())) 1940 return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)}; 1941 break; 1942 default: 1943 break; 1944 } 1945 return {}; 1946 } 1947 1948 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1949 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1950 1951 // Are we shuffling together some value and that same value after it has been 1952 // modified by a binop with a constant? 1953 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1954 Constant *C; 1955 bool Op0IsBinop; 1956 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1957 Op0IsBinop = true; 1958 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1959 Op0IsBinop = false; 1960 else 1961 return nullptr; 1962 1963 // The identity constant for a binop leaves a variable operand unchanged. For 1964 // a vector, this is a splat of something like 0, -1, or 1. 1965 // If there's no identity constant for this binop, we're done. 1966 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1967 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1968 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1969 if (!IdC) 1970 return nullptr; 1971 1972 // Shuffle identity constants into the lanes that return the original value. 1973 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1974 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1975 // The existing binop constant vector remains in the same operand position. 1976 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1977 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1978 ConstantExpr::getShuffleVector(IdC, C, Mask); 1979 1980 bool MightCreatePoisonOrUB = 1981 is_contained(Mask, UndefMaskElem) && 1982 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1983 if (MightCreatePoisonOrUB) 1984 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1985 1986 // shuf (bop X, C), X, M --> bop X, C' 1987 // shuf X, (bop X, C), M --> bop X, C' 1988 Value *X = Op0IsBinop ? Op1 : Op0; 1989 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1990 NewBO->copyIRFlags(BO); 1991 1992 // An undef shuffle mask element may propagate as an undef constant element in 1993 // the new binop. That would produce poison where the original code might not. 1994 // If we already made a safe constant, then there's no danger. 1995 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1996 NewBO->dropPoisonGeneratingFlags(); 1997 return NewBO; 1998 } 1999 2000 /// If we have an insert of a scalar to a non-zero element of an undefined 2001 /// vector and then shuffle that value, that's the same as inserting to the zero 2002 /// element and shuffling. Splatting from the zero element is recognized as the 2003 /// canonical form of splat. 2004 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 2005 InstCombiner::BuilderTy &Builder) { 2006 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2007 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2008 Value *X; 2009 uint64_t IndexC; 2010 2011 // Match a shuffle that is a splat to a non-zero element. 2012 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 2013 m_ConstantInt(IndexC)))) || 2014 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 2015 return nullptr; 2016 2017 // Insert into element 0 of an undef vector. 2018 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 2019 Constant *Zero = Builder.getInt32(0); 2020 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 2021 2022 // Splat from element 0. Any mask element that is undefined remains undefined. 2023 // For example: 2024 // shuf (inselt undef, X, 2), _, <2,2,undef> 2025 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 2026 unsigned NumMaskElts = 2027 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2028 SmallVector<int, 16> NewMask(NumMaskElts, 0); 2029 for (unsigned i = 0; i != NumMaskElts; ++i) 2030 if (Mask[i] == UndefMaskElem) 2031 NewMask[i] = Mask[i]; 2032 2033 return new ShuffleVectorInst(NewIns, NewMask); 2034 } 2035 2036 /// Try to fold shuffles that are the equivalent of a vector select. 2037 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) { 2038 if (!Shuf.isSelect()) 2039 return nullptr; 2040 2041 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2042 // Commuting undef to operand 0 conflicts with another canonicalization. 2043 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2044 if (!match(Shuf.getOperand(1), m_Undef()) && 2045 Shuf.getMaskValue(0) >= (int)NumElts) { 2046 // TODO: Can we assert that both operands of a shuffle-select are not undef 2047 // (otherwise, it would have been folded by instsimplify? 2048 Shuf.commute(); 2049 return &Shuf; 2050 } 2051 2052 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2053 return I; 2054 2055 BinaryOperator *B0, *B1; 2056 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2057 !match(Shuf.getOperand(1), m_BinOp(B1))) 2058 return nullptr; 2059 2060 // If one operand is "0 - X", allow that to be viewed as "X * -1" 2061 // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired 2062 // with a multiply, we will exit because C0/C1 will not be set. 2063 Value *X, *Y; 2064 Constant *C0 = nullptr, *C1 = nullptr; 2065 bool ConstantsAreOp1; 2066 if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2067 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2068 ConstantsAreOp1 = false; 2069 else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)), 2070 m_Neg(m_Value(X)))) && 2071 match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)), 2072 m_Neg(m_Value(Y))))) 2073 ConstantsAreOp1 = true; 2074 else 2075 return nullptr; 2076 2077 // We need matching binops to fold the lanes together. 2078 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2079 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2080 bool DropNSW = false; 2081 if (ConstantsAreOp1 && Opc0 != Opc1) { 2082 // TODO: We drop "nsw" if shift is converted into multiply because it may 2083 // not be correct when the shift amount is BitWidth - 1. We could examine 2084 // each vector element to determine if it is safe to keep that flag. 2085 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2086 DropNSW = true; 2087 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2088 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2089 Opc0 = AltB0.Opcode; 2090 C0 = cast<Constant>(AltB0.Op1); 2091 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2092 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2093 Opc1 = AltB1.Opcode; 2094 C1 = cast<Constant>(AltB1.Op1); 2095 } 2096 } 2097 2098 if (Opc0 != Opc1 || !C0 || !C1) 2099 return nullptr; 2100 2101 // The opcodes must be the same. Use a new name to make that clear. 2102 BinaryOperator::BinaryOps BOpc = Opc0; 2103 2104 // Select the constant elements needed for the single binop. 2105 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2106 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2107 2108 // We are moving a binop after a shuffle. When a shuffle has an undefined 2109 // mask element, the result is undefined, but it is not poison or undefined 2110 // behavior. That is not necessarily true for div/rem/shift. 2111 bool MightCreatePoisonOrUB = 2112 is_contained(Mask, UndefMaskElem) && 2113 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2114 if (MightCreatePoisonOrUB) 2115 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2116 ConstantsAreOp1); 2117 2118 Value *V; 2119 if (X == Y) { 2120 // Remove a binop and the shuffle by rearranging the constant: 2121 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2122 // shuffle (op C0, V), (op C1, V), M --> op C', V 2123 V = X; 2124 } else { 2125 // If there are 2 different variable operands, we must create a new shuffle 2126 // (select) first, so check uses to ensure that we don't end up with more 2127 // instructions than we started with. 2128 if (!B0->hasOneUse() && !B1->hasOneUse()) 2129 return nullptr; 2130 2131 // If we use the original shuffle mask and op1 is *variable*, we would be 2132 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2133 // poison. We do not have to guard against UB when *constants* are op1 2134 // because safe constants guarantee that we do not overflow sdiv/srem (and 2135 // there's no danger for other opcodes). 2136 // TODO: To allow this case, create a new shuffle mask with no undefs. 2137 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2138 return nullptr; 2139 2140 // Note: In general, we do not create new shuffles in InstCombine because we 2141 // do not know if a target can lower an arbitrary shuffle optimally. In this 2142 // case, the shuffle uses the existing mask, so there is no additional risk. 2143 2144 // Select the variable vectors first, then perform the binop: 2145 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2146 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2147 V = Builder.CreateShuffleVector(X, Y, Mask); 2148 } 2149 2150 Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) : 2151 Builder.CreateBinOp(BOpc, NewC, V); 2152 2153 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2154 // 1. If we changed an opcode, poison conditions might have changed. 2155 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2156 // where the original code did not. But if we already made a safe constant, 2157 // then there's no danger. 2158 if (auto *NewI = dyn_cast<Instruction>(NewBO)) { 2159 NewI->copyIRFlags(B0); 2160 NewI->andIRFlags(B1); 2161 if (DropNSW) 2162 NewI->setHasNoSignedWrap(false); 2163 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2164 NewI->dropPoisonGeneratingFlags(); 2165 } 2166 return replaceInstUsesWith(Shuf, NewBO); 2167 } 2168 2169 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2170 /// Example (little endian): 2171 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2172 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2173 bool IsBigEndian) { 2174 // This must be a bitcasted shuffle of 1 vector integer operand. 2175 Type *DestType = Shuf.getType(); 2176 Value *X; 2177 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2178 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2179 return nullptr; 2180 2181 // The source type must have the same number of elements as the shuffle, 2182 // and the source element type must be larger than the shuffle element type. 2183 Type *SrcType = X->getType(); 2184 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2185 cast<FixedVectorType>(SrcType)->getNumElements() != 2186 cast<FixedVectorType>(DestType)->getNumElements() || 2187 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2188 return nullptr; 2189 2190 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2191 "Expected a shuffle that decreases length"); 2192 2193 // Last, check that the mask chooses the correct low bits for each narrow 2194 // element in the result. 2195 uint64_t TruncRatio = 2196 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2197 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2198 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2199 if (Mask[i] == UndefMaskElem) 2200 continue; 2201 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2202 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2203 if (Mask[i] != (int)LSBIndex) 2204 return nullptr; 2205 } 2206 2207 return new TruncInst(X, DestType); 2208 } 2209 2210 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2211 /// narrowing (concatenating with undef and extracting back to the original 2212 /// length). This allows replacing the wide select with a narrow select. 2213 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2214 InstCombiner::BuilderTy &Builder) { 2215 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2216 // of the 1st vector operand of a shuffle. 2217 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2218 return nullptr; 2219 2220 // The vector being shuffled must be a vector select that we can eliminate. 2221 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2222 Value *Cond, *X, *Y; 2223 if (!match(Shuf.getOperand(0), 2224 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2225 return nullptr; 2226 2227 // We need a narrow condition value. It must be extended with undef elements 2228 // and have the same number of elements as this shuffle. 2229 unsigned NarrowNumElts = 2230 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2231 Value *NarrowCond; 2232 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2233 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2234 NarrowNumElts || 2235 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2236 return nullptr; 2237 2238 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2239 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2240 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2241 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2242 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2243 } 2244 2245 /// Canonicalize FP negate after shuffle. 2246 static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf, 2247 InstCombiner::BuilderTy &Builder) { 2248 Instruction *FNeg0; 2249 Value *X; 2250 if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0), 2251 m_FNeg(m_Value(X))))) 2252 return nullptr; 2253 2254 // shuffle (fneg X), Mask --> fneg (shuffle X, Mask) 2255 if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) { 2256 Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2257 return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0); 2258 } 2259 2260 Instruction *FNeg1; 2261 Value *Y; 2262 if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1), 2263 m_FNeg(m_Value(Y))))) 2264 return nullptr; 2265 2266 // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask) 2267 if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) { 2268 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2269 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf); 2270 NewFNeg->copyIRFlags(FNeg0); 2271 NewFNeg->andIRFlags(FNeg1); 2272 return NewFNeg; 2273 } 2274 2275 return nullptr; 2276 } 2277 2278 /// Canonicalize casts after shuffle. 2279 static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf, 2280 InstCombiner::BuilderTy &Builder) { 2281 // Do we have 2 matching cast operands? 2282 auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0)); 2283 auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1)); 2284 if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() || 2285 Cast0->getSrcTy() != Cast1->getSrcTy()) 2286 return nullptr; 2287 2288 // TODO: Allow other opcodes? That would require easing the type restrictions 2289 // below here. 2290 CastInst::CastOps CastOpcode = Cast0->getOpcode(); 2291 switch (CastOpcode) { 2292 case Instruction::FPToSI: 2293 case Instruction::FPToUI: 2294 case Instruction::SIToFP: 2295 case Instruction::UIToFP: 2296 break; 2297 default: 2298 return nullptr; 2299 } 2300 2301 VectorType *ShufTy = Shuf.getType(); 2302 VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType()); 2303 VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy()); 2304 2305 // TODO: Allow length-increasing shuffles? 2306 if (ShufTy->getElementCount().getKnownMinValue() > 2307 ShufOpTy->getElementCount().getKnownMinValue()) 2308 return nullptr; 2309 2310 // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)? 2311 assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) && 2312 "Expected fixed vector operands for casts and binary shuffle"); 2313 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits()) 2314 return nullptr; 2315 2316 // At least one of the operands must have only one use (the shuffle). 2317 if (!Cast0->hasOneUse() && !Cast1->hasOneUse()) 2318 return nullptr; 2319 2320 // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask) 2321 Value *X = Cast0->getOperand(0); 2322 Value *Y = Cast1->getOperand(0); 2323 Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask()); 2324 return CastInst::Create(CastOpcode, NewShuf, ShufTy); 2325 } 2326 2327 /// Try to fold an extract subvector operation. 2328 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2329 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2330 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2331 return nullptr; 2332 2333 // Check if we are extracting all bits of an inserted scalar: 2334 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2335 Value *X; 2336 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2337 X->getType()->getPrimitiveSizeInBits() == 2338 Shuf.getType()->getPrimitiveSizeInBits()) 2339 return new BitCastInst(X, Shuf.getType()); 2340 2341 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2342 Value *Y; 2343 ArrayRef<int> Mask; 2344 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2345 return nullptr; 2346 2347 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2348 // then combining may result in worse codegen. 2349 if (!Op0->hasOneUse()) 2350 return nullptr; 2351 2352 // We are extracting a subvector from a shuffle. Remove excess elements from 2353 // the 1st shuffle mask to eliminate the extract. 2354 // 2355 // This transform is conservatively limited to identity extracts because we do 2356 // not allow arbitrary shuffle mask creation as a target-independent transform 2357 // (because we can't guarantee that will lower efficiently). 2358 // 2359 // If the extracting shuffle has an undef mask element, it transfers to the 2360 // new shuffle mask. Otherwise, copy the original mask element. Example: 2361 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2362 // shuf X, Y, <C0, undef, C2, undef> 2363 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2364 SmallVector<int, 16> NewMask(NumElts); 2365 assert(NumElts < Mask.size() && 2366 "Identity with extract must have less elements than its inputs"); 2367 2368 for (unsigned i = 0; i != NumElts; ++i) { 2369 int ExtractMaskElt = Shuf.getMaskValue(i); 2370 int MaskElt = Mask[i]; 2371 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2372 } 2373 return new ShuffleVectorInst(X, Y, NewMask); 2374 } 2375 2376 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2377 /// operand with the operand of an insertelement. 2378 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2379 InstCombinerImpl &IC) { 2380 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2381 SmallVector<int, 16> Mask; 2382 Shuf.getShuffleMask(Mask); 2383 2384 int NumElts = Mask.size(); 2385 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2386 2387 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2388 // not be able to handle it there if the insertelement has >1 use. 2389 // If the shuffle has an insertelement operand but does not choose the 2390 // inserted scalar element from that value, then we can replace that shuffle 2391 // operand with the source vector of the insertelement. 2392 Value *X; 2393 uint64_t IdxC; 2394 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2395 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2396 if (!is_contained(Mask, (int)IdxC)) 2397 return IC.replaceOperand(Shuf, 0, X); 2398 } 2399 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2400 // Offset the index constant by the vector width because we are checking for 2401 // accesses to the 2nd vector input of the shuffle. 2402 IdxC += InpNumElts; 2403 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2404 if (!is_contained(Mask, (int)IdxC)) 2405 return IC.replaceOperand(Shuf, 1, X); 2406 } 2407 // For the rest of the transform, the shuffle must not change vector sizes. 2408 // TODO: This restriction could be removed if the insert has only one use 2409 // (because the transform would require a new length-changing shuffle). 2410 if (NumElts != InpNumElts) 2411 return nullptr; 2412 2413 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2414 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2415 // We need an insertelement with a constant index. 2416 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2417 m_ConstantInt(IndexC)))) 2418 return false; 2419 2420 // Test the shuffle mask to see if it splices the inserted scalar into the 2421 // operand 1 vector of the shuffle. 2422 int NewInsIndex = -1; 2423 for (int i = 0; i != NumElts; ++i) { 2424 // Ignore undef mask elements. 2425 if (Mask[i] == -1) 2426 continue; 2427 2428 // The shuffle takes elements of operand 1 without lane changes. 2429 if (Mask[i] == NumElts + i) 2430 continue; 2431 2432 // The shuffle must choose the inserted scalar exactly once. 2433 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2434 return false; 2435 2436 // The shuffle is placing the inserted scalar into element i. 2437 NewInsIndex = i; 2438 } 2439 2440 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2441 2442 // Index is updated to the potentially translated insertion lane. 2443 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2444 return true; 2445 }; 2446 2447 // If the shuffle is unnecessary, insert the scalar operand directly into 2448 // operand 1 of the shuffle. Example: 2449 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2450 Value *Scalar; 2451 ConstantInt *IndexC; 2452 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2453 return InsertElementInst::Create(V1, Scalar, IndexC); 2454 2455 // Try again after commuting shuffle. Example: 2456 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2457 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2458 std::swap(V0, V1); 2459 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2460 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2461 return InsertElementInst::Create(V1, Scalar, IndexC); 2462 2463 return nullptr; 2464 } 2465 2466 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2467 // Match the operands as identity with padding (also known as concatenation 2468 // with undef) shuffles of the same source type. The backend is expected to 2469 // recreate these concatenations from a shuffle of narrow operands. 2470 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2471 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2472 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2473 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2474 return nullptr; 2475 2476 // We limit this transform to power-of-2 types because we expect that the 2477 // backend can convert the simplified IR patterns to identical nodes as the 2478 // original IR. 2479 // TODO: If we can verify the same behavior for arbitrary types, the 2480 // power-of-2 checks can be removed. 2481 Value *X = Shuffle0->getOperand(0); 2482 Value *Y = Shuffle1->getOperand(0); 2483 if (X->getType() != Y->getType() || 2484 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2485 !isPowerOf2_32( 2486 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2487 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2488 match(X, m_Undef()) || match(Y, m_Undef())) 2489 return nullptr; 2490 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2491 match(Shuffle1->getOperand(1), m_Undef()) && 2492 "Unexpected operand for identity shuffle"); 2493 2494 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2495 // operands directly by adjusting the shuffle mask to account for the narrower 2496 // types: 2497 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2498 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2499 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2500 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2501 2502 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2503 SmallVector<int, 16> NewMask(Mask.size(), -1); 2504 for (int i = 0, e = Mask.size(); i != e; ++i) { 2505 if (Mask[i] == -1) 2506 continue; 2507 2508 // If this shuffle is choosing an undef element from 1 of the sources, that 2509 // element is undef. 2510 if (Mask[i] < WideElts) { 2511 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2512 continue; 2513 } else { 2514 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2515 continue; 2516 } 2517 2518 // If this shuffle is choosing from the 1st narrow op, the mask element is 2519 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2520 // element is offset down to adjust for the narrow vector widths. 2521 if (Mask[i] < WideElts) { 2522 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2523 NewMask[i] = Mask[i]; 2524 } else { 2525 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2526 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2527 } 2528 } 2529 return new ShuffleVectorInst(X, Y, NewMask); 2530 } 2531 2532 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2533 Value *LHS = SVI.getOperand(0); 2534 Value *RHS = SVI.getOperand(1); 2535 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2536 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2537 SVI.getType(), ShufQuery)) 2538 return replaceInstUsesWith(SVI, V); 2539 2540 // Bail out for scalable vectors 2541 if (isa<ScalableVectorType>(LHS->getType())) 2542 return nullptr; 2543 2544 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2545 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2546 2547 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2548 // 2549 // if X and Y are of the same (vector) type, and the element size is not 2550 // changed by the bitcasts, we can distribute the bitcasts through the 2551 // shuffle, hopefully reducing the number of instructions. We make sure that 2552 // at least one bitcast only has one use, so we don't *increase* the number of 2553 // instructions here. 2554 Value *X, *Y; 2555 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2556 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2557 X->getType()->getScalarSizeInBits() == 2558 SVI.getType()->getScalarSizeInBits() && 2559 (LHS->hasOneUse() || RHS->hasOneUse())) { 2560 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2561 SVI.getName() + ".uncasted"); 2562 return new BitCastInst(V, SVI.getType()); 2563 } 2564 2565 ArrayRef<int> Mask = SVI.getShuffleMask(); 2566 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2567 2568 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2569 // simulated shuffle can simplify, then this shuffle is unnecessary: 2570 // shuf (bitcast X), undef, Mask --> bitcast X' 2571 // TODO: This could be extended to allow length-changing shuffles. 2572 // The transform might also be obsoleted if we allowed canonicalization 2573 // of bitcasted shuffles. 2574 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2575 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2576 // Try to create a scaled mask constant. 2577 auto *XType = cast<FixedVectorType>(X->getType()); 2578 unsigned XNumElts = XType->getNumElements(); 2579 SmallVector<int, 16> ScaledMask; 2580 if (XNumElts >= VWidth) { 2581 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2582 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2583 } else { 2584 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2585 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2586 ScaledMask.clear(); 2587 } 2588 if (!ScaledMask.empty()) { 2589 // If the shuffled source vector simplifies, cast that value to this 2590 // shuffle's type. 2591 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2592 ScaledMask, XType, ShufQuery)) 2593 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2594 } 2595 } 2596 2597 // shuffle x, x, mask --> shuffle x, undef, mask' 2598 if (LHS == RHS) { 2599 assert(!match(RHS, m_Undef()) && 2600 "Shuffle with 2 undef ops not simplified?"); 2601 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2602 } 2603 2604 // shuffle undef, x, mask --> shuffle x, undef, mask' 2605 if (match(LHS, m_Undef())) { 2606 SVI.commute(); 2607 return &SVI; 2608 } 2609 2610 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2611 return I; 2612 2613 if (Instruction *I = foldSelectShuffle(SVI)) 2614 return I; 2615 2616 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2617 return I; 2618 2619 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2620 return I; 2621 2622 if (Instruction *I = foldFNegShuffle(SVI, Builder)) 2623 return I; 2624 2625 if (Instruction *I = foldCastShuffle(SVI, Builder)) 2626 return I; 2627 2628 APInt UndefElts(VWidth, 0); 2629 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2630 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2631 if (V != &SVI) 2632 return replaceInstUsesWith(SVI, V); 2633 return &SVI; 2634 } 2635 2636 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2637 return I; 2638 2639 // These transforms have the potential to lose undef knowledge, so they are 2640 // intentionally placed after SimplifyDemandedVectorElts(). 2641 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2642 return I; 2643 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2644 return I; 2645 2646 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2647 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2648 return replaceInstUsesWith(SVI, V); 2649 } 2650 2651 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2652 // a non-vector type. We can instead bitcast the original vector followed by 2653 // an extract of the desired element: 2654 // 2655 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2656 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2657 // %1 = bitcast <4 x i8> %sroa to i32 2658 // Becomes: 2659 // %bc = bitcast <16 x i8> %in to <4 x i32> 2660 // %ext = extractelement <4 x i32> %bc, i32 0 2661 // 2662 // If the shuffle is extracting a contiguous range of values from the input 2663 // vector then each use which is a bitcast of the extracted size can be 2664 // replaced. This will work if the vector types are compatible, and the begin 2665 // index is aligned to a value in the casted vector type. If the begin index 2666 // isn't aligned then we can shuffle the original vector (keeping the same 2667 // vector type) before extracting. 2668 // 2669 // This code will bail out if the target type is fundamentally incompatible 2670 // with vectors of the source type. 2671 // 2672 // Example of <16 x i8>, target type i32: 2673 // Index range [4,8): v-----------v Will work. 2674 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2675 // <16 x i8>: | | | | | | | | | | | | | | | | | 2676 // <4 x i32>: | | | | | 2677 // +-----------+-----------+-----------+-----------+ 2678 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2679 // Target type i40: ^--------------^ Won't work, bail. 2680 bool MadeChange = false; 2681 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2682 Value *V = LHS; 2683 unsigned MaskElems = Mask.size(); 2684 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2685 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2686 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2687 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2688 unsigned SrcNumElems = SrcTy->getNumElements(); 2689 SmallVector<BitCastInst *, 8> BCs; 2690 DenseMap<Type *, Value *> NewBCs; 2691 for (User *U : SVI.users()) 2692 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2693 if (!BC->use_empty()) 2694 // Only visit bitcasts that weren't previously handled. 2695 BCs.push_back(BC); 2696 for (BitCastInst *BC : BCs) { 2697 unsigned BegIdx = Mask.front(); 2698 Type *TgtTy = BC->getDestTy(); 2699 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2700 if (!TgtElemBitWidth) 2701 continue; 2702 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2703 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2704 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2705 if (!VecBitWidthsEqual) 2706 continue; 2707 if (!VectorType::isValidElementType(TgtTy)) 2708 continue; 2709 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2710 if (!BegIsAligned) { 2711 // Shuffle the input so [0,NumElements) contains the output, and 2712 // [NumElems,SrcNumElems) is undef. 2713 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2714 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2715 ShuffleMask[I] = Idx; 2716 V = Builder.CreateShuffleVector(V, ShuffleMask, 2717 SVI.getName() + ".extract"); 2718 BegIdx = 0; 2719 } 2720 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2721 assert(SrcElemsPerTgtElem); 2722 BegIdx /= SrcElemsPerTgtElem; 2723 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2724 auto *NewBC = 2725 BCAlreadyExists 2726 ? NewBCs[CastSrcTy] 2727 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2728 if (!BCAlreadyExists) 2729 NewBCs[CastSrcTy] = NewBC; 2730 auto *Ext = Builder.CreateExtractElement( 2731 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2732 // The shufflevector isn't being replaced: the bitcast that used it 2733 // is. InstCombine will visit the newly-created instructions. 2734 replaceInstUsesWith(*BC, Ext); 2735 MadeChange = true; 2736 } 2737 } 2738 2739 // If the LHS is a shufflevector itself, see if we can combine it with this 2740 // one without producing an unusual shuffle. 2741 // Cases that might be simplified: 2742 // 1. 2743 // x1=shuffle(v1,v2,mask1) 2744 // x=shuffle(x1,undef,mask) 2745 // ==> 2746 // x=shuffle(v1,undef,newMask) 2747 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2748 // 2. 2749 // x1=shuffle(v1,undef,mask1) 2750 // x=shuffle(x1,x2,mask) 2751 // where v1.size() == mask1.size() 2752 // ==> 2753 // x=shuffle(v1,x2,newMask) 2754 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2755 // 3. 2756 // x2=shuffle(v2,undef,mask2) 2757 // x=shuffle(x1,x2,mask) 2758 // where v2.size() == mask2.size() 2759 // ==> 2760 // x=shuffle(x1,v2,newMask) 2761 // newMask[i] = (mask[i] < x1.size()) 2762 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2763 // 4. 2764 // x1=shuffle(v1,undef,mask1) 2765 // x2=shuffle(v2,undef,mask2) 2766 // x=shuffle(x1,x2,mask) 2767 // where v1.size() == v2.size() 2768 // ==> 2769 // x=shuffle(v1,v2,newMask) 2770 // newMask[i] = (mask[i] < x1.size()) 2771 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2772 // 2773 // Here we are really conservative: 2774 // we are absolutely afraid of producing a shuffle mask not in the input 2775 // program, because the code gen may not be smart enough to turn a merged 2776 // shuffle into two specific shuffles: it may produce worse code. As such, 2777 // we only merge two shuffles if the result is either a splat or one of the 2778 // input shuffle masks. In this case, merging the shuffles just removes 2779 // one instruction, which we know is safe. This is good for things like 2780 // turning: (splat(splat)) -> splat, or 2781 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2782 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2783 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2784 if (LHSShuffle) 2785 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2786 LHSShuffle = nullptr; 2787 if (RHSShuffle) 2788 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2789 RHSShuffle = nullptr; 2790 if (!LHSShuffle && !RHSShuffle) 2791 return MadeChange ? &SVI : nullptr; 2792 2793 Value* LHSOp0 = nullptr; 2794 Value* LHSOp1 = nullptr; 2795 Value* RHSOp0 = nullptr; 2796 unsigned LHSOp0Width = 0; 2797 unsigned RHSOp0Width = 0; 2798 if (LHSShuffle) { 2799 LHSOp0 = LHSShuffle->getOperand(0); 2800 LHSOp1 = LHSShuffle->getOperand(1); 2801 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2802 } 2803 if (RHSShuffle) { 2804 RHSOp0 = RHSShuffle->getOperand(0); 2805 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2806 } 2807 Value* newLHS = LHS; 2808 Value* newRHS = RHS; 2809 if (LHSShuffle) { 2810 // case 1 2811 if (match(RHS, m_Undef())) { 2812 newLHS = LHSOp0; 2813 newRHS = LHSOp1; 2814 } 2815 // case 2 or 4 2816 else if (LHSOp0Width == LHSWidth) { 2817 newLHS = LHSOp0; 2818 } 2819 } 2820 // case 3 or 4 2821 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2822 newRHS = RHSOp0; 2823 } 2824 // case 4 2825 if (LHSOp0 == RHSOp0) { 2826 newLHS = LHSOp0; 2827 newRHS = nullptr; 2828 } 2829 2830 if (newLHS == LHS && newRHS == RHS) 2831 return MadeChange ? &SVI : nullptr; 2832 2833 ArrayRef<int> LHSMask; 2834 ArrayRef<int> RHSMask; 2835 if (newLHS != LHS) 2836 LHSMask = LHSShuffle->getShuffleMask(); 2837 if (RHSShuffle && newRHS != RHS) 2838 RHSMask = RHSShuffle->getShuffleMask(); 2839 2840 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2841 SmallVector<int, 16> newMask; 2842 bool isSplat = true; 2843 int SplatElt = -1; 2844 // Create a new mask for the new ShuffleVectorInst so that the new 2845 // ShuffleVectorInst is equivalent to the original one. 2846 for (unsigned i = 0; i < VWidth; ++i) { 2847 int eltMask; 2848 if (Mask[i] < 0) { 2849 // This element is an undef value. 2850 eltMask = -1; 2851 } else if (Mask[i] < (int)LHSWidth) { 2852 // This element is from left hand side vector operand. 2853 // 2854 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2855 // new mask value for the element. 2856 if (newLHS != LHS) { 2857 eltMask = LHSMask[Mask[i]]; 2858 // If the value selected is an undef value, explicitly specify it 2859 // with a -1 mask value. 2860 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2861 eltMask = -1; 2862 } else 2863 eltMask = Mask[i]; 2864 } else { 2865 // This element is from right hand side vector operand 2866 // 2867 // If the value selected is an undef value, explicitly specify it 2868 // with a -1 mask value. (case 1) 2869 if (match(RHS, m_Undef())) 2870 eltMask = -1; 2871 // If RHS is going to be replaced (case 3 or 4), calculate the 2872 // new mask value for the element. 2873 else if (newRHS != RHS) { 2874 eltMask = RHSMask[Mask[i]-LHSWidth]; 2875 // If the value selected is an undef value, explicitly specify it 2876 // with a -1 mask value. 2877 if (eltMask >= (int)RHSOp0Width) { 2878 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2879 "should have been check above"); 2880 eltMask = -1; 2881 } 2882 } else 2883 eltMask = Mask[i]-LHSWidth; 2884 2885 // If LHS's width is changed, shift the mask value accordingly. 2886 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2887 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2888 // If newRHS == newLHS, we want to remap any references from newRHS to 2889 // newLHS so that we can properly identify splats that may occur due to 2890 // obfuscation across the two vectors. 2891 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2892 eltMask += newLHSWidth; 2893 } 2894 2895 // Check if this could still be a splat. 2896 if (eltMask >= 0) { 2897 if (SplatElt >= 0 && SplatElt != eltMask) 2898 isSplat = false; 2899 SplatElt = eltMask; 2900 } 2901 2902 newMask.push_back(eltMask); 2903 } 2904 2905 // If the result mask is equal to one of the original shuffle masks, 2906 // or is a splat, do the replacement. 2907 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2908 if (!newRHS) 2909 newRHS = UndefValue::get(newLHS->getType()); 2910 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2911 } 2912 2913 return MadeChange ? &SVI : nullptr; 2914 } 2915