1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 /// Return true if the value is cheaper to scalarize than it is to leave as a 50 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 51 /// one known element from a vector constant. 52 /// 53 /// FIXME: It's possible to create more instructions than previously existed. 54 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 55 // If we can pick a scalar constant value out of a vector, that is free. 56 if (auto *C = dyn_cast<Constant>(V)) 57 return IsConstantExtractIndex || C->getSplatValue(); 58 59 // An insertelement to the same constant index as our extract will simplify 60 // to the scalar inserted element. An insertelement to a different constant 61 // index is irrelevant to our extract. 62 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 63 return IsConstantExtractIndex; 64 65 if (match(V, m_OneUse(m_Load(m_Value())))) 66 return true; 67 68 if (match(V, m_OneUse(m_UnOp()))) 69 return true; 70 71 Value *V0, *V1; 72 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 73 if (cheapToScalarize(V0, IsConstantExtractIndex) || 74 cheapToScalarize(V1, IsConstantExtractIndex)) 75 return true; 76 77 CmpInst::Predicate UnusedPred; 78 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 79 if (cheapToScalarize(V0, IsConstantExtractIndex) || 80 cheapToScalarize(V1, IsConstantExtractIndex)) 81 return true; 82 83 return false; 84 } 85 86 // If we have a PHI node with a vector type that is only used to feed 87 // itself and be an operand of extractelement at a constant location, 88 // try to replace the PHI of the vector type with a PHI of a scalar type. 89 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 90 PHINode *PN) { 91 SmallVector<Instruction *, 2> Extracts; 92 // The users we want the PHI to have are: 93 // 1) The EI ExtractElement (we already know this) 94 // 2) Possibly more ExtractElements with the same index. 95 // 3) Another operand, which will feed back into the PHI. 96 Instruction *PHIUser = nullptr; 97 for (auto U : PN->users()) { 98 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 99 if (EI.getIndexOperand() == EU->getIndexOperand()) 100 Extracts.push_back(EU); 101 else 102 return nullptr; 103 } else if (!PHIUser) { 104 PHIUser = cast<Instruction>(U); 105 } else { 106 return nullptr; 107 } 108 } 109 110 if (!PHIUser) 111 return nullptr; 112 113 // Verify that this PHI user has one use, which is the PHI itself, 114 // and that it is a binary operation which is cheap to scalarize. 115 // otherwise return nullptr. 116 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 117 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 118 return nullptr; 119 120 // Create a scalar PHI node that will replace the vector PHI node 121 // just before the current PHI node. 122 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 123 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 124 // Scalarize each PHI operand. 125 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 126 Value *PHIInVal = PN->getIncomingValue(i); 127 BasicBlock *inBB = PN->getIncomingBlock(i); 128 Value *Elt = EI.getIndexOperand(); 129 // If the operand is the PHI induction variable: 130 if (PHIInVal == PHIUser) { 131 // Scalarize the binary operation. Its first operand is the 132 // scalar PHI, and the second operand is extracted from the other 133 // vector operand. 134 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 135 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 136 Value *Op = InsertNewInstWith( 137 ExtractElementInst::Create(B0->getOperand(opId), Elt, 138 B0->getOperand(opId)->getName() + ".Elt"), 139 *B0); 140 Value *newPHIUser = InsertNewInstWith( 141 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 142 scalarPHI, Op, B0), *B0); 143 scalarPHI->addIncoming(newPHIUser, inBB); 144 } else { 145 // Scalarize PHI input: 146 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 147 // Insert the new instruction into the predecessor basic block. 148 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 149 BasicBlock::iterator InsertPos; 150 if (pos && !isa<PHINode>(pos)) { 151 InsertPos = ++pos->getIterator(); 152 } else { 153 InsertPos = inBB->getFirstInsertionPt(); 154 } 155 156 InsertNewInstWith(newEI, *InsertPos); 157 158 scalarPHI->addIncoming(newEI, inBB); 159 } 160 } 161 162 for (auto E : Extracts) 163 replaceInstUsesWith(*E, scalarPHI); 164 165 return &EI; 166 } 167 168 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 169 InstCombiner::BuilderTy &Builder, 170 bool IsBigEndian) { 171 Value *X; 172 uint64_t ExtIndexC; 173 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 174 !X->getType()->isVectorTy() || 175 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 176 return nullptr; 177 178 // If this extractelement is using a bitcast from a vector of the same number 179 // of elements, see if we can find the source element from the source vector: 180 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 181 auto *SrcTy = cast<VectorType>(X->getType()); 182 Type *DestTy = Ext.getType(); 183 unsigned NumSrcElts = SrcTy->getNumElements(); 184 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 185 if (NumSrcElts == NumElts) 186 if (Value *Elt = findScalarElement(X, ExtIndexC)) 187 return new BitCastInst(Elt, DestTy); 188 189 // If the source elements are wider than the destination, try to shift and 190 // truncate a subset of scalar bits of an insert op. 191 if (NumSrcElts < NumElts) { 192 Value *Scalar; 193 uint64_t InsIndexC; 194 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 195 m_ConstantInt(InsIndexC)))) 196 return nullptr; 197 198 // The extract must be from the subset of vector elements that we inserted 199 // into. Example: if we inserted element 1 of a <2 x i64> and we are 200 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 201 // of elements 4-7 of the bitcasted vector. 202 unsigned NarrowingRatio = NumElts / NumSrcElts; 203 if (ExtIndexC / NarrowingRatio != InsIndexC) 204 return nullptr; 205 206 // We are extracting part of the original scalar. How that scalar is 207 // inserted into the vector depends on the endian-ness. Example: 208 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 209 // +--+--+--+--+--+--+--+--+ 210 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 211 // extelt <4 x i16> V', 3: | |S2|S3| 212 // +--+--+--+--+--+--+--+--+ 213 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 214 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 215 // In this example, we must right-shift little-endian. Big-endian is just a 216 // truncate. 217 unsigned Chunk = ExtIndexC % NarrowingRatio; 218 if (IsBigEndian) 219 Chunk = NarrowingRatio - 1 - Chunk; 220 221 // Bail out if this is an FP vector to FP vector sequence. That would take 222 // more instructions than we started with unless there is no shift, and it 223 // may not be handled as well in the backend. 224 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 225 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 226 if (NeedSrcBitcast && NeedDestBitcast) 227 return nullptr; 228 229 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 230 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 231 unsigned ShAmt = Chunk * DestWidth; 232 233 // TODO: This limitation is more strict than necessary. We could sum the 234 // number of new instructions and subtract the number eliminated to know if 235 // we can proceed. 236 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 237 if (NeedSrcBitcast || NeedDestBitcast) 238 return nullptr; 239 240 if (NeedSrcBitcast) { 241 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 242 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 243 } 244 245 if (ShAmt) { 246 // Bail out if we could end with more instructions than we started with. 247 if (!Ext.getVectorOperand()->hasOneUse()) 248 return nullptr; 249 Scalar = Builder.CreateLShr(Scalar, ShAmt); 250 } 251 252 if (NeedDestBitcast) { 253 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 254 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 255 } 256 return new TruncInst(Scalar, DestTy); 257 } 258 259 return nullptr; 260 } 261 262 /// Find elements of V demanded by UserInstr. 263 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 264 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 265 266 // Conservatively assume that all elements are needed. 267 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 268 269 switch (UserInstr->getOpcode()) { 270 case Instruction::ExtractElement: { 271 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 272 assert(EEI->getVectorOperand() == V); 273 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 274 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 275 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 276 } 277 break; 278 } 279 case Instruction::ShuffleVector: { 280 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 281 unsigned MaskNumElts = 282 cast<VectorType>(UserInstr->getType())->getNumElements(); 283 284 UsedElts = APInt(VWidth, 0); 285 for (unsigned i = 0; i < MaskNumElts; i++) { 286 unsigned MaskVal = Shuffle->getMaskValue(i); 287 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 288 continue; 289 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 290 UsedElts.setBit(MaskVal); 291 if (Shuffle->getOperand(1) == V && 292 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 293 UsedElts.setBit(MaskVal - VWidth); 294 } 295 break; 296 } 297 default: 298 break; 299 } 300 return UsedElts; 301 } 302 303 /// Find union of elements of V demanded by all its users. 304 /// If it is known by querying findDemandedEltsBySingleUser that 305 /// no user demands an element of V, then the corresponding bit 306 /// remains unset in the returned value. 307 static APInt findDemandedEltsByAllUsers(Value *V) { 308 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 309 310 APInt UnionUsedElts(VWidth, 0); 311 for (const Use &U : V->uses()) { 312 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 313 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 314 } else { 315 UnionUsedElts = APInt::getAllOnesValue(VWidth); 316 break; 317 } 318 319 if (UnionUsedElts.isAllOnesValue()) 320 break; 321 } 322 323 return UnionUsedElts; 324 } 325 326 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 327 Value *SrcVec = EI.getVectorOperand(); 328 Value *Index = EI.getIndexOperand(); 329 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 330 SQ.getWithInstruction(&EI))) 331 return replaceInstUsesWith(EI, V); 332 333 // If extracting a specified index from the vector, see if we can recursively 334 // find a previously computed scalar that was inserted into the vector. 335 auto *IndexC = dyn_cast<ConstantInt>(Index); 336 if (IndexC) { 337 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 338 unsigned NumElts = EC.Min; 339 340 // InstSimplify should handle cases where the index is invalid. 341 // For fixed-length vector, it's invalid to extract out-of-range element. 342 if (!EC.Scalable && IndexC->getValue().uge(NumElts)) 343 return nullptr; 344 345 // This instruction only demands the single element from the input vector. 346 // Skip for scalable type, the number of elements is unknown at 347 // compile-time. 348 if (!EC.Scalable && NumElts != 1) { 349 // If the input vector has a single use, simplify it based on this use 350 // property. 351 if (SrcVec->hasOneUse()) { 352 APInt UndefElts(NumElts, 0); 353 APInt DemandedElts(NumElts, 0); 354 DemandedElts.setBit(IndexC->getZExtValue()); 355 if (Value *V = 356 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 357 return replaceOperand(EI, 0, V); 358 } else { 359 // If the input vector has multiple uses, simplify it based on a union 360 // of all elements used. 361 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 362 if (!DemandedElts.isAllOnesValue()) { 363 APInt UndefElts(NumElts, 0); 364 if (Value *V = SimplifyDemandedVectorElts( 365 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 366 true /* AllowMultipleUsers */)) { 367 if (V != SrcVec) { 368 SrcVec->replaceAllUsesWith(V); 369 return &EI; 370 } 371 } 372 } 373 } 374 } 375 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 376 return I; 377 378 // If there's a vector PHI feeding a scalar use through this extractelement 379 // instruction, try to scalarize the PHI. 380 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 381 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 382 return ScalarPHI; 383 } 384 385 // TODO come up with a n-ary matcher that subsumes both unary and 386 // binary matchers. 387 UnaryOperator *UO; 388 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 389 // extelt (unop X), Index --> unop (extelt X, Index) 390 Value *X = UO->getOperand(0); 391 Value *E = Builder.CreateExtractElement(X, Index); 392 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 393 } 394 395 BinaryOperator *BO; 396 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 397 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 398 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 399 Value *E0 = Builder.CreateExtractElement(X, Index); 400 Value *E1 = Builder.CreateExtractElement(Y, Index); 401 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 402 } 403 404 Value *X, *Y; 405 CmpInst::Predicate Pred; 406 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 407 cheapToScalarize(SrcVec, IndexC)) { 408 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 409 Value *E0 = Builder.CreateExtractElement(X, Index); 410 Value *E1 = Builder.CreateExtractElement(Y, Index); 411 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 412 } 413 414 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 415 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 416 // Extracting the inserted element? 417 if (IE->getOperand(2) == Index) 418 return replaceInstUsesWith(EI, IE->getOperand(1)); 419 // If the inserted and extracted elements are constants, they must not 420 // be the same value, extract from the pre-inserted value instead. 421 if (isa<Constant>(IE->getOperand(2)) && IndexC) 422 return replaceOperand(EI, 0, IE->getOperand(0)); 423 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 424 // If this is extracting an element from a shufflevector, figure out where 425 // it came from and extract from the appropriate input element instead. 426 // Restrict the following transformation to fixed-length vector. 427 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 428 int SrcIdx = 429 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 430 Value *Src; 431 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 432 ->getNumElements(); 433 434 if (SrcIdx < 0) 435 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 436 if (SrcIdx < (int)LHSWidth) 437 Src = SVI->getOperand(0); 438 else { 439 SrcIdx -= LHSWidth; 440 Src = SVI->getOperand(1); 441 } 442 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 443 return ExtractElementInst::Create( 444 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 445 } 446 } else if (auto *CI = dyn_cast<CastInst>(I)) { 447 // Canonicalize extractelement(cast) -> cast(extractelement). 448 // Bitcasts can change the number of vector elements, and they cost 449 // nothing. 450 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 451 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 452 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 453 } 454 } 455 } 456 return nullptr; 457 } 458 459 /// If V is a shuffle of values that ONLY returns elements from either LHS or 460 /// RHS, return the shuffle mask and true. Otherwise, return false. 461 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 462 SmallVectorImpl<int> &Mask) { 463 assert(LHS->getType() == RHS->getType() && 464 "Invalid CollectSingleShuffleElements"); 465 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 466 467 if (isa<UndefValue>(V)) { 468 Mask.assign(NumElts, -1); 469 return true; 470 } 471 472 if (V == LHS) { 473 for (unsigned i = 0; i != NumElts; ++i) 474 Mask.push_back(i); 475 return true; 476 } 477 478 if (V == RHS) { 479 for (unsigned i = 0; i != NumElts; ++i) 480 Mask.push_back(i + NumElts); 481 return true; 482 } 483 484 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 485 // If this is an insert of an extract from some other vector, include it. 486 Value *VecOp = IEI->getOperand(0); 487 Value *ScalarOp = IEI->getOperand(1); 488 Value *IdxOp = IEI->getOperand(2); 489 490 if (!isa<ConstantInt>(IdxOp)) 491 return false; 492 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 493 494 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 495 // We can handle this if the vector we are inserting into is 496 // transitively ok. 497 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 498 // If so, update the mask to reflect the inserted undef. 499 Mask[InsertedIdx] = -1; 500 return true; 501 } 502 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 503 if (isa<ConstantInt>(EI->getOperand(1))) { 504 unsigned ExtractedIdx = 505 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 506 unsigned NumLHSElts = 507 cast<VectorType>(LHS->getType())->getNumElements(); 508 509 // This must be extracting from either LHS or RHS. 510 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 511 // We can handle this if the vector we are inserting into is 512 // transitively ok. 513 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 514 // If so, update the mask to reflect the inserted value. 515 if (EI->getOperand(0) == LHS) { 516 Mask[InsertedIdx % NumElts] = ExtractedIdx; 517 } else { 518 assert(EI->getOperand(0) == RHS); 519 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 520 } 521 return true; 522 } 523 } 524 } 525 } 526 } 527 528 return false; 529 } 530 531 /// If we have insertion into a vector that is wider than the vector that we 532 /// are extracting from, try to widen the source vector to allow a single 533 /// shufflevector to replace one or more insert/extract pairs. 534 static void replaceExtractElements(InsertElementInst *InsElt, 535 ExtractElementInst *ExtElt, 536 InstCombinerImpl &IC) { 537 VectorType *InsVecType = InsElt->getType(); 538 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 539 unsigned NumInsElts = InsVecType->getNumElements(); 540 unsigned NumExtElts = ExtVecType->getNumElements(); 541 542 // The inserted-to vector must be wider than the extracted-from vector. 543 if (InsVecType->getElementType() != ExtVecType->getElementType() || 544 NumExtElts >= NumInsElts) 545 return; 546 547 // Create a shuffle mask to widen the extended-from vector using undefined 548 // values. The mask selects all of the values of the original vector followed 549 // by as many undefined values as needed to create a vector of the same length 550 // as the inserted-to vector. 551 SmallVector<int, 16> ExtendMask; 552 for (unsigned i = 0; i < NumExtElts; ++i) 553 ExtendMask.push_back(i); 554 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 555 ExtendMask.push_back(-1); 556 557 Value *ExtVecOp = ExtElt->getVectorOperand(); 558 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 559 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 560 ? ExtVecOpInst->getParent() 561 : ExtElt->getParent(); 562 563 // TODO: This restriction matches the basic block check below when creating 564 // new extractelement instructions. If that limitation is removed, this one 565 // could also be removed. But for now, we just bail out to ensure that we 566 // will replace the extractelement instruction that is feeding our 567 // insertelement instruction. This allows the insertelement to then be 568 // replaced by a shufflevector. If the insertelement is not replaced, we can 569 // induce infinite looping because there's an optimization for extractelement 570 // that will delete our widening shuffle. This would trigger another attempt 571 // here to create that shuffle, and we spin forever. 572 if (InsertionBlock != InsElt->getParent()) 573 return; 574 575 // TODO: This restriction matches the check in visitInsertElementInst() and 576 // prevents an infinite loop caused by not turning the extract/insert pair 577 // into a shuffle. We really should not need either check, but we're lacking 578 // folds for shufflevectors because we're afraid to generate shuffle masks 579 // that the backend can't handle. 580 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 581 return; 582 583 auto *WideVec = 584 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 585 586 // Insert the new shuffle after the vector operand of the extract is defined 587 // (as long as it's not a PHI) or at the start of the basic block of the 588 // extract, so any subsequent extracts in the same basic block can use it. 589 // TODO: Insert before the earliest ExtractElementInst that is replaced. 590 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 591 WideVec->insertAfter(ExtVecOpInst); 592 else 593 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 594 595 // Replace extracts from the original narrow vector with extracts from the new 596 // wide vector. 597 for (User *U : ExtVecOp->users()) { 598 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 599 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 600 continue; 601 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 602 NewExt->insertAfter(OldExt); 603 IC.replaceInstUsesWith(*OldExt, NewExt); 604 } 605 } 606 607 /// We are building a shuffle to create V, which is a sequence of insertelement, 608 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 609 /// not rely on the second vector source. Return a std::pair containing the 610 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 611 /// parameter as required. 612 /// 613 /// Note: we intentionally don't try to fold earlier shuffles since they have 614 /// often been chosen carefully to be efficiently implementable on the target. 615 using ShuffleOps = std::pair<Value *, Value *>; 616 617 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 618 Value *PermittedRHS, 619 InstCombinerImpl &IC) { 620 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 621 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 622 623 if (isa<UndefValue>(V)) { 624 Mask.assign(NumElts, -1); 625 return std::make_pair( 626 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 627 } 628 629 if (isa<ConstantAggregateZero>(V)) { 630 Mask.assign(NumElts, 0); 631 return std::make_pair(V, nullptr); 632 } 633 634 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 635 // If this is an insert of an extract from some other vector, include it. 636 Value *VecOp = IEI->getOperand(0); 637 Value *ScalarOp = IEI->getOperand(1); 638 Value *IdxOp = IEI->getOperand(2); 639 640 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 641 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 642 unsigned ExtractedIdx = 643 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 644 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 645 646 // Either the extracted from or inserted into vector must be RHSVec, 647 // otherwise we'd end up with a shuffle of three inputs. 648 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 649 Value *RHS = EI->getOperand(0); 650 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 651 assert(LR.second == nullptr || LR.second == RHS); 652 653 if (LR.first->getType() != RHS->getType()) { 654 // Although we are giving up for now, see if we can create extracts 655 // that match the inserts for another round of combining. 656 replaceExtractElements(IEI, EI, IC); 657 658 // We tried our best, but we can't find anything compatible with RHS 659 // further up the chain. Return a trivial shuffle. 660 for (unsigned i = 0; i < NumElts; ++i) 661 Mask[i] = i; 662 return std::make_pair(V, nullptr); 663 } 664 665 unsigned NumLHSElts = 666 cast<VectorType>(RHS->getType())->getNumElements(); 667 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 668 return std::make_pair(LR.first, RHS); 669 } 670 671 if (VecOp == PermittedRHS) { 672 // We've gone as far as we can: anything on the other side of the 673 // extractelement will already have been converted into a shuffle. 674 unsigned NumLHSElts = 675 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 676 for (unsigned i = 0; i != NumElts; ++i) 677 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 678 return std::make_pair(EI->getOperand(0), PermittedRHS); 679 } 680 681 // If this insertelement is a chain that comes from exactly these two 682 // vectors, return the vector and the effective shuffle. 683 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 684 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 685 Mask)) 686 return std::make_pair(EI->getOperand(0), PermittedRHS); 687 } 688 } 689 } 690 691 // Otherwise, we can't do anything fancy. Return an identity vector. 692 for (unsigned i = 0; i != NumElts; ++i) 693 Mask.push_back(i); 694 return std::make_pair(V, nullptr); 695 } 696 697 /// Try to find redundant insertvalue instructions, like the following ones: 698 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 699 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 700 /// Here the second instruction inserts values at the same indices, as the 701 /// first one, making the first one redundant. 702 /// It should be transformed to: 703 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 704 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 705 bool IsRedundant = false; 706 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 707 708 // If there is a chain of insertvalue instructions (each of them except the 709 // last one has only one use and it's another insertvalue insn from this 710 // chain), check if any of the 'children' uses the same indices as the first 711 // instruction. In this case, the first one is redundant. 712 Value *V = &I; 713 unsigned Depth = 0; 714 while (V->hasOneUse() && Depth < 10) { 715 User *U = V->user_back(); 716 auto UserInsInst = dyn_cast<InsertValueInst>(U); 717 if (!UserInsInst || U->getOperand(0) != V) 718 break; 719 if (UserInsInst->getIndices() == FirstIndices) { 720 IsRedundant = true; 721 break; 722 } 723 V = UserInsInst; 724 Depth++; 725 } 726 727 if (IsRedundant) 728 return replaceInstUsesWith(I, I.getOperand(0)); 729 return nullptr; 730 } 731 732 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 733 // Can not analyze scalable type, the number of elements is not a compile-time 734 // constant. 735 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 736 return false; 737 738 int MaskSize = Shuf.getShuffleMask().size(); 739 int VecSize = 740 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 741 742 // A vector select does not change the size of the operands. 743 if (MaskSize != VecSize) 744 return false; 745 746 // Each mask element must be undefined or choose a vector element from one of 747 // the source operands without crossing vector lanes. 748 for (int i = 0; i != MaskSize; ++i) { 749 int Elt = Shuf.getMaskValue(i); 750 if (Elt != -1 && Elt != i && Elt != i + VecSize) 751 return false; 752 } 753 754 return true; 755 } 756 757 /// Turn a chain of inserts that splats a value into an insert + shuffle: 758 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 759 /// shufflevector(insertelt(X, %k, 0), undef, zero) 760 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 761 // We are interested in the last insert in a chain. So if this insert has a 762 // single user and that user is an insert, bail. 763 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 764 return nullptr; 765 766 VectorType *VecTy = InsElt.getType(); 767 // Can not handle scalable type, the number of elements is not a compile-time 768 // constant. 769 if (isa<ScalableVectorType>(VecTy)) 770 return nullptr; 771 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 772 773 // Do not try to do this for a one-element vector, since that's a nop, 774 // and will cause an inf-loop. 775 if (NumElements == 1) 776 return nullptr; 777 778 Value *SplatVal = InsElt.getOperand(1); 779 InsertElementInst *CurrIE = &InsElt; 780 SmallBitVector ElementPresent(NumElements, false); 781 InsertElementInst *FirstIE = nullptr; 782 783 // Walk the chain backwards, keeping track of which indices we inserted into, 784 // until we hit something that isn't an insert of the splatted value. 785 while (CurrIE) { 786 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 787 if (!Idx || CurrIE->getOperand(1) != SplatVal) 788 return nullptr; 789 790 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 791 // Check none of the intermediate steps have any additional uses, except 792 // for the root insertelement instruction, which can be re-used, if it 793 // inserts at position 0. 794 if (CurrIE != &InsElt && 795 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 796 return nullptr; 797 798 ElementPresent[Idx->getZExtValue()] = true; 799 FirstIE = CurrIE; 800 CurrIE = NextIE; 801 } 802 803 // If this is just a single insertelement (not a sequence), we are done. 804 if (FirstIE == &InsElt) 805 return nullptr; 806 807 // If we are not inserting into an undef vector, make sure we've seen an 808 // insert into every element. 809 // TODO: If the base vector is not undef, it might be better to create a splat 810 // and then a select-shuffle (blend) with the base vector. 811 if (!isa<UndefValue>(FirstIE->getOperand(0))) 812 if (!ElementPresent.all()) 813 return nullptr; 814 815 // Create the insert + shuffle. 816 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 817 UndefValue *UndefVec = UndefValue::get(VecTy); 818 Constant *Zero = ConstantInt::get(Int32Ty, 0); 819 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 820 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 821 822 // Splat from element 0, but replace absent elements with undef in the mask. 823 SmallVector<int, 16> Mask(NumElements, 0); 824 for (unsigned i = 0; i != NumElements; ++i) 825 if (!ElementPresent[i]) 826 Mask[i] = -1; 827 828 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 829 } 830 831 /// Try to fold an insert element into an existing splat shuffle by changing 832 /// the shuffle's mask to include the index of this insert element. 833 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 834 // Check if the vector operand of this insert is a canonical splat shuffle. 835 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 836 if (!Shuf || !Shuf->isZeroEltSplat()) 837 return nullptr; 838 839 // Bail out early if shuffle is scalable type. The number of elements in 840 // shuffle mask is unknown at compile-time. 841 if (isa<ScalableVectorType>(Shuf->getType())) 842 return nullptr; 843 844 // Check for a constant insertion index. 845 uint64_t IdxC; 846 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 847 return nullptr; 848 849 // Check if the splat shuffle's input is the same as this insert's scalar op. 850 Value *X = InsElt.getOperand(1); 851 Value *Op0 = Shuf->getOperand(0); 852 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 853 return nullptr; 854 855 // Replace the shuffle mask element at the index of this insert with a zero. 856 // For example: 857 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 858 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 859 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 860 SmallVector<int, 16> NewMask(NumMaskElts); 861 for (unsigned i = 0; i != NumMaskElts; ++i) 862 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 863 864 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 865 } 866 867 /// Try to fold an extract+insert element into an existing identity shuffle by 868 /// changing the shuffle's mask to include the index of this insert element. 869 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 870 // Check if the vector operand of this insert is an identity shuffle. 871 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 872 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 873 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 874 return nullptr; 875 876 // Bail out early if shuffle is scalable type. The number of elements in 877 // shuffle mask is unknown at compile-time. 878 if (isa<ScalableVectorType>(Shuf->getType())) 879 return nullptr; 880 881 // Check for a constant insertion index. 882 uint64_t IdxC; 883 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 884 return nullptr; 885 886 // Check if this insert's scalar op is extracted from the identity shuffle's 887 // input vector. 888 Value *Scalar = InsElt.getOperand(1); 889 Value *X = Shuf->getOperand(0); 890 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 891 return nullptr; 892 893 // Replace the shuffle mask element at the index of this extract+insert with 894 // that same index value. 895 // For example: 896 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 897 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 898 SmallVector<int, 16> NewMask(NumMaskElts); 899 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 900 for (unsigned i = 0; i != NumMaskElts; ++i) { 901 if (i != IdxC) { 902 // All mask elements besides the inserted element remain the same. 903 NewMask[i] = OldMask[i]; 904 } else if (OldMask[i] == (int)IdxC) { 905 // If the mask element was already set, there's nothing to do 906 // (demanded elements analysis may unset it later). 907 return nullptr; 908 } else { 909 assert(OldMask[i] == UndefMaskElem && 910 "Unexpected shuffle mask element for identity shuffle"); 911 NewMask[i] = IdxC; 912 } 913 } 914 915 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 916 } 917 918 /// If we have an insertelement instruction feeding into another insertelement 919 /// and the 2nd is inserting a constant into the vector, canonicalize that 920 /// constant insertion before the insertion of a variable: 921 /// 922 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 923 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 924 /// 925 /// This has the potential of eliminating the 2nd insertelement instruction 926 /// via constant folding of the scalar constant into a vector constant. 927 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 928 InstCombiner::BuilderTy &Builder) { 929 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 930 if (!InsElt1 || !InsElt1->hasOneUse()) 931 return nullptr; 932 933 Value *X, *Y; 934 Constant *ScalarC; 935 ConstantInt *IdxC1, *IdxC2; 936 if (match(InsElt1->getOperand(0), m_Value(X)) && 937 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 938 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 939 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 940 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 941 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 942 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 943 } 944 945 return nullptr; 946 } 947 948 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 949 /// --> shufflevector X, CVec', Mask' 950 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 951 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 952 // Bail out if the parent has more than one use. In that case, we'd be 953 // replacing the insertelt with a shuffle, and that's not a clear win. 954 if (!Inst || !Inst->hasOneUse()) 955 return nullptr; 956 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 957 // The shuffle must have a constant vector operand. The insertelt must have 958 // a constant scalar being inserted at a constant position in the vector. 959 Constant *ShufConstVec, *InsEltScalar; 960 uint64_t InsEltIndex; 961 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 962 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 963 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 964 return nullptr; 965 966 // Adding an element to an arbitrary shuffle could be expensive, but a 967 // shuffle that selects elements from vectors without crossing lanes is 968 // assumed cheap. 969 // If we're just adding a constant into that shuffle, it will still be 970 // cheap. 971 if (!isShuffleEquivalentToSelect(*Shuf)) 972 return nullptr; 973 974 // From the above 'select' check, we know that the mask has the same number 975 // of elements as the vector input operands. We also know that each constant 976 // input element is used in its lane and can not be used more than once by 977 // the shuffle. Therefore, replace the constant in the shuffle's constant 978 // vector with the insertelt constant. Replace the constant in the shuffle's 979 // mask vector with the insertelt index plus the length of the vector 980 // (because the constant vector operand of a shuffle is always the 2nd 981 // operand). 982 ArrayRef<int> Mask = Shuf->getShuffleMask(); 983 unsigned NumElts = Mask.size(); 984 SmallVector<Constant *, 16> NewShufElts(NumElts); 985 SmallVector<int, 16> NewMaskElts(NumElts); 986 for (unsigned I = 0; I != NumElts; ++I) { 987 if (I == InsEltIndex) { 988 NewShufElts[I] = InsEltScalar; 989 NewMaskElts[I] = InsEltIndex + NumElts; 990 } else { 991 // Copy over the existing values. 992 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 993 NewMaskElts[I] = Mask[I]; 994 } 995 } 996 997 // Create new operands for a shuffle that includes the constant of the 998 // original insertelt. The old shuffle will be dead now. 999 return new ShuffleVectorInst(Shuf->getOperand(0), 1000 ConstantVector::get(NewShufElts), NewMaskElts); 1001 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1002 // Transform sequences of insertelements ops with constant data/indexes into 1003 // a single shuffle op. 1004 // Can not handle scalable type, the number of elements needed to create 1005 // shuffle mask is not a compile-time constant. 1006 if (isa<ScalableVectorType>(InsElt.getType())) 1007 return nullptr; 1008 unsigned NumElts = 1009 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1010 1011 uint64_t InsertIdx[2]; 1012 Constant *Val[2]; 1013 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1014 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1015 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1016 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1017 return nullptr; 1018 SmallVector<Constant *, 16> Values(NumElts); 1019 SmallVector<int, 16> Mask(NumElts); 1020 auto ValI = std::begin(Val); 1021 // Generate new constant vector and mask. 1022 // We have 2 values/masks from the insertelements instructions. Insert them 1023 // into new value/mask vectors. 1024 for (uint64_t I : InsertIdx) { 1025 if (!Values[I]) { 1026 Values[I] = *ValI; 1027 Mask[I] = NumElts + I; 1028 } 1029 ++ValI; 1030 } 1031 // Remaining values are filled with 'undef' values. 1032 for (unsigned I = 0; I < NumElts; ++I) { 1033 if (!Values[I]) { 1034 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1035 Mask[I] = I; 1036 } 1037 } 1038 // Create new operands for a shuffle that includes the constant of the 1039 // original insertelt. 1040 return new ShuffleVectorInst(IEI->getOperand(0), 1041 ConstantVector::get(Values), Mask); 1042 } 1043 return nullptr; 1044 } 1045 1046 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1047 Value *VecOp = IE.getOperand(0); 1048 Value *ScalarOp = IE.getOperand(1); 1049 Value *IdxOp = IE.getOperand(2); 1050 1051 if (auto *V = SimplifyInsertElementInst( 1052 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1053 return replaceInstUsesWith(IE, V); 1054 1055 // If the scalar is bitcast and inserted into undef, do the insert in the 1056 // source type followed by bitcast. 1057 // TODO: Generalize for insert into any constant, not just undef? 1058 Value *ScalarSrc; 1059 if (match(VecOp, m_Undef()) && 1060 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1061 (ScalarSrc->getType()->isIntegerTy() || 1062 ScalarSrc->getType()->isFloatingPointTy())) { 1063 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1064 // bitcast (inselt undef, ScalarSrc, IdxOp) 1065 Type *ScalarTy = ScalarSrc->getType(); 1066 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1067 UndefValue *NewUndef = UndefValue::get(VecTy); 1068 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1069 return new BitCastInst(NewInsElt, IE.getType()); 1070 } 1071 1072 // If the vector and scalar are both bitcast from the same element type, do 1073 // the insert in that source type followed by bitcast. 1074 Value *VecSrc; 1075 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1076 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1077 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1078 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1079 cast<VectorType>(VecSrc->getType())->getElementType() == 1080 ScalarSrc->getType()) { 1081 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1082 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1083 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1084 return new BitCastInst(NewInsElt, IE.getType()); 1085 } 1086 1087 // If the inserted element was extracted from some other fixed-length vector 1088 // and both indexes are valid constants, try to turn this into a shuffle. 1089 // Can not handle scalable vector type, the number of elements needed to 1090 // create shuffle mask is not a compile-time constant. 1091 uint64_t InsertedIdx, ExtractedIdx; 1092 Value *ExtVecOp; 1093 if (isa<FixedVectorType>(IE.getType()) && 1094 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1095 match(ScalarOp, 1096 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1097 isa<FixedVectorType>(ExtVecOp->getType()) && 1098 ExtractedIdx < 1099 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1100 // TODO: Looking at the user(s) to determine if this insert is a 1101 // fold-to-shuffle opportunity does not match the usual instcombine 1102 // constraints. We should decide if the transform is worthy based only 1103 // on this instruction and its operands, but that may not work currently. 1104 // 1105 // Here, we are trying to avoid creating shuffles before reaching 1106 // the end of a chain of extract-insert pairs. This is complicated because 1107 // we do not generally form arbitrary shuffle masks in instcombine 1108 // (because those may codegen poorly), but collectShuffleElements() does 1109 // exactly that. 1110 // 1111 // The rules for determining what is an acceptable target-independent 1112 // shuffle mask are fuzzy because they evolve based on the backend's 1113 // capabilities and real-world impact. 1114 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1115 if (!Insert.hasOneUse()) 1116 return true; 1117 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1118 if (!InsertUser) 1119 return true; 1120 return false; 1121 }; 1122 1123 // Try to form a shuffle from a chain of extract-insert ops. 1124 if (isShuffleRootCandidate(IE)) { 1125 SmallVector<int, 16> Mask; 1126 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1127 1128 // The proposed shuffle may be trivial, in which case we shouldn't 1129 // perform the combine. 1130 if (LR.first != &IE && LR.second != &IE) { 1131 // We now have a shuffle of LHS, RHS, Mask. 1132 if (LR.second == nullptr) 1133 LR.second = UndefValue::get(LR.first->getType()); 1134 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1135 } 1136 } 1137 } 1138 1139 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1140 unsigned VWidth = VecTy->getNumElements(); 1141 APInt UndefElts(VWidth, 0); 1142 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1143 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1144 if (V != &IE) 1145 return replaceInstUsesWith(IE, V); 1146 return &IE; 1147 } 1148 } 1149 1150 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1151 return Shuf; 1152 1153 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1154 return NewInsElt; 1155 1156 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1157 return Broadcast; 1158 1159 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1160 return Splat; 1161 1162 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1163 return IdentityShuf; 1164 1165 return nullptr; 1166 } 1167 1168 /// Return true if we can evaluate the specified expression tree if the vector 1169 /// elements were shuffled in a different order. 1170 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1171 unsigned Depth = 5) { 1172 // We can always reorder the elements of a constant. 1173 if (isa<Constant>(V)) 1174 return true; 1175 1176 // We won't reorder vector arguments. No IPO here. 1177 Instruction *I = dyn_cast<Instruction>(V); 1178 if (!I) return false; 1179 1180 // Two users may expect different orders of the elements. Don't try it. 1181 if (!I->hasOneUse()) 1182 return false; 1183 1184 if (Depth == 0) return false; 1185 1186 switch (I->getOpcode()) { 1187 case Instruction::UDiv: 1188 case Instruction::SDiv: 1189 case Instruction::URem: 1190 case Instruction::SRem: 1191 // Propagating an undefined shuffle mask element to integer div/rem is not 1192 // allowed because those opcodes can create immediate undefined behavior 1193 // from an undefined element in an operand. 1194 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1195 return false; 1196 LLVM_FALLTHROUGH; 1197 case Instruction::Add: 1198 case Instruction::FAdd: 1199 case Instruction::Sub: 1200 case Instruction::FSub: 1201 case Instruction::Mul: 1202 case Instruction::FMul: 1203 case Instruction::FDiv: 1204 case Instruction::FRem: 1205 case Instruction::Shl: 1206 case Instruction::LShr: 1207 case Instruction::AShr: 1208 case Instruction::And: 1209 case Instruction::Or: 1210 case Instruction::Xor: 1211 case Instruction::ICmp: 1212 case Instruction::FCmp: 1213 case Instruction::Trunc: 1214 case Instruction::ZExt: 1215 case Instruction::SExt: 1216 case Instruction::FPToUI: 1217 case Instruction::FPToSI: 1218 case Instruction::UIToFP: 1219 case Instruction::SIToFP: 1220 case Instruction::FPTrunc: 1221 case Instruction::FPExt: 1222 case Instruction::GetElementPtr: { 1223 // Bail out if we would create longer vector ops. We could allow creating 1224 // longer vector ops, but that may result in more expensive codegen. 1225 Type *ITy = I->getType(); 1226 if (ITy->isVectorTy() && 1227 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1228 return false; 1229 for (Value *Operand : I->operands()) { 1230 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1231 return false; 1232 } 1233 return true; 1234 } 1235 case Instruction::InsertElement: { 1236 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1237 if (!CI) return false; 1238 int ElementNumber = CI->getLimitedValue(); 1239 1240 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1241 // can't put an element into multiple indices. 1242 bool SeenOnce = false; 1243 for (int i = 0, e = Mask.size(); i != e; ++i) { 1244 if (Mask[i] == ElementNumber) { 1245 if (SeenOnce) 1246 return false; 1247 SeenOnce = true; 1248 } 1249 } 1250 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1251 } 1252 } 1253 return false; 1254 } 1255 1256 /// Rebuild a new instruction just like 'I' but with the new operands given. 1257 /// In the event of type mismatch, the type of the operands is correct. 1258 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1259 // We don't want to use the IRBuilder here because we want the replacement 1260 // instructions to appear next to 'I', not the builder's insertion point. 1261 switch (I->getOpcode()) { 1262 case Instruction::Add: 1263 case Instruction::FAdd: 1264 case Instruction::Sub: 1265 case Instruction::FSub: 1266 case Instruction::Mul: 1267 case Instruction::FMul: 1268 case Instruction::UDiv: 1269 case Instruction::SDiv: 1270 case Instruction::FDiv: 1271 case Instruction::URem: 1272 case Instruction::SRem: 1273 case Instruction::FRem: 1274 case Instruction::Shl: 1275 case Instruction::LShr: 1276 case Instruction::AShr: 1277 case Instruction::And: 1278 case Instruction::Or: 1279 case Instruction::Xor: { 1280 BinaryOperator *BO = cast<BinaryOperator>(I); 1281 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1282 BinaryOperator *New = 1283 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1284 NewOps[0], NewOps[1], "", BO); 1285 if (isa<OverflowingBinaryOperator>(BO)) { 1286 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1287 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1288 } 1289 if (isa<PossiblyExactOperator>(BO)) { 1290 New->setIsExact(BO->isExact()); 1291 } 1292 if (isa<FPMathOperator>(BO)) 1293 New->copyFastMathFlags(I); 1294 return New; 1295 } 1296 case Instruction::ICmp: 1297 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1298 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1299 NewOps[0], NewOps[1]); 1300 case Instruction::FCmp: 1301 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1302 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1303 NewOps[0], NewOps[1]); 1304 case Instruction::Trunc: 1305 case Instruction::ZExt: 1306 case Instruction::SExt: 1307 case Instruction::FPToUI: 1308 case Instruction::FPToSI: 1309 case Instruction::UIToFP: 1310 case Instruction::SIToFP: 1311 case Instruction::FPTrunc: 1312 case Instruction::FPExt: { 1313 // It's possible that the mask has a different number of elements from 1314 // the original cast. We recompute the destination type to match the mask. 1315 Type *DestTy = VectorType::get( 1316 I->getType()->getScalarType(), 1317 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1318 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1319 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1320 "", I); 1321 } 1322 case Instruction::GetElementPtr: { 1323 Value *Ptr = NewOps[0]; 1324 ArrayRef<Value*> Idx = NewOps.slice(1); 1325 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1326 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1327 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1328 return GEP; 1329 } 1330 } 1331 llvm_unreachable("failed to rebuild vector instructions"); 1332 } 1333 1334 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1335 // Mask.size() does not need to be equal to the number of vector elements. 1336 1337 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1338 Type *EltTy = V->getType()->getScalarType(); 1339 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1340 if (isa<UndefValue>(V)) 1341 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1342 1343 if (isa<ConstantAggregateZero>(V)) 1344 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1345 1346 if (Constant *C = dyn_cast<Constant>(V)) 1347 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1348 Mask); 1349 1350 Instruction *I = cast<Instruction>(V); 1351 switch (I->getOpcode()) { 1352 case Instruction::Add: 1353 case Instruction::FAdd: 1354 case Instruction::Sub: 1355 case Instruction::FSub: 1356 case Instruction::Mul: 1357 case Instruction::FMul: 1358 case Instruction::UDiv: 1359 case Instruction::SDiv: 1360 case Instruction::FDiv: 1361 case Instruction::URem: 1362 case Instruction::SRem: 1363 case Instruction::FRem: 1364 case Instruction::Shl: 1365 case Instruction::LShr: 1366 case Instruction::AShr: 1367 case Instruction::And: 1368 case Instruction::Or: 1369 case Instruction::Xor: 1370 case Instruction::ICmp: 1371 case Instruction::FCmp: 1372 case Instruction::Trunc: 1373 case Instruction::ZExt: 1374 case Instruction::SExt: 1375 case Instruction::FPToUI: 1376 case Instruction::FPToSI: 1377 case Instruction::UIToFP: 1378 case Instruction::SIToFP: 1379 case Instruction::FPTrunc: 1380 case Instruction::FPExt: 1381 case Instruction::Select: 1382 case Instruction::GetElementPtr: { 1383 SmallVector<Value*, 8> NewOps; 1384 bool NeedsRebuild = 1385 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1386 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1387 Value *V; 1388 // Recursively call evaluateInDifferentElementOrder on vector arguments 1389 // as well. E.g. GetElementPtr may have scalar operands even if the 1390 // return value is a vector, so we need to examine the operand type. 1391 if (I->getOperand(i)->getType()->isVectorTy()) 1392 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1393 else 1394 V = I->getOperand(i); 1395 NewOps.push_back(V); 1396 NeedsRebuild |= (V != I->getOperand(i)); 1397 } 1398 if (NeedsRebuild) { 1399 return buildNew(I, NewOps); 1400 } 1401 return I; 1402 } 1403 case Instruction::InsertElement: { 1404 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1405 1406 // The insertelement was inserting at Element. Figure out which element 1407 // that becomes after shuffling. The answer is guaranteed to be unique 1408 // by CanEvaluateShuffled. 1409 bool Found = false; 1410 int Index = 0; 1411 for (int e = Mask.size(); Index != e; ++Index) { 1412 if (Mask[Index] == Element) { 1413 Found = true; 1414 break; 1415 } 1416 } 1417 1418 // If element is not in Mask, no need to handle the operand 1 (element to 1419 // be inserted). Just evaluate values in operand 0 according to Mask. 1420 if (!Found) 1421 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1422 1423 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1424 return InsertElementInst::Create(V, I->getOperand(1), 1425 ConstantInt::get(I32Ty, Index), "", I); 1426 } 1427 } 1428 llvm_unreachable("failed to reorder elements of vector instruction!"); 1429 } 1430 1431 // Returns true if the shuffle is extracting a contiguous range of values from 1432 // LHS, for example: 1433 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1434 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1435 // Shuffles to: |EE|FF|GG|HH| 1436 // +--+--+--+--+ 1437 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1438 ArrayRef<int> Mask) { 1439 unsigned LHSElems = 1440 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1441 unsigned MaskElems = Mask.size(); 1442 unsigned BegIdx = Mask.front(); 1443 unsigned EndIdx = Mask.back(); 1444 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1445 return false; 1446 for (unsigned I = 0; I != MaskElems; ++I) 1447 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1448 return false; 1449 return true; 1450 } 1451 1452 /// These are the ingredients in an alternate form binary operator as described 1453 /// below. 1454 struct BinopElts { 1455 BinaryOperator::BinaryOps Opcode; 1456 Value *Op0; 1457 Value *Op1; 1458 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1459 Value *V0 = nullptr, Value *V1 = nullptr) : 1460 Opcode(Opc), Op0(V0), Op1(V1) {} 1461 operator bool() const { return Opcode != 0; } 1462 }; 1463 1464 /// Binops may be transformed into binops with different opcodes and operands. 1465 /// Reverse the usual canonicalization to enable folds with the non-canonical 1466 /// form of the binop. If a transform is possible, return the elements of the 1467 /// new binop. If not, return invalid elements. 1468 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1469 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1470 Type *Ty = BO->getType(); 1471 switch (BO->getOpcode()) { 1472 case Instruction::Shl: { 1473 // shl X, C --> mul X, (1 << C) 1474 Constant *C; 1475 if (match(BO1, m_Constant(C))) { 1476 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1477 return { Instruction::Mul, BO0, ShlOne }; 1478 } 1479 break; 1480 } 1481 case Instruction::Or: { 1482 // or X, C --> add X, C (when X and C have no common bits set) 1483 const APInt *C; 1484 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1485 return { Instruction::Add, BO0, BO1 }; 1486 break; 1487 } 1488 default: 1489 break; 1490 } 1491 return {}; 1492 } 1493 1494 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1495 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1496 1497 // Are we shuffling together some value and that same value after it has been 1498 // modified by a binop with a constant? 1499 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1500 Constant *C; 1501 bool Op0IsBinop; 1502 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1503 Op0IsBinop = true; 1504 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1505 Op0IsBinop = false; 1506 else 1507 return nullptr; 1508 1509 // The identity constant for a binop leaves a variable operand unchanged. For 1510 // a vector, this is a splat of something like 0, -1, or 1. 1511 // If there's no identity constant for this binop, we're done. 1512 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1513 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1514 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1515 if (!IdC) 1516 return nullptr; 1517 1518 // Shuffle identity constants into the lanes that return the original value. 1519 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1520 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1521 // The existing binop constant vector remains in the same operand position. 1522 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1523 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1524 ConstantExpr::getShuffleVector(IdC, C, Mask); 1525 1526 bool MightCreatePoisonOrUB = 1527 is_contained(Mask, UndefMaskElem) && 1528 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1529 if (MightCreatePoisonOrUB) 1530 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1531 1532 // shuf (bop X, C), X, M --> bop X, C' 1533 // shuf X, (bop X, C), M --> bop X, C' 1534 Value *X = Op0IsBinop ? Op1 : Op0; 1535 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1536 NewBO->copyIRFlags(BO); 1537 1538 // An undef shuffle mask element may propagate as an undef constant element in 1539 // the new binop. That would produce poison where the original code might not. 1540 // If we already made a safe constant, then there's no danger. 1541 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1542 NewBO->dropPoisonGeneratingFlags(); 1543 return NewBO; 1544 } 1545 1546 /// If we have an insert of a scalar to a non-zero element of an undefined 1547 /// vector and then shuffle that value, that's the same as inserting to the zero 1548 /// element and shuffling. Splatting from the zero element is recognized as the 1549 /// canonical form of splat. 1550 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1551 InstCombiner::BuilderTy &Builder) { 1552 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1553 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1554 Value *X; 1555 uint64_t IndexC; 1556 1557 // Match a shuffle that is a splat to a non-zero element. 1558 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1559 m_ConstantInt(IndexC)))) || 1560 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1561 return nullptr; 1562 1563 // Insert into element 0 of an undef vector. 1564 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1565 Constant *Zero = Builder.getInt32(0); 1566 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1567 1568 // Splat from element 0. Any mask element that is undefined remains undefined. 1569 // For example: 1570 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1571 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1572 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1573 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1574 for (unsigned i = 0; i != NumMaskElts; ++i) 1575 if (Mask[i] == UndefMaskElem) 1576 NewMask[i] = Mask[i]; 1577 1578 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1579 } 1580 1581 /// Try to fold shuffles that are the equivalent of a vector select. 1582 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1583 InstCombiner::BuilderTy &Builder, 1584 const DataLayout &DL) { 1585 if (!Shuf.isSelect()) 1586 return nullptr; 1587 1588 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1589 // Commuting undef to operand 0 conflicts with another canonicalization. 1590 unsigned NumElts = Shuf.getType()->getNumElements(); 1591 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1592 Shuf.getMaskValue(0) >= (int)NumElts) { 1593 // TODO: Can we assert that both operands of a shuffle-select are not undef 1594 // (otherwise, it would have been folded by instsimplify? 1595 Shuf.commute(); 1596 return &Shuf; 1597 } 1598 1599 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1600 return I; 1601 1602 BinaryOperator *B0, *B1; 1603 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1604 !match(Shuf.getOperand(1), m_BinOp(B1))) 1605 return nullptr; 1606 1607 Value *X, *Y; 1608 Constant *C0, *C1; 1609 bool ConstantsAreOp1; 1610 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1611 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1612 ConstantsAreOp1 = true; 1613 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1614 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1615 ConstantsAreOp1 = false; 1616 else 1617 return nullptr; 1618 1619 // We need matching binops to fold the lanes together. 1620 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1621 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1622 bool DropNSW = false; 1623 if (ConstantsAreOp1 && Opc0 != Opc1) { 1624 // TODO: We drop "nsw" if shift is converted into multiply because it may 1625 // not be correct when the shift amount is BitWidth - 1. We could examine 1626 // each vector element to determine if it is safe to keep that flag. 1627 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1628 DropNSW = true; 1629 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1630 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1631 Opc0 = AltB0.Opcode; 1632 C0 = cast<Constant>(AltB0.Op1); 1633 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1634 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1635 Opc1 = AltB1.Opcode; 1636 C1 = cast<Constant>(AltB1.Op1); 1637 } 1638 } 1639 1640 if (Opc0 != Opc1) 1641 return nullptr; 1642 1643 // The opcodes must be the same. Use a new name to make that clear. 1644 BinaryOperator::BinaryOps BOpc = Opc0; 1645 1646 // Select the constant elements needed for the single binop. 1647 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1648 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1649 1650 // We are moving a binop after a shuffle. When a shuffle has an undefined 1651 // mask element, the result is undefined, but it is not poison or undefined 1652 // behavior. That is not necessarily true for div/rem/shift. 1653 bool MightCreatePoisonOrUB = 1654 is_contained(Mask, UndefMaskElem) && 1655 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1656 if (MightCreatePoisonOrUB) 1657 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 1658 ConstantsAreOp1); 1659 1660 Value *V; 1661 if (X == Y) { 1662 // Remove a binop and the shuffle by rearranging the constant: 1663 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1664 // shuffle (op C0, V), (op C1, V), M --> op C', V 1665 V = X; 1666 } else { 1667 // If there are 2 different variable operands, we must create a new shuffle 1668 // (select) first, so check uses to ensure that we don't end up with more 1669 // instructions than we started with. 1670 if (!B0->hasOneUse() && !B1->hasOneUse()) 1671 return nullptr; 1672 1673 // If we use the original shuffle mask and op1 is *variable*, we would be 1674 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1675 // poison. We do not have to guard against UB when *constants* are op1 1676 // because safe constants guarantee that we do not overflow sdiv/srem (and 1677 // there's no danger for other opcodes). 1678 // TODO: To allow this case, create a new shuffle mask with no undefs. 1679 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1680 return nullptr; 1681 1682 // Note: In general, we do not create new shuffles in InstCombine because we 1683 // do not know if a target can lower an arbitrary shuffle optimally. In this 1684 // case, the shuffle uses the existing mask, so there is no additional risk. 1685 1686 // Select the variable vectors first, then perform the binop: 1687 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1688 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1689 V = Builder.CreateShuffleVector(X, Y, Mask); 1690 } 1691 1692 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1693 BinaryOperator::Create(BOpc, NewC, V); 1694 1695 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1696 // 1. If we changed an opcode, poison conditions might have changed. 1697 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1698 // where the original code did not. But if we already made a safe constant, 1699 // then there's no danger. 1700 NewBO->copyIRFlags(B0); 1701 NewBO->andIRFlags(B1); 1702 if (DropNSW) 1703 NewBO->setHasNoSignedWrap(false); 1704 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1705 NewBO->dropPoisonGeneratingFlags(); 1706 return NewBO; 1707 } 1708 1709 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1710 /// Example (little endian): 1711 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1712 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1713 bool IsBigEndian) { 1714 // This must be a bitcasted shuffle of 1 vector integer operand. 1715 Type *DestType = Shuf.getType(); 1716 Value *X; 1717 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1718 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1719 return nullptr; 1720 1721 // The source type must have the same number of elements as the shuffle, 1722 // and the source element type must be larger than the shuffle element type. 1723 Type *SrcType = X->getType(); 1724 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1725 cast<VectorType>(SrcType)->getNumElements() != 1726 cast<VectorType>(DestType)->getNumElements() || 1727 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1728 return nullptr; 1729 1730 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1731 "Expected a shuffle that decreases length"); 1732 1733 // Last, check that the mask chooses the correct low bits for each narrow 1734 // element in the result. 1735 uint64_t TruncRatio = 1736 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1737 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1738 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1739 if (Mask[i] == UndefMaskElem) 1740 continue; 1741 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1742 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1743 "Overflowed 32-bits"); 1744 if (Mask[i] != (int)LSBIndex) 1745 return nullptr; 1746 } 1747 1748 return new TruncInst(X, DestType); 1749 } 1750 1751 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1752 /// narrowing (concatenating with undef and extracting back to the original 1753 /// length). This allows replacing the wide select with a narrow select. 1754 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1755 InstCombiner::BuilderTy &Builder) { 1756 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1757 // of the 1st vector operand of a shuffle. 1758 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1759 return nullptr; 1760 1761 // The vector being shuffled must be a vector select that we can eliminate. 1762 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1763 Value *Cond, *X, *Y; 1764 if (!match(Shuf.getOperand(0), 1765 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1766 return nullptr; 1767 1768 // We need a narrow condition value. It must be extended with undef elements 1769 // and have the same number of elements as this shuffle. 1770 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 1771 Value *NarrowCond; 1772 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 1773 cast<VectorType>(NarrowCond->getType())->getNumElements() != 1774 NarrowNumElts || 1775 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1776 return nullptr; 1777 1778 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1779 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1780 Value *Undef = UndefValue::get(X->getType()); 1781 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1782 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1783 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1784 } 1785 1786 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1787 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1788 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1789 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1790 return nullptr; 1791 1792 Value *X, *Y; 1793 ArrayRef<int> Mask; 1794 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1795 return nullptr; 1796 1797 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1798 // then combining may result in worse codegen. 1799 if (!Op0->hasOneUse()) 1800 return nullptr; 1801 1802 // We are extracting a subvector from a shuffle. Remove excess elements from 1803 // the 1st shuffle mask to eliminate the extract. 1804 // 1805 // This transform is conservatively limited to identity extracts because we do 1806 // not allow arbitrary shuffle mask creation as a target-independent transform 1807 // (because we can't guarantee that will lower efficiently). 1808 // 1809 // If the extracting shuffle has an undef mask element, it transfers to the 1810 // new shuffle mask. Otherwise, copy the original mask element. Example: 1811 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1812 // shuf X, Y, <C0, undef, C2, undef> 1813 unsigned NumElts = Shuf.getType()->getNumElements(); 1814 SmallVector<int, 16> NewMask(NumElts); 1815 assert(NumElts < Mask.size() && 1816 "Identity with extract must have less elements than its inputs"); 1817 1818 for (unsigned i = 0; i != NumElts; ++i) { 1819 int ExtractMaskElt = Shuf.getMaskValue(i); 1820 int MaskElt = Mask[i]; 1821 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1822 } 1823 return new ShuffleVectorInst(X, Y, NewMask); 1824 } 1825 1826 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1827 /// operand with the operand of an insertelement. 1828 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1829 InstCombinerImpl &IC) { 1830 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1831 SmallVector<int, 16> Mask; 1832 Shuf.getShuffleMask(Mask); 1833 1834 // The shuffle must not change vector sizes. 1835 // TODO: This restriction could be removed if the insert has only one use 1836 // (because the transform would require a new length-changing shuffle). 1837 int NumElts = Mask.size(); 1838 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 1839 return nullptr; 1840 1841 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1842 // not be able to handle it there if the insertelement has >1 use. 1843 // If the shuffle has an insertelement operand but does not choose the 1844 // inserted scalar element from that value, then we can replace that shuffle 1845 // operand with the source vector of the insertelement. 1846 Value *X; 1847 uint64_t IdxC; 1848 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1849 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1850 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1851 return IC.replaceOperand(Shuf, 0, X); 1852 } 1853 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1854 // Offset the index constant by the vector width because we are checking for 1855 // accesses to the 2nd vector input of the shuffle. 1856 IdxC += NumElts; 1857 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1858 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1859 return IC.replaceOperand(Shuf, 1, X); 1860 } 1861 1862 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1863 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1864 // We need an insertelement with a constant index. 1865 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 1866 m_ConstantInt(IndexC)))) 1867 return false; 1868 1869 // Test the shuffle mask to see if it splices the inserted scalar into the 1870 // operand 1 vector of the shuffle. 1871 int NewInsIndex = -1; 1872 for (int i = 0; i != NumElts; ++i) { 1873 // Ignore undef mask elements. 1874 if (Mask[i] == -1) 1875 continue; 1876 1877 // The shuffle takes elements of operand 1 without lane changes. 1878 if (Mask[i] == NumElts + i) 1879 continue; 1880 1881 // The shuffle must choose the inserted scalar exactly once. 1882 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1883 return false; 1884 1885 // The shuffle is placing the inserted scalar into element i. 1886 NewInsIndex = i; 1887 } 1888 1889 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1890 1891 // Index is updated to the potentially translated insertion lane. 1892 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1893 return true; 1894 }; 1895 1896 // If the shuffle is unnecessary, insert the scalar operand directly into 1897 // operand 1 of the shuffle. Example: 1898 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1899 Value *Scalar; 1900 ConstantInt *IndexC; 1901 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1902 return InsertElementInst::Create(V1, Scalar, IndexC); 1903 1904 // Try again after commuting shuffle. Example: 1905 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1906 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1907 std::swap(V0, V1); 1908 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1909 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1910 return InsertElementInst::Create(V1, Scalar, IndexC); 1911 1912 return nullptr; 1913 } 1914 1915 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1916 // Match the operands as identity with padding (also known as concatenation 1917 // with undef) shuffles of the same source type. The backend is expected to 1918 // recreate these concatenations from a shuffle of narrow operands. 1919 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1920 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1921 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1922 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1923 return nullptr; 1924 1925 // We limit this transform to power-of-2 types because we expect that the 1926 // backend can convert the simplified IR patterns to identical nodes as the 1927 // original IR. 1928 // TODO: If we can verify the same behavior for arbitrary types, the 1929 // power-of-2 checks can be removed. 1930 Value *X = Shuffle0->getOperand(0); 1931 Value *Y = Shuffle1->getOperand(0); 1932 if (X->getType() != Y->getType() || 1933 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 1934 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 1935 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 1936 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1937 return nullptr; 1938 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1939 isa<UndefValue>(Shuffle1->getOperand(1)) && 1940 "Unexpected operand for identity shuffle"); 1941 1942 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1943 // operands directly by adjusting the shuffle mask to account for the narrower 1944 // types: 1945 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1946 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 1947 int WideElts = Shuffle0->getType()->getNumElements(); 1948 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1949 1950 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1951 SmallVector<int, 16> NewMask(Mask.size(), -1); 1952 for (int i = 0, e = Mask.size(); i != e; ++i) { 1953 if (Mask[i] == -1) 1954 continue; 1955 1956 // If this shuffle is choosing an undef element from 1 of the sources, that 1957 // element is undef. 1958 if (Mask[i] < WideElts) { 1959 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1960 continue; 1961 } else { 1962 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1963 continue; 1964 } 1965 1966 // If this shuffle is choosing from the 1st narrow op, the mask element is 1967 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1968 // element is offset down to adjust for the narrow vector widths. 1969 if (Mask[i] < WideElts) { 1970 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1971 NewMask[i] = Mask[i]; 1972 } else { 1973 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1974 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 1975 } 1976 } 1977 return new ShuffleVectorInst(X, Y, NewMask); 1978 } 1979 1980 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1981 Value *LHS = SVI.getOperand(0); 1982 Value *RHS = SVI.getOperand(1); 1983 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 1984 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1985 SVI.getType(), ShufQuery)) 1986 return replaceInstUsesWith(SVI, V); 1987 1988 // shuffle x, x, mask --> shuffle x, undef, mask' 1989 unsigned VWidth = SVI.getType()->getNumElements(); 1990 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 1991 ArrayRef<int> Mask = SVI.getShuffleMask(); 1992 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1993 1994 // Peek through a bitcasted shuffle operand by scaling the mask. If the 1995 // simulated shuffle can simplify, then this shuffle is unnecessary: 1996 // shuf (bitcast X), undef, Mask --> bitcast X' 1997 // TODO: This could be extended to allow length-changing shuffles. 1998 // The transform might also be obsoleted if we allowed canonicalization 1999 // of bitcasted shuffles. 2000 Value *X; 2001 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2002 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2003 // Try to create a scaled mask constant. 2004 auto *XType = cast<VectorType>(X->getType()); 2005 unsigned XNumElts = XType->getNumElements(); 2006 SmallVector<int, 16> ScaledMask; 2007 if (XNumElts >= VWidth) { 2008 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2009 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2010 } else { 2011 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2012 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2013 ScaledMask.clear(); 2014 } 2015 if (!ScaledMask.empty()) { 2016 // If the shuffled source vector simplifies, cast that value to this 2017 // shuffle's type. 2018 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2019 ScaledMask, XType, ShufQuery)) 2020 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2021 } 2022 } 2023 2024 if (LHS == RHS) { 2025 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2026 // Remap any references to RHS to use LHS. 2027 SmallVector<int, 16> Elts; 2028 for (unsigned i = 0; i != VWidth; ++i) { 2029 // Propagate undef elements or force mask to LHS. 2030 if (Mask[i] < 0) 2031 Elts.push_back(UndefMaskElem); 2032 else 2033 Elts.push_back(Mask[i] % LHSWidth); 2034 } 2035 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2036 } 2037 2038 // shuffle undef, x, mask --> shuffle x, undef, mask' 2039 if (isa<UndefValue>(LHS)) { 2040 SVI.commute(); 2041 return &SVI; 2042 } 2043 2044 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2045 return I; 2046 2047 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2048 return I; 2049 2050 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2051 return I; 2052 2053 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2054 return I; 2055 2056 APInt UndefElts(VWidth, 0); 2057 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2058 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2059 if (V != &SVI) 2060 return replaceInstUsesWith(SVI, V); 2061 return &SVI; 2062 } 2063 2064 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2065 return I; 2066 2067 // These transforms have the potential to lose undef knowledge, so they are 2068 // intentionally placed after SimplifyDemandedVectorElts(). 2069 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2070 return I; 2071 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2072 return I; 2073 2074 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2075 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2076 return replaceInstUsesWith(SVI, V); 2077 } 2078 2079 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2080 // a non-vector type. We can instead bitcast the original vector followed by 2081 // an extract of the desired element: 2082 // 2083 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2084 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2085 // %1 = bitcast <4 x i8> %sroa to i32 2086 // Becomes: 2087 // %bc = bitcast <16 x i8> %in to <4 x i32> 2088 // %ext = extractelement <4 x i32> %bc, i32 0 2089 // 2090 // If the shuffle is extracting a contiguous range of values from the input 2091 // vector then each use which is a bitcast of the extracted size can be 2092 // replaced. This will work if the vector types are compatible, and the begin 2093 // index is aligned to a value in the casted vector type. If the begin index 2094 // isn't aligned then we can shuffle the original vector (keeping the same 2095 // vector type) before extracting. 2096 // 2097 // This code will bail out if the target type is fundamentally incompatible 2098 // with vectors of the source type. 2099 // 2100 // Example of <16 x i8>, target type i32: 2101 // Index range [4,8): v-----------v Will work. 2102 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2103 // <16 x i8>: | | | | | | | | | | | | | | | | | 2104 // <4 x i32>: | | | | | 2105 // +-----------+-----------+-----------+-----------+ 2106 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2107 // Target type i40: ^--------------^ Won't work, bail. 2108 bool MadeChange = false; 2109 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2110 Value *V = LHS; 2111 unsigned MaskElems = Mask.size(); 2112 VectorType *SrcTy = cast<VectorType>(V->getType()); 2113 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2114 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2115 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2116 unsigned SrcNumElems = SrcTy->getNumElements(); 2117 SmallVector<BitCastInst *, 8> BCs; 2118 DenseMap<Type *, Value *> NewBCs; 2119 for (User *U : SVI.users()) 2120 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2121 if (!BC->use_empty()) 2122 // Only visit bitcasts that weren't previously handled. 2123 BCs.push_back(BC); 2124 for (BitCastInst *BC : BCs) { 2125 unsigned BegIdx = Mask.front(); 2126 Type *TgtTy = BC->getDestTy(); 2127 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2128 if (!TgtElemBitWidth) 2129 continue; 2130 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2131 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2132 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2133 if (!VecBitWidthsEqual) 2134 continue; 2135 if (!VectorType::isValidElementType(TgtTy)) 2136 continue; 2137 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2138 if (!BegIsAligned) { 2139 // Shuffle the input so [0,NumElements) contains the output, and 2140 // [NumElems,SrcNumElems) is undef. 2141 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2142 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2143 ShuffleMask[I] = Idx; 2144 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2145 ShuffleMask, 2146 SVI.getName() + ".extract"); 2147 BegIdx = 0; 2148 } 2149 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2150 assert(SrcElemsPerTgtElem); 2151 BegIdx /= SrcElemsPerTgtElem; 2152 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2153 auto *NewBC = 2154 BCAlreadyExists 2155 ? NewBCs[CastSrcTy] 2156 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2157 if (!BCAlreadyExists) 2158 NewBCs[CastSrcTy] = NewBC; 2159 auto *Ext = Builder.CreateExtractElement( 2160 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2161 // The shufflevector isn't being replaced: the bitcast that used it 2162 // is. InstCombine will visit the newly-created instructions. 2163 replaceInstUsesWith(*BC, Ext); 2164 MadeChange = true; 2165 } 2166 } 2167 2168 // If the LHS is a shufflevector itself, see if we can combine it with this 2169 // one without producing an unusual shuffle. 2170 // Cases that might be simplified: 2171 // 1. 2172 // x1=shuffle(v1,v2,mask1) 2173 // x=shuffle(x1,undef,mask) 2174 // ==> 2175 // x=shuffle(v1,undef,newMask) 2176 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2177 // 2. 2178 // x1=shuffle(v1,undef,mask1) 2179 // x=shuffle(x1,x2,mask) 2180 // where v1.size() == mask1.size() 2181 // ==> 2182 // x=shuffle(v1,x2,newMask) 2183 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2184 // 3. 2185 // x2=shuffle(v2,undef,mask2) 2186 // x=shuffle(x1,x2,mask) 2187 // where v2.size() == mask2.size() 2188 // ==> 2189 // x=shuffle(x1,v2,newMask) 2190 // newMask[i] = (mask[i] < x1.size()) 2191 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2192 // 4. 2193 // x1=shuffle(v1,undef,mask1) 2194 // x2=shuffle(v2,undef,mask2) 2195 // x=shuffle(x1,x2,mask) 2196 // where v1.size() == v2.size() 2197 // ==> 2198 // x=shuffle(v1,v2,newMask) 2199 // newMask[i] = (mask[i] < x1.size()) 2200 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2201 // 2202 // Here we are really conservative: 2203 // we are absolutely afraid of producing a shuffle mask not in the input 2204 // program, because the code gen may not be smart enough to turn a merged 2205 // shuffle into two specific shuffles: it may produce worse code. As such, 2206 // we only merge two shuffles if the result is either a splat or one of the 2207 // input shuffle masks. In this case, merging the shuffles just removes 2208 // one instruction, which we know is safe. This is good for things like 2209 // turning: (splat(splat)) -> splat, or 2210 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2211 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2212 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2213 if (LHSShuffle) 2214 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2215 LHSShuffle = nullptr; 2216 if (RHSShuffle) 2217 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2218 RHSShuffle = nullptr; 2219 if (!LHSShuffle && !RHSShuffle) 2220 return MadeChange ? &SVI : nullptr; 2221 2222 Value* LHSOp0 = nullptr; 2223 Value* LHSOp1 = nullptr; 2224 Value* RHSOp0 = nullptr; 2225 unsigned LHSOp0Width = 0; 2226 unsigned RHSOp0Width = 0; 2227 if (LHSShuffle) { 2228 LHSOp0 = LHSShuffle->getOperand(0); 2229 LHSOp1 = LHSShuffle->getOperand(1); 2230 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2231 } 2232 if (RHSShuffle) { 2233 RHSOp0 = RHSShuffle->getOperand(0); 2234 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2235 } 2236 Value* newLHS = LHS; 2237 Value* newRHS = RHS; 2238 if (LHSShuffle) { 2239 // case 1 2240 if (isa<UndefValue>(RHS)) { 2241 newLHS = LHSOp0; 2242 newRHS = LHSOp1; 2243 } 2244 // case 2 or 4 2245 else if (LHSOp0Width == LHSWidth) { 2246 newLHS = LHSOp0; 2247 } 2248 } 2249 // case 3 or 4 2250 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2251 newRHS = RHSOp0; 2252 } 2253 // case 4 2254 if (LHSOp0 == RHSOp0) { 2255 newLHS = LHSOp0; 2256 newRHS = nullptr; 2257 } 2258 2259 if (newLHS == LHS && newRHS == RHS) 2260 return MadeChange ? &SVI : nullptr; 2261 2262 ArrayRef<int> LHSMask; 2263 ArrayRef<int> RHSMask; 2264 if (newLHS != LHS) 2265 LHSMask = LHSShuffle->getShuffleMask(); 2266 if (RHSShuffle && newRHS != RHS) 2267 RHSMask = RHSShuffle->getShuffleMask(); 2268 2269 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2270 SmallVector<int, 16> newMask; 2271 bool isSplat = true; 2272 int SplatElt = -1; 2273 // Create a new mask for the new ShuffleVectorInst so that the new 2274 // ShuffleVectorInst is equivalent to the original one. 2275 for (unsigned i = 0; i < VWidth; ++i) { 2276 int eltMask; 2277 if (Mask[i] < 0) { 2278 // This element is an undef value. 2279 eltMask = -1; 2280 } else if (Mask[i] < (int)LHSWidth) { 2281 // This element is from left hand side vector operand. 2282 // 2283 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2284 // new mask value for the element. 2285 if (newLHS != LHS) { 2286 eltMask = LHSMask[Mask[i]]; 2287 // If the value selected is an undef value, explicitly specify it 2288 // with a -1 mask value. 2289 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2290 eltMask = -1; 2291 } else 2292 eltMask = Mask[i]; 2293 } else { 2294 // This element is from right hand side vector operand 2295 // 2296 // If the value selected is an undef value, explicitly specify it 2297 // with a -1 mask value. (case 1) 2298 if (isa<UndefValue>(RHS)) 2299 eltMask = -1; 2300 // If RHS is going to be replaced (case 3 or 4), calculate the 2301 // new mask value for the element. 2302 else if (newRHS != RHS) { 2303 eltMask = RHSMask[Mask[i]-LHSWidth]; 2304 // If the value selected is an undef value, explicitly specify it 2305 // with a -1 mask value. 2306 if (eltMask >= (int)RHSOp0Width) { 2307 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2308 && "should have been check above"); 2309 eltMask = -1; 2310 } 2311 } else 2312 eltMask = Mask[i]-LHSWidth; 2313 2314 // If LHS's width is changed, shift the mask value accordingly. 2315 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2316 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2317 // If newRHS == newLHS, we want to remap any references from newRHS to 2318 // newLHS so that we can properly identify splats that may occur due to 2319 // obfuscation across the two vectors. 2320 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2321 eltMask += newLHSWidth; 2322 } 2323 2324 // Check if this could still be a splat. 2325 if (eltMask >= 0) { 2326 if (SplatElt >= 0 && SplatElt != eltMask) 2327 isSplat = false; 2328 SplatElt = eltMask; 2329 } 2330 2331 newMask.push_back(eltMask); 2332 } 2333 2334 // If the result mask is equal to one of the original shuffle masks, 2335 // or is a splat, do the replacement. 2336 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2337 SmallVector<Constant*, 16> Elts; 2338 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2339 if (newMask[i] < 0) { 2340 Elts.push_back(UndefValue::get(Int32Ty)); 2341 } else { 2342 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2343 } 2344 } 2345 if (!newRHS) 2346 newRHS = UndefValue::get(newLHS->getType()); 2347 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2348 } 2349 2350 return MadeChange ? &SVI : nullptr; 2351 } 2352