1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 ElementCount NumSrcElts = SrcTy->getElementCount(); 189 ElementCount NumElts = 190 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 191 if (NumSrcElts == NumElts) 192 if (Value *Elt = findScalarElement(X, ExtIndexC)) 193 return new BitCastInst(Elt, DestTy); 194 195 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 196 "Src and Dst must be the same sort of vector type"); 197 198 // If the source elements are wider than the destination, try to shift and 199 // truncate a subset of scalar bits of an insert op. 200 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 201 Value *Scalar; 202 uint64_t InsIndexC; 203 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 204 m_ConstantInt(InsIndexC)))) 205 return nullptr; 206 207 // The extract must be from the subset of vector elements that we inserted 208 // into. Example: if we inserted element 1 of a <2 x i64> and we are 209 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 210 // of elements 4-7 of the bitcasted vector. 211 unsigned NarrowingRatio = 212 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 213 if (ExtIndexC / NarrowingRatio != InsIndexC) 214 return nullptr; 215 216 // We are extracting part of the original scalar. How that scalar is 217 // inserted into the vector depends on the endian-ness. Example: 218 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 219 // +--+--+--+--+--+--+--+--+ 220 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 221 // extelt <4 x i16> V', 3: | |S2|S3| 222 // +--+--+--+--+--+--+--+--+ 223 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 224 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 225 // In this example, we must right-shift little-endian. Big-endian is just a 226 // truncate. 227 unsigned Chunk = ExtIndexC % NarrowingRatio; 228 if (IsBigEndian) 229 Chunk = NarrowingRatio - 1 - Chunk; 230 231 // Bail out if this is an FP vector to FP vector sequence. That would take 232 // more instructions than we started with unless there is no shift, and it 233 // may not be handled as well in the backend. 234 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 235 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 236 if (NeedSrcBitcast && NeedDestBitcast) 237 return nullptr; 238 239 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 240 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 241 unsigned ShAmt = Chunk * DestWidth; 242 243 // TODO: This limitation is more strict than necessary. We could sum the 244 // number of new instructions and subtract the number eliminated to know if 245 // we can proceed. 246 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 247 if (NeedSrcBitcast || NeedDestBitcast) 248 return nullptr; 249 250 if (NeedSrcBitcast) { 251 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 252 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 253 } 254 255 if (ShAmt) { 256 // Bail out if we could end with more instructions than we started with. 257 if (!Ext.getVectorOperand()->hasOneUse()) 258 return nullptr; 259 Scalar = Builder.CreateLShr(Scalar, ShAmt); 260 } 261 262 if (NeedDestBitcast) { 263 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 264 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 265 } 266 return new TruncInst(Scalar, DestTy); 267 } 268 269 return nullptr; 270 } 271 272 /// Find elements of V demanded by UserInstr. 273 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 274 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 275 276 // Conservatively assume that all elements are needed. 277 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 278 279 switch (UserInstr->getOpcode()) { 280 case Instruction::ExtractElement: { 281 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 282 assert(EEI->getVectorOperand() == V); 283 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 284 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 285 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 286 } 287 break; 288 } 289 case Instruction::ShuffleVector: { 290 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 291 unsigned MaskNumElts = 292 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 293 294 UsedElts = APInt(VWidth, 0); 295 for (unsigned i = 0; i < MaskNumElts; i++) { 296 unsigned MaskVal = Shuffle->getMaskValue(i); 297 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 298 continue; 299 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 300 UsedElts.setBit(MaskVal); 301 if (Shuffle->getOperand(1) == V && 302 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 303 UsedElts.setBit(MaskVal - VWidth); 304 } 305 break; 306 } 307 default: 308 break; 309 } 310 return UsedElts; 311 } 312 313 /// Find union of elements of V demanded by all its users. 314 /// If it is known by querying findDemandedEltsBySingleUser that 315 /// no user demands an element of V, then the corresponding bit 316 /// remains unset in the returned value. 317 static APInt findDemandedEltsByAllUsers(Value *V) { 318 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 319 320 APInt UnionUsedElts(VWidth, 0); 321 for (const Use &U : V->uses()) { 322 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 323 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 324 } else { 325 UnionUsedElts = APInt::getAllOnesValue(VWidth); 326 break; 327 } 328 329 if (UnionUsedElts.isAllOnesValue()) 330 break; 331 } 332 333 return UnionUsedElts; 334 } 335 336 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 337 Value *SrcVec = EI.getVectorOperand(); 338 Value *Index = EI.getIndexOperand(); 339 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 340 SQ.getWithInstruction(&EI))) 341 return replaceInstUsesWith(EI, V); 342 343 // If extracting a specified index from the vector, see if we can recursively 344 // find a previously computed scalar that was inserted into the vector. 345 auto *IndexC = dyn_cast<ConstantInt>(Index); 346 if (IndexC) { 347 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 348 unsigned NumElts = EC.getKnownMinValue(); 349 350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 351 Intrinsic::ID IID = II->getIntrinsicID(); 352 // Index needs to be lower than the minimum size of the vector, because 353 // for scalable vector, the vector size is known at run time. 354 if (IID == Intrinsic::experimental_stepvector && 355 IndexC->getValue().ult(NumElts)) { 356 Type *Ty = EI.getType(); 357 unsigned BitWidth = Ty->getIntegerBitWidth(); 358 Value *Idx; 359 // Return index when its value does not exceed the allowed limit 360 // for the element type of the vector, otherwise return undefined. 361 if (IndexC->getValue().getActiveBits() <= BitWidth) 362 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 363 else 364 Idx = UndefValue::get(Ty); 365 return replaceInstUsesWith(EI, Idx); 366 } 367 } 368 // InstSimplify should handle cases where the index is invalid. 369 // For fixed-length vector, it's invalid to extract out-of-range element. 370 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 371 return nullptr; 372 373 // This instruction only demands the single element from the input vector. 374 // Skip for scalable type, the number of elements is unknown at 375 // compile-time. 376 if (!EC.isScalable() && NumElts != 1) { 377 // If the input vector has a single use, simplify it based on this use 378 // property. 379 if (SrcVec->hasOneUse()) { 380 APInt UndefElts(NumElts, 0); 381 APInt DemandedElts(NumElts, 0); 382 DemandedElts.setBit(IndexC->getZExtValue()); 383 if (Value *V = 384 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 385 return replaceOperand(EI, 0, V); 386 } else { 387 // If the input vector has multiple uses, simplify it based on a union 388 // of all elements used. 389 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 390 if (!DemandedElts.isAllOnesValue()) { 391 APInt UndefElts(NumElts, 0); 392 if (Value *V = SimplifyDemandedVectorElts( 393 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 394 true /* AllowMultipleUsers */)) { 395 if (V != SrcVec) { 396 SrcVec->replaceAllUsesWith(V); 397 return &EI; 398 } 399 } 400 } 401 } 402 } 403 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 404 return I; 405 406 // If there's a vector PHI feeding a scalar use through this extractelement 407 // instruction, try to scalarize the PHI. 408 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 409 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 410 return ScalarPHI; 411 } 412 413 // TODO come up with a n-ary matcher that subsumes both unary and 414 // binary matchers. 415 UnaryOperator *UO; 416 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 417 // extelt (unop X), Index --> unop (extelt X, Index) 418 Value *X = UO->getOperand(0); 419 Value *E = Builder.CreateExtractElement(X, Index); 420 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 421 } 422 423 BinaryOperator *BO; 424 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 425 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 426 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 427 Value *E0 = Builder.CreateExtractElement(X, Index); 428 Value *E1 = Builder.CreateExtractElement(Y, Index); 429 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 430 } 431 432 Value *X, *Y; 433 CmpInst::Predicate Pred; 434 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 435 cheapToScalarize(SrcVec, IndexC)) { 436 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 437 Value *E0 = Builder.CreateExtractElement(X, Index); 438 Value *E1 = Builder.CreateExtractElement(Y, Index); 439 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 440 } 441 442 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 443 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 444 // Extracting the inserted element? 445 if (IE->getOperand(2) == Index) 446 return replaceInstUsesWith(EI, IE->getOperand(1)); 447 // If the inserted and extracted elements are constants, they must not 448 // be the same value, extract from the pre-inserted value instead. 449 if (isa<Constant>(IE->getOperand(2)) && IndexC) 450 return replaceOperand(EI, 0, IE->getOperand(0)); 451 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 452 auto *VecType = cast<VectorType>(GEP->getType()); 453 ElementCount EC = VecType->getElementCount(); 454 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 455 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 456 // Find out why we have a vector result - these are a few examples: 457 // 1. We have a scalar pointer and a vector of indices, or 458 // 2. We have a vector of pointers and a scalar index, or 459 // 3. We have a vector of pointers and a vector of indices, etc. 460 // Here we only consider combining when there is exactly one vector 461 // operand, since the optimization is less obviously a win due to 462 // needing more than one extractelements. 463 464 unsigned VectorOps = 465 llvm::count_if(GEP->operands(), [](const Value *V) { 466 return isa<VectorType>(V->getType()); 467 }); 468 if (VectorOps > 1) 469 return nullptr; 470 assert(VectorOps == 1 && "Expected exactly one vector GEP operand!"); 471 472 Value *NewPtr = GEP->getPointerOperand(); 473 if (isa<VectorType>(NewPtr->getType())) 474 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 475 476 SmallVector<Value *> NewOps; 477 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 478 Value *Op = GEP->getOperand(I); 479 if (isa<VectorType>(Op->getType())) 480 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 481 else 482 NewOps.push_back(Op); 483 } 484 485 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 486 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 487 NewOps); 488 NewGEP->setIsInBounds(GEP->isInBounds()); 489 return NewGEP; 490 } 491 return nullptr; 492 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 493 // If this is extracting an element from a shufflevector, figure out where 494 // it came from and extract from the appropriate input element instead. 495 // Restrict the following transformation to fixed-length vector. 496 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 497 int SrcIdx = 498 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 499 Value *Src; 500 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 501 ->getNumElements(); 502 503 if (SrcIdx < 0) 504 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 505 if (SrcIdx < (int)LHSWidth) 506 Src = SVI->getOperand(0); 507 else { 508 SrcIdx -= LHSWidth; 509 Src = SVI->getOperand(1); 510 } 511 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 512 return ExtractElementInst::Create( 513 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 514 } 515 } else if (auto *CI = dyn_cast<CastInst>(I)) { 516 // Canonicalize extractelement(cast) -> cast(extractelement). 517 // Bitcasts can change the number of vector elements, and they cost 518 // nothing. 519 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 520 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 521 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 522 } 523 } 524 } 525 return nullptr; 526 } 527 528 /// If V is a shuffle of values that ONLY returns elements from either LHS or 529 /// RHS, return the shuffle mask and true. Otherwise, return false. 530 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 531 SmallVectorImpl<int> &Mask) { 532 assert(LHS->getType() == RHS->getType() && 533 "Invalid CollectSingleShuffleElements"); 534 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 535 536 if (match(V, m_Undef())) { 537 Mask.assign(NumElts, -1); 538 return true; 539 } 540 541 if (V == LHS) { 542 for (unsigned i = 0; i != NumElts; ++i) 543 Mask.push_back(i); 544 return true; 545 } 546 547 if (V == RHS) { 548 for (unsigned i = 0; i != NumElts; ++i) 549 Mask.push_back(i + NumElts); 550 return true; 551 } 552 553 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 554 // If this is an insert of an extract from some other vector, include it. 555 Value *VecOp = IEI->getOperand(0); 556 Value *ScalarOp = IEI->getOperand(1); 557 Value *IdxOp = IEI->getOperand(2); 558 559 if (!isa<ConstantInt>(IdxOp)) 560 return false; 561 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 562 563 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 564 // We can handle this if the vector we are inserting into is 565 // transitively ok. 566 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 567 // If so, update the mask to reflect the inserted undef. 568 Mask[InsertedIdx] = -1; 569 return true; 570 } 571 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 572 if (isa<ConstantInt>(EI->getOperand(1))) { 573 unsigned ExtractedIdx = 574 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 575 unsigned NumLHSElts = 576 cast<FixedVectorType>(LHS->getType())->getNumElements(); 577 578 // This must be extracting from either LHS or RHS. 579 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 580 // We can handle this if the vector we are inserting into is 581 // transitively ok. 582 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 583 // If so, update the mask to reflect the inserted value. 584 if (EI->getOperand(0) == LHS) { 585 Mask[InsertedIdx % NumElts] = ExtractedIdx; 586 } else { 587 assert(EI->getOperand(0) == RHS); 588 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 589 } 590 return true; 591 } 592 } 593 } 594 } 595 } 596 597 return false; 598 } 599 600 /// If we have insertion into a vector that is wider than the vector that we 601 /// are extracting from, try to widen the source vector to allow a single 602 /// shufflevector to replace one or more insert/extract pairs. 603 static void replaceExtractElements(InsertElementInst *InsElt, 604 ExtractElementInst *ExtElt, 605 InstCombinerImpl &IC) { 606 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 607 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 608 unsigned NumInsElts = InsVecType->getNumElements(); 609 unsigned NumExtElts = ExtVecType->getNumElements(); 610 611 // The inserted-to vector must be wider than the extracted-from vector. 612 if (InsVecType->getElementType() != ExtVecType->getElementType() || 613 NumExtElts >= NumInsElts) 614 return; 615 616 // Create a shuffle mask to widen the extended-from vector using poison 617 // values. The mask selects all of the values of the original vector followed 618 // by as many poison values as needed to create a vector of the same length 619 // as the inserted-to vector. 620 SmallVector<int, 16> ExtendMask; 621 for (unsigned i = 0; i < NumExtElts; ++i) 622 ExtendMask.push_back(i); 623 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 624 ExtendMask.push_back(-1); 625 626 Value *ExtVecOp = ExtElt->getVectorOperand(); 627 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 628 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 629 ? ExtVecOpInst->getParent() 630 : ExtElt->getParent(); 631 632 // TODO: This restriction matches the basic block check below when creating 633 // new extractelement instructions. If that limitation is removed, this one 634 // could also be removed. But for now, we just bail out to ensure that we 635 // will replace the extractelement instruction that is feeding our 636 // insertelement instruction. This allows the insertelement to then be 637 // replaced by a shufflevector. If the insertelement is not replaced, we can 638 // induce infinite looping because there's an optimization for extractelement 639 // that will delete our widening shuffle. This would trigger another attempt 640 // here to create that shuffle, and we spin forever. 641 if (InsertionBlock != InsElt->getParent()) 642 return; 643 644 // TODO: This restriction matches the check in visitInsertElementInst() and 645 // prevents an infinite loop caused by not turning the extract/insert pair 646 // into a shuffle. We really should not need either check, but we're lacking 647 // folds for shufflevectors because we're afraid to generate shuffle masks 648 // that the backend can't handle. 649 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 650 return; 651 652 auto *WideVec = 653 new ShuffleVectorInst(ExtVecOp, PoisonValue::get(ExtVecType), ExtendMask); 654 655 // Insert the new shuffle after the vector operand of the extract is defined 656 // (as long as it's not a PHI) or at the start of the basic block of the 657 // extract, so any subsequent extracts in the same basic block can use it. 658 // TODO: Insert before the earliest ExtractElementInst that is replaced. 659 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 660 WideVec->insertAfter(ExtVecOpInst); 661 else 662 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 663 664 // Replace extracts from the original narrow vector with extracts from the new 665 // wide vector. 666 for (User *U : ExtVecOp->users()) { 667 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 668 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 669 continue; 670 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 671 NewExt->insertAfter(OldExt); 672 IC.replaceInstUsesWith(*OldExt, NewExt); 673 } 674 } 675 676 /// We are building a shuffle to create V, which is a sequence of insertelement, 677 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 678 /// not rely on the second vector source. Return a std::pair containing the 679 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 680 /// parameter as required. 681 /// 682 /// Note: we intentionally don't try to fold earlier shuffles since they have 683 /// often been chosen carefully to be efficiently implementable on the target. 684 using ShuffleOps = std::pair<Value *, Value *>; 685 686 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 687 Value *PermittedRHS, 688 InstCombinerImpl &IC) { 689 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 690 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 691 692 if (match(V, m_Undef())) { 693 Mask.assign(NumElts, -1); 694 return std::make_pair( 695 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 696 } 697 698 if (isa<ConstantAggregateZero>(V)) { 699 Mask.assign(NumElts, 0); 700 return std::make_pair(V, nullptr); 701 } 702 703 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 704 // If this is an insert of an extract from some other vector, include it. 705 Value *VecOp = IEI->getOperand(0); 706 Value *ScalarOp = IEI->getOperand(1); 707 Value *IdxOp = IEI->getOperand(2); 708 709 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 710 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 711 unsigned ExtractedIdx = 712 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 713 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 714 715 // Either the extracted from or inserted into vector must be RHSVec, 716 // otherwise we'd end up with a shuffle of three inputs. 717 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 718 Value *RHS = EI->getOperand(0); 719 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 720 assert(LR.second == nullptr || LR.second == RHS); 721 722 if (LR.first->getType() != RHS->getType()) { 723 // Although we are giving up for now, see if we can create extracts 724 // that match the inserts for another round of combining. 725 replaceExtractElements(IEI, EI, IC); 726 727 // We tried our best, but we can't find anything compatible with RHS 728 // further up the chain. Return a trivial shuffle. 729 for (unsigned i = 0; i < NumElts; ++i) 730 Mask[i] = i; 731 return std::make_pair(V, nullptr); 732 } 733 734 unsigned NumLHSElts = 735 cast<FixedVectorType>(RHS->getType())->getNumElements(); 736 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 737 return std::make_pair(LR.first, RHS); 738 } 739 740 if (VecOp == PermittedRHS) { 741 // We've gone as far as we can: anything on the other side of the 742 // extractelement will already have been converted into a shuffle. 743 unsigned NumLHSElts = 744 cast<FixedVectorType>(EI->getOperand(0)->getType()) 745 ->getNumElements(); 746 for (unsigned i = 0; i != NumElts; ++i) 747 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 748 return std::make_pair(EI->getOperand(0), PermittedRHS); 749 } 750 751 // If this insertelement is a chain that comes from exactly these two 752 // vectors, return the vector and the effective shuffle. 753 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 754 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 755 Mask)) 756 return std::make_pair(EI->getOperand(0), PermittedRHS); 757 } 758 } 759 } 760 761 // Otherwise, we can't do anything fancy. Return an identity vector. 762 for (unsigned i = 0; i != NumElts; ++i) 763 Mask.push_back(i); 764 return std::make_pair(V, nullptr); 765 } 766 767 /// Look for chain of insertvalue's that fully define an aggregate, and trace 768 /// back the values inserted, see if they are all were extractvalue'd from 769 /// the same source aggregate from the exact same element indexes. 770 /// If they were, just reuse the source aggregate. 771 /// This potentially deals with PHI indirections. 772 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 773 InsertValueInst &OrigIVI) { 774 Type *AggTy = OrigIVI.getType(); 775 unsigned NumAggElts; 776 switch (AggTy->getTypeID()) { 777 case Type::StructTyID: 778 NumAggElts = AggTy->getStructNumElements(); 779 break; 780 case Type::ArrayTyID: 781 NumAggElts = AggTy->getArrayNumElements(); 782 break; 783 default: 784 llvm_unreachable("Unhandled aggregate type?"); 785 } 786 787 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 788 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 789 // FIXME: any interesting patterns to be caught with larger limit? 790 assert(NumAggElts > 0 && "Aggregate should have elements."); 791 if (NumAggElts > 2) 792 return nullptr; 793 794 static constexpr auto NotFound = None; 795 static constexpr auto FoundMismatch = nullptr; 796 797 // Try to find a value of each element of an aggregate. 798 // FIXME: deal with more complex, not one-dimensional, aggregate types 799 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 800 801 // Do we know values for each element of the aggregate? 802 auto KnowAllElts = [&AggElts]() { 803 return all_of(AggElts, 804 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 805 }; 806 807 int Depth = 0; 808 809 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 810 // every element being overwritten twice, which should never happen. 811 static const int DepthLimit = 2 * NumAggElts; 812 813 // Recurse up the chain of `insertvalue` aggregate operands until either we've 814 // reconstructed full initializer or can't visit any more `insertvalue`'s. 815 for (InsertValueInst *CurrIVI = &OrigIVI; 816 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 817 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 818 ++Depth) { 819 auto *InsertedValue = 820 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 821 if (!InsertedValue) 822 return nullptr; // Inserted value must be produced by an instruction. 823 824 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 825 826 // Don't bother with more than single-level aggregates. 827 if (Indices.size() != 1) 828 return nullptr; // FIXME: deal with more complex aggregates? 829 830 // Now, we may have already previously recorded the value for this element 831 // of an aggregate. If we did, that means the CurrIVI will later be 832 // overwritten with the already-recorded value. But if not, let's record it! 833 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 834 Elt = Elt.getValueOr(InsertedValue); 835 836 // FIXME: should we handle chain-terminating undef base operand? 837 } 838 839 // Was that sufficient to deduce the full initializer for the aggregate? 840 if (!KnowAllElts()) 841 return nullptr; // Give up then. 842 843 // We now want to find the source[s] of the aggregate elements we've found. 844 // And with "source" we mean the original aggregate[s] from which 845 // the inserted elements were extracted. This may require PHI translation. 846 847 enum class AggregateDescription { 848 /// When analyzing the value that was inserted into an aggregate, we did 849 /// not manage to find defining `extractvalue` instruction to analyze. 850 NotFound, 851 /// When analyzing the value that was inserted into an aggregate, we did 852 /// manage to find defining `extractvalue` instruction[s], and everything 853 /// matched perfectly - aggregate type, element insertion/extraction index. 854 Found, 855 /// When analyzing the value that was inserted into an aggregate, we did 856 /// manage to find defining `extractvalue` instruction, but there was 857 /// a mismatch: either the source type from which the extraction was didn't 858 /// match the aggregate type into which the insertion was, 859 /// or the extraction/insertion channels mismatched, 860 /// or different elements had different source aggregates. 861 FoundMismatch 862 }; 863 auto Describe = [](Optional<Value *> SourceAggregate) { 864 if (SourceAggregate == NotFound) 865 return AggregateDescription::NotFound; 866 if (*SourceAggregate == FoundMismatch) 867 return AggregateDescription::FoundMismatch; 868 return AggregateDescription::Found; 869 }; 870 871 // Given the value \p Elt that was being inserted into element \p EltIdx of an 872 // aggregate AggTy, see if \p Elt was originally defined by an 873 // appropriate extractvalue (same element index, same aggregate type). 874 // If found, return the source aggregate from which the extraction was. 875 // If \p PredBB is provided, does PHI translation of an \p Elt first. 876 auto FindSourceAggregate = 877 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 878 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 879 // For now(?), only deal with, at most, a single level of PHI indirection. 880 if (UseBB && PredBB) 881 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 882 // FIXME: deal with multiple levels of PHI indirection? 883 884 // Did we find an extraction? 885 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 886 if (!EVI) 887 return NotFound; 888 889 Value *SourceAggregate = EVI->getAggregateOperand(); 890 891 // Is the extraction from the same type into which the insertion was? 892 if (SourceAggregate->getType() != AggTy) 893 return FoundMismatch; 894 // And the element index doesn't change between extraction and insertion? 895 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 896 return FoundMismatch; 897 898 return SourceAggregate; // AggregateDescription::Found 899 }; 900 901 // Given elements AggElts that were constructing an aggregate OrigIVI, 902 // see if we can find appropriate source aggregate for each of the elements, 903 // and see it's the same aggregate for each element. If so, return it. 904 auto FindCommonSourceAggregate = 905 [&](Optional<BasicBlock *> UseBB, 906 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 907 Optional<Value *> SourceAggregate; 908 909 for (auto I : enumerate(AggElts)) { 910 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 911 "We don't store nullptr in SourceAggregate!"); 912 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 913 (I.index() != 0) && 914 "SourceAggregate should be valid after the the first element,"); 915 916 // For this element, is there a plausible source aggregate? 917 // FIXME: we could special-case undef element, IFF we know that in the 918 // source aggregate said element isn't poison. 919 Optional<Value *> SourceAggregateForElement = 920 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 921 922 // Okay, what have we found? Does that correlate with previous findings? 923 924 // Regardless of whether or not we have previously found source 925 // aggregate for previous elements (if any), if we didn't find one for 926 // this element, passthrough whatever we have just found. 927 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 928 return SourceAggregateForElement; 929 930 // Okay, we have found source aggregate for this element. 931 // Let's see what we already know from previous elements, if any. 932 switch (Describe(SourceAggregate)) { 933 case AggregateDescription::NotFound: 934 // This is apparently the first element that we have examined. 935 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 936 continue; // Great, now look at next element. 937 case AggregateDescription::Found: 938 // We have previously already successfully examined other elements. 939 // Is this the same source aggregate we've found for other elements? 940 if (*SourceAggregateForElement != *SourceAggregate) 941 return FoundMismatch; 942 continue; // Still the same aggregate, look at next element. 943 case AggregateDescription::FoundMismatch: 944 llvm_unreachable("Can't happen. We would have early-exited then."); 945 }; 946 } 947 948 assert(Describe(SourceAggregate) == AggregateDescription::Found && 949 "Must be a valid Value"); 950 return *SourceAggregate; 951 }; 952 953 Optional<Value *> SourceAggregate; 954 955 // Can we find the source aggregate without looking at predecessors? 956 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 957 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 958 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 959 return nullptr; // Conflicting source aggregates! 960 ++NumAggregateReconstructionsSimplified; 961 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 962 } 963 964 // Okay, apparently we need to look at predecessors. 965 966 // We should be smart about picking the "use" basic block, which will be the 967 // merge point for aggregate, where we'll insert the final PHI that will be 968 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 969 // We should look in which blocks each of the AggElts is being defined, 970 // they all should be defined in the same basic block. 971 BasicBlock *UseBB = nullptr; 972 973 for (const Optional<Instruction *> &I : AggElts) { 974 BasicBlock *BB = (*I)->getParent(); 975 // If it's the first instruction we've encountered, record the basic block. 976 if (!UseBB) { 977 UseBB = BB; 978 continue; 979 } 980 // Otherwise, this must be the same basic block we've seen previously. 981 if (UseBB != BB) 982 return nullptr; 983 } 984 985 // If *all* of the elements are basic-block-independent, meaning they are 986 // either function arguments, or constant expressions, then if we didn't 987 // handle them without predecessor-aware handling, we won't handle them now. 988 if (!UseBB) 989 return nullptr; 990 991 // If we didn't manage to find source aggregate without looking at 992 // predecessors, and there are no predecessors to look at, then we're done. 993 if (pred_empty(UseBB)) 994 return nullptr; 995 996 // Arbitrary predecessor count limit. 997 static const int PredCountLimit = 64; 998 999 // Cache the (non-uniqified!) list of predecessors in a vector, 1000 // checking the limit at the same time for efficiency. 1001 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1002 for (BasicBlock *Pred : predecessors(UseBB)) { 1003 // Don't bother if there are too many predecessors. 1004 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1005 return nullptr; 1006 Preds.emplace_back(Pred); 1007 } 1008 1009 // For each predecessor, what is the source aggregate, 1010 // from which all the elements were originally extracted from? 1011 // Note that we want for the map to have stable iteration order! 1012 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1013 for (BasicBlock *Pred : Preds) { 1014 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1015 SourceAggregates.insert({Pred, nullptr}); 1016 // Did we already evaluate this predecessor? 1017 if (!IV.second) 1018 continue; 1019 1020 // Let's hope that when coming from predecessor Pred, all elements of the 1021 // aggregate produced by OrigIVI must have been originally extracted from 1022 // the same aggregate. Is that so? Can we find said original aggregate? 1023 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1024 if (Describe(SourceAggregate) != AggregateDescription::Found) 1025 return nullptr; // Give up. 1026 IV.first->second = *SourceAggregate; 1027 } 1028 1029 // All good! Now we just need to thread the source aggregates here. 1030 // Note that we have to insert the new PHI here, ourselves, because we can't 1031 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1032 // Note that the same block can be a predecessor more than once, 1033 // and we need to preserve that invariant for the PHI node. 1034 BuilderTy::InsertPointGuard Guard(Builder); 1035 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1036 auto *PHI = 1037 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1038 for (BasicBlock *Pred : Preds) 1039 PHI->addIncoming(SourceAggregates[Pred], Pred); 1040 1041 ++NumAggregateReconstructionsSimplified; 1042 return replaceInstUsesWith(OrigIVI, PHI); 1043 } 1044 1045 /// Try to find redundant insertvalue instructions, like the following ones: 1046 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1047 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1048 /// Here the second instruction inserts values at the same indices, as the 1049 /// first one, making the first one redundant. 1050 /// It should be transformed to: 1051 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1052 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1053 bool IsRedundant = false; 1054 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1055 1056 // If there is a chain of insertvalue instructions (each of them except the 1057 // last one has only one use and it's another insertvalue insn from this 1058 // chain), check if any of the 'children' uses the same indices as the first 1059 // instruction. In this case, the first one is redundant. 1060 Value *V = &I; 1061 unsigned Depth = 0; 1062 while (V->hasOneUse() && Depth < 10) { 1063 User *U = V->user_back(); 1064 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1065 if (!UserInsInst || U->getOperand(0) != V) 1066 break; 1067 if (UserInsInst->getIndices() == FirstIndices) { 1068 IsRedundant = true; 1069 break; 1070 } 1071 V = UserInsInst; 1072 Depth++; 1073 } 1074 1075 if (IsRedundant) 1076 return replaceInstUsesWith(I, I.getOperand(0)); 1077 1078 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1079 return NewI; 1080 1081 return nullptr; 1082 } 1083 1084 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1085 // Can not analyze scalable type, the number of elements is not a compile-time 1086 // constant. 1087 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1088 return false; 1089 1090 int MaskSize = Shuf.getShuffleMask().size(); 1091 int VecSize = 1092 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1093 1094 // A vector select does not change the size of the operands. 1095 if (MaskSize != VecSize) 1096 return false; 1097 1098 // Each mask element must be undefined or choose a vector element from one of 1099 // the source operands without crossing vector lanes. 1100 for (int i = 0; i != MaskSize; ++i) { 1101 int Elt = Shuf.getMaskValue(i); 1102 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1103 return false; 1104 } 1105 1106 return true; 1107 } 1108 1109 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1110 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1111 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1112 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1113 // We are interested in the last insert in a chain. So if this insert has a 1114 // single user and that user is an insert, bail. 1115 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1116 return nullptr; 1117 1118 VectorType *VecTy = InsElt.getType(); 1119 // Can not handle scalable type, the number of elements is not a compile-time 1120 // constant. 1121 if (isa<ScalableVectorType>(VecTy)) 1122 return nullptr; 1123 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1124 1125 // Do not try to do this for a one-element vector, since that's a nop, 1126 // and will cause an inf-loop. 1127 if (NumElements == 1) 1128 return nullptr; 1129 1130 Value *SplatVal = InsElt.getOperand(1); 1131 InsertElementInst *CurrIE = &InsElt; 1132 SmallBitVector ElementPresent(NumElements, false); 1133 InsertElementInst *FirstIE = nullptr; 1134 1135 // Walk the chain backwards, keeping track of which indices we inserted into, 1136 // until we hit something that isn't an insert of the splatted value. 1137 while (CurrIE) { 1138 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1139 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1140 return nullptr; 1141 1142 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1143 // Check none of the intermediate steps have any additional uses, except 1144 // for the root insertelement instruction, which can be re-used, if it 1145 // inserts at position 0. 1146 if (CurrIE != &InsElt && 1147 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1148 return nullptr; 1149 1150 ElementPresent[Idx->getZExtValue()] = true; 1151 FirstIE = CurrIE; 1152 CurrIE = NextIE; 1153 } 1154 1155 // If this is just a single insertelement (not a sequence), we are done. 1156 if (FirstIE == &InsElt) 1157 return nullptr; 1158 1159 // If we are not inserting into an undef vector, make sure we've seen an 1160 // insert into every element. 1161 // TODO: If the base vector is not undef, it might be better to create a splat 1162 // and then a select-shuffle (blend) with the base vector. 1163 if (!match(FirstIE->getOperand(0), m_Undef())) 1164 if (!ElementPresent.all()) 1165 return nullptr; 1166 1167 // Create the insert + shuffle. 1168 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1169 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1170 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1171 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1172 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1173 1174 // Splat from element 0, but replace absent elements with undef in the mask. 1175 SmallVector<int, 16> Mask(NumElements, 0); 1176 for (unsigned i = 0; i != NumElements; ++i) 1177 if (!ElementPresent[i]) 1178 Mask[i] = -1; 1179 1180 return new ShuffleVectorInst(FirstIE, PoisonVec, Mask); 1181 } 1182 1183 /// Try to fold an insert element into an existing splat shuffle by changing 1184 /// the shuffle's mask to include the index of this insert element. 1185 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1186 // Check if the vector operand of this insert is a canonical splat shuffle. 1187 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1188 if (!Shuf || !Shuf->isZeroEltSplat()) 1189 return nullptr; 1190 1191 // Bail out early if shuffle is scalable type. The number of elements in 1192 // shuffle mask is unknown at compile-time. 1193 if (isa<ScalableVectorType>(Shuf->getType())) 1194 return nullptr; 1195 1196 // Check for a constant insertion index. 1197 uint64_t IdxC; 1198 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1199 return nullptr; 1200 1201 // Check if the splat shuffle's input is the same as this insert's scalar op. 1202 Value *X = InsElt.getOperand(1); 1203 Value *Op0 = Shuf->getOperand(0); 1204 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1205 return nullptr; 1206 1207 // Replace the shuffle mask element at the index of this insert with a zero. 1208 // For example: 1209 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1210 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1211 unsigned NumMaskElts = 1212 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1213 SmallVector<int, 16> NewMask(NumMaskElts); 1214 for (unsigned i = 0; i != NumMaskElts; ++i) 1215 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1216 1217 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1218 } 1219 1220 /// Try to fold an extract+insert element into an existing identity shuffle by 1221 /// changing the shuffle's mask to include the index of this insert element. 1222 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1223 // Check if the vector operand of this insert is an identity shuffle. 1224 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1225 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1226 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1227 return nullptr; 1228 1229 // Bail out early if shuffle is scalable type. The number of elements in 1230 // shuffle mask is unknown at compile-time. 1231 if (isa<ScalableVectorType>(Shuf->getType())) 1232 return nullptr; 1233 1234 // Check for a constant insertion index. 1235 uint64_t IdxC; 1236 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1237 return nullptr; 1238 1239 // Check if this insert's scalar op is extracted from the identity shuffle's 1240 // input vector. 1241 Value *Scalar = InsElt.getOperand(1); 1242 Value *X = Shuf->getOperand(0); 1243 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1244 return nullptr; 1245 1246 // Replace the shuffle mask element at the index of this extract+insert with 1247 // that same index value. 1248 // For example: 1249 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1250 unsigned NumMaskElts = 1251 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1252 SmallVector<int, 16> NewMask(NumMaskElts); 1253 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1254 for (unsigned i = 0; i != NumMaskElts; ++i) { 1255 if (i != IdxC) { 1256 // All mask elements besides the inserted element remain the same. 1257 NewMask[i] = OldMask[i]; 1258 } else if (OldMask[i] == (int)IdxC) { 1259 // If the mask element was already set, there's nothing to do 1260 // (demanded elements analysis may unset it later). 1261 return nullptr; 1262 } else { 1263 assert(OldMask[i] == UndefMaskElem && 1264 "Unexpected shuffle mask element for identity shuffle"); 1265 NewMask[i] = IdxC; 1266 } 1267 } 1268 1269 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1270 } 1271 1272 /// If we have an insertelement instruction feeding into another insertelement 1273 /// and the 2nd is inserting a constant into the vector, canonicalize that 1274 /// constant insertion before the insertion of a variable: 1275 /// 1276 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1277 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1278 /// 1279 /// This has the potential of eliminating the 2nd insertelement instruction 1280 /// via constant folding of the scalar constant into a vector constant. 1281 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1282 InstCombiner::BuilderTy &Builder) { 1283 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1284 if (!InsElt1 || !InsElt1->hasOneUse()) 1285 return nullptr; 1286 1287 Value *X, *Y; 1288 Constant *ScalarC; 1289 ConstantInt *IdxC1, *IdxC2; 1290 if (match(InsElt1->getOperand(0), m_Value(X)) && 1291 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1292 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1293 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1294 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1295 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1296 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1297 } 1298 1299 return nullptr; 1300 } 1301 1302 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1303 /// --> shufflevector X, CVec', Mask' 1304 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1305 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1306 // Bail out if the parent has more than one use. In that case, we'd be 1307 // replacing the insertelt with a shuffle, and that's not a clear win. 1308 if (!Inst || !Inst->hasOneUse()) 1309 return nullptr; 1310 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1311 // The shuffle must have a constant vector operand. The insertelt must have 1312 // a constant scalar being inserted at a constant position in the vector. 1313 Constant *ShufConstVec, *InsEltScalar; 1314 uint64_t InsEltIndex; 1315 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1316 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1317 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1318 return nullptr; 1319 1320 // Adding an element to an arbitrary shuffle could be expensive, but a 1321 // shuffle that selects elements from vectors without crossing lanes is 1322 // assumed cheap. 1323 // If we're just adding a constant into that shuffle, it will still be 1324 // cheap. 1325 if (!isShuffleEquivalentToSelect(*Shuf)) 1326 return nullptr; 1327 1328 // From the above 'select' check, we know that the mask has the same number 1329 // of elements as the vector input operands. We also know that each constant 1330 // input element is used in its lane and can not be used more than once by 1331 // the shuffle. Therefore, replace the constant in the shuffle's constant 1332 // vector with the insertelt constant. Replace the constant in the shuffle's 1333 // mask vector with the insertelt index plus the length of the vector 1334 // (because the constant vector operand of a shuffle is always the 2nd 1335 // operand). 1336 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1337 unsigned NumElts = Mask.size(); 1338 SmallVector<Constant *, 16> NewShufElts(NumElts); 1339 SmallVector<int, 16> NewMaskElts(NumElts); 1340 for (unsigned I = 0; I != NumElts; ++I) { 1341 if (I == InsEltIndex) { 1342 NewShufElts[I] = InsEltScalar; 1343 NewMaskElts[I] = InsEltIndex + NumElts; 1344 } else { 1345 // Copy over the existing values. 1346 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1347 NewMaskElts[I] = Mask[I]; 1348 } 1349 } 1350 1351 // Create new operands for a shuffle that includes the constant of the 1352 // original insertelt. The old shuffle will be dead now. 1353 return new ShuffleVectorInst(Shuf->getOperand(0), 1354 ConstantVector::get(NewShufElts), NewMaskElts); 1355 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1356 // Transform sequences of insertelements ops with constant data/indexes into 1357 // a single shuffle op. 1358 // Can not handle scalable type, the number of elements needed to create 1359 // shuffle mask is not a compile-time constant. 1360 if (isa<ScalableVectorType>(InsElt.getType())) 1361 return nullptr; 1362 unsigned NumElts = 1363 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1364 1365 uint64_t InsertIdx[2]; 1366 Constant *Val[2]; 1367 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1368 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1369 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1370 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1371 return nullptr; 1372 SmallVector<Constant *, 16> Values(NumElts); 1373 SmallVector<int, 16> Mask(NumElts); 1374 auto ValI = std::begin(Val); 1375 // Generate new constant vector and mask. 1376 // We have 2 values/masks from the insertelements instructions. Insert them 1377 // into new value/mask vectors. 1378 for (uint64_t I : InsertIdx) { 1379 if (!Values[I]) { 1380 Values[I] = *ValI; 1381 Mask[I] = NumElts + I; 1382 } 1383 ++ValI; 1384 } 1385 // Remaining values are filled with 'undef' values. 1386 for (unsigned I = 0; I < NumElts; ++I) { 1387 if (!Values[I]) { 1388 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1389 Mask[I] = I; 1390 } 1391 } 1392 // Create new operands for a shuffle that includes the constant of the 1393 // original insertelt. 1394 return new ShuffleVectorInst(IEI->getOperand(0), 1395 ConstantVector::get(Values), Mask); 1396 } 1397 return nullptr; 1398 } 1399 1400 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1401 Value *VecOp = IE.getOperand(0); 1402 Value *ScalarOp = IE.getOperand(1); 1403 Value *IdxOp = IE.getOperand(2); 1404 1405 if (auto *V = SimplifyInsertElementInst( 1406 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1407 return replaceInstUsesWith(IE, V); 1408 1409 // If the scalar is bitcast and inserted into undef, do the insert in the 1410 // source type followed by bitcast. 1411 // TODO: Generalize for insert into any constant, not just undef? 1412 Value *ScalarSrc; 1413 if (match(VecOp, m_Undef()) && 1414 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1415 (ScalarSrc->getType()->isIntegerTy() || 1416 ScalarSrc->getType()->isFloatingPointTy())) { 1417 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1418 // bitcast (inselt undef, ScalarSrc, IdxOp) 1419 Type *ScalarTy = ScalarSrc->getType(); 1420 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1421 UndefValue *NewUndef = UndefValue::get(VecTy); 1422 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1423 return new BitCastInst(NewInsElt, IE.getType()); 1424 } 1425 1426 // If the vector and scalar are both bitcast from the same element type, do 1427 // the insert in that source type followed by bitcast. 1428 Value *VecSrc; 1429 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1430 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1431 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1432 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1433 cast<VectorType>(VecSrc->getType())->getElementType() == 1434 ScalarSrc->getType()) { 1435 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1436 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1437 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1438 return new BitCastInst(NewInsElt, IE.getType()); 1439 } 1440 1441 // If the inserted element was extracted from some other fixed-length vector 1442 // and both indexes are valid constants, try to turn this into a shuffle. 1443 // Can not handle scalable vector type, the number of elements needed to 1444 // create shuffle mask is not a compile-time constant. 1445 uint64_t InsertedIdx, ExtractedIdx; 1446 Value *ExtVecOp; 1447 if (isa<FixedVectorType>(IE.getType()) && 1448 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1449 match(ScalarOp, 1450 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1451 isa<FixedVectorType>(ExtVecOp->getType()) && 1452 ExtractedIdx < 1453 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1454 // TODO: Looking at the user(s) to determine if this insert is a 1455 // fold-to-shuffle opportunity does not match the usual instcombine 1456 // constraints. We should decide if the transform is worthy based only 1457 // on this instruction and its operands, but that may not work currently. 1458 // 1459 // Here, we are trying to avoid creating shuffles before reaching 1460 // the end of a chain of extract-insert pairs. This is complicated because 1461 // we do not generally form arbitrary shuffle masks in instcombine 1462 // (because those may codegen poorly), but collectShuffleElements() does 1463 // exactly that. 1464 // 1465 // The rules for determining what is an acceptable target-independent 1466 // shuffle mask are fuzzy because they evolve based on the backend's 1467 // capabilities and real-world impact. 1468 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1469 if (!Insert.hasOneUse()) 1470 return true; 1471 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1472 if (!InsertUser) 1473 return true; 1474 return false; 1475 }; 1476 1477 // Try to form a shuffle from a chain of extract-insert ops. 1478 if (isShuffleRootCandidate(IE)) { 1479 SmallVector<int, 16> Mask; 1480 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1481 1482 // The proposed shuffle may be trivial, in which case we shouldn't 1483 // perform the combine. 1484 if (LR.first != &IE && LR.second != &IE) { 1485 // We now have a shuffle of LHS, RHS, Mask. 1486 if (LR.second == nullptr) 1487 LR.second = UndefValue::get(LR.first->getType()); 1488 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1489 } 1490 } 1491 } 1492 1493 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1494 unsigned VWidth = VecTy->getNumElements(); 1495 APInt UndefElts(VWidth, 0); 1496 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1497 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1498 if (V != &IE) 1499 return replaceInstUsesWith(IE, V); 1500 return &IE; 1501 } 1502 } 1503 1504 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1505 return Shuf; 1506 1507 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1508 return NewInsElt; 1509 1510 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1511 return Broadcast; 1512 1513 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1514 return Splat; 1515 1516 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1517 return IdentityShuf; 1518 1519 return nullptr; 1520 } 1521 1522 /// Return true if we can evaluate the specified expression tree if the vector 1523 /// elements were shuffled in a different order. 1524 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1525 unsigned Depth = 5) { 1526 // We can always reorder the elements of a constant. 1527 if (isa<Constant>(V)) 1528 return true; 1529 1530 // We won't reorder vector arguments. No IPO here. 1531 Instruction *I = dyn_cast<Instruction>(V); 1532 if (!I) return false; 1533 1534 // Two users may expect different orders of the elements. Don't try it. 1535 if (!I->hasOneUse()) 1536 return false; 1537 1538 if (Depth == 0) return false; 1539 1540 switch (I->getOpcode()) { 1541 case Instruction::UDiv: 1542 case Instruction::SDiv: 1543 case Instruction::URem: 1544 case Instruction::SRem: 1545 // Propagating an undefined shuffle mask element to integer div/rem is not 1546 // allowed because those opcodes can create immediate undefined behavior 1547 // from an undefined element in an operand. 1548 if (llvm::is_contained(Mask, -1)) 1549 return false; 1550 LLVM_FALLTHROUGH; 1551 case Instruction::Add: 1552 case Instruction::FAdd: 1553 case Instruction::Sub: 1554 case Instruction::FSub: 1555 case Instruction::Mul: 1556 case Instruction::FMul: 1557 case Instruction::FDiv: 1558 case Instruction::FRem: 1559 case Instruction::Shl: 1560 case Instruction::LShr: 1561 case Instruction::AShr: 1562 case Instruction::And: 1563 case Instruction::Or: 1564 case Instruction::Xor: 1565 case Instruction::ICmp: 1566 case Instruction::FCmp: 1567 case Instruction::Trunc: 1568 case Instruction::ZExt: 1569 case Instruction::SExt: 1570 case Instruction::FPToUI: 1571 case Instruction::FPToSI: 1572 case Instruction::UIToFP: 1573 case Instruction::SIToFP: 1574 case Instruction::FPTrunc: 1575 case Instruction::FPExt: 1576 case Instruction::GetElementPtr: { 1577 // Bail out if we would create longer vector ops. We could allow creating 1578 // longer vector ops, but that may result in more expensive codegen. 1579 Type *ITy = I->getType(); 1580 if (ITy->isVectorTy() && 1581 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1582 return false; 1583 for (Value *Operand : I->operands()) { 1584 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1585 return false; 1586 } 1587 return true; 1588 } 1589 case Instruction::InsertElement: { 1590 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1591 if (!CI) return false; 1592 int ElementNumber = CI->getLimitedValue(); 1593 1594 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1595 // can't put an element into multiple indices. 1596 bool SeenOnce = false; 1597 for (int i = 0, e = Mask.size(); i != e; ++i) { 1598 if (Mask[i] == ElementNumber) { 1599 if (SeenOnce) 1600 return false; 1601 SeenOnce = true; 1602 } 1603 } 1604 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1605 } 1606 } 1607 return false; 1608 } 1609 1610 /// Rebuild a new instruction just like 'I' but with the new operands given. 1611 /// In the event of type mismatch, the type of the operands is correct. 1612 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1613 // We don't want to use the IRBuilder here because we want the replacement 1614 // instructions to appear next to 'I', not the builder's insertion point. 1615 switch (I->getOpcode()) { 1616 case Instruction::Add: 1617 case Instruction::FAdd: 1618 case Instruction::Sub: 1619 case Instruction::FSub: 1620 case Instruction::Mul: 1621 case Instruction::FMul: 1622 case Instruction::UDiv: 1623 case Instruction::SDiv: 1624 case Instruction::FDiv: 1625 case Instruction::URem: 1626 case Instruction::SRem: 1627 case Instruction::FRem: 1628 case Instruction::Shl: 1629 case Instruction::LShr: 1630 case Instruction::AShr: 1631 case Instruction::And: 1632 case Instruction::Or: 1633 case Instruction::Xor: { 1634 BinaryOperator *BO = cast<BinaryOperator>(I); 1635 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1636 BinaryOperator *New = 1637 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1638 NewOps[0], NewOps[1], "", BO); 1639 if (isa<OverflowingBinaryOperator>(BO)) { 1640 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1641 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1642 } 1643 if (isa<PossiblyExactOperator>(BO)) { 1644 New->setIsExact(BO->isExact()); 1645 } 1646 if (isa<FPMathOperator>(BO)) 1647 New->copyFastMathFlags(I); 1648 return New; 1649 } 1650 case Instruction::ICmp: 1651 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1652 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1653 NewOps[0], NewOps[1]); 1654 case Instruction::FCmp: 1655 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1656 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1657 NewOps[0], NewOps[1]); 1658 case Instruction::Trunc: 1659 case Instruction::ZExt: 1660 case Instruction::SExt: 1661 case Instruction::FPToUI: 1662 case Instruction::FPToSI: 1663 case Instruction::UIToFP: 1664 case Instruction::SIToFP: 1665 case Instruction::FPTrunc: 1666 case Instruction::FPExt: { 1667 // It's possible that the mask has a different number of elements from 1668 // the original cast. We recompute the destination type to match the mask. 1669 Type *DestTy = VectorType::get( 1670 I->getType()->getScalarType(), 1671 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1672 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1673 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1674 "", I); 1675 } 1676 case Instruction::GetElementPtr: { 1677 Value *Ptr = NewOps[0]; 1678 ArrayRef<Value*> Idx = NewOps.slice(1); 1679 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1680 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1681 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1682 return GEP; 1683 } 1684 } 1685 llvm_unreachable("failed to rebuild vector instructions"); 1686 } 1687 1688 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1689 // Mask.size() does not need to be equal to the number of vector elements. 1690 1691 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1692 Type *EltTy = V->getType()->getScalarType(); 1693 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1694 if (match(V, m_Undef())) 1695 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1696 1697 if (isa<ConstantAggregateZero>(V)) 1698 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1699 1700 if (Constant *C = dyn_cast<Constant>(V)) 1701 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1702 Mask); 1703 1704 Instruction *I = cast<Instruction>(V); 1705 switch (I->getOpcode()) { 1706 case Instruction::Add: 1707 case Instruction::FAdd: 1708 case Instruction::Sub: 1709 case Instruction::FSub: 1710 case Instruction::Mul: 1711 case Instruction::FMul: 1712 case Instruction::UDiv: 1713 case Instruction::SDiv: 1714 case Instruction::FDiv: 1715 case Instruction::URem: 1716 case Instruction::SRem: 1717 case Instruction::FRem: 1718 case Instruction::Shl: 1719 case Instruction::LShr: 1720 case Instruction::AShr: 1721 case Instruction::And: 1722 case Instruction::Or: 1723 case Instruction::Xor: 1724 case Instruction::ICmp: 1725 case Instruction::FCmp: 1726 case Instruction::Trunc: 1727 case Instruction::ZExt: 1728 case Instruction::SExt: 1729 case Instruction::FPToUI: 1730 case Instruction::FPToSI: 1731 case Instruction::UIToFP: 1732 case Instruction::SIToFP: 1733 case Instruction::FPTrunc: 1734 case Instruction::FPExt: 1735 case Instruction::Select: 1736 case Instruction::GetElementPtr: { 1737 SmallVector<Value*, 8> NewOps; 1738 bool NeedsRebuild = 1739 (Mask.size() != 1740 cast<FixedVectorType>(I->getType())->getNumElements()); 1741 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1742 Value *V; 1743 // Recursively call evaluateInDifferentElementOrder on vector arguments 1744 // as well. E.g. GetElementPtr may have scalar operands even if the 1745 // return value is a vector, so we need to examine the operand type. 1746 if (I->getOperand(i)->getType()->isVectorTy()) 1747 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1748 else 1749 V = I->getOperand(i); 1750 NewOps.push_back(V); 1751 NeedsRebuild |= (V != I->getOperand(i)); 1752 } 1753 if (NeedsRebuild) { 1754 return buildNew(I, NewOps); 1755 } 1756 return I; 1757 } 1758 case Instruction::InsertElement: { 1759 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1760 1761 // The insertelement was inserting at Element. Figure out which element 1762 // that becomes after shuffling. The answer is guaranteed to be unique 1763 // by CanEvaluateShuffled. 1764 bool Found = false; 1765 int Index = 0; 1766 for (int e = Mask.size(); Index != e; ++Index) { 1767 if (Mask[Index] == Element) { 1768 Found = true; 1769 break; 1770 } 1771 } 1772 1773 // If element is not in Mask, no need to handle the operand 1 (element to 1774 // be inserted). Just evaluate values in operand 0 according to Mask. 1775 if (!Found) 1776 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1777 1778 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1779 return InsertElementInst::Create(V, I->getOperand(1), 1780 ConstantInt::get(I32Ty, Index), "", I); 1781 } 1782 } 1783 llvm_unreachable("failed to reorder elements of vector instruction!"); 1784 } 1785 1786 // Returns true if the shuffle is extracting a contiguous range of values from 1787 // LHS, for example: 1788 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1789 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1790 // Shuffles to: |EE|FF|GG|HH| 1791 // +--+--+--+--+ 1792 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1793 ArrayRef<int> Mask) { 1794 unsigned LHSElems = 1795 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1796 unsigned MaskElems = Mask.size(); 1797 unsigned BegIdx = Mask.front(); 1798 unsigned EndIdx = Mask.back(); 1799 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1800 return false; 1801 for (unsigned I = 0; I != MaskElems; ++I) 1802 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1803 return false; 1804 return true; 1805 } 1806 1807 /// These are the ingredients in an alternate form binary operator as described 1808 /// below. 1809 struct BinopElts { 1810 BinaryOperator::BinaryOps Opcode; 1811 Value *Op0; 1812 Value *Op1; 1813 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1814 Value *V0 = nullptr, Value *V1 = nullptr) : 1815 Opcode(Opc), Op0(V0), Op1(V1) {} 1816 operator bool() const { return Opcode != 0; } 1817 }; 1818 1819 /// Binops may be transformed into binops with different opcodes and operands. 1820 /// Reverse the usual canonicalization to enable folds with the non-canonical 1821 /// form of the binop. If a transform is possible, return the elements of the 1822 /// new binop. If not, return invalid elements. 1823 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1824 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1825 Type *Ty = BO->getType(); 1826 switch (BO->getOpcode()) { 1827 case Instruction::Shl: { 1828 // shl X, C --> mul X, (1 << C) 1829 Constant *C; 1830 if (match(BO1, m_Constant(C))) { 1831 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1832 return { Instruction::Mul, BO0, ShlOne }; 1833 } 1834 break; 1835 } 1836 case Instruction::Or: { 1837 // or X, C --> add X, C (when X and C have no common bits set) 1838 const APInt *C; 1839 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1840 return { Instruction::Add, BO0, BO1 }; 1841 break; 1842 } 1843 default: 1844 break; 1845 } 1846 return {}; 1847 } 1848 1849 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1850 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1851 1852 // Are we shuffling together some value and that same value after it has been 1853 // modified by a binop with a constant? 1854 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1855 Constant *C; 1856 bool Op0IsBinop; 1857 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1858 Op0IsBinop = true; 1859 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1860 Op0IsBinop = false; 1861 else 1862 return nullptr; 1863 1864 // The identity constant for a binop leaves a variable operand unchanged. For 1865 // a vector, this is a splat of something like 0, -1, or 1. 1866 // If there's no identity constant for this binop, we're done. 1867 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1868 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1869 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1870 if (!IdC) 1871 return nullptr; 1872 1873 // Shuffle identity constants into the lanes that return the original value. 1874 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1875 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1876 // The existing binop constant vector remains in the same operand position. 1877 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1878 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1879 ConstantExpr::getShuffleVector(IdC, C, Mask); 1880 1881 bool MightCreatePoisonOrUB = 1882 is_contained(Mask, UndefMaskElem) && 1883 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1884 if (MightCreatePoisonOrUB) 1885 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1886 1887 // shuf (bop X, C), X, M --> bop X, C' 1888 // shuf X, (bop X, C), M --> bop X, C' 1889 Value *X = Op0IsBinop ? Op1 : Op0; 1890 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1891 NewBO->copyIRFlags(BO); 1892 1893 // An undef shuffle mask element may propagate as an undef constant element in 1894 // the new binop. That would produce poison where the original code might not. 1895 // If we already made a safe constant, then there's no danger. 1896 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1897 NewBO->dropPoisonGeneratingFlags(); 1898 return NewBO; 1899 } 1900 1901 /// If we have an insert of a scalar to a non-zero element of an undefined 1902 /// vector and then shuffle that value, that's the same as inserting to the zero 1903 /// element and shuffling. Splatting from the zero element is recognized as the 1904 /// canonical form of splat. 1905 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1906 InstCombiner::BuilderTy &Builder) { 1907 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1908 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1909 Value *X; 1910 uint64_t IndexC; 1911 1912 // Match a shuffle that is a splat to a non-zero element. 1913 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1914 m_ConstantInt(IndexC)))) || 1915 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1916 return nullptr; 1917 1918 // Insert into element 0 of an undef vector. 1919 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1920 Constant *Zero = Builder.getInt32(0); 1921 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1922 1923 // Splat from element 0. Any mask element that is undefined remains undefined. 1924 // For example: 1925 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1926 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1927 unsigned NumMaskElts = 1928 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1929 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1930 for (unsigned i = 0; i != NumMaskElts; ++i) 1931 if (Mask[i] == UndefMaskElem) 1932 NewMask[i] = Mask[i]; 1933 1934 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1935 } 1936 1937 /// Try to fold shuffles that are the equivalent of a vector select. 1938 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1939 InstCombiner::BuilderTy &Builder, 1940 const DataLayout &DL) { 1941 if (!Shuf.isSelect()) 1942 return nullptr; 1943 1944 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1945 // Commuting undef to operand 0 conflicts with another canonicalization. 1946 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1947 if (!match(Shuf.getOperand(1), m_Undef()) && 1948 Shuf.getMaskValue(0) >= (int)NumElts) { 1949 // TODO: Can we assert that both operands of a shuffle-select are not undef 1950 // (otherwise, it would have been folded by instsimplify? 1951 Shuf.commute(); 1952 return &Shuf; 1953 } 1954 1955 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1956 return I; 1957 1958 BinaryOperator *B0, *B1; 1959 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1960 !match(Shuf.getOperand(1), m_BinOp(B1))) 1961 return nullptr; 1962 1963 Value *X, *Y; 1964 Constant *C0, *C1; 1965 bool ConstantsAreOp1; 1966 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1967 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1968 ConstantsAreOp1 = true; 1969 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1970 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1971 ConstantsAreOp1 = false; 1972 else 1973 return nullptr; 1974 1975 // We need matching binops to fold the lanes together. 1976 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1977 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1978 bool DropNSW = false; 1979 if (ConstantsAreOp1 && Opc0 != Opc1) { 1980 // TODO: We drop "nsw" if shift is converted into multiply because it may 1981 // not be correct when the shift amount is BitWidth - 1. We could examine 1982 // each vector element to determine if it is safe to keep that flag. 1983 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1984 DropNSW = true; 1985 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1986 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1987 Opc0 = AltB0.Opcode; 1988 C0 = cast<Constant>(AltB0.Op1); 1989 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1990 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1991 Opc1 = AltB1.Opcode; 1992 C1 = cast<Constant>(AltB1.Op1); 1993 } 1994 } 1995 1996 if (Opc0 != Opc1) 1997 return nullptr; 1998 1999 // The opcodes must be the same. Use a new name to make that clear. 2000 BinaryOperator::BinaryOps BOpc = Opc0; 2001 2002 // Select the constant elements needed for the single binop. 2003 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2004 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2005 2006 // We are moving a binop after a shuffle. When a shuffle has an undefined 2007 // mask element, the result is undefined, but it is not poison or undefined 2008 // behavior. That is not necessarily true for div/rem/shift. 2009 bool MightCreatePoisonOrUB = 2010 is_contained(Mask, UndefMaskElem) && 2011 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2012 if (MightCreatePoisonOrUB) 2013 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2014 ConstantsAreOp1); 2015 2016 Value *V; 2017 if (X == Y) { 2018 // Remove a binop and the shuffle by rearranging the constant: 2019 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2020 // shuffle (op C0, V), (op C1, V), M --> op C', V 2021 V = X; 2022 } else { 2023 // If there are 2 different variable operands, we must create a new shuffle 2024 // (select) first, so check uses to ensure that we don't end up with more 2025 // instructions than we started with. 2026 if (!B0->hasOneUse() && !B1->hasOneUse()) 2027 return nullptr; 2028 2029 // If we use the original shuffle mask and op1 is *variable*, we would be 2030 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2031 // poison. We do not have to guard against UB when *constants* are op1 2032 // because safe constants guarantee that we do not overflow sdiv/srem (and 2033 // there's no danger for other opcodes). 2034 // TODO: To allow this case, create a new shuffle mask with no undefs. 2035 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2036 return nullptr; 2037 2038 // Note: In general, we do not create new shuffles in InstCombine because we 2039 // do not know if a target can lower an arbitrary shuffle optimally. In this 2040 // case, the shuffle uses the existing mask, so there is no additional risk. 2041 2042 // Select the variable vectors first, then perform the binop: 2043 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2044 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2045 V = Builder.CreateShuffleVector(X, Y, Mask); 2046 } 2047 2048 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 2049 BinaryOperator::Create(BOpc, NewC, V); 2050 2051 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2052 // 1. If we changed an opcode, poison conditions might have changed. 2053 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2054 // where the original code did not. But if we already made a safe constant, 2055 // then there's no danger. 2056 NewBO->copyIRFlags(B0); 2057 NewBO->andIRFlags(B1); 2058 if (DropNSW) 2059 NewBO->setHasNoSignedWrap(false); 2060 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2061 NewBO->dropPoisonGeneratingFlags(); 2062 return NewBO; 2063 } 2064 2065 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2066 /// Example (little endian): 2067 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2068 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2069 bool IsBigEndian) { 2070 // This must be a bitcasted shuffle of 1 vector integer operand. 2071 Type *DestType = Shuf.getType(); 2072 Value *X; 2073 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2074 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2075 return nullptr; 2076 2077 // The source type must have the same number of elements as the shuffle, 2078 // and the source element type must be larger than the shuffle element type. 2079 Type *SrcType = X->getType(); 2080 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2081 cast<FixedVectorType>(SrcType)->getNumElements() != 2082 cast<FixedVectorType>(DestType)->getNumElements() || 2083 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2084 return nullptr; 2085 2086 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2087 "Expected a shuffle that decreases length"); 2088 2089 // Last, check that the mask chooses the correct low bits for each narrow 2090 // element in the result. 2091 uint64_t TruncRatio = 2092 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2093 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2094 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2095 if (Mask[i] == UndefMaskElem) 2096 continue; 2097 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2098 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2099 if (Mask[i] != (int)LSBIndex) 2100 return nullptr; 2101 } 2102 2103 return new TruncInst(X, DestType); 2104 } 2105 2106 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2107 /// narrowing (concatenating with undef and extracting back to the original 2108 /// length). This allows replacing the wide select with a narrow select. 2109 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2110 InstCombiner::BuilderTy &Builder) { 2111 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2112 // of the 1st vector operand of a shuffle. 2113 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2114 return nullptr; 2115 2116 // The vector being shuffled must be a vector select that we can eliminate. 2117 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2118 Value *Cond, *X, *Y; 2119 if (!match(Shuf.getOperand(0), 2120 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2121 return nullptr; 2122 2123 // We need a narrow condition value. It must be extended with undef elements 2124 // and have the same number of elements as this shuffle. 2125 unsigned NarrowNumElts = 2126 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2127 Value *NarrowCond; 2128 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2129 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2130 NarrowNumElts || 2131 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2132 return nullptr; 2133 2134 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2135 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2136 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2137 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2138 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2139 } 2140 2141 /// Try to fold an extract subvector operation. 2142 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2143 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2144 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2145 return nullptr; 2146 2147 // Check if we are extracting all bits of an inserted scalar: 2148 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2149 Value *X; 2150 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2151 X->getType()->getPrimitiveSizeInBits() == 2152 Shuf.getType()->getPrimitiveSizeInBits()) 2153 return new BitCastInst(X, Shuf.getType()); 2154 2155 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2156 Value *Y; 2157 ArrayRef<int> Mask; 2158 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2159 return nullptr; 2160 2161 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2162 // then combining may result in worse codegen. 2163 if (!Op0->hasOneUse()) 2164 return nullptr; 2165 2166 // We are extracting a subvector from a shuffle. Remove excess elements from 2167 // the 1st shuffle mask to eliminate the extract. 2168 // 2169 // This transform is conservatively limited to identity extracts because we do 2170 // not allow arbitrary shuffle mask creation as a target-independent transform 2171 // (because we can't guarantee that will lower efficiently). 2172 // 2173 // If the extracting shuffle has an undef mask element, it transfers to the 2174 // new shuffle mask. Otherwise, copy the original mask element. Example: 2175 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2176 // shuf X, Y, <C0, undef, C2, undef> 2177 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2178 SmallVector<int, 16> NewMask(NumElts); 2179 assert(NumElts < Mask.size() && 2180 "Identity with extract must have less elements than its inputs"); 2181 2182 for (unsigned i = 0; i != NumElts; ++i) { 2183 int ExtractMaskElt = Shuf.getMaskValue(i); 2184 int MaskElt = Mask[i]; 2185 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2186 } 2187 return new ShuffleVectorInst(X, Y, NewMask); 2188 } 2189 2190 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2191 /// operand with the operand of an insertelement. 2192 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2193 InstCombinerImpl &IC) { 2194 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2195 SmallVector<int, 16> Mask; 2196 Shuf.getShuffleMask(Mask); 2197 2198 // The shuffle must not change vector sizes. 2199 // TODO: This restriction could be removed if the insert has only one use 2200 // (because the transform would require a new length-changing shuffle). 2201 int NumElts = Mask.size(); 2202 if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements())) 2203 return nullptr; 2204 2205 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2206 // not be able to handle it there if the insertelement has >1 use. 2207 // If the shuffle has an insertelement operand but does not choose the 2208 // inserted scalar element from that value, then we can replace that shuffle 2209 // operand with the source vector of the insertelement. 2210 Value *X; 2211 uint64_t IdxC; 2212 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2213 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2214 if (!is_contained(Mask, (int)IdxC)) 2215 return IC.replaceOperand(Shuf, 0, X); 2216 } 2217 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2218 // Offset the index constant by the vector width because we are checking for 2219 // accesses to the 2nd vector input of the shuffle. 2220 IdxC += NumElts; 2221 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2222 if (!is_contained(Mask, (int)IdxC)) 2223 return IC.replaceOperand(Shuf, 1, X); 2224 } 2225 2226 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2227 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2228 // We need an insertelement with a constant index. 2229 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2230 m_ConstantInt(IndexC)))) 2231 return false; 2232 2233 // Test the shuffle mask to see if it splices the inserted scalar into the 2234 // operand 1 vector of the shuffle. 2235 int NewInsIndex = -1; 2236 for (int i = 0; i != NumElts; ++i) { 2237 // Ignore undef mask elements. 2238 if (Mask[i] == -1) 2239 continue; 2240 2241 // The shuffle takes elements of operand 1 without lane changes. 2242 if (Mask[i] == NumElts + i) 2243 continue; 2244 2245 // The shuffle must choose the inserted scalar exactly once. 2246 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2247 return false; 2248 2249 // The shuffle is placing the inserted scalar into element i. 2250 NewInsIndex = i; 2251 } 2252 2253 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2254 2255 // Index is updated to the potentially translated insertion lane. 2256 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2257 return true; 2258 }; 2259 2260 // If the shuffle is unnecessary, insert the scalar operand directly into 2261 // operand 1 of the shuffle. Example: 2262 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2263 Value *Scalar; 2264 ConstantInt *IndexC; 2265 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2266 return InsertElementInst::Create(V1, Scalar, IndexC); 2267 2268 // Try again after commuting shuffle. Example: 2269 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2270 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2271 std::swap(V0, V1); 2272 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2273 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2274 return InsertElementInst::Create(V1, Scalar, IndexC); 2275 2276 return nullptr; 2277 } 2278 2279 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2280 // Match the operands as identity with padding (also known as concatenation 2281 // with undef) shuffles of the same source type. The backend is expected to 2282 // recreate these concatenations from a shuffle of narrow operands. 2283 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2284 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2285 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2286 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2287 return nullptr; 2288 2289 // We limit this transform to power-of-2 types because we expect that the 2290 // backend can convert the simplified IR patterns to identical nodes as the 2291 // original IR. 2292 // TODO: If we can verify the same behavior for arbitrary types, the 2293 // power-of-2 checks can be removed. 2294 Value *X = Shuffle0->getOperand(0); 2295 Value *Y = Shuffle1->getOperand(0); 2296 if (X->getType() != Y->getType() || 2297 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2298 !isPowerOf2_32( 2299 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2300 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2301 match(X, m_Undef()) || match(Y, m_Undef())) 2302 return nullptr; 2303 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2304 match(Shuffle1->getOperand(1), m_Undef()) && 2305 "Unexpected operand for identity shuffle"); 2306 2307 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2308 // operands directly by adjusting the shuffle mask to account for the narrower 2309 // types: 2310 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2311 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2312 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2313 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2314 2315 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2316 SmallVector<int, 16> NewMask(Mask.size(), -1); 2317 for (int i = 0, e = Mask.size(); i != e; ++i) { 2318 if (Mask[i] == -1) 2319 continue; 2320 2321 // If this shuffle is choosing an undef element from 1 of the sources, that 2322 // element is undef. 2323 if (Mask[i] < WideElts) { 2324 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2325 continue; 2326 } else { 2327 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2328 continue; 2329 } 2330 2331 // If this shuffle is choosing from the 1st narrow op, the mask element is 2332 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2333 // element is offset down to adjust for the narrow vector widths. 2334 if (Mask[i] < WideElts) { 2335 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2336 NewMask[i] = Mask[i]; 2337 } else { 2338 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2339 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2340 } 2341 } 2342 return new ShuffleVectorInst(X, Y, NewMask); 2343 } 2344 2345 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2346 Value *LHS = SVI.getOperand(0); 2347 Value *RHS = SVI.getOperand(1); 2348 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2349 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2350 SVI.getType(), ShufQuery)) 2351 return replaceInstUsesWith(SVI, V); 2352 2353 // Bail out for scalable vectors 2354 if (isa<ScalableVectorType>(LHS->getType())) 2355 return nullptr; 2356 2357 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2358 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2359 2360 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2361 // 2362 // if X and Y are of the same (vector) type, and the element size is not 2363 // changed by the bitcasts, we can distribute the bitcasts through the 2364 // shuffle, hopefully reducing the number of instructions. We make sure that 2365 // at least one bitcast only has one use, so we don't *increase* the number of 2366 // instructions here. 2367 Value *X, *Y; 2368 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2369 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2370 X->getType()->getScalarSizeInBits() == 2371 SVI.getType()->getScalarSizeInBits() && 2372 (LHS->hasOneUse() || RHS->hasOneUse())) { 2373 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2374 SVI.getName() + ".uncasted"); 2375 return new BitCastInst(V, SVI.getType()); 2376 } 2377 2378 ArrayRef<int> Mask = SVI.getShuffleMask(); 2379 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2380 2381 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2382 // simulated shuffle can simplify, then this shuffle is unnecessary: 2383 // shuf (bitcast X), undef, Mask --> bitcast X' 2384 // TODO: This could be extended to allow length-changing shuffles. 2385 // The transform might also be obsoleted if we allowed canonicalization 2386 // of bitcasted shuffles. 2387 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2388 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2389 // Try to create a scaled mask constant. 2390 auto *XType = cast<FixedVectorType>(X->getType()); 2391 unsigned XNumElts = XType->getNumElements(); 2392 SmallVector<int, 16> ScaledMask; 2393 if (XNumElts >= VWidth) { 2394 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2395 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2396 } else { 2397 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2398 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2399 ScaledMask.clear(); 2400 } 2401 if (!ScaledMask.empty()) { 2402 // If the shuffled source vector simplifies, cast that value to this 2403 // shuffle's type. 2404 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2405 ScaledMask, XType, ShufQuery)) 2406 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2407 } 2408 } 2409 2410 // shuffle x, x, mask --> shuffle x, undef, mask' 2411 if (LHS == RHS) { 2412 assert(!match(RHS, m_Undef()) && 2413 "Shuffle with 2 undef ops not simplified?"); 2414 // Remap any references to RHS to use LHS. 2415 SmallVector<int, 16> Elts; 2416 for (unsigned i = 0; i != VWidth; ++i) { 2417 // Propagate undef elements or force mask to LHS. 2418 if (Mask[i] < 0) 2419 Elts.push_back(UndefMaskElem); 2420 else 2421 Elts.push_back(Mask[i] % LHSWidth); 2422 } 2423 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2424 } 2425 2426 // shuffle undef, x, mask --> shuffle x, undef, mask' 2427 if (match(LHS, m_Undef())) { 2428 SVI.commute(); 2429 return &SVI; 2430 } 2431 2432 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2433 return I; 2434 2435 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2436 return I; 2437 2438 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2439 return I; 2440 2441 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2442 return I; 2443 2444 APInt UndefElts(VWidth, 0); 2445 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2446 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2447 if (V != &SVI) 2448 return replaceInstUsesWith(SVI, V); 2449 return &SVI; 2450 } 2451 2452 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2453 return I; 2454 2455 // These transforms have the potential to lose undef knowledge, so they are 2456 // intentionally placed after SimplifyDemandedVectorElts(). 2457 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2458 return I; 2459 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2460 return I; 2461 2462 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2463 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2464 return replaceInstUsesWith(SVI, V); 2465 } 2466 2467 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2468 // a non-vector type. We can instead bitcast the original vector followed by 2469 // an extract of the desired element: 2470 // 2471 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2472 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2473 // %1 = bitcast <4 x i8> %sroa to i32 2474 // Becomes: 2475 // %bc = bitcast <16 x i8> %in to <4 x i32> 2476 // %ext = extractelement <4 x i32> %bc, i32 0 2477 // 2478 // If the shuffle is extracting a contiguous range of values from the input 2479 // vector then each use which is a bitcast of the extracted size can be 2480 // replaced. This will work if the vector types are compatible, and the begin 2481 // index is aligned to a value in the casted vector type. If the begin index 2482 // isn't aligned then we can shuffle the original vector (keeping the same 2483 // vector type) before extracting. 2484 // 2485 // This code will bail out if the target type is fundamentally incompatible 2486 // with vectors of the source type. 2487 // 2488 // Example of <16 x i8>, target type i32: 2489 // Index range [4,8): v-----------v Will work. 2490 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2491 // <16 x i8>: | | | | | | | | | | | | | | | | | 2492 // <4 x i32>: | | | | | 2493 // +-----------+-----------+-----------+-----------+ 2494 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2495 // Target type i40: ^--------------^ Won't work, bail. 2496 bool MadeChange = false; 2497 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2498 Value *V = LHS; 2499 unsigned MaskElems = Mask.size(); 2500 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2501 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2502 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2503 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2504 unsigned SrcNumElems = SrcTy->getNumElements(); 2505 SmallVector<BitCastInst *, 8> BCs; 2506 DenseMap<Type *, Value *> NewBCs; 2507 for (User *U : SVI.users()) 2508 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2509 if (!BC->use_empty()) 2510 // Only visit bitcasts that weren't previously handled. 2511 BCs.push_back(BC); 2512 for (BitCastInst *BC : BCs) { 2513 unsigned BegIdx = Mask.front(); 2514 Type *TgtTy = BC->getDestTy(); 2515 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2516 if (!TgtElemBitWidth) 2517 continue; 2518 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2519 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2520 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2521 if (!VecBitWidthsEqual) 2522 continue; 2523 if (!VectorType::isValidElementType(TgtTy)) 2524 continue; 2525 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2526 if (!BegIsAligned) { 2527 // Shuffle the input so [0,NumElements) contains the output, and 2528 // [NumElems,SrcNumElems) is undef. 2529 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2530 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2531 ShuffleMask[I] = Idx; 2532 V = Builder.CreateShuffleVector(V, ShuffleMask, 2533 SVI.getName() + ".extract"); 2534 BegIdx = 0; 2535 } 2536 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2537 assert(SrcElemsPerTgtElem); 2538 BegIdx /= SrcElemsPerTgtElem; 2539 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2540 auto *NewBC = 2541 BCAlreadyExists 2542 ? NewBCs[CastSrcTy] 2543 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2544 if (!BCAlreadyExists) 2545 NewBCs[CastSrcTy] = NewBC; 2546 auto *Ext = Builder.CreateExtractElement( 2547 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2548 // The shufflevector isn't being replaced: the bitcast that used it 2549 // is. InstCombine will visit the newly-created instructions. 2550 replaceInstUsesWith(*BC, Ext); 2551 MadeChange = true; 2552 } 2553 } 2554 2555 // If the LHS is a shufflevector itself, see if we can combine it with this 2556 // one without producing an unusual shuffle. 2557 // Cases that might be simplified: 2558 // 1. 2559 // x1=shuffle(v1,v2,mask1) 2560 // x=shuffle(x1,undef,mask) 2561 // ==> 2562 // x=shuffle(v1,undef,newMask) 2563 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2564 // 2. 2565 // x1=shuffle(v1,undef,mask1) 2566 // x=shuffle(x1,x2,mask) 2567 // where v1.size() == mask1.size() 2568 // ==> 2569 // x=shuffle(v1,x2,newMask) 2570 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2571 // 3. 2572 // x2=shuffle(v2,undef,mask2) 2573 // x=shuffle(x1,x2,mask) 2574 // where v2.size() == mask2.size() 2575 // ==> 2576 // x=shuffle(x1,v2,newMask) 2577 // newMask[i] = (mask[i] < x1.size()) 2578 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2579 // 4. 2580 // x1=shuffle(v1,undef,mask1) 2581 // x2=shuffle(v2,undef,mask2) 2582 // x=shuffle(x1,x2,mask) 2583 // where v1.size() == v2.size() 2584 // ==> 2585 // x=shuffle(v1,v2,newMask) 2586 // newMask[i] = (mask[i] < x1.size()) 2587 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2588 // 2589 // Here we are really conservative: 2590 // we are absolutely afraid of producing a shuffle mask not in the input 2591 // program, because the code gen may not be smart enough to turn a merged 2592 // shuffle into two specific shuffles: it may produce worse code. As such, 2593 // we only merge two shuffles if the result is either a splat or one of the 2594 // input shuffle masks. In this case, merging the shuffles just removes 2595 // one instruction, which we know is safe. This is good for things like 2596 // turning: (splat(splat)) -> splat, or 2597 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2598 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2599 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2600 if (LHSShuffle) 2601 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2602 LHSShuffle = nullptr; 2603 if (RHSShuffle) 2604 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2605 RHSShuffle = nullptr; 2606 if (!LHSShuffle && !RHSShuffle) 2607 return MadeChange ? &SVI : nullptr; 2608 2609 Value* LHSOp0 = nullptr; 2610 Value* LHSOp1 = nullptr; 2611 Value* RHSOp0 = nullptr; 2612 unsigned LHSOp0Width = 0; 2613 unsigned RHSOp0Width = 0; 2614 if (LHSShuffle) { 2615 LHSOp0 = LHSShuffle->getOperand(0); 2616 LHSOp1 = LHSShuffle->getOperand(1); 2617 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2618 } 2619 if (RHSShuffle) { 2620 RHSOp0 = RHSShuffle->getOperand(0); 2621 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2622 } 2623 Value* newLHS = LHS; 2624 Value* newRHS = RHS; 2625 if (LHSShuffle) { 2626 // case 1 2627 if (match(RHS, m_Undef())) { 2628 newLHS = LHSOp0; 2629 newRHS = LHSOp1; 2630 } 2631 // case 2 or 4 2632 else if (LHSOp0Width == LHSWidth) { 2633 newLHS = LHSOp0; 2634 } 2635 } 2636 // case 3 or 4 2637 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2638 newRHS = RHSOp0; 2639 } 2640 // case 4 2641 if (LHSOp0 == RHSOp0) { 2642 newLHS = LHSOp0; 2643 newRHS = nullptr; 2644 } 2645 2646 if (newLHS == LHS && newRHS == RHS) 2647 return MadeChange ? &SVI : nullptr; 2648 2649 ArrayRef<int> LHSMask; 2650 ArrayRef<int> RHSMask; 2651 if (newLHS != LHS) 2652 LHSMask = LHSShuffle->getShuffleMask(); 2653 if (RHSShuffle && newRHS != RHS) 2654 RHSMask = RHSShuffle->getShuffleMask(); 2655 2656 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2657 SmallVector<int, 16> newMask; 2658 bool isSplat = true; 2659 int SplatElt = -1; 2660 // Create a new mask for the new ShuffleVectorInst so that the new 2661 // ShuffleVectorInst is equivalent to the original one. 2662 for (unsigned i = 0; i < VWidth; ++i) { 2663 int eltMask; 2664 if (Mask[i] < 0) { 2665 // This element is an undef value. 2666 eltMask = -1; 2667 } else if (Mask[i] < (int)LHSWidth) { 2668 // This element is from left hand side vector operand. 2669 // 2670 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2671 // new mask value for the element. 2672 if (newLHS != LHS) { 2673 eltMask = LHSMask[Mask[i]]; 2674 // If the value selected is an undef value, explicitly specify it 2675 // with a -1 mask value. 2676 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2677 eltMask = -1; 2678 } else 2679 eltMask = Mask[i]; 2680 } else { 2681 // This element is from right hand side vector operand 2682 // 2683 // If the value selected is an undef value, explicitly specify it 2684 // with a -1 mask value. (case 1) 2685 if (match(RHS, m_Undef())) 2686 eltMask = -1; 2687 // If RHS is going to be replaced (case 3 or 4), calculate the 2688 // new mask value for the element. 2689 else if (newRHS != RHS) { 2690 eltMask = RHSMask[Mask[i]-LHSWidth]; 2691 // If the value selected is an undef value, explicitly specify it 2692 // with a -1 mask value. 2693 if (eltMask >= (int)RHSOp0Width) { 2694 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2695 "should have been check above"); 2696 eltMask = -1; 2697 } 2698 } else 2699 eltMask = Mask[i]-LHSWidth; 2700 2701 // If LHS's width is changed, shift the mask value accordingly. 2702 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2703 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2704 // If newRHS == newLHS, we want to remap any references from newRHS to 2705 // newLHS so that we can properly identify splats that may occur due to 2706 // obfuscation across the two vectors. 2707 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2708 eltMask += newLHSWidth; 2709 } 2710 2711 // Check if this could still be a splat. 2712 if (eltMask >= 0) { 2713 if (SplatElt >= 0 && SplatElt != eltMask) 2714 isSplat = false; 2715 SplatElt = eltMask; 2716 } 2717 2718 newMask.push_back(eltMask); 2719 } 2720 2721 // If the result mask is equal to one of the original shuffle masks, 2722 // or is a splat, do the replacement. 2723 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2724 if (!newRHS) 2725 newRHS = UndefValue::get(newLHS->getType()); 2726 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2727 } 2728 2729 return MadeChange ? &SVI : nullptr; 2730 } 2731