1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 unsigned NumSrcElts = SrcTy->getNumElements(); 189 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 190 if (NumSrcElts == NumElts) 191 if (Value *Elt = findScalarElement(X, ExtIndexC)) 192 return new BitCastInst(Elt, DestTy); 193 194 // If the source elements are wider than the destination, try to shift and 195 // truncate a subset of scalar bits of an insert op. 196 if (NumSrcElts < NumElts) { 197 Value *Scalar; 198 uint64_t InsIndexC; 199 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 200 m_ConstantInt(InsIndexC)))) 201 return nullptr; 202 203 // The extract must be from the subset of vector elements that we inserted 204 // into. Example: if we inserted element 1 of a <2 x i64> and we are 205 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 206 // of elements 4-7 of the bitcasted vector. 207 unsigned NarrowingRatio = NumElts / NumSrcElts; 208 if (ExtIndexC / NarrowingRatio != InsIndexC) 209 return nullptr; 210 211 // We are extracting part of the original scalar. How that scalar is 212 // inserted into the vector depends on the endian-ness. Example: 213 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 214 // +--+--+--+--+--+--+--+--+ 215 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 216 // extelt <4 x i16> V', 3: | |S2|S3| 217 // +--+--+--+--+--+--+--+--+ 218 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 219 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 220 // In this example, we must right-shift little-endian. Big-endian is just a 221 // truncate. 222 unsigned Chunk = ExtIndexC % NarrowingRatio; 223 if (IsBigEndian) 224 Chunk = NarrowingRatio - 1 - Chunk; 225 226 // Bail out if this is an FP vector to FP vector sequence. That would take 227 // more instructions than we started with unless there is no shift, and it 228 // may not be handled as well in the backend. 229 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 230 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 231 if (NeedSrcBitcast && NeedDestBitcast) 232 return nullptr; 233 234 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 235 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 236 unsigned ShAmt = Chunk * DestWidth; 237 238 // TODO: This limitation is more strict than necessary. We could sum the 239 // number of new instructions and subtract the number eliminated to know if 240 // we can proceed. 241 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 242 if (NeedSrcBitcast || NeedDestBitcast) 243 return nullptr; 244 245 if (NeedSrcBitcast) { 246 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 247 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 248 } 249 250 if (ShAmt) { 251 // Bail out if we could end with more instructions than we started with. 252 if (!Ext.getVectorOperand()->hasOneUse()) 253 return nullptr; 254 Scalar = Builder.CreateLShr(Scalar, ShAmt); 255 } 256 257 if (NeedDestBitcast) { 258 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 259 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 260 } 261 return new TruncInst(Scalar, DestTy); 262 } 263 264 return nullptr; 265 } 266 267 /// Find elements of V demanded by UserInstr. 268 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 269 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 270 271 // Conservatively assume that all elements are needed. 272 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 273 274 switch (UserInstr->getOpcode()) { 275 case Instruction::ExtractElement: { 276 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 277 assert(EEI->getVectorOperand() == V); 278 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 279 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 280 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 281 } 282 break; 283 } 284 case Instruction::ShuffleVector: { 285 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 286 unsigned MaskNumElts = 287 cast<VectorType>(UserInstr->getType())->getNumElements(); 288 289 UsedElts = APInt(VWidth, 0); 290 for (unsigned i = 0; i < MaskNumElts; i++) { 291 unsigned MaskVal = Shuffle->getMaskValue(i); 292 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 293 continue; 294 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 295 UsedElts.setBit(MaskVal); 296 if (Shuffle->getOperand(1) == V && 297 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 298 UsedElts.setBit(MaskVal - VWidth); 299 } 300 break; 301 } 302 default: 303 break; 304 } 305 return UsedElts; 306 } 307 308 /// Find union of elements of V demanded by all its users. 309 /// If it is known by querying findDemandedEltsBySingleUser that 310 /// no user demands an element of V, then the corresponding bit 311 /// remains unset in the returned value. 312 static APInt findDemandedEltsByAllUsers(Value *V) { 313 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 314 315 APInt UnionUsedElts(VWidth, 0); 316 for (const Use &U : V->uses()) { 317 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 318 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 319 } else { 320 UnionUsedElts = APInt::getAllOnesValue(VWidth); 321 break; 322 } 323 324 if (UnionUsedElts.isAllOnesValue()) 325 break; 326 } 327 328 return UnionUsedElts; 329 } 330 331 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 332 Value *SrcVec = EI.getVectorOperand(); 333 Value *Index = EI.getIndexOperand(); 334 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 335 SQ.getWithInstruction(&EI))) 336 return replaceInstUsesWith(EI, V); 337 338 // If extracting a specified index from the vector, see if we can recursively 339 // find a previously computed scalar that was inserted into the vector. 340 auto *IndexC = dyn_cast<ConstantInt>(Index); 341 if (IndexC) { 342 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 343 unsigned NumElts = EC.getKnownMinValue(); 344 345 // InstSimplify should handle cases where the index is invalid. 346 // For fixed-length vector, it's invalid to extract out-of-range element. 347 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 348 return nullptr; 349 350 // This instruction only demands the single element from the input vector. 351 // Skip for scalable type, the number of elements is unknown at 352 // compile-time. 353 if (!EC.isScalable() && NumElts != 1) { 354 // If the input vector has a single use, simplify it based on this use 355 // property. 356 if (SrcVec->hasOneUse()) { 357 APInt UndefElts(NumElts, 0); 358 APInt DemandedElts(NumElts, 0); 359 DemandedElts.setBit(IndexC->getZExtValue()); 360 if (Value *V = 361 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 362 return replaceOperand(EI, 0, V); 363 } else { 364 // If the input vector has multiple uses, simplify it based on a union 365 // of all elements used. 366 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 367 if (!DemandedElts.isAllOnesValue()) { 368 APInt UndefElts(NumElts, 0); 369 if (Value *V = SimplifyDemandedVectorElts( 370 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 371 true /* AllowMultipleUsers */)) { 372 if (V != SrcVec) { 373 SrcVec->replaceAllUsesWith(V); 374 return &EI; 375 } 376 } 377 } 378 } 379 } 380 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 381 return I; 382 383 // If there's a vector PHI feeding a scalar use through this extractelement 384 // instruction, try to scalarize the PHI. 385 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 386 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 387 return ScalarPHI; 388 } 389 390 // TODO come up with a n-ary matcher that subsumes both unary and 391 // binary matchers. 392 UnaryOperator *UO; 393 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 394 // extelt (unop X), Index --> unop (extelt X, Index) 395 Value *X = UO->getOperand(0); 396 Value *E = Builder.CreateExtractElement(X, Index); 397 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 398 } 399 400 BinaryOperator *BO; 401 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 402 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 403 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 404 Value *E0 = Builder.CreateExtractElement(X, Index); 405 Value *E1 = Builder.CreateExtractElement(Y, Index); 406 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 407 } 408 409 Value *X, *Y; 410 CmpInst::Predicate Pred; 411 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 412 cheapToScalarize(SrcVec, IndexC)) { 413 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 414 Value *E0 = Builder.CreateExtractElement(X, Index); 415 Value *E1 = Builder.CreateExtractElement(Y, Index); 416 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 417 } 418 419 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 420 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 421 // Extracting the inserted element? 422 if (IE->getOperand(2) == Index) 423 return replaceInstUsesWith(EI, IE->getOperand(1)); 424 // If the inserted and extracted elements are constants, they must not 425 // be the same value, extract from the pre-inserted value instead. 426 if (isa<Constant>(IE->getOperand(2)) && IndexC) 427 return replaceOperand(EI, 0, IE->getOperand(0)); 428 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 429 // If this is extracting an element from a shufflevector, figure out where 430 // it came from and extract from the appropriate input element instead. 431 // Restrict the following transformation to fixed-length vector. 432 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 433 int SrcIdx = 434 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 435 Value *Src; 436 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 437 ->getNumElements(); 438 439 if (SrcIdx < 0) 440 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 441 if (SrcIdx < (int)LHSWidth) 442 Src = SVI->getOperand(0); 443 else { 444 SrcIdx -= LHSWidth; 445 Src = SVI->getOperand(1); 446 } 447 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 448 return ExtractElementInst::Create( 449 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 450 } 451 } else if (auto *CI = dyn_cast<CastInst>(I)) { 452 // Canonicalize extractelement(cast) -> cast(extractelement). 453 // Bitcasts can change the number of vector elements, and they cost 454 // nothing. 455 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 456 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 457 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 458 } 459 } 460 } 461 return nullptr; 462 } 463 464 /// If V is a shuffle of values that ONLY returns elements from either LHS or 465 /// RHS, return the shuffle mask and true. Otherwise, return false. 466 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 467 SmallVectorImpl<int> &Mask) { 468 assert(LHS->getType() == RHS->getType() && 469 "Invalid CollectSingleShuffleElements"); 470 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 471 472 if (isa<UndefValue>(V)) { 473 Mask.assign(NumElts, -1); 474 return true; 475 } 476 477 if (V == LHS) { 478 for (unsigned i = 0; i != NumElts; ++i) 479 Mask.push_back(i); 480 return true; 481 } 482 483 if (V == RHS) { 484 for (unsigned i = 0; i != NumElts; ++i) 485 Mask.push_back(i + NumElts); 486 return true; 487 } 488 489 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 490 // If this is an insert of an extract from some other vector, include it. 491 Value *VecOp = IEI->getOperand(0); 492 Value *ScalarOp = IEI->getOperand(1); 493 Value *IdxOp = IEI->getOperand(2); 494 495 if (!isa<ConstantInt>(IdxOp)) 496 return false; 497 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 498 499 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 500 // We can handle this if the vector we are inserting into is 501 // transitively ok. 502 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 503 // If so, update the mask to reflect the inserted undef. 504 Mask[InsertedIdx] = -1; 505 return true; 506 } 507 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 508 if (isa<ConstantInt>(EI->getOperand(1))) { 509 unsigned ExtractedIdx = 510 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 511 unsigned NumLHSElts = 512 cast<VectorType>(LHS->getType())->getNumElements(); 513 514 // This must be extracting from either LHS or RHS. 515 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 516 // We can handle this if the vector we are inserting into is 517 // transitively ok. 518 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 519 // If so, update the mask to reflect the inserted value. 520 if (EI->getOperand(0) == LHS) { 521 Mask[InsertedIdx % NumElts] = ExtractedIdx; 522 } else { 523 assert(EI->getOperand(0) == RHS); 524 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 525 } 526 return true; 527 } 528 } 529 } 530 } 531 } 532 533 return false; 534 } 535 536 /// If we have insertion into a vector that is wider than the vector that we 537 /// are extracting from, try to widen the source vector to allow a single 538 /// shufflevector to replace one or more insert/extract pairs. 539 static void replaceExtractElements(InsertElementInst *InsElt, 540 ExtractElementInst *ExtElt, 541 InstCombinerImpl &IC) { 542 VectorType *InsVecType = InsElt->getType(); 543 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 544 unsigned NumInsElts = InsVecType->getNumElements(); 545 unsigned NumExtElts = ExtVecType->getNumElements(); 546 547 // The inserted-to vector must be wider than the extracted-from vector. 548 if (InsVecType->getElementType() != ExtVecType->getElementType() || 549 NumExtElts >= NumInsElts) 550 return; 551 552 // Create a shuffle mask to widen the extended-from vector using undefined 553 // values. The mask selects all of the values of the original vector followed 554 // by as many undefined values as needed to create a vector of the same length 555 // as the inserted-to vector. 556 SmallVector<int, 16> ExtendMask; 557 for (unsigned i = 0; i < NumExtElts; ++i) 558 ExtendMask.push_back(i); 559 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 560 ExtendMask.push_back(-1); 561 562 Value *ExtVecOp = ExtElt->getVectorOperand(); 563 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 564 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 565 ? ExtVecOpInst->getParent() 566 : ExtElt->getParent(); 567 568 // TODO: This restriction matches the basic block check below when creating 569 // new extractelement instructions. If that limitation is removed, this one 570 // could also be removed. But for now, we just bail out to ensure that we 571 // will replace the extractelement instruction that is feeding our 572 // insertelement instruction. This allows the insertelement to then be 573 // replaced by a shufflevector. If the insertelement is not replaced, we can 574 // induce infinite looping because there's an optimization for extractelement 575 // that will delete our widening shuffle. This would trigger another attempt 576 // here to create that shuffle, and we spin forever. 577 if (InsertionBlock != InsElt->getParent()) 578 return; 579 580 // TODO: This restriction matches the check in visitInsertElementInst() and 581 // prevents an infinite loop caused by not turning the extract/insert pair 582 // into a shuffle. We really should not need either check, but we're lacking 583 // folds for shufflevectors because we're afraid to generate shuffle masks 584 // that the backend can't handle. 585 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 586 return; 587 588 auto *WideVec = 589 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 590 591 // Insert the new shuffle after the vector operand of the extract is defined 592 // (as long as it's not a PHI) or at the start of the basic block of the 593 // extract, so any subsequent extracts in the same basic block can use it. 594 // TODO: Insert before the earliest ExtractElementInst that is replaced. 595 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 596 WideVec->insertAfter(ExtVecOpInst); 597 else 598 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 599 600 // Replace extracts from the original narrow vector with extracts from the new 601 // wide vector. 602 for (User *U : ExtVecOp->users()) { 603 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 604 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 605 continue; 606 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 607 NewExt->insertAfter(OldExt); 608 IC.replaceInstUsesWith(*OldExt, NewExt); 609 } 610 } 611 612 /// We are building a shuffle to create V, which is a sequence of insertelement, 613 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 614 /// not rely on the second vector source. Return a std::pair containing the 615 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 616 /// parameter as required. 617 /// 618 /// Note: we intentionally don't try to fold earlier shuffles since they have 619 /// often been chosen carefully to be efficiently implementable on the target. 620 using ShuffleOps = std::pair<Value *, Value *>; 621 622 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 623 Value *PermittedRHS, 624 InstCombinerImpl &IC) { 625 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 626 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 627 628 if (isa<UndefValue>(V)) { 629 Mask.assign(NumElts, -1); 630 return std::make_pair( 631 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 632 } 633 634 if (isa<ConstantAggregateZero>(V)) { 635 Mask.assign(NumElts, 0); 636 return std::make_pair(V, nullptr); 637 } 638 639 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 640 // If this is an insert of an extract from some other vector, include it. 641 Value *VecOp = IEI->getOperand(0); 642 Value *ScalarOp = IEI->getOperand(1); 643 Value *IdxOp = IEI->getOperand(2); 644 645 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 646 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 647 unsigned ExtractedIdx = 648 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 649 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 650 651 // Either the extracted from or inserted into vector must be RHSVec, 652 // otherwise we'd end up with a shuffle of three inputs. 653 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 654 Value *RHS = EI->getOperand(0); 655 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 656 assert(LR.second == nullptr || LR.second == RHS); 657 658 if (LR.first->getType() != RHS->getType()) { 659 // Although we are giving up for now, see if we can create extracts 660 // that match the inserts for another round of combining. 661 replaceExtractElements(IEI, EI, IC); 662 663 // We tried our best, but we can't find anything compatible with RHS 664 // further up the chain. Return a trivial shuffle. 665 for (unsigned i = 0; i < NumElts; ++i) 666 Mask[i] = i; 667 return std::make_pair(V, nullptr); 668 } 669 670 unsigned NumLHSElts = 671 cast<VectorType>(RHS->getType())->getNumElements(); 672 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 673 return std::make_pair(LR.first, RHS); 674 } 675 676 if (VecOp == PermittedRHS) { 677 // We've gone as far as we can: anything on the other side of the 678 // extractelement will already have been converted into a shuffle. 679 unsigned NumLHSElts = 680 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 681 for (unsigned i = 0; i != NumElts; ++i) 682 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 683 return std::make_pair(EI->getOperand(0), PermittedRHS); 684 } 685 686 // If this insertelement is a chain that comes from exactly these two 687 // vectors, return the vector and the effective shuffle. 688 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 689 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 690 Mask)) 691 return std::make_pair(EI->getOperand(0), PermittedRHS); 692 } 693 } 694 } 695 696 // Otherwise, we can't do anything fancy. Return an identity vector. 697 for (unsigned i = 0; i != NumElts; ++i) 698 Mask.push_back(i); 699 return std::make_pair(V, nullptr); 700 } 701 702 /// Look for chain of insertvalue's that fully define an aggregate, and trace 703 /// back the values inserted, see if they are all were extractvalue'd from 704 /// the same source aggregate from the exact same element indexes. 705 /// If they were, just reuse the source aggregate. 706 /// This potentially deals with PHI indirections. 707 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 708 InsertValueInst &OrigIVI) { 709 Type *AggTy = OrigIVI.getType(); 710 unsigned NumAggElts; 711 switch (AggTy->getTypeID()) { 712 case Type::StructTyID: 713 NumAggElts = AggTy->getStructNumElements(); 714 break; 715 case Type::ArrayTyID: 716 NumAggElts = AggTy->getArrayNumElements(); 717 break; 718 default: 719 llvm_unreachable("Unhandled aggregate type?"); 720 } 721 722 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 723 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 724 // FIXME: any interesting patterns to be caught with larger limit? 725 assert(NumAggElts > 0 && "Aggregate should have elements."); 726 if (NumAggElts > 2) 727 return nullptr; 728 729 static constexpr auto NotFound = None; 730 static constexpr auto FoundMismatch = nullptr; 731 732 // Try to find a value of each element of an aggregate. 733 // FIXME: deal with more complex, not one-dimensional, aggregate types 734 SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound); 735 736 // Do we know values for each element of the aggregate? 737 auto KnowAllElts = [&AggElts]() { 738 return all_of(AggElts, 739 [](Optional<Value *> Elt) { return Elt != NotFound; }); 740 }; 741 742 int Depth = 0; 743 744 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 745 // every element being overwritten twice, which should never happen. 746 static const int DepthLimit = 2 * NumAggElts; 747 748 // Recurse up the chain of `insertvalue` aggregate operands until either we've 749 // reconstructed full initializer or can't visit any more `insertvalue`'s. 750 for (InsertValueInst *CurrIVI = &OrigIVI; 751 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 752 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 753 ++Depth) { 754 Value *InsertedValue = CurrIVI->getInsertedValueOperand(); 755 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 756 757 // Don't bother with more than single-level aggregates. 758 if (Indices.size() != 1) 759 return nullptr; // FIXME: deal with more complex aggregates? 760 761 // Now, we may have already previously recorded the value for this element 762 // of an aggregate. If we did, that means the CurrIVI will later be 763 // overwritten with the already-recorded value. But if not, let's record it! 764 Optional<Value *> &Elt = AggElts[Indices.front()]; 765 Elt = Elt.getValueOr(InsertedValue); 766 767 // FIXME: should we handle chain-terminating undef base operand? 768 } 769 770 // Was that sufficient to deduce the full initializer for the aggregate? 771 if (!KnowAllElts()) 772 return nullptr; // Give up then. 773 774 // We now want to find the source[s] of the aggregate elements we've found. 775 // And with "source" we mean the original aggregate[s] from which 776 // the inserted elements were extracted. This may require PHI translation. 777 778 enum class AggregateDescription { 779 /// When analyzing the value that was inserted into an aggregate, we did 780 /// not manage to find defining `extractvalue` instruction to analyze. 781 NotFound, 782 /// When analyzing the value that was inserted into an aggregate, we did 783 /// manage to find defining `extractvalue` instruction[s], and everything 784 /// matched perfectly - aggregate type, element insertion/extraction index. 785 Found, 786 /// When analyzing the value that was inserted into an aggregate, we did 787 /// manage to find defining `extractvalue` instruction, but there was 788 /// a mismatch: either the source type from which the extraction was didn't 789 /// match the aggregate type into which the insertion was, 790 /// or the extraction/insertion channels mismatched, 791 /// or different elements had different source aggregates. 792 FoundMismatch 793 }; 794 auto Describe = [](Optional<Value *> SourceAggregate) { 795 if (SourceAggregate == NotFound) 796 return AggregateDescription::NotFound; 797 if (*SourceAggregate == FoundMismatch) 798 return AggregateDescription::FoundMismatch; 799 return AggregateDescription::Found; 800 }; 801 802 // Given the value \p Elt that was being inserted into element \p EltIdx of an 803 // aggregate AggTy, see if \p Elt was originally defined by an 804 // appropriate extractvalue (same element index, same aggregate type). 805 // If found, return the source aggregate from which the extraction was. 806 // If \p PredBB is provided, does PHI translation of an \p Elt first. 807 auto FindSourceAggregate = 808 [&](Value *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 809 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 810 // For now(?), only deal with, at most, a single level of PHI indirection. 811 if (UseBB && PredBB) 812 Elt = Elt->DoPHITranslation(*UseBB, *PredBB); 813 // FIXME: deal with multiple levels of PHI indirection? 814 815 // Did we find an extraction? 816 auto *EVI = dyn_cast<ExtractValueInst>(Elt); 817 if (!EVI) 818 return NotFound; 819 820 Value *SourceAggregate = EVI->getAggregateOperand(); 821 822 // Is the extraction from the same type into which the insertion was? 823 if (SourceAggregate->getType() != AggTy) 824 return FoundMismatch; 825 // And the element index doesn't change between extraction and insertion? 826 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 827 return FoundMismatch; 828 829 return SourceAggregate; // AggregateDescription::Found 830 }; 831 832 // Given elements AggElts that were constructing an aggregate OrigIVI, 833 // see if we can find appropriate source aggregate for each of the elements, 834 // and see it's the same aggregate for each element. If so, return it. 835 auto FindCommonSourceAggregate = 836 [&](Optional<BasicBlock *> UseBB, 837 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 838 Optional<Value *> SourceAggregate; 839 840 for (auto I : enumerate(AggElts)) { 841 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 842 "We don't store nullptr in SourceAggregate!"); 843 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 844 (I.index() != 0) && 845 "SourceAggregate should be valid after the the first element,"); 846 847 // For this element, is there a plausible source aggregate? 848 // FIXME: we could special-case undef element, IFF we know that in the 849 // source aggregate said element isn't poison. 850 Optional<Value *> SourceAggregateForElement = 851 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 852 853 // Okay, what have we found? Does that correlate with previous findings? 854 855 // Regardless of whether or not we have previously found source 856 // aggregate for previous elements (if any), if we didn't find one for 857 // this element, passthrough whatever we have just found. 858 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 859 return SourceAggregateForElement; 860 861 // Okay, we have found source aggregate for this element. 862 // Let's see what we already know from previous elements, if any. 863 switch (Describe(SourceAggregate)) { 864 case AggregateDescription::NotFound: 865 // This is apparently the first element that we have examined. 866 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 867 continue; // Great, now look at next element. 868 case AggregateDescription::Found: 869 // We have previously already successfully examined other elements. 870 // Is this the same source aggregate we've found for other elements? 871 if (*SourceAggregateForElement != *SourceAggregate) 872 return FoundMismatch; 873 continue; // Still the same aggregate, look at next element. 874 case AggregateDescription::FoundMismatch: 875 llvm_unreachable("Can't happen. We would have early-exited then."); 876 }; 877 } 878 879 assert(Describe(SourceAggregate) == AggregateDescription::Found && 880 "Must be a valid Value"); 881 return *SourceAggregate; 882 }; 883 884 Optional<Value *> SourceAggregate; 885 886 // Can we find the source aggregate without looking at predecessors? 887 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 888 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 889 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 890 return nullptr; // Conflicting source aggregates! 891 ++NumAggregateReconstructionsSimplified; 892 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 893 } 894 895 // Okay, apparently we need to look at predecessors. 896 897 // We should be smart about picking the "use" basic block, which will be the 898 // merge point for aggregate, where we'll insert the final PHI that will be 899 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 900 // We should look in which blocks each of the AggElts is being defined, 901 // they all should be defined in the same basic block. 902 BasicBlock *UseBB = nullptr; 903 904 for (const Optional<Value *> &Elt : AggElts) { 905 // If this element's value was not defined by an instruction, ignore it. 906 auto *I = dyn_cast<Instruction>(*Elt); 907 if (!I) 908 continue; 909 // Otherwise, in which basic block is this instruction located? 910 BasicBlock *BB = I->getParent(); 911 // If it's the first instruction we've encountered, record the basic block. 912 if (!UseBB) { 913 UseBB = BB; 914 continue; 915 } 916 // Otherwise, this must be the same basic block we've seen previously. 917 if (UseBB != BB) 918 return nullptr; 919 } 920 921 // If *all* of the elements are basic-block-independent, meaning they are 922 // either function arguments, or constant expressions, then if we didn't 923 // handle them without predecessor-aware handling, we won't handle them now. 924 if (!UseBB) 925 return nullptr; 926 927 // If we didn't manage to find source aggregate without looking at 928 // predecessors, and there are no predecessors to look at, then we're done. 929 if (pred_empty(UseBB)) 930 return nullptr; 931 932 // Arbitrary predecessor count limit. 933 static const int PredCountLimit = 64; 934 935 // Cache the (non-uniqified!) list of predecessors in a vector, 936 // checking the limit at the same time for efficiency. 937 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 938 for (BasicBlock *Pred : predecessors(UseBB)) { 939 // Don't bother if there are too many predecessors. 940 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 941 return nullptr; 942 Preds.emplace_back(Pred); 943 } 944 945 // For each predecessor, what is the source aggregate, 946 // from which all the elements were originally extracted from? 947 // Note that we want for the map to have stable iteration order! 948 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 949 for (BasicBlock *Pred : Preds) { 950 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 951 SourceAggregates.insert({Pred, nullptr}); 952 // Did we already evaluate this predecessor? 953 if (!IV.second) 954 continue; 955 956 // Let's hope that when coming from predecessor Pred, all elements of the 957 // aggregate produced by OrigIVI must have been originally extracted from 958 // the same aggregate. Is that so? Can we find said original aggregate? 959 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 960 if (Describe(SourceAggregate) != AggregateDescription::Found) 961 return nullptr; // Give up. 962 IV.first->second = *SourceAggregate; 963 } 964 965 // All good! Now we just need to thread the source aggregates here. 966 // Note that we have to insert the new PHI here, ourselves, because we can't 967 // rely on InstCombinerImpl::run() inserting it into the right basic block. 968 // Note that the same block can be a predecessor more than once, 969 // and we need to preserve that invariant for the PHI node. 970 BuilderTy::InsertPointGuard Guard(Builder); 971 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 972 auto *PHI = 973 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 974 for (BasicBlock *Pred : Preds) 975 PHI->addIncoming(SourceAggregates[Pred], Pred); 976 977 ++NumAggregateReconstructionsSimplified; 978 OrigIVI.replaceAllUsesWith(PHI); 979 980 // Just signal that the fold happened, we've already inserted instructions. 981 return &OrigIVI; 982 } 983 984 /// Try to find redundant insertvalue instructions, like the following ones: 985 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 986 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 987 /// Here the second instruction inserts values at the same indices, as the 988 /// first one, making the first one redundant. 989 /// It should be transformed to: 990 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 991 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 992 bool IsRedundant = false; 993 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 994 995 // If there is a chain of insertvalue instructions (each of them except the 996 // last one has only one use and it's another insertvalue insn from this 997 // chain), check if any of the 'children' uses the same indices as the first 998 // instruction. In this case, the first one is redundant. 999 Value *V = &I; 1000 unsigned Depth = 0; 1001 while (V->hasOneUse() && Depth < 10) { 1002 User *U = V->user_back(); 1003 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1004 if (!UserInsInst || U->getOperand(0) != V) 1005 break; 1006 if (UserInsInst->getIndices() == FirstIndices) { 1007 IsRedundant = true; 1008 break; 1009 } 1010 V = UserInsInst; 1011 Depth++; 1012 } 1013 1014 if (IsRedundant) 1015 return replaceInstUsesWith(I, I.getOperand(0)); 1016 1017 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1018 return NewI; 1019 1020 return nullptr; 1021 } 1022 1023 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1024 // Can not analyze scalable type, the number of elements is not a compile-time 1025 // constant. 1026 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1027 return false; 1028 1029 int MaskSize = Shuf.getShuffleMask().size(); 1030 int VecSize = 1031 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1032 1033 // A vector select does not change the size of the operands. 1034 if (MaskSize != VecSize) 1035 return false; 1036 1037 // Each mask element must be undefined or choose a vector element from one of 1038 // the source operands without crossing vector lanes. 1039 for (int i = 0; i != MaskSize; ++i) { 1040 int Elt = Shuf.getMaskValue(i); 1041 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1042 return false; 1043 } 1044 1045 return true; 1046 } 1047 1048 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1049 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1050 /// shufflevector(insertelt(X, %k, 0), undef, zero) 1051 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1052 // We are interested in the last insert in a chain. So if this insert has a 1053 // single user and that user is an insert, bail. 1054 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1055 return nullptr; 1056 1057 VectorType *VecTy = InsElt.getType(); 1058 // Can not handle scalable type, the number of elements is not a compile-time 1059 // constant. 1060 if (isa<ScalableVectorType>(VecTy)) 1061 return nullptr; 1062 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1063 1064 // Do not try to do this for a one-element vector, since that's a nop, 1065 // and will cause an inf-loop. 1066 if (NumElements == 1) 1067 return nullptr; 1068 1069 Value *SplatVal = InsElt.getOperand(1); 1070 InsertElementInst *CurrIE = &InsElt; 1071 SmallBitVector ElementPresent(NumElements, false); 1072 InsertElementInst *FirstIE = nullptr; 1073 1074 // Walk the chain backwards, keeping track of which indices we inserted into, 1075 // until we hit something that isn't an insert of the splatted value. 1076 while (CurrIE) { 1077 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1078 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1079 return nullptr; 1080 1081 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1082 // Check none of the intermediate steps have any additional uses, except 1083 // for the root insertelement instruction, which can be re-used, if it 1084 // inserts at position 0. 1085 if (CurrIE != &InsElt && 1086 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1087 return nullptr; 1088 1089 ElementPresent[Idx->getZExtValue()] = true; 1090 FirstIE = CurrIE; 1091 CurrIE = NextIE; 1092 } 1093 1094 // If this is just a single insertelement (not a sequence), we are done. 1095 if (FirstIE == &InsElt) 1096 return nullptr; 1097 1098 // If we are not inserting into an undef vector, make sure we've seen an 1099 // insert into every element. 1100 // TODO: If the base vector is not undef, it might be better to create a splat 1101 // and then a select-shuffle (blend) with the base vector. 1102 if (!isa<UndefValue>(FirstIE->getOperand(0))) 1103 if (!ElementPresent.all()) 1104 return nullptr; 1105 1106 // Create the insert + shuffle. 1107 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1108 UndefValue *UndefVec = UndefValue::get(VecTy); 1109 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1110 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1111 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 1112 1113 // Splat from element 0, but replace absent elements with undef in the mask. 1114 SmallVector<int, 16> Mask(NumElements, 0); 1115 for (unsigned i = 0; i != NumElements; ++i) 1116 if (!ElementPresent[i]) 1117 Mask[i] = -1; 1118 1119 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 1120 } 1121 1122 /// Try to fold an insert element into an existing splat shuffle by changing 1123 /// the shuffle's mask to include the index of this insert element. 1124 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1125 // Check if the vector operand of this insert is a canonical splat shuffle. 1126 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1127 if (!Shuf || !Shuf->isZeroEltSplat()) 1128 return nullptr; 1129 1130 // Bail out early if shuffle is scalable type. The number of elements in 1131 // shuffle mask is unknown at compile-time. 1132 if (isa<ScalableVectorType>(Shuf->getType())) 1133 return nullptr; 1134 1135 // Check for a constant insertion index. 1136 uint64_t IdxC; 1137 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1138 return nullptr; 1139 1140 // Check if the splat shuffle's input is the same as this insert's scalar op. 1141 Value *X = InsElt.getOperand(1); 1142 Value *Op0 = Shuf->getOperand(0); 1143 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1144 return nullptr; 1145 1146 // Replace the shuffle mask element at the index of this insert with a zero. 1147 // For example: 1148 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1149 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1150 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 1151 SmallVector<int, 16> NewMask(NumMaskElts); 1152 for (unsigned i = 0; i != NumMaskElts; ++i) 1153 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1154 1155 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1156 } 1157 1158 /// Try to fold an extract+insert element into an existing identity shuffle by 1159 /// changing the shuffle's mask to include the index of this insert element. 1160 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1161 // Check if the vector operand of this insert is an identity shuffle. 1162 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1163 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 1164 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1165 return nullptr; 1166 1167 // Bail out early if shuffle is scalable type. The number of elements in 1168 // shuffle mask is unknown at compile-time. 1169 if (isa<ScalableVectorType>(Shuf->getType())) 1170 return nullptr; 1171 1172 // Check for a constant insertion index. 1173 uint64_t IdxC; 1174 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1175 return nullptr; 1176 1177 // Check if this insert's scalar op is extracted from the identity shuffle's 1178 // input vector. 1179 Value *Scalar = InsElt.getOperand(1); 1180 Value *X = Shuf->getOperand(0); 1181 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1182 return nullptr; 1183 1184 // Replace the shuffle mask element at the index of this extract+insert with 1185 // that same index value. 1186 // For example: 1187 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1188 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 1189 SmallVector<int, 16> NewMask(NumMaskElts); 1190 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1191 for (unsigned i = 0; i != NumMaskElts; ++i) { 1192 if (i != IdxC) { 1193 // All mask elements besides the inserted element remain the same. 1194 NewMask[i] = OldMask[i]; 1195 } else if (OldMask[i] == (int)IdxC) { 1196 // If the mask element was already set, there's nothing to do 1197 // (demanded elements analysis may unset it later). 1198 return nullptr; 1199 } else { 1200 assert(OldMask[i] == UndefMaskElem && 1201 "Unexpected shuffle mask element for identity shuffle"); 1202 NewMask[i] = IdxC; 1203 } 1204 } 1205 1206 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1207 } 1208 1209 /// If we have an insertelement instruction feeding into another insertelement 1210 /// and the 2nd is inserting a constant into the vector, canonicalize that 1211 /// constant insertion before the insertion of a variable: 1212 /// 1213 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1214 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1215 /// 1216 /// This has the potential of eliminating the 2nd insertelement instruction 1217 /// via constant folding of the scalar constant into a vector constant. 1218 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1219 InstCombiner::BuilderTy &Builder) { 1220 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1221 if (!InsElt1 || !InsElt1->hasOneUse()) 1222 return nullptr; 1223 1224 Value *X, *Y; 1225 Constant *ScalarC; 1226 ConstantInt *IdxC1, *IdxC2; 1227 if (match(InsElt1->getOperand(0), m_Value(X)) && 1228 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1229 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1230 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1231 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1232 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1233 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1234 } 1235 1236 return nullptr; 1237 } 1238 1239 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1240 /// --> shufflevector X, CVec', Mask' 1241 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1242 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1243 // Bail out if the parent has more than one use. In that case, we'd be 1244 // replacing the insertelt with a shuffle, and that's not a clear win. 1245 if (!Inst || !Inst->hasOneUse()) 1246 return nullptr; 1247 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1248 // The shuffle must have a constant vector operand. The insertelt must have 1249 // a constant scalar being inserted at a constant position in the vector. 1250 Constant *ShufConstVec, *InsEltScalar; 1251 uint64_t InsEltIndex; 1252 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1253 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1254 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1255 return nullptr; 1256 1257 // Adding an element to an arbitrary shuffle could be expensive, but a 1258 // shuffle that selects elements from vectors without crossing lanes is 1259 // assumed cheap. 1260 // If we're just adding a constant into that shuffle, it will still be 1261 // cheap. 1262 if (!isShuffleEquivalentToSelect(*Shuf)) 1263 return nullptr; 1264 1265 // From the above 'select' check, we know that the mask has the same number 1266 // of elements as the vector input operands. We also know that each constant 1267 // input element is used in its lane and can not be used more than once by 1268 // the shuffle. Therefore, replace the constant in the shuffle's constant 1269 // vector with the insertelt constant. Replace the constant in the shuffle's 1270 // mask vector with the insertelt index plus the length of the vector 1271 // (because the constant vector operand of a shuffle is always the 2nd 1272 // operand). 1273 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1274 unsigned NumElts = Mask.size(); 1275 SmallVector<Constant *, 16> NewShufElts(NumElts); 1276 SmallVector<int, 16> NewMaskElts(NumElts); 1277 for (unsigned I = 0; I != NumElts; ++I) { 1278 if (I == InsEltIndex) { 1279 NewShufElts[I] = InsEltScalar; 1280 NewMaskElts[I] = InsEltIndex + NumElts; 1281 } else { 1282 // Copy over the existing values. 1283 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1284 NewMaskElts[I] = Mask[I]; 1285 } 1286 } 1287 1288 // Create new operands for a shuffle that includes the constant of the 1289 // original insertelt. The old shuffle will be dead now. 1290 return new ShuffleVectorInst(Shuf->getOperand(0), 1291 ConstantVector::get(NewShufElts), NewMaskElts); 1292 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1293 // Transform sequences of insertelements ops with constant data/indexes into 1294 // a single shuffle op. 1295 // Can not handle scalable type, the number of elements needed to create 1296 // shuffle mask is not a compile-time constant. 1297 if (isa<ScalableVectorType>(InsElt.getType())) 1298 return nullptr; 1299 unsigned NumElts = 1300 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1301 1302 uint64_t InsertIdx[2]; 1303 Constant *Val[2]; 1304 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1305 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1306 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1307 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1308 return nullptr; 1309 SmallVector<Constant *, 16> Values(NumElts); 1310 SmallVector<int, 16> Mask(NumElts); 1311 auto ValI = std::begin(Val); 1312 // Generate new constant vector and mask. 1313 // We have 2 values/masks from the insertelements instructions. Insert them 1314 // into new value/mask vectors. 1315 for (uint64_t I : InsertIdx) { 1316 if (!Values[I]) { 1317 Values[I] = *ValI; 1318 Mask[I] = NumElts + I; 1319 } 1320 ++ValI; 1321 } 1322 // Remaining values are filled with 'undef' values. 1323 for (unsigned I = 0; I < NumElts; ++I) { 1324 if (!Values[I]) { 1325 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1326 Mask[I] = I; 1327 } 1328 } 1329 // Create new operands for a shuffle that includes the constant of the 1330 // original insertelt. 1331 return new ShuffleVectorInst(IEI->getOperand(0), 1332 ConstantVector::get(Values), Mask); 1333 } 1334 return nullptr; 1335 } 1336 1337 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1338 Value *VecOp = IE.getOperand(0); 1339 Value *ScalarOp = IE.getOperand(1); 1340 Value *IdxOp = IE.getOperand(2); 1341 1342 if (auto *V = SimplifyInsertElementInst( 1343 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1344 return replaceInstUsesWith(IE, V); 1345 1346 // If the scalar is bitcast and inserted into undef, do the insert in the 1347 // source type followed by bitcast. 1348 // TODO: Generalize for insert into any constant, not just undef? 1349 Value *ScalarSrc; 1350 if (match(VecOp, m_Undef()) && 1351 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1352 (ScalarSrc->getType()->isIntegerTy() || 1353 ScalarSrc->getType()->isFloatingPointTy())) { 1354 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1355 // bitcast (inselt undef, ScalarSrc, IdxOp) 1356 Type *ScalarTy = ScalarSrc->getType(); 1357 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1358 UndefValue *NewUndef = UndefValue::get(VecTy); 1359 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1360 return new BitCastInst(NewInsElt, IE.getType()); 1361 } 1362 1363 // If the vector and scalar are both bitcast from the same element type, do 1364 // the insert in that source type followed by bitcast. 1365 Value *VecSrc; 1366 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1367 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1368 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1369 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1370 cast<VectorType>(VecSrc->getType())->getElementType() == 1371 ScalarSrc->getType()) { 1372 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1373 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1374 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1375 return new BitCastInst(NewInsElt, IE.getType()); 1376 } 1377 1378 // If the inserted element was extracted from some other fixed-length vector 1379 // and both indexes are valid constants, try to turn this into a shuffle. 1380 // Can not handle scalable vector type, the number of elements needed to 1381 // create shuffle mask is not a compile-time constant. 1382 uint64_t InsertedIdx, ExtractedIdx; 1383 Value *ExtVecOp; 1384 if (isa<FixedVectorType>(IE.getType()) && 1385 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1386 match(ScalarOp, 1387 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1388 isa<FixedVectorType>(ExtVecOp->getType()) && 1389 ExtractedIdx < 1390 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1391 // TODO: Looking at the user(s) to determine if this insert is a 1392 // fold-to-shuffle opportunity does not match the usual instcombine 1393 // constraints. We should decide if the transform is worthy based only 1394 // on this instruction and its operands, but that may not work currently. 1395 // 1396 // Here, we are trying to avoid creating shuffles before reaching 1397 // the end of a chain of extract-insert pairs. This is complicated because 1398 // we do not generally form arbitrary shuffle masks in instcombine 1399 // (because those may codegen poorly), but collectShuffleElements() does 1400 // exactly that. 1401 // 1402 // The rules for determining what is an acceptable target-independent 1403 // shuffle mask are fuzzy because they evolve based on the backend's 1404 // capabilities and real-world impact. 1405 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1406 if (!Insert.hasOneUse()) 1407 return true; 1408 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1409 if (!InsertUser) 1410 return true; 1411 return false; 1412 }; 1413 1414 // Try to form a shuffle from a chain of extract-insert ops. 1415 if (isShuffleRootCandidate(IE)) { 1416 SmallVector<int, 16> Mask; 1417 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1418 1419 // The proposed shuffle may be trivial, in which case we shouldn't 1420 // perform the combine. 1421 if (LR.first != &IE && LR.second != &IE) { 1422 // We now have a shuffle of LHS, RHS, Mask. 1423 if (LR.second == nullptr) 1424 LR.second = UndefValue::get(LR.first->getType()); 1425 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1426 } 1427 } 1428 } 1429 1430 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1431 unsigned VWidth = VecTy->getNumElements(); 1432 APInt UndefElts(VWidth, 0); 1433 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1434 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1435 if (V != &IE) 1436 return replaceInstUsesWith(IE, V); 1437 return &IE; 1438 } 1439 } 1440 1441 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1442 return Shuf; 1443 1444 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1445 return NewInsElt; 1446 1447 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1448 return Broadcast; 1449 1450 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1451 return Splat; 1452 1453 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1454 return IdentityShuf; 1455 1456 return nullptr; 1457 } 1458 1459 /// Return true if we can evaluate the specified expression tree if the vector 1460 /// elements were shuffled in a different order. 1461 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1462 unsigned Depth = 5) { 1463 // We can always reorder the elements of a constant. 1464 if (isa<Constant>(V)) 1465 return true; 1466 1467 // We won't reorder vector arguments. No IPO here. 1468 Instruction *I = dyn_cast<Instruction>(V); 1469 if (!I) return false; 1470 1471 // Two users may expect different orders of the elements. Don't try it. 1472 if (!I->hasOneUse()) 1473 return false; 1474 1475 if (Depth == 0) return false; 1476 1477 switch (I->getOpcode()) { 1478 case Instruction::UDiv: 1479 case Instruction::SDiv: 1480 case Instruction::URem: 1481 case Instruction::SRem: 1482 // Propagating an undefined shuffle mask element to integer div/rem is not 1483 // allowed because those opcodes can create immediate undefined behavior 1484 // from an undefined element in an operand. 1485 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1486 return false; 1487 LLVM_FALLTHROUGH; 1488 case Instruction::Add: 1489 case Instruction::FAdd: 1490 case Instruction::Sub: 1491 case Instruction::FSub: 1492 case Instruction::Mul: 1493 case Instruction::FMul: 1494 case Instruction::FDiv: 1495 case Instruction::FRem: 1496 case Instruction::Shl: 1497 case Instruction::LShr: 1498 case Instruction::AShr: 1499 case Instruction::And: 1500 case Instruction::Or: 1501 case Instruction::Xor: 1502 case Instruction::ICmp: 1503 case Instruction::FCmp: 1504 case Instruction::Trunc: 1505 case Instruction::ZExt: 1506 case Instruction::SExt: 1507 case Instruction::FPToUI: 1508 case Instruction::FPToSI: 1509 case Instruction::UIToFP: 1510 case Instruction::SIToFP: 1511 case Instruction::FPTrunc: 1512 case Instruction::FPExt: 1513 case Instruction::GetElementPtr: { 1514 // Bail out if we would create longer vector ops. We could allow creating 1515 // longer vector ops, but that may result in more expensive codegen. 1516 Type *ITy = I->getType(); 1517 if (ITy->isVectorTy() && 1518 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1519 return false; 1520 for (Value *Operand : I->operands()) { 1521 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1522 return false; 1523 } 1524 return true; 1525 } 1526 case Instruction::InsertElement: { 1527 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1528 if (!CI) return false; 1529 int ElementNumber = CI->getLimitedValue(); 1530 1531 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1532 // can't put an element into multiple indices. 1533 bool SeenOnce = false; 1534 for (int i = 0, e = Mask.size(); i != e; ++i) { 1535 if (Mask[i] == ElementNumber) { 1536 if (SeenOnce) 1537 return false; 1538 SeenOnce = true; 1539 } 1540 } 1541 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1542 } 1543 } 1544 return false; 1545 } 1546 1547 /// Rebuild a new instruction just like 'I' but with the new operands given. 1548 /// In the event of type mismatch, the type of the operands is correct. 1549 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1550 // We don't want to use the IRBuilder here because we want the replacement 1551 // instructions to appear next to 'I', not the builder's insertion point. 1552 switch (I->getOpcode()) { 1553 case Instruction::Add: 1554 case Instruction::FAdd: 1555 case Instruction::Sub: 1556 case Instruction::FSub: 1557 case Instruction::Mul: 1558 case Instruction::FMul: 1559 case Instruction::UDiv: 1560 case Instruction::SDiv: 1561 case Instruction::FDiv: 1562 case Instruction::URem: 1563 case Instruction::SRem: 1564 case Instruction::FRem: 1565 case Instruction::Shl: 1566 case Instruction::LShr: 1567 case Instruction::AShr: 1568 case Instruction::And: 1569 case Instruction::Or: 1570 case Instruction::Xor: { 1571 BinaryOperator *BO = cast<BinaryOperator>(I); 1572 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1573 BinaryOperator *New = 1574 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1575 NewOps[0], NewOps[1], "", BO); 1576 if (isa<OverflowingBinaryOperator>(BO)) { 1577 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1578 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1579 } 1580 if (isa<PossiblyExactOperator>(BO)) { 1581 New->setIsExact(BO->isExact()); 1582 } 1583 if (isa<FPMathOperator>(BO)) 1584 New->copyFastMathFlags(I); 1585 return New; 1586 } 1587 case Instruction::ICmp: 1588 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1589 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1590 NewOps[0], NewOps[1]); 1591 case Instruction::FCmp: 1592 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1593 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1594 NewOps[0], NewOps[1]); 1595 case Instruction::Trunc: 1596 case Instruction::ZExt: 1597 case Instruction::SExt: 1598 case Instruction::FPToUI: 1599 case Instruction::FPToSI: 1600 case Instruction::UIToFP: 1601 case Instruction::SIToFP: 1602 case Instruction::FPTrunc: 1603 case Instruction::FPExt: { 1604 // It's possible that the mask has a different number of elements from 1605 // the original cast. We recompute the destination type to match the mask. 1606 Type *DestTy = VectorType::get( 1607 I->getType()->getScalarType(), 1608 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1609 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1610 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1611 "", I); 1612 } 1613 case Instruction::GetElementPtr: { 1614 Value *Ptr = NewOps[0]; 1615 ArrayRef<Value*> Idx = NewOps.slice(1); 1616 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1617 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1618 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1619 return GEP; 1620 } 1621 } 1622 llvm_unreachable("failed to rebuild vector instructions"); 1623 } 1624 1625 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1626 // Mask.size() does not need to be equal to the number of vector elements. 1627 1628 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1629 Type *EltTy = V->getType()->getScalarType(); 1630 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1631 if (isa<UndefValue>(V)) 1632 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1633 1634 if (isa<ConstantAggregateZero>(V)) 1635 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1636 1637 if (Constant *C = dyn_cast<Constant>(V)) 1638 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1639 Mask); 1640 1641 Instruction *I = cast<Instruction>(V); 1642 switch (I->getOpcode()) { 1643 case Instruction::Add: 1644 case Instruction::FAdd: 1645 case Instruction::Sub: 1646 case Instruction::FSub: 1647 case Instruction::Mul: 1648 case Instruction::FMul: 1649 case Instruction::UDiv: 1650 case Instruction::SDiv: 1651 case Instruction::FDiv: 1652 case Instruction::URem: 1653 case Instruction::SRem: 1654 case Instruction::FRem: 1655 case Instruction::Shl: 1656 case Instruction::LShr: 1657 case Instruction::AShr: 1658 case Instruction::And: 1659 case Instruction::Or: 1660 case Instruction::Xor: 1661 case Instruction::ICmp: 1662 case Instruction::FCmp: 1663 case Instruction::Trunc: 1664 case Instruction::ZExt: 1665 case Instruction::SExt: 1666 case Instruction::FPToUI: 1667 case Instruction::FPToSI: 1668 case Instruction::UIToFP: 1669 case Instruction::SIToFP: 1670 case Instruction::FPTrunc: 1671 case Instruction::FPExt: 1672 case Instruction::Select: 1673 case Instruction::GetElementPtr: { 1674 SmallVector<Value*, 8> NewOps; 1675 bool NeedsRebuild = 1676 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1677 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1678 Value *V; 1679 // Recursively call evaluateInDifferentElementOrder on vector arguments 1680 // as well. E.g. GetElementPtr may have scalar operands even if the 1681 // return value is a vector, so we need to examine the operand type. 1682 if (I->getOperand(i)->getType()->isVectorTy()) 1683 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1684 else 1685 V = I->getOperand(i); 1686 NewOps.push_back(V); 1687 NeedsRebuild |= (V != I->getOperand(i)); 1688 } 1689 if (NeedsRebuild) { 1690 return buildNew(I, NewOps); 1691 } 1692 return I; 1693 } 1694 case Instruction::InsertElement: { 1695 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1696 1697 // The insertelement was inserting at Element. Figure out which element 1698 // that becomes after shuffling. The answer is guaranteed to be unique 1699 // by CanEvaluateShuffled. 1700 bool Found = false; 1701 int Index = 0; 1702 for (int e = Mask.size(); Index != e; ++Index) { 1703 if (Mask[Index] == Element) { 1704 Found = true; 1705 break; 1706 } 1707 } 1708 1709 // If element is not in Mask, no need to handle the operand 1 (element to 1710 // be inserted). Just evaluate values in operand 0 according to Mask. 1711 if (!Found) 1712 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1713 1714 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1715 return InsertElementInst::Create(V, I->getOperand(1), 1716 ConstantInt::get(I32Ty, Index), "", I); 1717 } 1718 } 1719 llvm_unreachable("failed to reorder elements of vector instruction!"); 1720 } 1721 1722 // Returns true if the shuffle is extracting a contiguous range of values from 1723 // LHS, for example: 1724 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1725 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1726 // Shuffles to: |EE|FF|GG|HH| 1727 // +--+--+--+--+ 1728 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1729 ArrayRef<int> Mask) { 1730 unsigned LHSElems = 1731 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1732 unsigned MaskElems = Mask.size(); 1733 unsigned BegIdx = Mask.front(); 1734 unsigned EndIdx = Mask.back(); 1735 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1736 return false; 1737 for (unsigned I = 0; I != MaskElems; ++I) 1738 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1739 return false; 1740 return true; 1741 } 1742 1743 /// These are the ingredients in an alternate form binary operator as described 1744 /// below. 1745 struct BinopElts { 1746 BinaryOperator::BinaryOps Opcode; 1747 Value *Op0; 1748 Value *Op1; 1749 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1750 Value *V0 = nullptr, Value *V1 = nullptr) : 1751 Opcode(Opc), Op0(V0), Op1(V1) {} 1752 operator bool() const { return Opcode != 0; } 1753 }; 1754 1755 /// Binops may be transformed into binops with different opcodes and operands. 1756 /// Reverse the usual canonicalization to enable folds with the non-canonical 1757 /// form of the binop. If a transform is possible, return the elements of the 1758 /// new binop. If not, return invalid elements. 1759 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1760 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1761 Type *Ty = BO->getType(); 1762 switch (BO->getOpcode()) { 1763 case Instruction::Shl: { 1764 // shl X, C --> mul X, (1 << C) 1765 Constant *C; 1766 if (match(BO1, m_Constant(C))) { 1767 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1768 return { Instruction::Mul, BO0, ShlOne }; 1769 } 1770 break; 1771 } 1772 case Instruction::Or: { 1773 // or X, C --> add X, C (when X and C have no common bits set) 1774 const APInt *C; 1775 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1776 return { Instruction::Add, BO0, BO1 }; 1777 break; 1778 } 1779 default: 1780 break; 1781 } 1782 return {}; 1783 } 1784 1785 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1786 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1787 1788 // Are we shuffling together some value and that same value after it has been 1789 // modified by a binop with a constant? 1790 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1791 Constant *C; 1792 bool Op0IsBinop; 1793 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1794 Op0IsBinop = true; 1795 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1796 Op0IsBinop = false; 1797 else 1798 return nullptr; 1799 1800 // The identity constant for a binop leaves a variable operand unchanged. For 1801 // a vector, this is a splat of something like 0, -1, or 1. 1802 // If there's no identity constant for this binop, we're done. 1803 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1804 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1805 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1806 if (!IdC) 1807 return nullptr; 1808 1809 // Shuffle identity constants into the lanes that return the original value. 1810 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1811 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1812 // The existing binop constant vector remains in the same operand position. 1813 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1814 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1815 ConstantExpr::getShuffleVector(IdC, C, Mask); 1816 1817 bool MightCreatePoisonOrUB = 1818 is_contained(Mask, UndefMaskElem) && 1819 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1820 if (MightCreatePoisonOrUB) 1821 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1822 1823 // shuf (bop X, C), X, M --> bop X, C' 1824 // shuf X, (bop X, C), M --> bop X, C' 1825 Value *X = Op0IsBinop ? Op1 : Op0; 1826 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1827 NewBO->copyIRFlags(BO); 1828 1829 // An undef shuffle mask element may propagate as an undef constant element in 1830 // the new binop. That would produce poison where the original code might not. 1831 // If we already made a safe constant, then there's no danger. 1832 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1833 NewBO->dropPoisonGeneratingFlags(); 1834 return NewBO; 1835 } 1836 1837 /// If we have an insert of a scalar to a non-zero element of an undefined 1838 /// vector and then shuffle that value, that's the same as inserting to the zero 1839 /// element and shuffling. Splatting from the zero element is recognized as the 1840 /// canonical form of splat. 1841 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1842 InstCombiner::BuilderTy &Builder) { 1843 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1844 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1845 Value *X; 1846 uint64_t IndexC; 1847 1848 // Match a shuffle that is a splat to a non-zero element. 1849 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1850 m_ConstantInt(IndexC)))) || 1851 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1852 return nullptr; 1853 1854 // Insert into element 0 of an undef vector. 1855 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1856 Constant *Zero = Builder.getInt32(0); 1857 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1858 1859 // Splat from element 0. Any mask element that is undefined remains undefined. 1860 // For example: 1861 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1862 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1863 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1864 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1865 for (unsigned i = 0; i != NumMaskElts; ++i) 1866 if (Mask[i] == UndefMaskElem) 1867 NewMask[i] = Mask[i]; 1868 1869 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1870 } 1871 1872 /// Try to fold shuffles that are the equivalent of a vector select. 1873 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1874 InstCombiner::BuilderTy &Builder, 1875 const DataLayout &DL) { 1876 if (!Shuf.isSelect()) 1877 return nullptr; 1878 1879 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1880 // Commuting undef to operand 0 conflicts with another canonicalization. 1881 unsigned NumElts = Shuf.getType()->getNumElements(); 1882 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1883 Shuf.getMaskValue(0) >= (int)NumElts) { 1884 // TODO: Can we assert that both operands of a shuffle-select are not undef 1885 // (otherwise, it would have been folded by instsimplify? 1886 Shuf.commute(); 1887 return &Shuf; 1888 } 1889 1890 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1891 return I; 1892 1893 BinaryOperator *B0, *B1; 1894 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1895 !match(Shuf.getOperand(1), m_BinOp(B1))) 1896 return nullptr; 1897 1898 Value *X, *Y; 1899 Constant *C0, *C1; 1900 bool ConstantsAreOp1; 1901 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1902 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1903 ConstantsAreOp1 = true; 1904 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1905 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1906 ConstantsAreOp1 = false; 1907 else 1908 return nullptr; 1909 1910 // We need matching binops to fold the lanes together. 1911 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1912 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1913 bool DropNSW = false; 1914 if (ConstantsAreOp1 && Opc0 != Opc1) { 1915 // TODO: We drop "nsw" if shift is converted into multiply because it may 1916 // not be correct when the shift amount is BitWidth - 1. We could examine 1917 // each vector element to determine if it is safe to keep that flag. 1918 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1919 DropNSW = true; 1920 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1921 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1922 Opc0 = AltB0.Opcode; 1923 C0 = cast<Constant>(AltB0.Op1); 1924 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1925 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1926 Opc1 = AltB1.Opcode; 1927 C1 = cast<Constant>(AltB1.Op1); 1928 } 1929 } 1930 1931 if (Opc0 != Opc1) 1932 return nullptr; 1933 1934 // The opcodes must be the same. Use a new name to make that clear. 1935 BinaryOperator::BinaryOps BOpc = Opc0; 1936 1937 // Select the constant elements needed for the single binop. 1938 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1939 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1940 1941 // We are moving a binop after a shuffle. When a shuffle has an undefined 1942 // mask element, the result is undefined, but it is not poison or undefined 1943 // behavior. That is not necessarily true for div/rem/shift. 1944 bool MightCreatePoisonOrUB = 1945 is_contained(Mask, UndefMaskElem) && 1946 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1947 if (MightCreatePoisonOrUB) 1948 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 1949 ConstantsAreOp1); 1950 1951 Value *V; 1952 if (X == Y) { 1953 // Remove a binop and the shuffle by rearranging the constant: 1954 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1955 // shuffle (op C0, V), (op C1, V), M --> op C', V 1956 V = X; 1957 } else { 1958 // If there are 2 different variable operands, we must create a new shuffle 1959 // (select) first, so check uses to ensure that we don't end up with more 1960 // instructions than we started with. 1961 if (!B0->hasOneUse() && !B1->hasOneUse()) 1962 return nullptr; 1963 1964 // If we use the original shuffle mask and op1 is *variable*, we would be 1965 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1966 // poison. We do not have to guard against UB when *constants* are op1 1967 // because safe constants guarantee that we do not overflow sdiv/srem (and 1968 // there's no danger for other opcodes). 1969 // TODO: To allow this case, create a new shuffle mask with no undefs. 1970 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1971 return nullptr; 1972 1973 // Note: In general, we do not create new shuffles in InstCombine because we 1974 // do not know if a target can lower an arbitrary shuffle optimally. In this 1975 // case, the shuffle uses the existing mask, so there is no additional risk. 1976 1977 // Select the variable vectors first, then perform the binop: 1978 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1979 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1980 V = Builder.CreateShuffleVector(X, Y, Mask); 1981 } 1982 1983 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1984 BinaryOperator::Create(BOpc, NewC, V); 1985 1986 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1987 // 1. If we changed an opcode, poison conditions might have changed. 1988 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1989 // where the original code did not. But if we already made a safe constant, 1990 // then there's no danger. 1991 NewBO->copyIRFlags(B0); 1992 NewBO->andIRFlags(B1); 1993 if (DropNSW) 1994 NewBO->setHasNoSignedWrap(false); 1995 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1996 NewBO->dropPoisonGeneratingFlags(); 1997 return NewBO; 1998 } 1999 2000 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2001 /// Example (little endian): 2002 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2003 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2004 bool IsBigEndian) { 2005 // This must be a bitcasted shuffle of 1 vector integer operand. 2006 Type *DestType = Shuf.getType(); 2007 Value *X; 2008 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2009 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2010 return nullptr; 2011 2012 // The source type must have the same number of elements as the shuffle, 2013 // and the source element type must be larger than the shuffle element type. 2014 Type *SrcType = X->getType(); 2015 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2016 cast<VectorType>(SrcType)->getNumElements() != 2017 cast<VectorType>(DestType)->getNumElements() || 2018 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2019 return nullptr; 2020 2021 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2022 "Expected a shuffle that decreases length"); 2023 2024 // Last, check that the mask chooses the correct low bits for each narrow 2025 // element in the result. 2026 uint64_t TruncRatio = 2027 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2028 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2029 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2030 if (Mask[i] == UndefMaskElem) 2031 continue; 2032 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2033 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 2034 "Overflowed 32-bits"); 2035 if (Mask[i] != (int)LSBIndex) 2036 return nullptr; 2037 } 2038 2039 return new TruncInst(X, DestType); 2040 } 2041 2042 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2043 /// narrowing (concatenating with undef and extracting back to the original 2044 /// length). This allows replacing the wide select with a narrow select. 2045 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2046 InstCombiner::BuilderTy &Builder) { 2047 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2048 // of the 1st vector operand of a shuffle. 2049 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2050 return nullptr; 2051 2052 // The vector being shuffled must be a vector select that we can eliminate. 2053 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2054 Value *Cond, *X, *Y; 2055 if (!match(Shuf.getOperand(0), 2056 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2057 return nullptr; 2058 2059 // We need a narrow condition value. It must be extended with undef elements 2060 // and have the same number of elements as this shuffle. 2061 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 2062 Value *NarrowCond; 2063 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2064 cast<VectorType>(NarrowCond->getType())->getNumElements() != 2065 NarrowNumElts || 2066 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2067 return nullptr; 2068 2069 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2070 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2071 Value *Undef = UndefValue::get(X->getType()); 2072 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 2073 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 2074 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2075 } 2076 2077 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2078 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2079 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2080 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 2081 return nullptr; 2082 2083 Value *X, *Y; 2084 ArrayRef<int> Mask; 2085 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2086 return nullptr; 2087 2088 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2089 // then combining may result in worse codegen. 2090 if (!Op0->hasOneUse()) 2091 return nullptr; 2092 2093 // We are extracting a subvector from a shuffle. Remove excess elements from 2094 // the 1st shuffle mask to eliminate the extract. 2095 // 2096 // This transform is conservatively limited to identity extracts because we do 2097 // not allow arbitrary shuffle mask creation as a target-independent transform 2098 // (because we can't guarantee that will lower efficiently). 2099 // 2100 // If the extracting shuffle has an undef mask element, it transfers to the 2101 // new shuffle mask. Otherwise, copy the original mask element. Example: 2102 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2103 // shuf X, Y, <C0, undef, C2, undef> 2104 unsigned NumElts = Shuf.getType()->getNumElements(); 2105 SmallVector<int, 16> NewMask(NumElts); 2106 assert(NumElts < Mask.size() && 2107 "Identity with extract must have less elements than its inputs"); 2108 2109 for (unsigned i = 0; i != NumElts; ++i) { 2110 int ExtractMaskElt = Shuf.getMaskValue(i); 2111 int MaskElt = Mask[i]; 2112 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2113 } 2114 return new ShuffleVectorInst(X, Y, NewMask); 2115 } 2116 2117 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2118 /// operand with the operand of an insertelement. 2119 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2120 InstCombinerImpl &IC) { 2121 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2122 SmallVector<int, 16> Mask; 2123 Shuf.getShuffleMask(Mask); 2124 2125 // The shuffle must not change vector sizes. 2126 // TODO: This restriction could be removed if the insert has only one use 2127 // (because the transform would require a new length-changing shuffle). 2128 int NumElts = Mask.size(); 2129 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 2130 return nullptr; 2131 2132 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2133 // not be able to handle it there if the insertelement has >1 use. 2134 // If the shuffle has an insertelement operand but does not choose the 2135 // inserted scalar element from that value, then we can replace that shuffle 2136 // operand with the source vector of the insertelement. 2137 Value *X; 2138 uint64_t IdxC; 2139 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2140 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2141 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 2142 return IC.replaceOperand(Shuf, 0, X); 2143 } 2144 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2145 // Offset the index constant by the vector width because we are checking for 2146 // accesses to the 2nd vector input of the shuffle. 2147 IdxC += NumElts; 2148 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2149 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 2150 return IC.replaceOperand(Shuf, 1, X); 2151 } 2152 2153 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2154 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2155 // We need an insertelement with a constant index. 2156 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2157 m_ConstantInt(IndexC)))) 2158 return false; 2159 2160 // Test the shuffle mask to see if it splices the inserted scalar into the 2161 // operand 1 vector of the shuffle. 2162 int NewInsIndex = -1; 2163 for (int i = 0; i != NumElts; ++i) { 2164 // Ignore undef mask elements. 2165 if (Mask[i] == -1) 2166 continue; 2167 2168 // The shuffle takes elements of operand 1 without lane changes. 2169 if (Mask[i] == NumElts + i) 2170 continue; 2171 2172 // The shuffle must choose the inserted scalar exactly once. 2173 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2174 return false; 2175 2176 // The shuffle is placing the inserted scalar into element i. 2177 NewInsIndex = i; 2178 } 2179 2180 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2181 2182 // Index is updated to the potentially translated insertion lane. 2183 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2184 return true; 2185 }; 2186 2187 // If the shuffle is unnecessary, insert the scalar operand directly into 2188 // operand 1 of the shuffle. Example: 2189 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2190 Value *Scalar; 2191 ConstantInt *IndexC; 2192 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2193 return InsertElementInst::Create(V1, Scalar, IndexC); 2194 2195 // Try again after commuting shuffle. Example: 2196 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2197 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2198 std::swap(V0, V1); 2199 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2200 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2201 return InsertElementInst::Create(V1, Scalar, IndexC); 2202 2203 return nullptr; 2204 } 2205 2206 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2207 // Match the operands as identity with padding (also known as concatenation 2208 // with undef) shuffles of the same source type. The backend is expected to 2209 // recreate these concatenations from a shuffle of narrow operands. 2210 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2211 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2212 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2213 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2214 return nullptr; 2215 2216 // We limit this transform to power-of-2 types because we expect that the 2217 // backend can convert the simplified IR patterns to identical nodes as the 2218 // original IR. 2219 // TODO: If we can verify the same behavior for arbitrary types, the 2220 // power-of-2 checks can be removed. 2221 Value *X = Shuffle0->getOperand(0); 2222 Value *Y = Shuffle1->getOperand(0); 2223 if (X->getType() != Y->getType() || 2224 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 2225 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 2226 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 2227 isa<UndefValue>(X) || isa<UndefValue>(Y)) 2228 return nullptr; 2229 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 2230 isa<UndefValue>(Shuffle1->getOperand(1)) && 2231 "Unexpected operand for identity shuffle"); 2232 2233 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2234 // operands directly by adjusting the shuffle mask to account for the narrower 2235 // types: 2236 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2237 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 2238 int WideElts = Shuffle0->getType()->getNumElements(); 2239 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2240 2241 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2242 SmallVector<int, 16> NewMask(Mask.size(), -1); 2243 for (int i = 0, e = Mask.size(); i != e; ++i) { 2244 if (Mask[i] == -1) 2245 continue; 2246 2247 // If this shuffle is choosing an undef element from 1 of the sources, that 2248 // element is undef. 2249 if (Mask[i] < WideElts) { 2250 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2251 continue; 2252 } else { 2253 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2254 continue; 2255 } 2256 2257 // If this shuffle is choosing from the 1st narrow op, the mask element is 2258 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2259 // element is offset down to adjust for the narrow vector widths. 2260 if (Mask[i] < WideElts) { 2261 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2262 NewMask[i] = Mask[i]; 2263 } else { 2264 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2265 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2266 } 2267 } 2268 return new ShuffleVectorInst(X, Y, NewMask); 2269 } 2270 2271 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2272 Value *LHS = SVI.getOperand(0); 2273 Value *RHS = SVI.getOperand(1); 2274 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2275 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2276 SVI.getType(), ShufQuery)) 2277 return replaceInstUsesWith(SVI, V); 2278 2279 // shuffle x, x, mask --> shuffle x, undef, mask' 2280 unsigned VWidth = SVI.getType()->getNumElements(); 2281 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 2282 ArrayRef<int> Mask = SVI.getShuffleMask(); 2283 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2284 2285 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2286 // simulated shuffle can simplify, then this shuffle is unnecessary: 2287 // shuf (bitcast X), undef, Mask --> bitcast X' 2288 // TODO: This could be extended to allow length-changing shuffles. 2289 // The transform might also be obsoleted if we allowed canonicalization 2290 // of bitcasted shuffles. 2291 Value *X; 2292 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2293 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2294 // Try to create a scaled mask constant. 2295 auto *XType = cast<VectorType>(X->getType()); 2296 unsigned XNumElts = XType->getNumElements(); 2297 SmallVector<int, 16> ScaledMask; 2298 if (XNumElts >= VWidth) { 2299 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2300 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2301 } else { 2302 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2303 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2304 ScaledMask.clear(); 2305 } 2306 if (!ScaledMask.empty()) { 2307 // If the shuffled source vector simplifies, cast that value to this 2308 // shuffle's type. 2309 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2310 ScaledMask, XType, ShufQuery)) 2311 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2312 } 2313 } 2314 2315 if (LHS == RHS) { 2316 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2317 // Remap any references to RHS to use LHS. 2318 SmallVector<int, 16> Elts; 2319 for (unsigned i = 0; i != VWidth; ++i) { 2320 // Propagate undef elements or force mask to LHS. 2321 if (Mask[i] < 0) 2322 Elts.push_back(UndefMaskElem); 2323 else 2324 Elts.push_back(Mask[i] % LHSWidth); 2325 } 2326 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2327 } 2328 2329 // shuffle undef, x, mask --> shuffle x, undef, mask' 2330 if (isa<UndefValue>(LHS)) { 2331 SVI.commute(); 2332 return &SVI; 2333 } 2334 2335 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2336 return I; 2337 2338 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2339 return I; 2340 2341 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2342 return I; 2343 2344 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2345 return I; 2346 2347 APInt UndefElts(VWidth, 0); 2348 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2349 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2350 if (V != &SVI) 2351 return replaceInstUsesWith(SVI, V); 2352 return &SVI; 2353 } 2354 2355 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2356 return I; 2357 2358 // These transforms have the potential to lose undef knowledge, so they are 2359 // intentionally placed after SimplifyDemandedVectorElts(). 2360 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2361 return I; 2362 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2363 return I; 2364 2365 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2366 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2367 return replaceInstUsesWith(SVI, V); 2368 } 2369 2370 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2371 // a non-vector type. We can instead bitcast the original vector followed by 2372 // an extract of the desired element: 2373 // 2374 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2375 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2376 // %1 = bitcast <4 x i8> %sroa to i32 2377 // Becomes: 2378 // %bc = bitcast <16 x i8> %in to <4 x i32> 2379 // %ext = extractelement <4 x i32> %bc, i32 0 2380 // 2381 // If the shuffle is extracting a contiguous range of values from the input 2382 // vector then each use which is a bitcast of the extracted size can be 2383 // replaced. This will work if the vector types are compatible, and the begin 2384 // index is aligned to a value in the casted vector type. If the begin index 2385 // isn't aligned then we can shuffle the original vector (keeping the same 2386 // vector type) before extracting. 2387 // 2388 // This code will bail out if the target type is fundamentally incompatible 2389 // with vectors of the source type. 2390 // 2391 // Example of <16 x i8>, target type i32: 2392 // Index range [4,8): v-----------v Will work. 2393 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2394 // <16 x i8>: | | | | | | | | | | | | | | | | | 2395 // <4 x i32>: | | | | | 2396 // +-----------+-----------+-----------+-----------+ 2397 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2398 // Target type i40: ^--------------^ Won't work, bail. 2399 bool MadeChange = false; 2400 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2401 Value *V = LHS; 2402 unsigned MaskElems = Mask.size(); 2403 VectorType *SrcTy = cast<VectorType>(V->getType()); 2404 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2405 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2406 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2407 unsigned SrcNumElems = SrcTy->getNumElements(); 2408 SmallVector<BitCastInst *, 8> BCs; 2409 DenseMap<Type *, Value *> NewBCs; 2410 for (User *U : SVI.users()) 2411 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2412 if (!BC->use_empty()) 2413 // Only visit bitcasts that weren't previously handled. 2414 BCs.push_back(BC); 2415 for (BitCastInst *BC : BCs) { 2416 unsigned BegIdx = Mask.front(); 2417 Type *TgtTy = BC->getDestTy(); 2418 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2419 if (!TgtElemBitWidth) 2420 continue; 2421 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2422 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2423 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2424 if (!VecBitWidthsEqual) 2425 continue; 2426 if (!VectorType::isValidElementType(TgtTy)) 2427 continue; 2428 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2429 if (!BegIsAligned) { 2430 // Shuffle the input so [0,NumElements) contains the output, and 2431 // [NumElems,SrcNumElems) is undef. 2432 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2433 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2434 ShuffleMask[I] = Idx; 2435 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2436 ShuffleMask, 2437 SVI.getName() + ".extract"); 2438 BegIdx = 0; 2439 } 2440 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2441 assert(SrcElemsPerTgtElem); 2442 BegIdx /= SrcElemsPerTgtElem; 2443 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2444 auto *NewBC = 2445 BCAlreadyExists 2446 ? NewBCs[CastSrcTy] 2447 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2448 if (!BCAlreadyExists) 2449 NewBCs[CastSrcTy] = NewBC; 2450 auto *Ext = Builder.CreateExtractElement( 2451 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2452 // The shufflevector isn't being replaced: the bitcast that used it 2453 // is. InstCombine will visit the newly-created instructions. 2454 replaceInstUsesWith(*BC, Ext); 2455 MadeChange = true; 2456 } 2457 } 2458 2459 // If the LHS is a shufflevector itself, see if we can combine it with this 2460 // one without producing an unusual shuffle. 2461 // Cases that might be simplified: 2462 // 1. 2463 // x1=shuffle(v1,v2,mask1) 2464 // x=shuffle(x1,undef,mask) 2465 // ==> 2466 // x=shuffle(v1,undef,newMask) 2467 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2468 // 2. 2469 // x1=shuffle(v1,undef,mask1) 2470 // x=shuffle(x1,x2,mask) 2471 // where v1.size() == mask1.size() 2472 // ==> 2473 // x=shuffle(v1,x2,newMask) 2474 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2475 // 3. 2476 // x2=shuffle(v2,undef,mask2) 2477 // x=shuffle(x1,x2,mask) 2478 // where v2.size() == mask2.size() 2479 // ==> 2480 // x=shuffle(x1,v2,newMask) 2481 // newMask[i] = (mask[i] < x1.size()) 2482 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2483 // 4. 2484 // x1=shuffle(v1,undef,mask1) 2485 // x2=shuffle(v2,undef,mask2) 2486 // x=shuffle(x1,x2,mask) 2487 // where v1.size() == v2.size() 2488 // ==> 2489 // x=shuffle(v1,v2,newMask) 2490 // newMask[i] = (mask[i] < x1.size()) 2491 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2492 // 2493 // Here we are really conservative: 2494 // we are absolutely afraid of producing a shuffle mask not in the input 2495 // program, because the code gen may not be smart enough to turn a merged 2496 // shuffle into two specific shuffles: it may produce worse code. As such, 2497 // we only merge two shuffles if the result is either a splat or one of the 2498 // input shuffle masks. In this case, merging the shuffles just removes 2499 // one instruction, which we know is safe. This is good for things like 2500 // turning: (splat(splat)) -> splat, or 2501 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2502 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2503 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2504 if (LHSShuffle) 2505 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2506 LHSShuffle = nullptr; 2507 if (RHSShuffle) 2508 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2509 RHSShuffle = nullptr; 2510 if (!LHSShuffle && !RHSShuffle) 2511 return MadeChange ? &SVI : nullptr; 2512 2513 Value* LHSOp0 = nullptr; 2514 Value* LHSOp1 = nullptr; 2515 Value* RHSOp0 = nullptr; 2516 unsigned LHSOp0Width = 0; 2517 unsigned RHSOp0Width = 0; 2518 if (LHSShuffle) { 2519 LHSOp0 = LHSShuffle->getOperand(0); 2520 LHSOp1 = LHSShuffle->getOperand(1); 2521 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2522 } 2523 if (RHSShuffle) { 2524 RHSOp0 = RHSShuffle->getOperand(0); 2525 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2526 } 2527 Value* newLHS = LHS; 2528 Value* newRHS = RHS; 2529 if (LHSShuffle) { 2530 // case 1 2531 if (isa<UndefValue>(RHS)) { 2532 newLHS = LHSOp0; 2533 newRHS = LHSOp1; 2534 } 2535 // case 2 or 4 2536 else if (LHSOp0Width == LHSWidth) { 2537 newLHS = LHSOp0; 2538 } 2539 } 2540 // case 3 or 4 2541 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2542 newRHS = RHSOp0; 2543 } 2544 // case 4 2545 if (LHSOp0 == RHSOp0) { 2546 newLHS = LHSOp0; 2547 newRHS = nullptr; 2548 } 2549 2550 if (newLHS == LHS && newRHS == RHS) 2551 return MadeChange ? &SVI : nullptr; 2552 2553 ArrayRef<int> LHSMask; 2554 ArrayRef<int> RHSMask; 2555 if (newLHS != LHS) 2556 LHSMask = LHSShuffle->getShuffleMask(); 2557 if (RHSShuffle && newRHS != RHS) 2558 RHSMask = RHSShuffle->getShuffleMask(); 2559 2560 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2561 SmallVector<int, 16> newMask; 2562 bool isSplat = true; 2563 int SplatElt = -1; 2564 // Create a new mask for the new ShuffleVectorInst so that the new 2565 // ShuffleVectorInst is equivalent to the original one. 2566 for (unsigned i = 0; i < VWidth; ++i) { 2567 int eltMask; 2568 if (Mask[i] < 0) { 2569 // This element is an undef value. 2570 eltMask = -1; 2571 } else if (Mask[i] < (int)LHSWidth) { 2572 // This element is from left hand side vector operand. 2573 // 2574 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2575 // new mask value for the element. 2576 if (newLHS != LHS) { 2577 eltMask = LHSMask[Mask[i]]; 2578 // If the value selected is an undef value, explicitly specify it 2579 // with a -1 mask value. 2580 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2581 eltMask = -1; 2582 } else 2583 eltMask = Mask[i]; 2584 } else { 2585 // This element is from right hand side vector operand 2586 // 2587 // If the value selected is an undef value, explicitly specify it 2588 // with a -1 mask value. (case 1) 2589 if (isa<UndefValue>(RHS)) 2590 eltMask = -1; 2591 // If RHS is going to be replaced (case 3 or 4), calculate the 2592 // new mask value for the element. 2593 else if (newRHS != RHS) { 2594 eltMask = RHSMask[Mask[i]-LHSWidth]; 2595 // If the value selected is an undef value, explicitly specify it 2596 // with a -1 mask value. 2597 if (eltMask >= (int)RHSOp0Width) { 2598 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2599 && "should have been check above"); 2600 eltMask = -1; 2601 } 2602 } else 2603 eltMask = Mask[i]-LHSWidth; 2604 2605 // If LHS's width is changed, shift the mask value accordingly. 2606 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2607 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2608 // If newRHS == newLHS, we want to remap any references from newRHS to 2609 // newLHS so that we can properly identify splats that may occur due to 2610 // obfuscation across the two vectors. 2611 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2612 eltMask += newLHSWidth; 2613 } 2614 2615 // Check if this could still be a splat. 2616 if (eltMask >= 0) { 2617 if (SplatElt >= 0 && SplatElt != eltMask) 2618 isSplat = false; 2619 SplatElt = eltMask; 2620 } 2621 2622 newMask.push_back(eltMask); 2623 } 2624 2625 // If the result mask is equal to one of the original shuffle masks, 2626 // or is a splat, do the replacement. 2627 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2628 SmallVector<Constant*, 16> Elts; 2629 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2630 if (newMask[i] < 0) { 2631 Elts.push_back(UndefValue::get(Int32Ty)); 2632 } else { 2633 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2634 } 2635 } 2636 if (!newRHS) 2637 newRHS = UndefValue::get(newLHS->getType()); 2638 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2639 } 2640 2641 return MadeChange ? &SVI : nullptr; 2642 } 2643