1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 #include "llvm/Transforms/Utils/InstructionWorklist.h" 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. If the extract index \p EI is a constant integer then 56 /// some operations may be cheap to scalarize. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, Value *EI) { 60 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 61 62 // If we can pick a scalar constant value out of a vector, that is free. 63 if (auto *C = dyn_cast<Constant>(V)) 64 return CEI || C->getSplatValue(); 65 66 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 67 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 68 // Index needs to be lower than the minimum size of the vector, because 69 // for scalable vector, the vector size is known at run time. 70 return CEI->getValue().ult(EC.getKnownMinValue()); 71 } 72 73 // An insertelement to the same constant index as our extract will simplify 74 // to the scalar inserted element. An insertelement to a different constant 75 // index is irrelevant to our extract. 76 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 77 return CEI; 78 79 if (match(V, m_OneUse(m_Load(m_Value())))) 80 return true; 81 82 if (match(V, m_OneUse(m_UnOp()))) 83 return true; 84 85 Value *V0, *V1; 86 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 87 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 88 return true; 89 90 CmpInst::Predicate UnusedPred; 91 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 92 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 93 return true; 94 95 return false; 96 } 97 98 // If we have a PHI node with a vector type that is only used to feed 99 // itself and be an operand of extractelement at a constant location, 100 // try to replace the PHI of the vector type with a PHI of a scalar type. 101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 102 PHINode *PN) { 103 SmallVector<Instruction *, 2> Extracts; 104 // The users we want the PHI to have are: 105 // 1) The EI ExtractElement (we already know this) 106 // 2) Possibly more ExtractElements with the same index. 107 // 3) Another operand, which will feed back into the PHI. 108 Instruction *PHIUser = nullptr; 109 for (auto U : PN->users()) { 110 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 111 if (EI.getIndexOperand() == EU->getIndexOperand()) 112 Extracts.push_back(EU); 113 else 114 return nullptr; 115 } else if (!PHIUser) { 116 PHIUser = cast<Instruction>(U); 117 } else { 118 return nullptr; 119 } 120 } 121 122 if (!PHIUser) 123 return nullptr; 124 125 // Verify that this PHI user has one use, which is the PHI itself, 126 // and that it is a binary operation which is cheap to scalarize. 127 // otherwise return nullptr. 128 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 129 !(isa<BinaryOperator>(PHIUser)) || 130 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 131 return nullptr; 132 133 // Create a scalar PHI node that will replace the vector PHI node 134 // just before the current PHI node. 135 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 136 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 137 // Scalarize each PHI operand. 138 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 139 Value *PHIInVal = PN->getIncomingValue(i); 140 BasicBlock *inBB = PN->getIncomingBlock(i); 141 Value *Elt = EI.getIndexOperand(); 142 // If the operand is the PHI induction variable: 143 if (PHIInVal == PHIUser) { 144 // Scalarize the binary operation. Its first operand is the 145 // scalar PHI, and the second operand is extracted from the other 146 // vector operand. 147 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 148 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 149 Value *Op = InsertNewInstWith( 150 ExtractElementInst::Create(B0->getOperand(opId), Elt, 151 B0->getOperand(opId)->getName() + ".Elt"), 152 *B0); 153 Value *newPHIUser = InsertNewInstWith( 154 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 155 scalarPHI, Op, B0), *B0); 156 scalarPHI->addIncoming(newPHIUser, inBB); 157 } else { 158 // Scalarize PHI input: 159 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 160 // Insert the new instruction into the predecessor basic block. 161 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 162 BasicBlock::iterator InsertPos; 163 if (pos && !isa<PHINode>(pos)) { 164 InsertPos = ++pos->getIterator(); 165 } else { 166 InsertPos = inBB->getFirstInsertionPt(); 167 } 168 169 InsertNewInstWith(newEI, *InsertPos); 170 171 scalarPHI->addIncoming(newEI, inBB); 172 } 173 } 174 175 for (auto E : Extracts) 176 replaceInstUsesWith(*E, scalarPHI); 177 178 return &EI; 179 } 180 181 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 182 InstCombiner::BuilderTy &Builder, 183 bool IsBigEndian) { 184 Value *X; 185 uint64_t ExtIndexC; 186 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 187 !X->getType()->isVectorTy() || 188 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 189 return nullptr; 190 191 // If this extractelement is using a bitcast from a vector of the same number 192 // of elements, see if we can find the source element from the source vector: 193 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 194 auto *SrcTy = cast<VectorType>(X->getType()); 195 Type *DestTy = Ext.getType(); 196 ElementCount NumSrcElts = SrcTy->getElementCount(); 197 ElementCount NumElts = 198 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 199 if (NumSrcElts == NumElts) 200 if (Value *Elt = findScalarElement(X, ExtIndexC)) 201 return new BitCastInst(Elt, DestTy); 202 203 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 204 "Src and Dst must be the same sort of vector type"); 205 206 // If the source elements are wider than the destination, try to shift and 207 // truncate a subset of scalar bits of an insert op. 208 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 209 Value *Scalar; 210 uint64_t InsIndexC; 211 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 212 m_ConstantInt(InsIndexC)))) 213 return nullptr; 214 215 // The extract must be from the subset of vector elements that we inserted 216 // into. Example: if we inserted element 1 of a <2 x i64> and we are 217 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 218 // of elements 4-7 of the bitcasted vector. 219 unsigned NarrowingRatio = 220 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 221 if (ExtIndexC / NarrowingRatio != InsIndexC) 222 return nullptr; 223 224 // We are extracting part of the original scalar. How that scalar is 225 // inserted into the vector depends on the endian-ness. Example: 226 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 227 // +--+--+--+--+--+--+--+--+ 228 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 229 // extelt <4 x i16> V', 3: | |S2|S3| 230 // +--+--+--+--+--+--+--+--+ 231 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 232 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 233 // In this example, we must right-shift little-endian. Big-endian is just a 234 // truncate. 235 unsigned Chunk = ExtIndexC % NarrowingRatio; 236 if (IsBigEndian) 237 Chunk = NarrowingRatio - 1 - Chunk; 238 239 // Bail out if this is an FP vector to FP vector sequence. That would take 240 // more instructions than we started with unless there is no shift, and it 241 // may not be handled as well in the backend. 242 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 243 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 244 if (NeedSrcBitcast && NeedDestBitcast) 245 return nullptr; 246 247 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 248 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 249 unsigned ShAmt = Chunk * DestWidth; 250 251 // TODO: This limitation is more strict than necessary. We could sum the 252 // number of new instructions and subtract the number eliminated to know if 253 // we can proceed. 254 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 255 if (NeedSrcBitcast || NeedDestBitcast) 256 return nullptr; 257 258 if (NeedSrcBitcast) { 259 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 260 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 261 } 262 263 if (ShAmt) { 264 // Bail out if we could end with more instructions than we started with. 265 if (!Ext.getVectorOperand()->hasOneUse()) 266 return nullptr; 267 Scalar = Builder.CreateLShr(Scalar, ShAmt); 268 } 269 270 if (NeedDestBitcast) { 271 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 272 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 273 } 274 return new TruncInst(Scalar, DestTy); 275 } 276 277 return nullptr; 278 } 279 280 /// Find elements of V demanded by UserInstr. 281 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 282 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 283 284 // Conservatively assume that all elements are needed. 285 APInt UsedElts(APInt::getAllOnes(VWidth)); 286 287 switch (UserInstr->getOpcode()) { 288 case Instruction::ExtractElement: { 289 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 290 assert(EEI->getVectorOperand() == V); 291 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 292 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 293 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 294 } 295 break; 296 } 297 case Instruction::ShuffleVector: { 298 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 299 unsigned MaskNumElts = 300 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 301 302 UsedElts = APInt(VWidth, 0); 303 for (unsigned i = 0; i < MaskNumElts; i++) { 304 unsigned MaskVal = Shuffle->getMaskValue(i); 305 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 306 continue; 307 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 308 UsedElts.setBit(MaskVal); 309 if (Shuffle->getOperand(1) == V && 310 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 311 UsedElts.setBit(MaskVal - VWidth); 312 } 313 break; 314 } 315 default: 316 break; 317 } 318 return UsedElts; 319 } 320 321 /// Find union of elements of V demanded by all its users. 322 /// If it is known by querying findDemandedEltsBySingleUser that 323 /// no user demands an element of V, then the corresponding bit 324 /// remains unset in the returned value. 325 static APInt findDemandedEltsByAllUsers(Value *V) { 326 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 327 328 APInt UnionUsedElts(VWidth, 0); 329 for (const Use &U : V->uses()) { 330 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 331 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 332 } else { 333 UnionUsedElts = APInt::getAllOnes(VWidth); 334 break; 335 } 336 337 if (UnionUsedElts.isAllOnes()) 338 break; 339 } 340 341 return UnionUsedElts; 342 } 343 344 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 345 Value *SrcVec = EI.getVectorOperand(); 346 Value *Index = EI.getIndexOperand(); 347 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 348 SQ.getWithInstruction(&EI))) 349 return replaceInstUsesWith(EI, V); 350 351 // If extracting a specified index from the vector, see if we can recursively 352 // find a previously computed scalar that was inserted into the vector. 353 auto *IndexC = dyn_cast<ConstantInt>(Index); 354 if (IndexC) { 355 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 356 unsigned NumElts = EC.getKnownMinValue(); 357 358 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 359 Intrinsic::ID IID = II->getIntrinsicID(); 360 // Index needs to be lower than the minimum size of the vector, because 361 // for scalable vector, the vector size is known at run time. 362 if (IID == Intrinsic::experimental_stepvector && 363 IndexC->getValue().ult(NumElts)) { 364 Type *Ty = EI.getType(); 365 unsigned BitWidth = Ty->getIntegerBitWidth(); 366 Value *Idx; 367 // Return index when its value does not exceed the allowed limit 368 // for the element type of the vector, otherwise return undefined. 369 if (IndexC->getValue().getActiveBits() <= BitWidth) 370 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 371 else 372 Idx = UndefValue::get(Ty); 373 return replaceInstUsesWith(EI, Idx); 374 } 375 } 376 377 // InstSimplify should handle cases where the index is invalid. 378 // For fixed-length vector, it's invalid to extract out-of-range element. 379 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 380 return nullptr; 381 382 // This instruction only demands the single element from the input vector. 383 // Skip for scalable type, the number of elements is unknown at 384 // compile-time. 385 if (!EC.isScalable() && NumElts != 1) { 386 // If the input vector has a single use, simplify it based on this use 387 // property. 388 if (SrcVec->hasOneUse()) { 389 APInt UndefElts(NumElts, 0); 390 APInt DemandedElts(NumElts, 0); 391 DemandedElts.setBit(IndexC->getZExtValue()); 392 if (Value *V = 393 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 394 return replaceOperand(EI, 0, V); 395 } else { 396 // If the input vector has multiple uses, simplify it based on a union 397 // of all elements used. 398 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 399 if (!DemandedElts.isAllOnes()) { 400 APInt UndefElts(NumElts, 0); 401 if (Value *V = SimplifyDemandedVectorElts( 402 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 403 true /* AllowMultipleUsers */)) { 404 if (V != SrcVec) { 405 SrcVec->replaceAllUsesWith(V); 406 return &EI; 407 } 408 } 409 } 410 } 411 } 412 413 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 414 return I; 415 416 // If there's a vector PHI feeding a scalar use through this extractelement 417 // instruction, try to scalarize the PHI. 418 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 419 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 420 return ScalarPHI; 421 } 422 423 // TODO come up with a n-ary matcher that subsumes both unary and 424 // binary matchers. 425 UnaryOperator *UO; 426 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 427 // extelt (unop X), Index --> unop (extelt X, Index) 428 Value *X = UO->getOperand(0); 429 Value *E = Builder.CreateExtractElement(X, Index); 430 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 431 } 432 433 BinaryOperator *BO; 434 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 435 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 436 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 437 Value *E0 = Builder.CreateExtractElement(X, Index); 438 Value *E1 = Builder.CreateExtractElement(Y, Index); 439 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 440 } 441 442 Value *X, *Y; 443 CmpInst::Predicate Pred; 444 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 445 cheapToScalarize(SrcVec, Index)) { 446 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 447 Value *E0 = Builder.CreateExtractElement(X, Index); 448 Value *E1 = Builder.CreateExtractElement(Y, Index); 449 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 450 } 451 452 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 453 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 454 // Extracting the inserted element? 455 if (IE->getOperand(2) == Index) 456 return replaceInstUsesWith(EI, IE->getOperand(1)); 457 // If the inserted and extracted elements are constants, they must not 458 // be the same value, extract from the pre-inserted value instead. 459 if (isa<Constant>(IE->getOperand(2)) && IndexC) 460 return replaceOperand(EI, 0, IE->getOperand(0)); 461 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 462 auto *VecType = cast<VectorType>(GEP->getType()); 463 ElementCount EC = VecType->getElementCount(); 464 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 465 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 466 // Find out why we have a vector result - these are a few examples: 467 // 1. We have a scalar pointer and a vector of indices, or 468 // 2. We have a vector of pointers and a scalar index, or 469 // 3. We have a vector of pointers and a vector of indices, etc. 470 // Here we only consider combining when there is exactly one vector 471 // operand, since the optimization is less obviously a win due to 472 // needing more than one extractelements. 473 474 unsigned VectorOps = 475 llvm::count_if(GEP->operands(), [](const Value *V) { 476 return isa<VectorType>(V->getType()); 477 }); 478 if (VectorOps > 1) 479 return nullptr; 480 assert(VectorOps == 1 && "Expected exactly one vector GEP operand!"); 481 482 Value *NewPtr = GEP->getPointerOperand(); 483 if (isa<VectorType>(NewPtr->getType())) 484 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 485 486 SmallVector<Value *> NewOps; 487 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 488 Value *Op = GEP->getOperand(I); 489 if (isa<VectorType>(Op->getType())) 490 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 491 else 492 NewOps.push_back(Op); 493 } 494 495 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 496 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 497 NewOps); 498 NewGEP->setIsInBounds(GEP->isInBounds()); 499 return NewGEP; 500 } 501 return nullptr; 502 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 503 // If this is extracting an element from a shufflevector, figure out where 504 // it came from and extract from the appropriate input element instead. 505 // Restrict the following transformation to fixed-length vector. 506 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 507 int SrcIdx = 508 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 509 Value *Src; 510 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 511 ->getNumElements(); 512 513 if (SrcIdx < 0) 514 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 515 if (SrcIdx < (int)LHSWidth) 516 Src = SVI->getOperand(0); 517 else { 518 SrcIdx -= LHSWidth; 519 Src = SVI->getOperand(1); 520 } 521 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 522 return ExtractElementInst::Create( 523 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 524 } 525 } else if (auto *CI = dyn_cast<CastInst>(I)) { 526 // Canonicalize extractelement(cast) -> cast(extractelement). 527 // Bitcasts can change the number of vector elements, and they cost 528 // nothing. 529 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 530 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 531 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 532 } 533 } 534 } 535 return nullptr; 536 } 537 538 /// If V is a shuffle of values that ONLY returns elements from either LHS or 539 /// RHS, return the shuffle mask and true. Otherwise, return false. 540 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 541 SmallVectorImpl<int> &Mask) { 542 assert(LHS->getType() == RHS->getType() && 543 "Invalid CollectSingleShuffleElements"); 544 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 545 546 if (match(V, m_Undef())) { 547 Mask.assign(NumElts, -1); 548 return true; 549 } 550 551 if (V == LHS) { 552 for (unsigned i = 0; i != NumElts; ++i) 553 Mask.push_back(i); 554 return true; 555 } 556 557 if (V == RHS) { 558 for (unsigned i = 0; i != NumElts; ++i) 559 Mask.push_back(i + NumElts); 560 return true; 561 } 562 563 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 564 // If this is an insert of an extract from some other vector, include it. 565 Value *VecOp = IEI->getOperand(0); 566 Value *ScalarOp = IEI->getOperand(1); 567 Value *IdxOp = IEI->getOperand(2); 568 569 if (!isa<ConstantInt>(IdxOp)) 570 return false; 571 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 572 573 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 574 // We can handle this if the vector we are inserting into is 575 // transitively ok. 576 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 577 // If so, update the mask to reflect the inserted undef. 578 Mask[InsertedIdx] = -1; 579 return true; 580 } 581 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 582 if (isa<ConstantInt>(EI->getOperand(1))) { 583 unsigned ExtractedIdx = 584 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 585 unsigned NumLHSElts = 586 cast<FixedVectorType>(LHS->getType())->getNumElements(); 587 588 // This must be extracting from either LHS or RHS. 589 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 590 // We can handle this if the vector we are inserting into is 591 // transitively ok. 592 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 593 // If so, update the mask to reflect the inserted value. 594 if (EI->getOperand(0) == LHS) { 595 Mask[InsertedIdx % NumElts] = ExtractedIdx; 596 } else { 597 assert(EI->getOperand(0) == RHS); 598 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 599 } 600 return true; 601 } 602 } 603 } 604 } 605 } 606 607 return false; 608 } 609 610 /// If we have insertion into a vector that is wider than the vector that we 611 /// are extracting from, try to widen the source vector to allow a single 612 /// shufflevector to replace one or more insert/extract pairs. 613 static void replaceExtractElements(InsertElementInst *InsElt, 614 ExtractElementInst *ExtElt, 615 InstCombinerImpl &IC) { 616 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 617 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 618 unsigned NumInsElts = InsVecType->getNumElements(); 619 unsigned NumExtElts = ExtVecType->getNumElements(); 620 621 // The inserted-to vector must be wider than the extracted-from vector. 622 if (InsVecType->getElementType() != ExtVecType->getElementType() || 623 NumExtElts >= NumInsElts) 624 return; 625 626 // Create a shuffle mask to widen the extended-from vector using poison 627 // values. The mask selects all of the values of the original vector followed 628 // by as many poison values as needed to create a vector of the same length 629 // as the inserted-to vector. 630 SmallVector<int, 16> ExtendMask; 631 for (unsigned i = 0; i < NumExtElts; ++i) 632 ExtendMask.push_back(i); 633 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 634 ExtendMask.push_back(-1); 635 636 Value *ExtVecOp = ExtElt->getVectorOperand(); 637 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 638 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 639 ? ExtVecOpInst->getParent() 640 : ExtElt->getParent(); 641 642 // TODO: This restriction matches the basic block check below when creating 643 // new extractelement instructions. If that limitation is removed, this one 644 // could also be removed. But for now, we just bail out to ensure that we 645 // will replace the extractelement instruction that is feeding our 646 // insertelement instruction. This allows the insertelement to then be 647 // replaced by a shufflevector. If the insertelement is not replaced, we can 648 // induce infinite looping because there's an optimization for extractelement 649 // that will delete our widening shuffle. This would trigger another attempt 650 // here to create that shuffle, and we spin forever. 651 if (InsertionBlock != InsElt->getParent()) 652 return; 653 654 // TODO: This restriction matches the check in visitInsertElementInst() and 655 // prevents an infinite loop caused by not turning the extract/insert pair 656 // into a shuffle. We really should not need either check, but we're lacking 657 // folds for shufflevectors because we're afraid to generate shuffle masks 658 // that the backend can't handle. 659 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 660 return; 661 662 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 663 664 // Insert the new shuffle after the vector operand of the extract is defined 665 // (as long as it's not a PHI) or at the start of the basic block of the 666 // extract, so any subsequent extracts in the same basic block can use it. 667 // TODO: Insert before the earliest ExtractElementInst that is replaced. 668 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 669 WideVec->insertAfter(ExtVecOpInst); 670 else 671 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 672 673 // Replace extracts from the original narrow vector with extracts from the new 674 // wide vector. 675 for (User *U : ExtVecOp->users()) { 676 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 677 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 678 continue; 679 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 680 NewExt->insertAfter(OldExt); 681 IC.replaceInstUsesWith(*OldExt, NewExt); 682 } 683 } 684 685 /// We are building a shuffle to create V, which is a sequence of insertelement, 686 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 687 /// not rely on the second vector source. Return a std::pair containing the 688 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 689 /// parameter as required. 690 /// 691 /// Note: we intentionally don't try to fold earlier shuffles since they have 692 /// often been chosen carefully to be efficiently implementable on the target. 693 using ShuffleOps = std::pair<Value *, Value *>; 694 695 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 696 Value *PermittedRHS, 697 InstCombinerImpl &IC) { 698 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 699 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 700 701 if (match(V, m_Undef())) { 702 Mask.assign(NumElts, -1); 703 return std::make_pair( 704 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 705 } 706 707 if (isa<ConstantAggregateZero>(V)) { 708 Mask.assign(NumElts, 0); 709 return std::make_pair(V, nullptr); 710 } 711 712 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 713 // If this is an insert of an extract from some other vector, include it. 714 Value *VecOp = IEI->getOperand(0); 715 Value *ScalarOp = IEI->getOperand(1); 716 Value *IdxOp = IEI->getOperand(2); 717 718 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 719 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 720 unsigned ExtractedIdx = 721 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 722 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 723 724 // Either the extracted from or inserted into vector must be RHSVec, 725 // otherwise we'd end up with a shuffle of three inputs. 726 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 727 Value *RHS = EI->getOperand(0); 728 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 729 assert(LR.second == nullptr || LR.second == RHS); 730 731 if (LR.first->getType() != RHS->getType()) { 732 // Although we are giving up for now, see if we can create extracts 733 // that match the inserts for another round of combining. 734 replaceExtractElements(IEI, EI, IC); 735 736 // We tried our best, but we can't find anything compatible with RHS 737 // further up the chain. Return a trivial shuffle. 738 for (unsigned i = 0; i < NumElts; ++i) 739 Mask[i] = i; 740 return std::make_pair(V, nullptr); 741 } 742 743 unsigned NumLHSElts = 744 cast<FixedVectorType>(RHS->getType())->getNumElements(); 745 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 746 return std::make_pair(LR.first, RHS); 747 } 748 749 if (VecOp == PermittedRHS) { 750 // We've gone as far as we can: anything on the other side of the 751 // extractelement will already have been converted into a shuffle. 752 unsigned NumLHSElts = 753 cast<FixedVectorType>(EI->getOperand(0)->getType()) 754 ->getNumElements(); 755 for (unsigned i = 0; i != NumElts; ++i) 756 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 757 return std::make_pair(EI->getOperand(0), PermittedRHS); 758 } 759 760 // If this insertelement is a chain that comes from exactly these two 761 // vectors, return the vector and the effective shuffle. 762 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 763 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 764 Mask)) 765 return std::make_pair(EI->getOperand(0), PermittedRHS); 766 } 767 } 768 } 769 770 // Otherwise, we can't do anything fancy. Return an identity vector. 771 for (unsigned i = 0; i != NumElts; ++i) 772 Mask.push_back(i); 773 return std::make_pair(V, nullptr); 774 } 775 776 /// Look for chain of insertvalue's that fully define an aggregate, and trace 777 /// back the values inserted, see if they are all were extractvalue'd from 778 /// the same source aggregate from the exact same element indexes. 779 /// If they were, just reuse the source aggregate. 780 /// This potentially deals with PHI indirections. 781 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 782 InsertValueInst &OrigIVI) { 783 Type *AggTy = OrigIVI.getType(); 784 unsigned NumAggElts; 785 switch (AggTy->getTypeID()) { 786 case Type::StructTyID: 787 NumAggElts = AggTy->getStructNumElements(); 788 break; 789 case Type::ArrayTyID: 790 NumAggElts = AggTy->getArrayNumElements(); 791 break; 792 default: 793 llvm_unreachable("Unhandled aggregate type?"); 794 } 795 796 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 797 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 798 // FIXME: any interesting patterns to be caught with larger limit? 799 assert(NumAggElts > 0 && "Aggregate should have elements."); 800 if (NumAggElts > 2) 801 return nullptr; 802 803 static constexpr auto NotFound = None; 804 static constexpr auto FoundMismatch = nullptr; 805 806 // Try to find a value of each element of an aggregate. 807 // FIXME: deal with more complex, not one-dimensional, aggregate types 808 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 809 810 // Do we know values for each element of the aggregate? 811 auto KnowAllElts = [&AggElts]() { 812 return all_of(AggElts, 813 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 814 }; 815 816 int Depth = 0; 817 818 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 819 // every element being overwritten twice, which should never happen. 820 static const int DepthLimit = 2 * NumAggElts; 821 822 // Recurse up the chain of `insertvalue` aggregate operands until either we've 823 // reconstructed full initializer or can't visit any more `insertvalue`'s. 824 for (InsertValueInst *CurrIVI = &OrigIVI; 825 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 826 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 827 ++Depth) { 828 auto *InsertedValue = 829 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 830 if (!InsertedValue) 831 return nullptr; // Inserted value must be produced by an instruction. 832 833 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 834 835 // Don't bother with more than single-level aggregates. 836 if (Indices.size() != 1) 837 return nullptr; // FIXME: deal with more complex aggregates? 838 839 // Now, we may have already previously recorded the value for this element 840 // of an aggregate. If we did, that means the CurrIVI will later be 841 // overwritten with the already-recorded value. But if not, let's record it! 842 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 843 Elt = Elt.getValueOr(InsertedValue); 844 845 // FIXME: should we handle chain-terminating undef base operand? 846 } 847 848 // Was that sufficient to deduce the full initializer for the aggregate? 849 if (!KnowAllElts()) 850 return nullptr; // Give up then. 851 852 // We now want to find the source[s] of the aggregate elements we've found. 853 // And with "source" we mean the original aggregate[s] from which 854 // the inserted elements were extracted. This may require PHI translation. 855 856 enum class AggregateDescription { 857 /// When analyzing the value that was inserted into an aggregate, we did 858 /// not manage to find defining `extractvalue` instruction to analyze. 859 NotFound, 860 /// When analyzing the value that was inserted into an aggregate, we did 861 /// manage to find defining `extractvalue` instruction[s], and everything 862 /// matched perfectly - aggregate type, element insertion/extraction index. 863 Found, 864 /// When analyzing the value that was inserted into an aggregate, we did 865 /// manage to find defining `extractvalue` instruction, but there was 866 /// a mismatch: either the source type from which the extraction was didn't 867 /// match the aggregate type into which the insertion was, 868 /// or the extraction/insertion channels mismatched, 869 /// or different elements had different source aggregates. 870 FoundMismatch 871 }; 872 auto Describe = [](Optional<Value *> SourceAggregate) { 873 if (SourceAggregate == NotFound) 874 return AggregateDescription::NotFound; 875 if (*SourceAggregate == FoundMismatch) 876 return AggregateDescription::FoundMismatch; 877 return AggregateDescription::Found; 878 }; 879 880 // Given the value \p Elt that was being inserted into element \p EltIdx of an 881 // aggregate AggTy, see if \p Elt was originally defined by an 882 // appropriate extractvalue (same element index, same aggregate type). 883 // If found, return the source aggregate from which the extraction was. 884 // If \p PredBB is provided, does PHI translation of an \p Elt first. 885 auto FindSourceAggregate = 886 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 887 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 888 // For now(?), only deal with, at most, a single level of PHI indirection. 889 if (UseBB && PredBB) 890 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 891 // FIXME: deal with multiple levels of PHI indirection? 892 893 // Did we find an extraction? 894 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 895 if (!EVI) 896 return NotFound; 897 898 Value *SourceAggregate = EVI->getAggregateOperand(); 899 900 // Is the extraction from the same type into which the insertion was? 901 if (SourceAggregate->getType() != AggTy) 902 return FoundMismatch; 903 // And the element index doesn't change between extraction and insertion? 904 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 905 return FoundMismatch; 906 907 return SourceAggregate; // AggregateDescription::Found 908 }; 909 910 // Given elements AggElts that were constructing an aggregate OrigIVI, 911 // see if we can find appropriate source aggregate for each of the elements, 912 // and see it's the same aggregate for each element. If so, return it. 913 auto FindCommonSourceAggregate = 914 [&](Optional<BasicBlock *> UseBB, 915 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 916 Optional<Value *> SourceAggregate; 917 918 for (auto I : enumerate(AggElts)) { 919 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 920 "We don't store nullptr in SourceAggregate!"); 921 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 922 (I.index() != 0) && 923 "SourceAggregate should be valid after the first element,"); 924 925 // For this element, is there a plausible source aggregate? 926 // FIXME: we could special-case undef element, IFF we know that in the 927 // source aggregate said element isn't poison. 928 Optional<Value *> SourceAggregateForElement = 929 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 930 931 // Okay, what have we found? Does that correlate with previous findings? 932 933 // Regardless of whether or not we have previously found source 934 // aggregate for previous elements (if any), if we didn't find one for 935 // this element, passthrough whatever we have just found. 936 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 937 return SourceAggregateForElement; 938 939 // Okay, we have found source aggregate for this element. 940 // Let's see what we already know from previous elements, if any. 941 switch (Describe(SourceAggregate)) { 942 case AggregateDescription::NotFound: 943 // This is apparently the first element that we have examined. 944 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 945 continue; // Great, now look at next element. 946 case AggregateDescription::Found: 947 // We have previously already successfully examined other elements. 948 // Is this the same source aggregate we've found for other elements? 949 if (*SourceAggregateForElement != *SourceAggregate) 950 return FoundMismatch; 951 continue; // Still the same aggregate, look at next element. 952 case AggregateDescription::FoundMismatch: 953 llvm_unreachable("Can't happen. We would have early-exited then."); 954 }; 955 } 956 957 assert(Describe(SourceAggregate) == AggregateDescription::Found && 958 "Must be a valid Value"); 959 return *SourceAggregate; 960 }; 961 962 Optional<Value *> SourceAggregate; 963 964 // Can we find the source aggregate without looking at predecessors? 965 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 966 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 967 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 968 return nullptr; // Conflicting source aggregates! 969 ++NumAggregateReconstructionsSimplified; 970 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 971 } 972 973 // Okay, apparently we need to look at predecessors. 974 975 // We should be smart about picking the "use" basic block, which will be the 976 // merge point for aggregate, where we'll insert the final PHI that will be 977 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 978 // We should look in which blocks each of the AggElts is being defined, 979 // they all should be defined in the same basic block. 980 BasicBlock *UseBB = nullptr; 981 982 for (const Optional<Instruction *> &I : AggElts) { 983 BasicBlock *BB = (*I)->getParent(); 984 // If it's the first instruction we've encountered, record the basic block. 985 if (!UseBB) { 986 UseBB = BB; 987 continue; 988 } 989 // Otherwise, this must be the same basic block we've seen previously. 990 if (UseBB != BB) 991 return nullptr; 992 } 993 994 // If *all* of the elements are basic-block-independent, meaning they are 995 // either function arguments, or constant expressions, then if we didn't 996 // handle them without predecessor-aware handling, we won't handle them now. 997 if (!UseBB) 998 return nullptr; 999 1000 // If we didn't manage to find source aggregate without looking at 1001 // predecessors, and there are no predecessors to look at, then we're done. 1002 if (pred_empty(UseBB)) 1003 return nullptr; 1004 1005 // Arbitrary predecessor count limit. 1006 static const int PredCountLimit = 64; 1007 1008 // Cache the (non-uniqified!) list of predecessors in a vector, 1009 // checking the limit at the same time for efficiency. 1010 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1011 for (BasicBlock *Pred : predecessors(UseBB)) { 1012 // Don't bother if there are too many predecessors. 1013 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1014 return nullptr; 1015 Preds.emplace_back(Pred); 1016 } 1017 1018 // For each predecessor, what is the source aggregate, 1019 // from which all the elements were originally extracted from? 1020 // Note that we want for the map to have stable iteration order! 1021 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1022 for (BasicBlock *Pred : Preds) { 1023 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1024 SourceAggregates.insert({Pred, nullptr}); 1025 // Did we already evaluate this predecessor? 1026 if (!IV.second) 1027 continue; 1028 1029 // Let's hope that when coming from predecessor Pred, all elements of the 1030 // aggregate produced by OrigIVI must have been originally extracted from 1031 // the same aggregate. Is that so? Can we find said original aggregate? 1032 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1033 if (Describe(SourceAggregate) != AggregateDescription::Found) 1034 return nullptr; // Give up. 1035 IV.first->second = *SourceAggregate; 1036 } 1037 1038 // All good! Now we just need to thread the source aggregates here. 1039 // Note that we have to insert the new PHI here, ourselves, because we can't 1040 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1041 // Note that the same block can be a predecessor more than once, 1042 // and we need to preserve that invariant for the PHI node. 1043 BuilderTy::InsertPointGuard Guard(Builder); 1044 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1045 auto *PHI = 1046 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1047 for (BasicBlock *Pred : Preds) 1048 PHI->addIncoming(SourceAggregates[Pred], Pred); 1049 1050 ++NumAggregateReconstructionsSimplified; 1051 return replaceInstUsesWith(OrigIVI, PHI); 1052 } 1053 1054 /// Try to find redundant insertvalue instructions, like the following ones: 1055 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1056 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1057 /// Here the second instruction inserts values at the same indices, as the 1058 /// first one, making the first one redundant. 1059 /// It should be transformed to: 1060 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1061 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1062 bool IsRedundant = false; 1063 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1064 1065 // If there is a chain of insertvalue instructions (each of them except the 1066 // last one has only one use and it's another insertvalue insn from this 1067 // chain), check if any of the 'children' uses the same indices as the first 1068 // instruction. In this case, the first one is redundant. 1069 Value *V = &I; 1070 unsigned Depth = 0; 1071 while (V->hasOneUse() && Depth < 10) { 1072 User *U = V->user_back(); 1073 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1074 if (!UserInsInst || U->getOperand(0) != V) 1075 break; 1076 if (UserInsInst->getIndices() == FirstIndices) { 1077 IsRedundant = true; 1078 break; 1079 } 1080 V = UserInsInst; 1081 Depth++; 1082 } 1083 1084 if (IsRedundant) 1085 return replaceInstUsesWith(I, I.getOperand(0)); 1086 1087 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1088 return NewI; 1089 1090 return nullptr; 1091 } 1092 1093 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1094 // Can not analyze scalable type, the number of elements is not a compile-time 1095 // constant. 1096 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1097 return false; 1098 1099 int MaskSize = Shuf.getShuffleMask().size(); 1100 int VecSize = 1101 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1102 1103 // A vector select does not change the size of the operands. 1104 if (MaskSize != VecSize) 1105 return false; 1106 1107 // Each mask element must be undefined or choose a vector element from one of 1108 // the source operands without crossing vector lanes. 1109 for (int i = 0; i != MaskSize; ++i) { 1110 int Elt = Shuf.getMaskValue(i); 1111 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1112 return false; 1113 } 1114 1115 return true; 1116 } 1117 1118 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1119 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1120 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1121 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1122 // We are interested in the last insert in a chain. So if this insert has a 1123 // single user and that user is an insert, bail. 1124 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1125 return nullptr; 1126 1127 VectorType *VecTy = InsElt.getType(); 1128 // Can not handle scalable type, the number of elements is not a compile-time 1129 // constant. 1130 if (isa<ScalableVectorType>(VecTy)) 1131 return nullptr; 1132 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1133 1134 // Do not try to do this for a one-element vector, since that's a nop, 1135 // and will cause an inf-loop. 1136 if (NumElements == 1) 1137 return nullptr; 1138 1139 Value *SplatVal = InsElt.getOperand(1); 1140 InsertElementInst *CurrIE = &InsElt; 1141 SmallBitVector ElementPresent(NumElements, false); 1142 InsertElementInst *FirstIE = nullptr; 1143 1144 // Walk the chain backwards, keeping track of which indices we inserted into, 1145 // until we hit something that isn't an insert of the splatted value. 1146 while (CurrIE) { 1147 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1148 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1149 return nullptr; 1150 1151 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1152 // Check none of the intermediate steps have any additional uses, except 1153 // for the root insertelement instruction, which can be re-used, if it 1154 // inserts at position 0. 1155 if (CurrIE != &InsElt && 1156 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1157 return nullptr; 1158 1159 ElementPresent[Idx->getZExtValue()] = true; 1160 FirstIE = CurrIE; 1161 CurrIE = NextIE; 1162 } 1163 1164 // If this is just a single insertelement (not a sequence), we are done. 1165 if (FirstIE == &InsElt) 1166 return nullptr; 1167 1168 // If we are not inserting into an undef vector, make sure we've seen an 1169 // insert into every element. 1170 // TODO: If the base vector is not undef, it might be better to create a splat 1171 // and then a select-shuffle (blend) with the base vector. 1172 if (!match(FirstIE->getOperand(0), m_Undef())) 1173 if (!ElementPresent.all()) 1174 return nullptr; 1175 1176 // Create the insert + shuffle. 1177 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1178 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1179 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1180 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1181 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1182 1183 // Splat from element 0, but replace absent elements with undef in the mask. 1184 SmallVector<int, 16> Mask(NumElements, 0); 1185 for (unsigned i = 0; i != NumElements; ++i) 1186 if (!ElementPresent[i]) 1187 Mask[i] = -1; 1188 1189 return new ShuffleVectorInst(FirstIE, Mask); 1190 } 1191 1192 /// Try to fold an insert element into an existing splat shuffle by changing 1193 /// the shuffle's mask to include the index of this insert element. 1194 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1195 // Check if the vector operand of this insert is a canonical splat shuffle. 1196 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1197 if (!Shuf || !Shuf->isZeroEltSplat()) 1198 return nullptr; 1199 1200 // Bail out early if shuffle is scalable type. The number of elements in 1201 // shuffle mask is unknown at compile-time. 1202 if (isa<ScalableVectorType>(Shuf->getType())) 1203 return nullptr; 1204 1205 // Check for a constant insertion index. 1206 uint64_t IdxC; 1207 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1208 return nullptr; 1209 1210 // Check if the splat shuffle's input is the same as this insert's scalar op. 1211 Value *X = InsElt.getOperand(1); 1212 Value *Op0 = Shuf->getOperand(0); 1213 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1214 return nullptr; 1215 1216 // Replace the shuffle mask element at the index of this insert with a zero. 1217 // For example: 1218 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1219 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1220 unsigned NumMaskElts = 1221 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1222 SmallVector<int, 16> NewMask(NumMaskElts); 1223 for (unsigned i = 0; i != NumMaskElts; ++i) 1224 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1225 1226 return new ShuffleVectorInst(Op0, NewMask); 1227 } 1228 1229 /// Try to fold an extract+insert element into an existing identity shuffle by 1230 /// changing the shuffle's mask to include the index of this insert element. 1231 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1232 // Check if the vector operand of this insert is an identity shuffle. 1233 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1234 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1235 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1236 return nullptr; 1237 1238 // Bail out early if shuffle is scalable type. The number of elements in 1239 // shuffle mask is unknown at compile-time. 1240 if (isa<ScalableVectorType>(Shuf->getType())) 1241 return nullptr; 1242 1243 // Check for a constant insertion index. 1244 uint64_t IdxC; 1245 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1246 return nullptr; 1247 1248 // Check if this insert's scalar op is extracted from the identity shuffle's 1249 // input vector. 1250 Value *Scalar = InsElt.getOperand(1); 1251 Value *X = Shuf->getOperand(0); 1252 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1253 return nullptr; 1254 1255 // Replace the shuffle mask element at the index of this extract+insert with 1256 // that same index value. 1257 // For example: 1258 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1259 unsigned NumMaskElts = 1260 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1261 SmallVector<int, 16> NewMask(NumMaskElts); 1262 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1263 for (unsigned i = 0; i != NumMaskElts; ++i) { 1264 if (i != IdxC) { 1265 // All mask elements besides the inserted element remain the same. 1266 NewMask[i] = OldMask[i]; 1267 } else if (OldMask[i] == (int)IdxC) { 1268 // If the mask element was already set, there's nothing to do 1269 // (demanded elements analysis may unset it later). 1270 return nullptr; 1271 } else { 1272 assert(OldMask[i] == UndefMaskElem && 1273 "Unexpected shuffle mask element for identity shuffle"); 1274 NewMask[i] = IdxC; 1275 } 1276 } 1277 1278 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1279 } 1280 1281 /// If we have an insertelement instruction feeding into another insertelement 1282 /// and the 2nd is inserting a constant into the vector, canonicalize that 1283 /// constant insertion before the insertion of a variable: 1284 /// 1285 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1286 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1287 /// 1288 /// This has the potential of eliminating the 2nd insertelement instruction 1289 /// via constant folding of the scalar constant into a vector constant. 1290 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1291 InstCombiner::BuilderTy &Builder) { 1292 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1293 if (!InsElt1 || !InsElt1->hasOneUse()) 1294 return nullptr; 1295 1296 Value *X, *Y; 1297 Constant *ScalarC; 1298 ConstantInt *IdxC1, *IdxC2; 1299 if (match(InsElt1->getOperand(0), m_Value(X)) && 1300 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1301 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1302 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1303 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1304 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1305 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1306 } 1307 1308 return nullptr; 1309 } 1310 1311 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1312 /// --> shufflevector X, CVec', Mask' 1313 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1314 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1315 // Bail out if the parent has more than one use. In that case, we'd be 1316 // replacing the insertelt with a shuffle, and that's not a clear win. 1317 if (!Inst || !Inst->hasOneUse()) 1318 return nullptr; 1319 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1320 // The shuffle must have a constant vector operand. The insertelt must have 1321 // a constant scalar being inserted at a constant position in the vector. 1322 Constant *ShufConstVec, *InsEltScalar; 1323 uint64_t InsEltIndex; 1324 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1325 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1326 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1327 return nullptr; 1328 1329 // Adding an element to an arbitrary shuffle could be expensive, but a 1330 // shuffle that selects elements from vectors without crossing lanes is 1331 // assumed cheap. 1332 // If we're just adding a constant into that shuffle, it will still be 1333 // cheap. 1334 if (!isShuffleEquivalentToSelect(*Shuf)) 1335 return nullptr; 1336 1337 // From the above 'select' check, we know that the mask has the same number 1338 // of elements as the vector input operands. We also know that each constant 1339 // input element is used in its lane and can not be used more than once by 1340 // the shuffle. Therefore, replace the constant in the shuffle's constant 1341 // vector with the insertelt constant. Replace the constant in the shuffle's 1342 // mask vector with the insertelt index plus the length of the vector 1343 // (because the constant vector operand of a shuffle is always the 2nd 1344 // operand). 1345 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1346 unsigned NumElts = Mask.size(); 1347 SmallVector<Constant *, 16> NewShufElts(NumElts); 1348 SmallVector<int, 16> NewMaskElts(NumElts); 1349 for (unsigned I = 0; I != NumElts; ++I) { 1350 if (I == InsEltIndex) { 1351 NewShufElts[I] = InsEltScalar; 1352 NewMaskElts[I] = InsEltIndex + NumElts; 1353 } else { 1354 // Copy over the existing values. 1355 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1356 NewMaskElts[I] = Mask[I]; 1357 } 1358 1359 // Bail if we failed to find an element. 1360 if (!NewShufElts[I]) 1361 return nullptr; 1362 } 1363 1364 // Create new operands for a shuffle that includes the constant of the 1365 // original insertelt. The old shuffle will be dead now. 1366 return new ShuffleVectorInst(Shuf->getOperand(0), 1367 ConstantVector::get(NewShufElts), NewMaskElts); 1368 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1369 // Transform sequences of insertelements ops with constant data/indexes into 1370 // a single shuffle op. 1371 // Can not handle scalable type, the number of elements needed to create 1372 // shuffle mask is not a compile-time constant. 1373 if (isa<ScalableVectorType>(InsElt.getType())) 1374 return nullptr; 1375 unsigned NumElts = 1376 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1377 1378 uint64_t InsertIdx[2]; 1379 Constant *Val[2]; 1380 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1381 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1382 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1383 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1384 return nullptr; 1385 SmallVector<Constant *, 16> Values(NumElts); 1386 SmallVector<int, 16> Mask(NumElts); 1387 auto ValI = std::begin(Val); 1388 // Generate new constant vector and mask. 1389 // We have 2 values/masks from the insertelements instructions. Insert them 1390 // into new value/mask vectors. 1391 for (uint64_t I : InsertIdx) { 1392 if (!Values[I]) { 1393 Values[I] = *ValI; 1394 Mask[I] = NumElts + I; 1395 } 1396 ++ValI; 1397 } 1398 // Remaining values are filled with 'undef' values. 1399 for (unsigned I = 0; I < NumElts; ++I) { 1400 if (!Values[I]) { 1401 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1402 Mask[I] = I; 1403 } 1404 } 1405 // Create new operands for a shuffle that includes the constant of the 1406 // original insertelt. 1407 return new ShuffleVectorInst(IEI->getOperand(0), 1408 ConstantVector::get(Values), Mask); 1409 } 1410 return nullptr; 1411 } 1412 1413 /// If both the base vector and the inserted element are extended from the same 1414 /// type, do the insert element in the narrow source type followed by extend. 1415 /// TODO: This can be extended to include other cast opcodes, but particularly 1416 /// if we create a wider insertelement, make sure codegen is not harmed. 1417 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1418 InstCombiner::BuilderTy &Builder) { 1419 // We are creating a vector extend. If the original vector extend has another 1420 // use, that would mean we end up with 2 vector extends, so avoid that. 1421 // TODO: We could ease the use-clause to "if at least one op has one use" 1422 // (assuming that the source types match - see next TODO comment). 1423 Value *Vec = InsElt.getOperand(0); 1424 if (!Vec->hasOneUse()) 1425 return nullptr; 1426 1427 Value *Scalar = InsElt.getOperand(1); 1428 Value *X, *Y; 1429 CastInst::CastOps CastOpcode; 1430 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1431 CastOpcode = Instruction::FPExt; 1432 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1433 CastOpcode = Instruction::SExt; 1434 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1435 CastOpcode = Instruction::ZExt; 1436 else 1437 return nullptr; 1438 1439 // TODO: We can allow mismatched types by creating an intermediate cast. 1440 if (X->getType()->getScalarType() != Y->getType()) 1441 return nullptr; 1442 1443 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1444 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1445 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1446 } 1447 1448 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1449 Value *VecOp = IE.getOperand(0); 1450 Value *ScalarOp = IE.getOperand(1); 1451 Value *IdxOp = IE.getOperand(2); 1452 1453 if (auto *V = SimplifyInsertElementInst( 1454 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1455 return replaceInstUsesWith(IE, V); 1456 1457 // If the scalar is bitcast and inserted into undef, do the insert in the 1458 // source type followed by bitcast. 1459 // TODO: Generalize for insert into any constant, not just undef? 1460 Value *ScalarSrc; 1461 if (match(VecOp, m_Undef()) && 1462 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1463 (ScalarSrc->getType()->isIntegerTy() || 1464 ScalarSrc->getType()->isFloatingPointTy())) { 1465 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1466 // bitcast (inselt undef, ScalarSrc, IdxOp) 1467 Type *ScalarTy = ScalarSrc->getType(); 1468 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1469 UndefValue *NewUndef = UndefValue::get(VecTy); 1470 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1471 return new BitCastInst(NewInsElt, IE.getType()); 1472 } 1473 1474 // If the vector and scalar are both bitcast from the same element type, do 1475 // the insert in that source type followed by bitcast. 1476 Value *VecSrc; 1477 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1478 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1479 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1480 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1481 cast<VectorType>(VecSrc->getType())->getElementType() == 1482 ScalarSrc->getType()) { 1483 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1484 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1485 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1486 return new BitCastInst(NewInsElt, IE.getType()); 1487 } 1488 1489 // If the inserted element was extracted from some other fixed-length vector 1490 // and both indexes are valid constants, try to turn this into a shuffle. 1491 // Can not handle scalable vector type, the number of elements needed to 1492 // create shuffle mask is not a compile-time constant. 1493 uint64_t InsertedIdx, ExtractedIdx; 1494 Value *ExtVecOp; 1495 if (isa<FixedVectorType>(IE.getType()) && 1496 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1497 match(ScalarOp, 1498 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1499 isa<FixedVectorType>(ExtVecOp->getType()) && 1500 ExtractedIdx < 1501 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1502 // TODO: Looking at the user(s) to determine if this insert is a 1503 // fold-to-shuffle opportunity does not match the usual instcombine 1504 // constraints. We should decide if the transform is worthy based only 1505 // on this instruction and its operands, but that may not work currently. 1506 // 1507 // Here, we are trying to avoid creating shuffles before reaching 1508 // the end of a chain of extract-insert pairs. This is complicated because 1509 // we do not generally form arbitrary shuffle masks in instcombine 1510 // (because those may codegen poorly), but collectShuffleElements() does 1511 // exactly that. 1512 // 1513 // The rules for determining what is an acceptable target-independent 1514 // shuffle mask are fuzzy because they evolve based on the backend's 1515 // capabilities and real-world impact. 1516 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1517 if (!Insert.hasOneUse()) 1518 return true; 1519 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1520 if (!InsertUser) 1521 return true; 1522 return false; 1523 }; 1524 1525 // Try to form a shuffle from a chain of extract-insert ops. 1526 if (isShuffleRootCandidate(IE)) { 1527 SmallVector<int, 16> Mask; 1528 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1529 1530 // The proposed shuffle may be trivial, in which case we shouldn't 1531 // perform the combine. 1532 if (LR.first != &IE && LR.second != &IE) { 1533 // We now have a shuffle of LHS, RHS, Mask. 1534 if (LR.second == nullptr) 1535 LR.second = UndefValue::get(LR.first->getType()); 1536 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1537 } 1538 } 1539 } 1540 1541 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1542 unsigned VWidth = VecTy->getNumElements(); 1543 APInt UndefElts(VWidth, 0); 1544 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1545 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1546 if (V != &IE) 1547 return replaceInstUsesWith(IE, V); 1548 return &IE; 1549 } 1550 } 1551 1552 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1553 return Shuf; 1554 1555 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1556 return NewInsElt; 1557 1558 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1559 return Broadcast; 1560 1561 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1562 return Splat; 1563 1564 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1565 return IdentityShuf; 1566 1567 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1568 return Ext; 1569 1570 return nullptr; 1571 } 1572 1573 /// Return true if we can evaluate the specified expression tree if the vector 1574 /// elements were shuffled in a different order. 1575 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1576 unsigned Depth = 5) { 1577 // We can always reorder the elements of a constant. 1578 if (isa<Constant>(V)) 1579 return true; 1580 1581 // We won't reorder vector arguments. No IPO here. 1582 Instruction *I = dyn_cast<Instruction>(V); 1583 if (!I) return false; 1584 1585 // Two users may expect different orders of the elements. Don't try it. 1586 if (!I->hasOneUse()) 1587 return false; 1588 1589 if (Depth == 0) return false; 1590 1591 switch (I->getOpcode()) { 1592 case Instruction::UDiv: 1593 case Instruction::SDiv: 1594 case Instruction::URem: 1595 case Instruction::SRem: 1596 // Propagating an undefined shuffle mask element to integer div/rem is not 1597 // allowed because those opcodes can create immediate undefined behavior 1598 // from an undefined element in an operand. 1599 if (llvm::is_contained(Mask, -1)) 1600 return false; 1601 LLVM_FALLTHROUGH; 1602 case Instruction::Add: 1603 case Instruction::FAdd: 1604 case Instruction::Sub: 1605 case Instruction::FSub: 1606 case Instruction::Mul: 1607 case Instruction::FMul: 1608 case Instruction::FDiv: 1609 case Instruction::FRem: 1610 case Instruction::Shl: 1611 case Instruction::LShr: 1612 case Instruction::AShr: 1613 case Instruction::And: 1614 case Instruction::Or: 1615 case Instruction::Xor: 1616 case Instruction::ICmp: 1617 case Instruction::FCmp: 1618 case Instruction::Trunc: 1619 case Instruction::ZExt: 1620 case Instruction::SExt: 1621 case Instruction::FPToUI: 1622 case Instruction::FPToSI: 1623 case Instruction::UIToFP: 1624 case Instruction::SIToFP: 1625 case Instruction::FPTrunc: 1626 case Instruction::FPExt: 1627 case Instruction::GetElementPtr: { 1628 // Bail out if we would create longer vector ops. We could allow creating 1629 // longer vector ops, but that may result in more expensive codegen. 1630 Type *ITy = I->getType(); 1631 if (ITy->isVectorTy() && 1632 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1633 return false; 1634 for (Value *Operand : I->operands()) { 1635 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1636 return false; 1637 } 1638 return true; 1639 } 1640 case Instruction::InsertElement: { 1641 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1642 if (!CI) return false; 1643 int ElementNumber = CI->getLimitedValue(); 1644 1645 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1646 // can't put an element into multiple indices. 1647 bool SeenOnce = false; 1648 for (int i = 0, e = Mask.size(); i != e; ++i) { 1649 if (Mask[i] == ElementNumber) { 1650 if (SeenOnce) 1651 return false; 1652 SeenOnce = true; 1653 } 1654 } 1655 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1656 } 1657 } 1658 return false; 1659 } 1660 1661 /// Rebuild a new instruction just like 'I' but with the new operands given. 1662 /// In the event of type mismatch, the type of the operands is correct. 1663 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1664 // We don't want to use the IRBuilder here because we want the replacement 1665 // instructions to appear next to 'I', not the builder's insertion point. 1666 switch (I->getOpcode()) { 1667 case Instruction::Add: 1668 case Instruction::FAdd: 1669 case Instruction::Sub: 1670 case Instruction::FSub: 1671 case Instruction::Mul: 1672 case Instruction::FMul: 1673 case Instruction::UDiv: 1674 case Instruction::SDiv: 1675 case Instruction::FDiv: 1676 case Instruction::URem: 1677 case Instruction::SRem: 1678 case Instruction::FRem: 1679 case Instruction::Shl: 1680 case Instruction::LShr: 1681 case Instruction::AShr: 1682 case Instruction::And: 1683 case Instruction::Or: 1684 case Instruction::Xor: { 1685 BinaryOperator *BO = cast<BinaryOperator>(I); 1686 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1687 BinaryOperator *New = 1688 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1689 NewOps[0], NewOps[1], "", BO); 1690 if (isa<OverflowingBinaryOperator>(BO)) { 1691 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1692 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1693 } 1694 if (isa<PossiblyExactOperator>(BO)) { 1695 New->setIsExact(BO->isExact()); 1696 } 1697 if (isa<FPMathOperator>(BO)) 1698 New->copyFastMathFlags(I); 1699 return New; 1700 } 1701 case Instruction::ICmp: 1702 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1703 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1704 NewOps[0], NewOps[1]); 1705 case Instruction::FCmp: 1706 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1707 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1708 NewOps[0], NewOps[1]); 1709 case Instruction::Trunc: 1710 case Instruction::ZExt: 1711 case Instruction::SExt: 1712 case Instruction::FPToUI: 1713 case Instruction::FPToSI: 1714 case Instruction::UIToFP: 1715 case Instruction::SIToFP: 1716 case Instruction::FPTrunc: 1717 case Instruction::FPExt: { 1718 // It's possible that the mask has a different number of elements from 1719 // the original cast. We recompute the destination type to match the mask. 1720 Type *DestTy = VectorType::get( 1721 I->getType()->getScalarType(), 1722 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1723 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1724 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1725 "", I); 1726 } 1727 case Instruction::GetElementPtr: { 1728 Value *Ptr = NewOps[0]; 1729 ArrayRef<Value*> Idx = NewOps.slice(1); 1730 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1731 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1732 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1733 return GEP; 1734 } 1735 } 1736 llvm_unreachable("failed to rebuild vector instructions"); 1737 } 1738 1739 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1740 // Mask.size() does not need to be equal to the number of vector elements. 1741 1742 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1743 Type *EltTy = V->getType()->getScalarType(); 1744 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1745 if (match(V, m_Undef())) 1746 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1747 1748 if (isa<ConstantAggregateZero>(V)) 1749 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1750 1751 if (Constant *C = dyn_cast<Constant>(V)) 1752 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1753 Mask); 1754 1755 Instruction *I = cast<Instruction>(V); 1756 switch (I->getOpcode()) { 1757 case Instruction::Add: 1758 case Instruction::FAdd: 1759 case Instruction::Sub: 1760 case Instruction::FSub: 1761 case Instruction::Mul: 1762 case Instruction::FMul: 1763 case Instruction::UDiv: 1764 case Instruction::SDiv: 1765 case Instruction::FDiv: 1766 case Instruction::URem: 1767 case Instruction::SRem: 1768 case Instruction::FRem: 1769 case Instruction::Shl: 1770 case Instruction::LShr: 1771 case Instruction::AShr: 1772 case Instruction::And: 1773 case Instruction::Or: 1774 case Instruction::Xor: 1775 case Instruction::ICmp: 1776 case Instruction::FCmp: 1777 case Instruction::Trunc: 1778 case Instruction::ZExt: 1779 case Instruction::SExt: 1780 case Instruction::FPToUI: 1781 case Instruction::FPToSI: 1782 case Instruction::UIToFP: 1783 case Instruction::SIToFP: 1784 case Instruction::FPTrunc: 1785 case Instruction::FPExt: 1786 case Instruction::Select: 1787 case Instruction::GetElementPtr: { 1788 SmallVector<Value*, 8> NewOps; 1789 bool NeedsRebuild = 1790 (Mask.size() != 1791 cast<FixedVectorType>(I->getType())->getNumElements()); 1792 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1793 Value *V; 1794 // Recursively call evaluateInDifferentElementOrder on vector arguments 1795 // as well. E.g. GetElementPtr may have scalar operands even if the 1796 // return value is a vector, so we need to examine the operand type. 1797 if (I->getOperand(i)->getType()->isVectorTy()) 1798 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1799 else 1800 V = I->getOperand(i); 1801 NewOps.push_back(V); 1802 NeedsRebuild |= (V != I->getOperand(i)); 1803 } 1804 if (NeedsRebuild) { 1805 return buildNew(I, NewOps); 1806 } 1807 return I; 1808 } 1809 case Instruction::InsertElement: { 1810 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1811 1812 // The insertelement was inserting at Element. Figure out which element 1813 // that becomes after shuffling. The answer is guaranteed to be unique 1814 // by CanEvaluateShuffled. 1815 bool Found = false; 1816 int Index = 0; 1817 for (int e = Mask.size(); Index != e; ++Index) { 1818 if (Mask[Index] == Element) { 1819 Found = true; 1820 break; 1821 } 1822 } 1823 1824 // If element is not in Mask, no need to handle the operand 1 (element to 1825 // be inserted). Just evaluate values in operand 0 according to Mask. 1826 if (!Found) 1827 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1828 1829 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1830 return InsertElementInst::Create(V, I->getOperand(1), 1831 ConstantInt::get(I32Ty, Index), "", I); 1832 } 1833 } 1834 llvm_unreachable("failed to reorder elements of vector instruction!"); 1835 } 1836 1837 // Returns true if the shuffle is extracting a contiguous range of values from 1838 // LHS, for example: 1839 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1840 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1841 // Shuffles to: |EE|FF|GG|HH| 1842 // +--+--+--+--+ 1843 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1844 ArrayRef<int> Mask) { 1845 unsigned LHSElems = 1846 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1847 unsigned MaskElems = Mask.size(); 1848 unsigned BegIdx = Mask.front(); 1849 unsigned EndIdx = Mask.back(); 1850 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1851 return false; 1852 for (unsigned I = 0; I != MaskElems; ++I) 1853 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1854 return false; 1855 return true; 1856 } 1857 1858 /// These are the ingredients in an alternate form binary operator as described 1859 /// below. 1860 struct BinopElts { 1861 BinaryOperator::BinaryOps Opcode; 1862 Value *Op0; 1863 Value *Op1; 1864 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1865 Value *V0 = nullptr, Value *V1 = nullptr) : 1866 Opcode(Opc), Op0(V0), Op1(V1) {} 1867 operator bool() const { return Opcode != 0; } 1868 }; 1869 1870 /// Binops may be transformed into binops with different opcodes and operands. 1871 /// Reverse the usual canonicalization to enable folds with the non-canonical 1872 /// form of the binop. If a transform is possible, return the elements of the 1873 /// new binop. If not, return invalid elements. 1874 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1875 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1876 Type *Ty = BO->getType(); 1877 switch (BO->getOpcode()) { 1878 case Instruction::Shl: { 1879 // shl X, C --> mul X, (1 << C) 1880 Constant *C; 1881 if (match(BO1, m_Constant(C))) { 1882 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1883 return { Instruction::Mul, BO0, ShlOne }; 1884 } 1885 break; 1886 } 1887 case Instruction::Or: { 1888 // or X, C --> add X, C (when X and C have no common bits set) 1889 const APInt *C; 1890 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1891 return { Instruction::Add, BO0, BO1 }; 1892 break; 1893 } 1894 default: 1895 break; 1896 } 1897 return {}; 1898 } 1899 1900 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1901 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1902 1903 // Are we shuffling together some value and that same value after it has been 1904 // modified by a binop with a constant? 1905 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1906 Constant *C; 1907 bool Op0IsBinop; 1908 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1909 Op0IsBinop = true; 1910 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1911 Op0IsBinop = false; 1912 else 1913 return nullptr; 1914 1915 // The identity constant for a binop leaves a variable operand unchanged. For 1916 // a vector, this is a splat of something like 0, -1, or 1. 1917 // If there's no identity constant for this binop, we're done. 1918 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1919 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1920 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1921 if (!IdC) 1922 return nullptr; 1923 1924 // Shuffle identity constants into the lanes that return the original value. 1925 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1926 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1927 // The existing binop constant vector remains in the same operand position. 1928 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1929 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1930 ConstantExpr::getShuffleVector(IdC, C, Mask); 1931 1932 bool MightCreatePoisonOrUB = 1933 is_contained(Mask, UndefMaskElem) && 1934 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1935 if (MightCreatePoisonOrUB) 1936 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1937 1938 // shuf (bop X, C), X, M --> bop X, C' 1939 // shuf X, (bop X, C), M --> bop X, C' 1940 Value *X = Op0IsBinop ? Op1 : Op0; 1941 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1942 NewBO->copyIRFlags(BO); 1943 1944 // An undef shuffle mask element may propagate as an undef constant element in 1945 // the new binop. That would produce poison where the original code might not. 1946 // If we already made a safe constant, then there's no danger. 1947 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1948 NewBO->dropPoisonGeneratingFlags(); 1949 return NewBO; 1950 } 1951 1952 /// If we have an insert of a scalar to a non-zero element of an undefined 1953 /// vector and then shuffle that value, that's the same as inserting to the zero 1954 /// element and shuffling. Splatting from the zero element is recognized as the 1955 /// canonical form of splat. 1956 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1957 InstCombiner::BuilderTy &Builder) { 1958 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1959 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1960 Value *X; 1961 uint64_t IndexC; 1962 1963 // Match a shuffle that is a splat to a non-zero element. 1964 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1965 m_ConstantInt(IndexC)))) || 1966 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1967 return nullptr; 1968 1969 // Insert into element 0 of an undef vector. 1970 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1971 Constant *Zero = Builder.getInt32(0); 1972 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1973 1974 // Splat from element 0. Any mask element that is undefined remains undefined. 1975 // For example: 1976 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1977 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1978 unsigned NumMaskElts = 1979 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1980 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1981 for (unsigned i = 0; i != NumMaskElts; ++i) 1982 if (Mask[i] == UndefMaskElem) 1983 NewMask[i] = Mask[i]; 1984 1985 return new ShuffleVectorInst(NewIns, NewMask); 1986 } 1987 1988 /// Try to fold shuffles that are the equivalent of a vector select. 1989 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1990 InstCombiner::BuilderTy &Builder, 1991 const DataLayout &DL) { 1992 if (!Shuf.isSelect()) 1993 return nullptr; 1994 1995 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1996 // Commuting undef to operand 0 conflicts with another canonicalization. 1997 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1998 if (!match(Shuf.getOperand(1), m_Undef()) && 1999 Shuf.getMaskValue(0) >= (int)NumElts) { 2000 // TODO: Can we assert that both operands of a shuffle-select are not undef 2001 // (otherwise, it would have been folded by instsimplify? 2002 Shuf.commute(); 2003 return &Shuf; 2004 } 2005 2006 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2007 return I; 2008 2009 BinaryOperator *B0, *B1; 2010 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2011 !match(Shuf.getOperand(1), m_BinOp(B1))) 2012 return nullptr; 2013 2014 Value *X, *Y; 2015 Constant *C0, *C1; 2016 bool ConstantsAreOp1; 2017 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 2018 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 2019 ConstantsAreOp1 = true; 2020 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2021 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2022 ConstantsAreOp1 = false; 2023 else 2024 return nullptr; 2025 2026 // We need matching binops to fold the lanes together. 2027 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2028 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2029 bool DropNSW = false; 2030 if (ConstantsAreOp1 && Opc0 != Opc1) { 2031 // TODO: We drop "nsw" if shift is converted into multiply because it may 2032 // not be correct when the shift amount is BitWidth - 1. We could examine 2033 // each vector element to determine if it is safe to keep that flag. 2034 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2035 DropNSW = true; 2036 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2037 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2038 Opc0 = AltB0.Opcode; 2039 C0 = cast<Constant>(AltB0.Op1); 2040 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2041 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2042 Opc1 = AltB1.Opcode; 2043 C1 = cast<Constant>(AltB1.Op1); 2044 } 2045 } 2046 2047 if (Opc0 != Opc1) 2048 return nullptr; 2049 2050 // The opcodes must be the same. Use a new name to make that clear. 2051 BinaryOperator::BinaryOps BOpc = Opc0; 2052 2053 // Select the constant elements needed for the single binop. 2054 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2055 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2056 2057 // We are moving a binop after a shuffle. When a shuffle has an undefined 2058 // mask element, the result is undefined, but it is not poison or undefined 2059 // behavior. That is not necessarily true for div/rem/shift. 2060 bool MightCreatePoisonOrUB = 2061 is_contained(Mask, UndefMaskElem) && 2062 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2063 if (MightCreatePoisonOrUB) 2064 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2065 ConstantsAreOp1); 2066 2067 Value *V; 2068 if (X == Y) { 2069 // Remove a binop and the shuffle by rearranging the constant: 2070 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2071 // shuffle (op C0, V), (op C1, V), M --> op C', V 2072 V = X; 2073 } else { 2074 // If there are 2 different variable operands, we must create a new shuffle 2075 // (select) first, so check uses to ensure that we don't end up with more 2076 // instructions than we started with. 2077 if (!B0->hasOneUse() && !B1->hasOneUse()) 2078 return nullptr; 2079 2080 // If we use the original shuffle mask and op1 is *variable*, we would be 2081 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2082 // poison. We do not have to guard against UB when *constants* are op1 2083 // because safe constants guarantee that we do not overflow sdiv/srem (and 2084 // there's no danger for other opcodes). 2085 // TODO: To allow this case, create a new shuffle mask with no undefs. 2086 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2087 return nullptr; 2088 2089 // Note: In general, we do not create new shuffles in InstCombine because we 2090 // do not know if a target can lower an arbitrary shuffle optimally. In this 2091 // case, the shuffle uses the existing mask, so there is no additional risk. 2092 2093 // Select the variable vectors first, then perform the binop: 2094 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2095 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2096 V = Builder.CreateShuffleVector(X, Y, Mask); 2097 } 2098 2099 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 2100 BinaryOperator::Create(BOpc, NewC, V); 2101 2102 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2103 // 1. If we changed an opcode, poison conditions might have changed. 2104 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2105 // where the original code did not. But if we already made a safe constant, 2106 // then there's no danger. 2107 NewBO->copyIRFlags(B0); 2108 NewBO->andIRFlags(B1); 2109 if (DropNSW) 2110 NewBO->setHasNoSignedWrap(false); 2111 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2112 NewBO->dropPoisonGeneratingFlags(); 2113 return NewBO; 2114 } 2115 2116 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2117 /// Example (little endian): 2118 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2119 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2120 bool IsBigEndian) { 2121 // This must be a bitcasted shuffle of 1 vector integer operand. 2122 Type *DestType = Shuf.getType(); 2123 Value *X; 2124 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2125 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2126 return nullptr; 2127 2128 // The source type must have the same number of elements as the shuffle, 2129 // and the source element type must be larger than the shuffle element type. 2130 Type *SrcType = X->getType(); 2131 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2132 cast<FixedVectorType>(SrcType)->getNumElements() != 2133 cast<FixedVectorType>(DestType)->getNumElements() || 2134 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2135 return nullptr; 2136 2137 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2138 "Expected a shuffle that decreases length"); 2139 2140 // Last, check that the mask chooses the correct low bits for each narrow 2141 // element in the result. 2142 uint64_t TruncRatio = 2143 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2144 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2145 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2146 if (Mask[i] == UndefMaskElem) 2147 continue; 2148 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2149 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2150 if (Mask[i] != (int)LSBIndex) 2151 return nullptr; 2152 } 2153 2154 return new TruncInst(X, DestType); 2155 } 2156 2157 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2158 /// narrowing (concatenating with undef and extracting back to the original 2159 /// length). This allows replacing the wide select with a narrow select. 2160 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2161 InstCombiner::BuilderTy &Builder) { 2162 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2163 // of the 1st vector operand of a shuffle. 2164 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2165 return nullptr; 2166 2167 // The vector being shuffled must be a vector select that we can eliminate. 2168 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2169 Value *Cond, *X, *Y; 2170 if (!match(Shuf.getOperand(0), 2171 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2172 return nullptr; 2173 2174 // We need a narrow condition value. It must be extended with undef elements 2175 // and have the same number of elements as this shuffle. 2176 unsigned NarrowNumElts = 2177 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2178 Value *NarrowCond; 2179 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2180 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2181 NarrowNumElts || 2182 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2183 return nullptr; 2184 2185 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2186 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2187 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2188 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2189 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2190 } 2191 2192 /// Try to fold an extract subvector operation. 2193 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2194 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2195 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2196 return nullptr; 2197 2198 // Check if we are extracting all bits of an inserted scalar: 2199 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2200 Value *X; 2201 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2202 X->getType()->getPrimitiveSizeInBits() == 2203 Shuf.getType()->getPrimitiveSizeInBits()) 2204 return new BitCastInst(X, Shuf.getType()); 2205 2206 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2207 Value *Y; 2208 ArrayRef<int> Mask; 2209 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2210 return nullptr; 2211 2212 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2213 // then combining may result in worse codegen. 2214 if (!Op0->hasOneUse()) 2215 return nullptr; 2216 2217 // We are extracting a subvector from a shuffle. Remove excess elements from 2218 // the 1st shuffle mask to eliminate the extract. 2219 // 2220 // This transform is conservatively limited to identity extracts because we do 2221 // not allow arbitrary shuffle mask creation as a target-independent transform 2222 // (because we can't guarantee that will lower efficiently). 2223 // 2224 // If the extracting shuffle has an undef mask element, it transfers to the 2225 // new shuffle mask. Otherwise, copy the original mask element. Example: 2226 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2227 // shuf X, Y, <C0, undef, C2, undef> 2228 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2229 SmallVector<int, 16> NewMask(NumElts); 2230 assert(NumElts < Mask.size() && 2231 "Identity with extract must have less elements than its inputs"); 2232 2233 for (unsigned i = 0; i != NumElts; ++i) { 2234 int ExtractMaskElt = Shuf.getMaskValue(i); 2235 int MaskElt = Mask[i]; 2236 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2237 } 2238 return new ShuffleVectorInst(X, Y, NewMask); 2239 } 2240 2241 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2242 /// operand with the operand of an insertelement. 2243 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2244 InstCombinerImpl &IC) { 2245 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2246 SmallVector<int, 16> Mask; 2247 Shuf.getShuffleMask(Mask); 2248 2249 // The shuffle must not change vector sizes. 2250 // TODO: This restriction could be removed if the insert has only one use 2251 // (because the transform would require a new length-changing shuffle). 2252 int NumElts = Mask.size(); 2253 if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements())) 2254 return nullptr; 2255 2256 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2257 // not be able to handle it there if the insertelement has >1 use. 2258 // If the shuffle has an insertelement operand but does not choose the 2259 // inserted scalar element from that value, then we can replace that shuffle 2260 // operand with the source vector of the insertelement. 2261 Value *X; 2262 uint64_t IdxC; 2263 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2264 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2265 if (!is_contained(Mask, (int)IdxC)) 2266 return IC.replaceOperand(Shuf, 0, X); 2267 } 2268 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2269 // Offset the index constant by the vector width because we are checking for 2270 // accesses to the 2nd vector input of the shuffle. 2271 IdxC += NumElts; 2272 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2273 if (!is_contained(Mask, (int)IdxC)) 2274 return IC.replaceOperand(Shuf, 1, X); 2275 } 2276 2277 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2278 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2279 // We need an insertelement with a constant index. 2280 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2281 m_ConstantInt(IndexC)))) 2282 return false; 2283 2284 // Test the shuffle mask to see if it splices the inserted scalar into the 2285 // operand 1 vector of the shuffle. 2286 int NewInsIndex = -1; 2287 for (int i = 0; i != NumElts; ++i) { 2288 // Ignore undef mask elements. 2289 if (Mask[i] == -1) 2290 continue; 2291 2292 // The shuffle takes elements of operand 1 without lane changes. 2293 if (Mask[i] == NumElts + i) 2294 continue; 2295 2296 // The shuffle must choose the inserted scalar exactly once. 2297 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2298 return false; 2299 2300 // The shuffle is placing the inserted scalar into element i. 2301 NewInsIndex = i; 2302 } 2303 2304 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2305 2306 // Index is updated to the potentially translated insertion lane. 2307 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2308 return true; 2309 }; 2310 2311 // If the shuffle is unnecessary, insert the scalar operand directly into 2312 // operand 1 of the shuffle. Example: 2313 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2314 Value *Scalar; 2315 ConstantInt *IndexC; 2316 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2317 return InsertElementInst::Create(V1, Scalar, IndexC); 2318 2319 // Try again after commuting shuffle. Example: 2320 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2321 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2322 std::swap(V0, V1); 2323 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2324 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2325 return InsertElementInst::Create(V1, Scalar, IndexC); 2326 2327 return nullptr; 2328 } 2329 2330 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2331 // Match the operands as identity with padding (also known as concatenation 2332 // with undef) shuffles of the same source type. The backend is expected to 2333 // recreate these concatenations from a shuffle of narrow operands. 2334 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2335 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2336 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2337 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2338 return nullptr; 2339 2340 // We limit this transform to power-of-2 types because we expect that the 2341 // backend can convert the simplified IR patterns to identical nodes as the 2342 // original IR. 2343 // TODO: If we can verify the same behavior for arbitrary types, the 2344 // power-of-2 checks can be removed. 2345 Value *X = Shuffle0->getOperand(0); 2346 Value *Y = Shuffle1->getOperand(0); 2347 if (X->getType() != Y->getType() || 2348 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2349 !isPowerOf2_32( 2350 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2351 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2352 match(X, m_Undef()) || match(Y, m_Undef())) 2353 return nullptr; 2354 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2355 match(Shuffle1->getOperand(1), m_Undef()) && 2356 "Unexpected operand for identity shuffle"); 2357 2358 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2359 // operands directly by adjusting the shuffle mask to account for the narrower 2360 // types: 2361 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2362 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2363 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2364 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2365 2366 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2367 SmallVector<int, 16> NewMask(Mask.size(), -1); 2368 for (int i = 0, e = Mask.size(); i != e; ++i) { 2369 if (Mask[i] == -1) 2370 continue; 2371 2372 // If this shuffle is choosing an undef element from 1 of the sources, that 2373 // element is undef. 2374 if (Mask[i] < WideElts) { 2375 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2376 continue; 2377 } else { 2378 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2379 continue; 2380 } 2381 2382 // If this shuffle is choosing from the 1st narrow op, the mask element is 2383 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2384 // element is offset down to adjust for the narrow vector widths. 2385 if (Mask[i] < WideElts) { 2386 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2387 NewMask[i] = Mask[i]; 2388 } else { 2389 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2390 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2391 } 2392 } 2393 return new ShuffleVectorInst(X, Y, NewMask); 2394 } 2395 2396 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2397 Value *LHS = SVI.getOperand(0); 2398 Value *RHS = SVI.getOperand(1); 2399 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2400 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2401 SVI.getType(), ShufQuery)) 2402 return replaceInstUsesWith(SVI, V); 2403 2404 // Bail out for scalable vectors 2405 if (isa<ScalableVectorType>(LHS->getType())) 2406 return nullptr; 2407 2408 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2409 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2410 2411 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2412 // 2413 // if X and Y are of the same (vector) type, and the element size is not 2414 // changed by the bitcasts, we can distribute the bitcasts through the 2415 // shuffle, hopefully reducing the number of instructions. We make sure that 2416 // at least one bitcast only has one use, so we don't *increase* the number of 2417 // instructions here. 2418 Value *X, *Y; 2419 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2420 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2421 X->getType()->getScalarSizeInBits() == 2422 SVI.getType()->getScalarSizeInBits() && 2423 (LHS->hasOneUse() || RHS->hasOneUse())) { 2424 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2425 SVI.getName() + ".uncasted"); 2426 return new BitCastInst(V, SVI.getType()); 2427 } 2428 2429 ArrayRef<int> Mask = SVI.getShuffleMask(); 2430 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2431 2432 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2433 // simulated shuffle can simplify, then this shuffle is unnecessary: 2434 // shuf (bitcast X), undef, Mask --> bitcast X' 2435 // TODO: This could be extended to allow length-changing shuffles. 2436 // The transform might also be obsoleted if we allowed canonicalization 2437 // of bitcasted shuffles. 2438 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2439 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2440 // Try to create a scaled mask constant. 2441 auto *XType = cast<FixedVectorType>(X->getType()); 2442 unsigned XNumElts = XType->getNumElements(); 2443 SmallVector<int, 16> ScaledMask; 2444 if (XNumElts >= VWidth) { 2445 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2446 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2447 } else { 2448 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2449 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2450 ScaledMask.clear(); 2451 } 2452 if (!ScaledMask.empty()) { 2453 // If the shuffled source vector simplifies, cast that value to this 2454 // shuffle's type. 2455 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2456 ScaledMask, XType, ShufQuery)) 2457 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2458 } 2459 } 2460 2461 // shuffle x, x, mask --> shuffle x, undef, mask' 2462 if (LHS == RHS) { 2463 assert(!match(RHS, m_Undef()) && 2464 "Shuffle with 2 undef ops not simplified?"); 2465 // Remap any references to RHS to use LHS. 2466 SmallVector<int, 16> Elts; 2467 for (unsigned i = 0; i != VWidth; ++i) { 2468 // Propagate undef elements or force mask to LHS. 2469 if (Mask[i] < 0) 2470 Elts.push_back(UndefMaskElem); 2471 else 2472 Elts.push_back(Mask[i] % LHSWidth); 2473 } 2474 return new ShuffleVectorInst(LHS, Elts); 2475 } 2476 2477 // shuffle undef, x, mask --> shuffle x, undef, mask' 2478 if (match(LHS, m_Undef())) { 2479 SVI.commute(); 2480 return &SVI; 2481 } 2482 2483 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2484 return I; 2485 2486 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2487 return I; 2488 2489 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2490 return I; 2491 2492 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2493 return I; 2494 2495 APInt UndefElts(VWidth, 0); 2496 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2497 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2498 if (V != &SVI) 2499 return replaceInstUsesWith(SVI, V); 2500 return &SVI; 2501 } 2502 2503 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2504 return I; 2505 2506 // These transforms have the potential to lose undef knowledge, so they are 2507 // intentionally placed after SimplifyDemandedVectorElts(). 2508 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2509 return I; 2510 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2511 return I; 2512 2513 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2514 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2515 return replaceInstUsesWith(SVI, V); 2516 } 2517 2518 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2519 // a non-vector type. We can instead bitcast the original vector followed by 2520 // an extract of the desired element: 2521 // 2522 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2523 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2524 // %1 = bitcast <4 x i8> %sroa to i32 2525 // Becomes: 2526 // %bc = bitcast <16 x i8> %in to <4 x i32> 2527 // %ext = extractelement <4 x i32> %bc, i32 0 2528 // 2529 // If the shuffle is extracting a contiguous range of values from the input 2530 // vector then each use which is a bitcast of the extracted size can be 2531 // replaced. This will work if the vector types are compatible, and the begin 2532 // index is aligned to a value in the casted vector type. If the begin index 2533 // isn't aligned then we can shuffle the original vector (keeping the same 2534 // vector type) before extracting. 2535 // 2536 // This code will bail out if the target type is fundamentally incompatible 2537 // with vectors of the source type. 2538 // 2539 // Example of <16 x i8>, target type i32: 2540 // Index range [4,8): v-----------v Will work. 2541 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2542 // <16 x i8>: | | | | | | | | | | | | | | | | | 2543 // <4 x i32>: | | | | | 2544 // +-----------+-----------+-----------+-----------+ 2545 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2546 // Target type i40: ^--------------^ Won't work, bail. 2547 bool MadeChange = false; 2548 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2549 Value *V = LHS; 2550 unsigned MaskElems = Mask.size(); 2551 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2552 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2553 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2554 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2555 unsigned SrcNumElems = SrcTy->getNumElements(); 2556 SmallVector<BitCastInst *, 8> BCs; 2557 DenseMap<Type *, Value *> NewBCs; 2558 for (User *U : SVI.users()) 2559 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2560 if (!BC->use_empty()) 2561 // Only visit bitcasts that weren't previously handled. 2562 BCs.push_back(BC); 2563 for (BitCastInst *BC : BCs) { 2564 unsigned BegIdx = Mask.front(); 2565 Type *TgtTy = BC->getDestTy(); 2566 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2567 if (!TgtElemBitWidth) 2568 continue; 2569 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2570 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2571 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2572 if (!VecBitWidthsEqual) 2573 continue; 2574 if (!VectorType::isValidElementType(TgtTy)) 2575 continue; 2576 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2577 if (!BegIsAligned) { 2578 // Shuffle the input so [0,NumElements) contains the output, and 2579 // [NumElems,SrcNumElems) is undef. 2580 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2581 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2582 ShuffleMask[I] = Idx; 2583 V = Builder.CreateShuffleVector(V, ShuffleMask, 2584 SVI.getName() + ".extract"); 2585 BegIdx = 0; 2586 } 2587 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2588 assert(SrcElemsPerTgtElem); 2589 BegIdx /= SrcElemsPerTgtElem; 2590 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2591 auto *NewBC = 2592 BCAlreadyExists 2593 ? NewBCs[CastSrcTy] 2594 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2595 if (!BCAlreadyExists) 2596 NewBCs[CastSrcTy] = NewBC; 2597 auto *Ext = Builder.CreateExtractElement( 2598 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2599 // The shufflevector isn't being replaced: the bitcast that used it 2600 // is. InstCombine will visit the newly-created instructions. 2601 replaceInstUsesWith(*BC, Ext); 2602 MadeChange = true; 2603 } 2604 } 2605 2606 // If the LHS is a shufflevector itself, see if we can combine it with this 2607 // one without producing an unusual shuffle. 2608 // Cases that might be simplified: 2609 // 1. 2610 // x1=shuffle(v1,v2,mask1) 2611 // x=shuffle(x1,undef,mask) 2612 // ==> 2613 // x=shuffle(v1,undef,newMask) 2614 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2615 // 2. 2616 // x1=shuffle(v1,undef,mask1) 2617 // x=shuffle(x1,x2,mask) 2618 // where v1.size() == mask1.size() 2619 // ==> 2620 // x=shuffle(v1,x2,newMask) 2621 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2622 // 3. 2623 // x2=shuffle(v2,undef,mask2) 2624 // x=shuffle(x1,x2,mask) 2625 // where v2.size() == mask2.size() 2626 // ==> 2627 // x=shuffle(x1,v2,newMask) 2628 // newMask[i] = (mask[i] < x1.size()) 2629 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2630 // 4. 2631 // x1=shuffle(v1,undef,mask1) 2632 // x2=shuffle(v2,undef,mask2) 2633 // x=shuffle(x1,x2,mask) 2634 // where v1.size() == v2.size() 2635 // ==> 2636 // x=shuffle(v1,v2,newMask) 2637 // newMask[i] = (mask[i] < x1.size()) 2638 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2639 // 2640 // Here we are really conservative: 2641 // we are absolutely afraid of producing a shuffle mask not in the input 2642 // program, because the code gen may not be smart enough to turn a merged 2643 // shuffle into two specific shuffles: it may produce worse code. As such, 2644 // we only merge two shuffles if the result is either a splat or one of the 2645 // input shuffle masks. In this case, merging the shuffles just removes 2646 // one instruction, which we know is safe. This is good for things like 2647 // turning: (splat(splat)) -> splat, or 2648 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2649 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2650 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2651 if (LHSShuffle) 2652 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2653 LHSShuffle = nullptr; 2654 if (RHSShuffle) 2655 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2656 RHSShuffle = nullptr; 2657 if (!LHSShuffle && !RHSShuffle) 2658 return MadeChange ? &SVI : nullptr; 2659 2660 Value* LHSOp0 = nullptr; 2661 Value* LHSOp1 = nullptr; 2662 Value* RHSOp0 = nullptr; 2663 unsigned LHSOp0Width = 0; 2664 unsigned RHSOp0Width = 0; 2665 if (LHSShuffle) { 2666 LHSOp0 = LHSShuffle->getOperand(0); 2667 LHSOp1 = LHSShuffle->getOperand(1); 2668 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2669 } 2670 if (RHSShuffle) { 2671 RHSOp0 = RHSShuffle->getOperand(0); 2672 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2673 } 2674 Value* newLHS = LHS; 2675 Value* newRHS = RHS; 2676 if (LHSShuffle) { 2677 // case 1 2678 if (match(RHS, m_Undef())) { 2679 newLHS = LHSOp0; 2680 newRHS = LHSOp1; 2681 } 2682 // case 2 or 4 2683 else if (LHSOp0Width == LHSWidth) { 2684 newLHS = LHSOp0; 2685 } 2686 } 2687 // case 3 or 4 2688 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2689 newRHS = RHSOp0; 2690 } 2691 // case 4 2692 if (LHSOp0 == RHSOp0) { 2693 newLHS = LHSOp0; 2694 newRHS = nullptr; 2695 } 2696 2697 if (newLHS == LHS && newRHS == RHS) 2698 return MadeChange ? &SVI : nullptr; 2699 2700 ArrayRef<int> LHSMask; 2701 ArrayRef<int> RHSMask; 2702 if (newLHS != LHS) 2703 LHSMask = LHSShuffle->getShuffleMask(); 2704 if (RHSShuffle && newRHS != RHS) 2705 RHSMask = RHSShuffle->getShuffleMask(); 2706 2707 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2708 SmallVector<int, 16> newMask; 2709 bool isSplat = true; 2710 int SplatElt = -1; 2711 // Create a new mask for the new ShuffleVectorInst so that the new 2712 // ShuffleVectorInst is equivalent to the original one. 2713 for (unsigned i = 0; i < VWidth; ++i) { 2714 int eltMask; 2715 if (Mask[i] < 0) { 2716 // This element is an undef value. 2717 eltMask = -1; 2718 } else if (Mask[i] < (int)LHSWidth) { 2719 // This element is from left hand side vector operand. 2720 // 2721 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2722 // new mask value for the element. 2723 if (newLHS != LHS) { 2724 eltMask = LHSMask[Mask[i]]; 2725 // If the value selected is an undef value, explicitly specify it 2726 // with a -1 mask value. 2727 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2728 eltMask = -1; 2729 } else 2730 eltMask = Mask[i]; 2731 } else { 2732 // This element is from right hand side vector operand 2733 // 2734 // If the value selected is an undef value, explicitly specify it 2735 // with a -1 mask value. (case 1) 2736 if (match(RHS, m_Undef())) 2737 eltMask = -1; 2738 // If RHS is going to be replaced (case 3 or 4), calculate the 2739 // new mask value for the element. 2740 else if (newRHS != RHS) { 2741 eltMask = RHSMask[Mask[i]-LHSWidth]; 2742 // If the value selected is an undef value, explicitly specify it 2743 // with a -1 mask value. 2744 if (eltMask >= (int)RHSOp0Width) { 2745 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2746 "should have been check above"); 2747 eltMask = -1; 2748 } 2749 } else 2750 eltMask = Mask[i]-LHSWidth; 2751 2752 // If LHS's width is changed, shift the mask value accordingly. 2753 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2754 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2755 // If newRHS == newLHS, we want to remap any references from newRHS to 2756 // newLHS so that we can properly identify splats that may occur due to 2757 // obfuscation across the two vectors. 2758 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2759 eltMask += newLHSWidth; 2760 } 2761 2762 // Check if this could still be a splat. 2763 if (eltMask >= 0) { 2764 if (SplatElt >= 0 && SplatElt != eltMask) 2765 isSplat = false; 2766 SplatElt = eltMask; 2767 } 2768 2769 newMask.push_back(eltMask); 2770 } 2771 2772 // If the result mask is equal to one of the original shuffle masks, 2773 // or is a splat, do the replacement. 2774 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2775 if (!newRHS) 2776 newRHS = UndefValue::get(newLHS->getType()); 2777 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2778 } 2779 2780 return MadeChange ? &SVI : nullptr; 2781 } 2782