1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 #include <utility>
42 
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "instcombine"
47 
48 /// Return true if the value is cheaper to scalarize than it is to leave as a
49 /// vector operation. isConstant indicates whether we're extracting one known
50 /// element. If false we're extracting a variable index.
51 //
52 // FIXME: It's possible to create more instructions that previously existed.
53 static bool cheapToScalarize(Value *V, bool isConstant) {
54   if (Constant *C = dyn_cast<Constant>(V)) {
55     if (isConstant) return true;
56 
57     // If all elts are the same, we can extract it and use any of the values.
58     if (Constant *Op0 = C->getAggregateElement(0U)) {
59       for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
60            ++i)
61         if (C->getAggregateElement(i) != Op0)
62           return false;
63       return true;
64     }
65   }
66   Instruction *I = dyn_cast<Instruction>(V);
67   if (!I) return false;
68 
69   // Insert element gets simplified to the inserted element or is deleted if
70   // this is constant idx extract element and its a constant idx insertelt.
71   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
72       isa<ConstantInt>(I->getOperand(2)))
73     return true;
74   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
75     return true;
76   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
77     if (BO->hasOneUse() &&
78         (cheapToScalarize(BO->getOperand(0), isConstant) ||
79          cheapToScalarize(BO->getOperand(1), isConstant)))
80       return true;
81   if (CmpInst *CI = dyn_cast<CmpInst>(I))
82     if (CI->hasOneUse() &&
83         (cheapToScalarize(CI->getOperand(0), isConstant) ||
84          cheapToScalarize(CI->getOperand(1), isConstant)))
85       return true;
86 
87   return false;
88 }
89 
90 // If we have a PHI node with a vector type that is only used to feed
91 // itself and be an operand of extractelement at a constant location,
92 // try to replace the PHI of the vector type with a PHI of a scalar type.
93 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
94   SmallVector<Instruction *, 2> Extracts;
95   // The users we want the PHI to have are:
96   // 1) The EI ExtractElement (we already know this)
97   // 2) Possibly more ExtractElements with the same index.
98   // 3) Another operand, which will feed back into the PHI.
99   Instruction *PHIUser = nullptr;
100   for (auto U : PN->users()) {
101     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
102       if (EI.getIndexOperand() == EU->getIndexOperand())
103         Extracts.push_back(EU);
104       else
105         return nullptr;
106     } else if (!PHIUser) {
107       PHIUser = cast<Instruction>(U);
108     } else {
109       return nullptr;
110     }
111   }
112 
113   if (!PHIUser)
114     return nullptr;
115 
116   // Verify that this PHI user has one use, which is the PHI itself,
117   // and that it is a binary operation which is cheap to scalarize.
118   // otherwise return nullptr.
119   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
120       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
121     return nullptr;
122 
123   // Create a scalar PHI node that will replace the vector PHI node
124   // just before the current PHI node.
125   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
126       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
127   // Scalarize each PHI operand.
128   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
129     Value *PHIInVal = PN->getIncomingValue(i);
130     BasicBlock *inBB = PN->getIncomingBlock(i);
131     Value *Elt = EI.getIndexOperand();
132     // If the operand is the PHI induction variable:
133     if (PHIInVal == PHIUser) {
134       // Scalarize the binary operation. Its first operand is the
135       // scalar PHI, and the second operand is extracted from the other
136       // vector operand.
137       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
138       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
139       Value *Op = InsertNewInstWith(
140           ExtractElementInst::Create(B0->getOperand(opId), Elt,
141                                      B0->getOperand(opId)->getName() + ".Elt"),
142           *B0);
143       Value *newPHIUser = InsertNewInstWith(
144           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
145                                                 scalarPHI, Op, B0), *B0);
146       scalarPHI->addIncoming(newPHIUser, inBB);
147     } else {
148       // Scalarize PHI input:
149       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
150       // Insert the new instruction into the predecessor basic block.
151       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
152       BasicBlock::iterator InsertPos;
153       if (pos && !isa<PHINode>(pos)) {
154         InsertPos = ++pos->getIterator();
155       } else {
156         InsertPos = inBB->getFirstInsertionPt();
157       }
158 
159       InsertNewInstWith(newEI, *InsertPos);
160 
161       scalarPHI->addIncoming(newEI, inBB);
162     }
163   }
164 
165   for (auto E : Extracts)
166     replaceInstUsesWith(*E, scalarPHI);
167 
168   return &EI;
169 }
170 
171 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
172                                       InstCombiner::BuilderTy &Builder,
173                                       bool IsBigEndian) {
174   Value *X;
175   uint64_t ExtIndexC;
176   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
177       !X->getType()->isVectorTy() ||
178       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
179     return nullptr;
180 
181   // If this extractelement is using a bitcast from a vector of the same number
182   // of elements, see if we can find the source element from the source vector:
183   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
184   Type *SrcTy = X->getType();
185   Type *DestTy = Ext.getType();
186   unsigned NumSrcElts = SrcTy->getVectorNumElements();
187   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
188   if (NumSrcElts == NumElts)
189     if (Value *Elt = findScalarElement(X, ExtIndexC))
190       return new BitCastInst(Elt, DestTy);
191 
192   // If the source elements are wider than the destination, try to shift and
193   // truncate a subset of scalar bits of an insert op.
194   if (NumSrcElts < NumElts) {
195     Value *Scalar;
196     uint64_t InsIndexC;
197     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
198                                   m_ConstantInt(InsIndexC))))
199       return nullptr;
200 
201     // The extract must be from the subset of vector elements that we inserted
202     // into. Example: if we inserted element 1 of a <2 x i64> and we are
203     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
204     // of elements 4-7 of the bitcasted vector.
205     unsigned NarrowingRatio = NumElts / NumSrcElts;
206     if (ExtIndexC / NarrowingRatio != InsIndexC)
207       return nullptr;
208 
209     // We are extracting part of the original scalar. How that scalar is
210     // inserted into the vector depends on the endian-ness. Example:
211     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
212     //                                       +--+--+--+--+--+--+--+--+
213     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
214     // extelt <4 x i16> V', 3:               |                 |S2|S3|
215     //                                       +--+--+--+--+--+--+--+--+
216     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
217     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
218     // In this example, we must right-shift little-endian. Big-endian is just a
219     // truncate.
220     unsigned Chunk = ExtIndexC % NarrowingRatio;
221     if (IsBigEndian)
222       Chunk = NarrowingRatio - 1 - Chunk;
223 
224     // Bail out if this is an FP vector to FP vector sequence. That would take
225     // more instructions than we started with unless there is no shift, and it
226     // may not be handled as well in the backend.
227     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
228     bool NeedDestBitcast = DestTy->isFloatingPointTy();
229     if (NeedSrcBitcast && NeedDestBitcast)
230       return nullptr;
231 
232     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
233     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
234     unsigned ShAmt = Chunk * DestWidth;
235 
236     // TODO: This limitation is more strict than necessary. We could sum the
237     // number of new instructions and subtract the number eliminated to know if
238     // we can proceed.
239     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
240       if (NeedSrcBitcast || NeedDestBitcast)
241         return nullptr;
242 
243     if (NeedSrcBitcast) {
244       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
245       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
246     }
247 
248     if (ShAmt) {
249       // Bail out if we could end with more instructions than we started with.
250       if (!Ext.getVectorOperand()->hasOneUse())
251         return nullptr;
252       Scalar = Builder.CreateLShr(Scalar, ShAmt);
253     }
254 
255     if (NeedDestBitcast) {
256       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
257       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
258     }
259     return new TruncInst(Scalar, DestTy);
260   }
261 
262   return nullptr;
263 }
264 
265 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
266   Value *SrcVec = EI.getVectorOperand();
267   Value *Index = EI.getIndexOperand();
268   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
269                                             SQ.getWithInstruction(&EI)))
270     return replaceInstUsesWith(EI, V);
271 
272   // If extracting a specified index from the vector, see if we can recursively
273   // find a previously computed scalar that was inserted into the vector.
274   auto *IndexC = dyn_cast<ConstantInt>(Index);
275   if (IndexC) {
276     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
277 
278     // InstSimplify should handle cases where the index is invalid.
279     if (!IndexC->getValue().ule(NumElts))
280       return nullptr;
281 
282     // This instruction only demands the single element from the input vector.
283     // If the input vector has a single use, simplify it based on this use
284     // property.
285     if (SrcVec->hasOneUse() && NumElts != 1) {
286       APInt UndefElts(NumElts, 0);
287       APInt DemandedElts(NumElts, 0);
288       DemandedElts.setBit(IndexC->getZExtValue());
289       if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
290                                                 UndefElts)) {
291         EI.setOperand(0, V);
292         return &EI;
293       }
294     }
295 
296     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
297       return I;
298 
299     // If there's a vector PHI feeding a scalar use through this extractelement
300     // instruction, try to scalarize the PHI.
301     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
302       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
303         return ScalarPHI;
304   }
305 
306   BinaryOperator *BO;
307   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
308     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
309     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
310     Value *E0 = Builder.CreateExtractElement(X, Index);
311     Value *E1 = Builder.CreateExtractElement(Y, Index);
312     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
313   }
314 
315   Value *X, *Y;
316   CmpInst::Predicate Pred;
317   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
318       cheapToScalarize(SrcVec, IndexC)) {
319     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
320     Value *E0 = Builder.CreateExtractElement(X, Index);
321     Value *E1 = Builder.CreateExtractElement(Y, Index);
322     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
323   }
324 
325   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
326     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
327       // Extracting the inserted element?
328       if (IE->getOperand(2) == Index)
329         return replaceInstUsesWith(EI, IE->getOperand(1));
330       // If the inserted and extracted elements are constants, they must not
331       // be the same value, extract from the pre-inserted value instead.
332       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
333         Worklist.AddValue(SrcVec);
334         EI.setOperand(0, IE->getOperand(0));
335         return &EI;
336       }
337     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
338       // If this is extracting an element from a shufflevector, figure out where
339       // it came from and extract from the appropriate input element instead.
340       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
341         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
342         Value *Src;
343         unsigned LHSWidth =
344           SVI->getOperand(0)->getType()->getVectorNumElements();
345 
346         if (SrcIdx < 0)
347           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
348         if (SrcIdx < (int)LHSWidth)
349           Src = SVI->getOperand(0);
350         else {
351           SrcIdx -= LHSWidth;
352           Src = SVI->getOperand(1);
353         }
354         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
355         return ExtractElementInst::Create(Src,
356                                           ConstantInt::get(Int32Ty,
357                                                            SrcIdx, false));
358       }
359     } else if (auto *CI = dyn_cast<CastInst>(I)) {
360       // Canonicalize extractelement(cast) -> cast(extractelement).
361       // Bitcasts can change the number of vector elements, and they cost
362       // nothing.
363       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
364         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
365         Worklist.AddValue(EE);
366         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
367       }
368     }
369   }
370   return nullptr;
371 }
372 
373 /// If V is a shuffle of values that ONLY returns elements from either LHS or
374 /// RHS, return the shuffle mask and true. Otherwise, return false.
375 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
376                                          SmallVectorImpl<Constant*> &Mask) {
377   assert(LHS->getType() == RHS->getType() &&
378          "Invalid CollectSingleShuffleElements");
379   unsigned NumElts = V->getType()->getVectorNumElements();
380 
381   if (isa<UndefValue>(V)) {
382     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
383     return true;
384   }
385 
386   if (V == LHS) {
387     for (unsigned i = 0; i != NumElts; ++i)
388       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
389     return true;
390   }
391 
392   if (V == RHS) {
393     for (unsigned i = 0; i != NumElts; ++i)
394       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
395                                       i+NumElts));
396     return true;
397   }
398 
399   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
400     // If this is an insert of an extract from some other vector, include it.
401     Value *VecOp    = IEI->getOperand(0);
402     Value *ScalarOp = IEI->getOperand(1);
403     Value *IdxOp    = IEI->getOperand(2);
404 
405     if (!isa<ConstantInt>(IdxOp))
406       return false;
407     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
408 
409     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
410       // We can handle this if the vector we are inserting into is
411       // transitively ok.
412       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
413         // If so, update the mask to reflect the inserted undef.
414         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
415         return true;
416       }
417     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
418       if (isa<ConstantInt>(EI->getOperand(1))) {
419         unsigned ExtractedIdx =
420         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
421         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
422 
423         // This must be extracting from either LHS or RHS.
424         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
425           // We can handle this if the vector we are inserting into is
426           // transitively ok.
427           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
428             // If so, update the mask to reflect the inserted value.
429             if (EI->getOperand(0) == LHS) {
430               Mask[InsertedIdx % NumElts] =
431               ConstantInt::get(Type::getInt32Ty(V->getContext()),
432                                ExtractedIdx);
433             } else {
434               assert(EI->getOperand(0) == RHS);
435               Mask[InsertedIdx % NumElts] =
436               ConstantInt::get(Type::getInt32Ty(V->getContext()),
437                                ExtractedIdx + NumLHSElts);
438             }
439             return true;
440           }
441         }
442       }
443     }
444   }
445 
446   return false;
447 }
448 
449 /// If we have insertion into a vector that is wider than the vector that we
450 /// are extracting from, try to widen the source vector to allow a single
451 /// shufflevector to replace one or more insert/extract pairs.
452 static void replaceExtractElements(InsertElementInst *InsElt,
453                                    ExtractElementInst *ExtElt,
454                                    InstCombiner &IC) {
455   VectorType *InsVecType = InsElt->getType();
456   VectorType *ExtVecType = ExtElt->getVectorOperandType();
457   unsigned NumInsElts = InsVecType->getVectorNumElements();
458   unsigned NumExtElts = ExtVecType->getVectorNumElements();
459 
460   // The inserted-to vector must be wider than the extracted-from vector.
461   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
462       NumExtElts >= NumInsElts)
463     return;
464 
465   // Create a shuffle mask to widen the extended-from vector using undefined
466   // values. The mask selects all of the values of the original vector followed
467   // by as many undefined values as needed to create a vector of the same length
468   // as the inserted-to vector.
469   SmallVector<Constant *, 16> ExtendMask;
470   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
471   for (unsigned i = 0; i < NumExtElts; ++i)
472     ExtendMask.push_back(ConstantInt::get(IntType, i));
473   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
474     ExtendMask.push_back(UndefValue::get(IntType));
475 
476   Value *ExtVecOp = ExtElt->getVectorOperand();
477   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
478   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
479                                    ? ExtVecOpInst->getParent()
480                                    : ExtElt->getParent();
481 
482   // TODO: This restriction matches the basic block check below when creating
483   // new extractelement instructions. If that limitation is removed, this one
484   // could also be removed. But for now, we just bail out to ensure that we
485   // will replace the extractelement instruction that is feeding our
486   // insertelement instruction. This allows the insertelement to then be
487   // replaced by a shufflevector. If the insertelement is not replaced, we can
488   // induce infinite looping because there's an optimization for extractelement
489   // that will delete our widening shuffle. This would trigger another attempt
490   // here to create that shuffle, and we spin forever.
491   if (InsertionBlock != InsElt->getParent())
492     return;
493 
494   // TODO: This restriction matches the check in visitInsertElementInst() and
495   // prevents an infinite loop caused by not turning the extract/insert pair
496   // into a shuffle. We really should not need either check, but we're lacking
497   // folds for shufflevectors because we're afraid to generate shuffle masks
498   // that the backend can't handle.
499   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
500     return;
501 
502   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
503                                         ConstantVector::get(ExtendMask));
504 
505   // Insert the new shuffle after the vector operand of the extract is defined
506   // (as long as it's not a PHI) or at the start of the basic block of the
507   // extract, so any subsequent extracts in the same basic block can use it.
508   // TODO: Insert before the earliest ExtractElementInst that is replaced.
509   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
510     WideVec->insertAfter(ExtVecOpInst);
511   else
512     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
513 
514   // Replace extracts from the original narrow vector with extracts from the new
515   // wide vector.
516   for (User *U : ExtVecOp->users()) {
517     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
518     if (!OldExt || OldExt->getParent() != WideVec->getParent())
519       continue;
520     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
521     NewExt->insertAfter(OldExt);
522     IC.replaceInstUsesWith(*OldExt, NewExt);
523   }
524 }
525 
526 /// We are building a shuffle to create V, which is a sequence of insertelement,
527 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
528 /// not rely on the second vector source. Return a std::pair containing the
529 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
530 /// parameter as required.
531 ///
532 /// Note: we intentionally don't try to fold earlier shuffles since they have
533 /// often been chosen carefully to be efficiently implementable on the target.
534 using ShuffleOps = std::pair<Value *, Value *>;
535 
536 static ShuffleOps collectShuffleElements(Value *V,
537                                          SmallVectorImpl<Constant *> &Mask,
538                                          Value *PermittedRHS,
539                                          InstCombiner &IC) {
540   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
541   unsigned NumElts = V->getType()->getVectorNumElements();
542 
543   if (isa<UndefValue>(V)) {
544     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
545     return std::make_pair(
546         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
547   }
548 
549   if (isa<ConstantAggregateZero>(V)) {
550     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
551     return std::make_pair(V, nullptr);
552   }
553 
554   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
555     // If this is an insert of an extract from some other vector, include it.
556     Value *VecOp    = IEI->getOperand(0);
557     Value *ScalarOp = IEI->getOperand(1);
558     Value *IdxOp    = IEI->getOperand(2);
559 
560     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
561       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
562         unsigned ExtractedIdx =
563           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
564         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
565 
566         // Either the extracted from or inserted into vector must be RHSVec,
567         // otherwise we'd end up with a shuffle of three inputs.
568         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
569           Value *RHS = EI->getOperand(0);
570           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
571           assert(LR.second == nullptr || LR.second == RHS);
572 
573           if (LR.first->getType() != RHS->getType()) {
574             // Although we are giving up for now, see if we can create extracts
575             // that match the inserts for another round of combining.
576             replaceExtractElements(IEI, EI, IC);
577 
578             // We tried our best, but we can't find anything compatible with RHS
579             // further up the chain. Return a trivial shuffle.
580             for (unsigned i = 0; i < NumElts; ++i)
581               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
582             return std::make_pair(V, nullptr);
583           }
584 
585           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
586           Mask[InsertedIdx % NumElts] =
587             ConstantInt::get(Type::getInt32Ty(V->getContext()),
588                              NumLHSElts+ExtractedIdx);
589           return std::make_pair(LR.first, RHS);
590         }
591 
592         if (VecOp == PermittedRHS) {
593           // We've gone as far as we can: anything on the other side of the
594           // extractelement will already have been converted into a shuffle.
595           unsigned NumLHSElts =
596               EI->getOperand(0)->getType()->getVectorNumElements();
597           for (unsigned i = 0; i != NumElts; ++i)
598             Mask.push_back(ConstantInt::get(
599                 Type::getInt32Ty(V->getContext()),
600                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
601           return std::make_pair(EI->getOperand(0), PermittedRHS);
602         }
603 
604         // If this insertelement is a chain that comes from exactly these two
605         // vectors, return the vector and the effective shuffle.
606         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
607             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
608                                          Mask))
609           return std::make_pair(EI->getOperand(0), PermittedRHS);
610       }
611     }
612   }
613 
614   // Otherwise, we can't do anything fancy. Return an identity vector.
615   for (unsigned i = 0; i != NumElts; ++i)
616     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
617   return std::make_pair(V, nullptr);
618 }
619 
620 /// Try to find redundant insertvalue instructions, like the following ones:
621 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
622 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
623 /// Here the second instruction inserts values at the same indices, as the
624 /// first one, making the first one redundant.
625 /// It should be transformed to:
626 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
627 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
628   bool IsRedundant = false;
629   ArrayRef<unsigned int> FirstIndices = I.getIndices();
630 
631   // If there is a chain of insertvalue instructions (each of them except the
632   // last one has only one use and it's another insertvalue insn from this
633   // chain), check if any of the 'children' uses the same indices as the first
634   // instruction. In this case, the first one is redundant.
635   Value *V = &I;
636   unsigned Depth = 0;
637   while (V->hasOneUse() && Depth < 10) {
638     User *U = V->user_back();
639     auto UserInsInst = dyn_cast<InsertValueInst>(U);
640     if (!UserInsInst || U->getOperand(0) != V)
641       break;
642     if (UserInsInst->getIndices() == FirstIndices) {
643       IsRedundant = true;
644       break;
645     }
646     V = UserInsInst;
647     Depth++;
648   }
649 
650   if (IsRedundant)
651     return replaceInstUsesWith(I, I.getOperand(0));
652   return nullptr;
653 }
654 
655 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
656   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
657   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
658 
659   // A vector select does not change the size of the operands.
660   if (MaskSize != VecSize)
661     return false;
662 
663   // Each mask element must be undefined or choose a vector element from one of
664   // the source operands without crossing vector lanes.
665   for (int i = 0; i != MaskSize; ++i) {
666     int Elt = Shuf.getMaskValue(i);
667     if (Elt != -1 && Elt != i && Elt != i + VecSize)
668       return false;
669   }
670 
671   return true;
672 }
673 
674 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
675 // splat. That is:
676 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
677 // shufflevector(insertelt(X, %k, 0), undef, zero)
678 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
679   // We are interested in the last insert in a chain. So, if this insert
680   // has a single user, and that user is an insert, bail.
681   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
682     return nullptr;
683 
684   VectorType *VT = cast<VectorType>(InsElt.getType());
685   int NumElements = VT->getNumElements();
686 
687   // Do not try to do this for a one-element vector, since that's a nop,
688   // and will cause an inf-loop.
689   if (NumElements == 1)
690     return nullptr;
691 
692   Value *SplatVal = InsElt.getOperand(1);
693   InsertElementInst *CurrIE = &InsElt;
694   SmallVector<bool, 16> ElementPresent(NumElements, false);
695   InsertElementInst *FirstIE = nullptr;
696 
697   // Walk the chain backwards, keeping track of which indices we inserted into,
698   // until we hit something that isn't an insert of the splatted value.
699   while (CurrIE) {
700     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
701     if (!Idx || CurrIE->getOperand(1) != SplatVal)
702       return nullptr;
703 
704     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
705     // Check none of the intermediate steps have any additional uses, except
706     // for the root insertelement instruction, which can be re-used, if it
707     // inserts at position 0.
708     if (CurrIE != &InsElt &&
709         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
710       return nullptr;
711 
712     ElementPresent[Idx->getZExtValue()] = true;
713     FirstIE = CurrIE;
714     CurrIE = NextIE;
715   }
716 
717   // Make sure we've seen an insert into every element.
718   if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
719     return nullptr;
720 
721   // All right, create the insert + shuffle.
722   Instruction *InsertFirst;
723   if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
724     InsertFirst = FirstIE;
725   else
726     InsertFirst = InsertElementInst::Create(
727         UndefValue::get(VT), SplatVal,
728         ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0),
729         "", &InsElt);
730 
731   Constant *ZeroMask = ConstantAggregateZero::get(
732       VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
733 
734   return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
735 }
736 
737 /// If we have an insertelement instruction feeding into another insertelement
738 /// and the 2nd is inserting a constant into the vector, canonicalize that
739 /// constant insertion before the insertion of a variable:
740 ///
741 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
742 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
743 ///
744 /// This has the potential of eliminating the 2nd insertelement instruction
745 /// via constant folding of the scalar constant into a vector constant.
746 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
747                                      InstCombiner::BuilderTy &Builder) {
748   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
749   if (!InsElt1 || !InsElt1->hasOneUse())
750     return nullptr;
751 
752   Value *X, *Y;
753   Constant *ScalarC;
754   ConstantInt *IdxC1, *IdxC2;
755   if (match(InsElt1->getOperand(0), m_Value(X)) &&
756       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
757       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
758       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
759       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
760     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
761     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
762   }
763 
764   return nullptr;
765 }
766 
767 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
768 /// --> shufflevector X, CVec', Mask'
769 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
770   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
771   // Bail out if the parent has more than one use. In that case, we'd be
772   // replacing the insertelt with a shuffle, and that's not a clear win.
773   if (!Inst || !Inst->hasOneUse())
774     return nullptr;
775   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
776     // The shuffle must have a constant vector operand. The insertelt must have
777     // a constant scalar being inserted at a constant position in the vector.
778     Constant *ShufConstVec, *InsEltScalar;
779     uint64_t InsEltIndex;
780     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
781         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
782         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
783       return nullptr;
784 
785     // Adding an element to an arbitrary shuffle could be expensive, but a
786     // shuffle that selects elements from vectors without crossing lanes is
787     // assumed cheap.
788     // If we're just adding a constant into that shuffle, it will still be
789     // cheap.
790     if (!isShuffleEquivalentToSelect(*Shuf))
791       return nullptr;
792 
793     // From the above 'select' check, we know that the mask has the same number
794     // of elements as the vector input operands. We also know that each constant
795     // input element is used in its lane and can not be used more than once by
796     // the shuffle. Therefore, replace the constant in the shuffle's constant
797     // vector with the insertelt constant. Replace the constant in the shuffle's
798     // mask vector with the insertelt index plus the length of the vector
799     // (because the constant vector operand of a shuffle is always the 2nd
800     // operand).
801     Constant *Mask = Shuf->getMask();
802     unsigned NumElts = Mask->getType()->getVectorNumElements();
803     SmallVector<Constant *, 16> NewShufElts(NumElts);
804     SmallVector<Constant *, 16> NewMaskElts(NumElts);
805     for (unsigned I = 0; I != NumElts; ++I) {
806       if (I == InsEltIndex) {
807         NewShufElts[I] = InsEltScalar;
808         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
809         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
810       } else {
811         // Copy over the existing values.
812         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
813         NewMaskElts[I] = Mask->getAggregateElement(I);
814       }
815     }
816 
817     // Create new operands for a shuffle that includes the constant of the
818     // original insertelt. The old shuffle will be dead now.
819     return new ShuffleVectorInst(Shuf->getOperand(0),
820                                  ConstantVector::get(NewShufElts),
821                                  ConstantVector::get(NewMaskElts));
822   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
823     // Transform sequences of insertelements ops with constant data/indexes into
824     // a single shuffle op.
825     unsigned NumElts = InsElt.getType()->getNumElements();
826 
827     uint64_t InsertIdx[2];
828     Constant *Val[2];
829     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
830         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
831         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
832         !match(IEI->getOperand(1), m_Constant(Val[1])))
833       return nullptr;
834     SmallVector<Constant *, 16> Values(NumElts);
835     SmallVector<Constant *, 16> Mask(NumElts);
836     auto ValI = std::begin(Val);
837     // Generate new constant vector and mask.
838     // We have 2 values/masks from the insertelements instructions. Insert them
839     // into new value/mask vectors.
840     for (uint64_t I : InsertIdx) {
841       if (!Values[I]) {
842         assert(!Mask[I]);
843         Values[I] = *ValI;
844         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
845                                    NumElts + I);
846       }
847       ++ValI;
848     }
849     // Remaining values are filled with 'undef' values.
850     for (unsigned I = 0; I < NumElts; ++I) {
851       if (!Values[I]) {
852         assert(!Mask[I]);
853         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
854         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
855       }
856     }
857     // Create new operands for a shuffle that includes the constant of the
858     // original insertelt.
859     return new ShuffleVectorInst(IEI->getOperand(0),
860                                  ConstantVector::get(Values),
861                                  ConstantVector::get(Mask));
862   }
863   return nullptr;
864 }
865 
866 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
867   Value *VecOp    = IE.getOperand(0);
868   Value *ScalarOp = IE.getOperand(1);
869   Value *IdxOp    = IE.getOperand(2);
870 
871   if (auto *V = SimplifyInsertElementInst(
872           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
873     return replaceInstUsesWith(IE, V);
874 
875   // Inserting an undef or into an undefined place, remove this.
876   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
877     replaceInstUsesWith(IE, VecOp);
878 
879   // If the inserted element was extracted from some other vector and both
880   // indexes are constant, try to turn this into a shuffle.
881   uint64_t InsertedIdx, ExtractedIdx;
882   Value *ExtVecOp;
883   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
884       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
885                                        m_ConstantInt(ExtractedIdx)))) {
886     unsigned NumInsertVectorElts = IE.getType()->getNumElements();
887     unsigned NumExtractVectorElts = ExtVecOp->getType()->getVectorNumElements();
888     if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
889       return replaceInstUsesWith(IE, VecOp);
890 
891     if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
892       return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
893 
894     // If we are extracting a value from a vector, then inserting it right
895     // back into the same place, just use the input vector.
896     if (ExtVecOp == VecOp && ExtractedIdx == InsertedIdx)
897       return replaceInstUsesWith(IE, VecOp);
898 
899     // TODO: Looking at the user(s) to determine if this insert is a
900     // fold-to-shuffle opportunity does not match the usual instcombine
901     // constraints. We should decide if the transform is worthy based only
902     // on this instruction and its operands, but that may not work currently.
903     //
904     // Here, we are trying to avoid creating shuffles before reaching
905     // the end of a chain of extract-insert pairs. This is complicated because
906     // we do not generally form arbitrary shuffle masks in instcombine
907     // (because those may codegen poorly), but collectShuffleElements() does
908     // exactly that.
909     //
910     // The rules for determining what is an acceptable target-independent
911     // shuffle mask are fuzzy because they evolve based on the backend's
912     // capabilities and real-world impact.
913     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
914       if (!Insert.hasOneUse())
915         return true;
916       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
917       if (!InsertUser)
918         return true;
919       return false;
920     };
921 
922     // Try to form a shuffle from a chain of extract-insert ops.
923     if (isShuffleRootCandidate(IE)) {
924       SmallVector<Constant*, 16> Mask;
925       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
926 
927       // The proposed shuffle may be trivial, in which case we shouldn't
928       // perform the combine.
929       if (LR.first != &IE && LR.second != &IE) {
930         // We now have a shuffle of LHS, RHS, Mask.
931         if (LR.second == nullptr)
932           LR.second = UndefValue::get(LR.first->getType());
933         return new ShuffleVectorInst(LR.first, LR.second,
934                                      ConstantVector::get(Mask));
935       }
936     }
937   }
938 
939   unsigned VWidth = VecOp->getType()->getVectorNumElements();
940   APInt UndefElts(VWidth, 0);
941   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
942   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
943     if (V != &IE)
944       return replaceInstUsesWith(IE, V);
945     return &IE;
946   }
947 
948   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
949     return Shuf;
950 
951   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
952     return NewInsElt;
953 
954   // Turn a sequence of inserts that broadcasts a scalar into a single
955   // insert + shufflevector.
956   if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
957     return Broadcast;
958 
959   return nullptr;
960 }
961 
962 /// Return true if we can evaluate the specified expression tree if the vector
963 /// elements were shuffled in a different order.
964 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
965                                 unsigned Depth = 5) {
966   // We can always reorder the elements of a constant.
967   if (isa<Constant>(V))
968     return true;
969 
970   // We won't reorder vector arguments. No IPO here.
971   Instruction *I = dyn_cast<Instruction>(V);
972   if (!I) return false;
973 
974   // Two users may expect different orders of the elements. Don't try it.
975   if (!I->hasOneUse())
976     return false;
977 
978   if (Depth == 0) return false;
979 
980   switch (I->getOpcode()) {
981     case Instruction::Add:
982     case Instruction::FAdd:
983     case Instruction::Sub:
984     case Instruction::FSub:
985     case Instruction::Mul:
986     case Instruction::FMul:
987     case Instruction::UDiv:
988     case Instruction::SDiv:
989     case Instruction::FDiv:
990     case Instruction::URem:
991     case Instruction::SRem:
992     case Instruction::FRem:
993     case Instruction::Shl:
994     case Instruction::LShr:
995     case Instruction::AShr:
996     case Instruction::And:
997     case Instruction::Or:
998     case Instruction::Xor:
999     case Instruction::ICmp:
1000     case Instruction::FCmp:
1001     case Instruction::Trunc:
1002     case Instruction::ZExt:
1003     case Instruction::SExt:
1004     case Instruction::FPToUI:
1005     case Instruction::FPToSI:
1006     case Instruction::UIToFP:
1007     case Instruction::SIToFP:
1008     case Instruction::FPTrunc:
1009     case Instruction::FPExt:
1010     case Instruction::GetElementPtr: {
1011       // Bail out if we would create longer vector ops. We could allow creating
1012       // longer vector ops, but that may result in more expensive codegen. We
1013       // would also need to limit the transform to avoid undefined behavior for
1014       // integer div/rem.
1015       Type *ITy = I->getType();
1016       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1017         return false;
1018       for (Value *Operand : I->operands()) {
1019         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1020           return false;
1021       }
1022       return true;
1023     }
1024     case Instruction::InsertElement: {
1025       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1026       if (!CI) return false;
1027       int ElementNumber = CI->getLimitedValue();
1028 
1029       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1030       // can't put an element into multiple indices.
1031       bool SeenOnce = false;
1032       for (int i = 0, e = Mask.size(); i != e; ++i) {
1033         if (Mask[i] == ElementNumber) {
1034           if (SeenOnce)
1035             return false;
1036           SeenOnce = true;
1037         }
1038       }
1039       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1040     }
1041   }
1042   return false;
1043 }
1044 
1045 /// Rebuild a new instruction just like 'I' but with the new operands given.
1046 /// In the event of type mismatch, the type of the operands is correct.
1047 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1048   // We don't want to use the IRBuilder here because we want the replacement
1049   // instructions to appear next to 'I', not the builder's insertion point.
1050   switch (I->getOpcode()) {
1051     case Instruction::Add:
1052     case Instruction::FAdd:
1053     case Instruction::Sub:
1054     case Instruction::FSub:
1055     case Instruction::Mul:
1056     case Instruction::FMul:
1057     case Instruction::UDiv:
1058     case Instruction::SDiv:
1059     case Instruction::FDiv:
1060     case Instruction::URem:
1061     case Instruction::SRem:
1062     case Instruction::FRem:
1063     case Instruction::Shl:
1064     case Instruction::LShr:
1065     case Instruction::AShr:
1066     case Instruction::And:
1067     case Instruction::Or:
1068     case Instruction::Xor: {
1069       BinaryOperator *BO = cast<BinaryOperator>(I);
1070       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1071       BinaryOperator *New =
1072           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1073                                  NewOps[0], NewOps[1], "", BO);
1074       if (isa<OverflowingBinaryOperator>(BO)) {
1075         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1076         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1077       }
1078       if (isa<PossiblyExactOperator>(BO)) {
1079         New->setIsExact(BO->isExact());
1080       }
1081       if (isa<FPMathOperator>(BO))
1082         New->copyFastMathFlags(I);
1083       return New;
1084     }
1085     case Instruction::ICmp:
1086       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1087       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1088                           NewOps[0], NewOps[1]);
1089     case Instruction::FCmp:
1090       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1091       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1092                           NewOps[0], NewOps[1]);
1093     case Instruction::Trunc:
1094     case Instruction::ZExt:
1095     case Instruction::SExt:
1096     case Instruction::FPToUI:
1097     case Instruction::FPToSI:
1098     case Instruction::UIToFP:
1099     case Instruction::SIToFP:
1100     case Instruction::FPTrunc:
1101     case Instruction::FPExt: {
1102       // It's possible that the mask has a different number of elements from
1103       // the original cast. We recompute the destination type to match the mask.
1104       Type *DestTy =
1105           VectorType::get(I->getType()->getScalarType(),
1106                           NewOps[0]->getType()->getVectorNumElements());
1107       assert(NewOps.size() == 1 && "cast with #ops != 1");
1108       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1109                               "", I);
1110     }
1111     case Instruction::GetElementPtr: {
1112       Value *Ptr = NewOps[0];
1113       ArrayRef<Value*> Idx = NewOps.slice(1);
1114       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1115           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1116       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1117       return GEP;
1118     }
1119   }
1120   llvm_unreachable("failed to rebuild vector instructions");
1121 }
1122 
1123 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1124   // Mask.size() does not need to be equal to the number of vector elements.
1125 
1126   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1127   Type *EltTy = V->getType()->getScalarType();
1128   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1129   if (isa<UndefValue>(V))
1130     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1131 
1132   if (isa<ConstantAggregateZero>(V))
1133     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1134 
1135   if (Constant *C = dyn_cast<Constant>(V)) {
1136     SmallVector<Constant *, 16> MaskValues;
1137     for (int i = 0, e = Mask.size(); i != e; ++i) {
1138       if (Mask[i] == -1)
1139         MaskValues.push_back(UndefValue::get(I32Ty));
1140       else
1141         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1142     }
1143     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1144                                           ConstantVector::get(MaskValues));
1145   }
1146 
1147   Instruction *I = cast<Instruction>(V);
1148   switch (I->getOpcode()) {
1149     case Instruction::Add:
1150     case Instruction::FAdd:
1151     case Instruction::Sub:
1152     case Instruction::FSub:
1153     case Instruction::Mul:
1154     case Instruction::FMul:
1155     case Instruction::UDiv:
1156     case Instruction::SDiv:
1157     case Instruction::FDiv:
1158     case Instruction::URem:
1159     case Instruction::SRem:
1160     case Instruction::FRem:
1161     case Instruction::Shl:
1162     case Instruction::LShr:
1163     case Instruction::AShr:
1164     case Instruction::And:
1165     case Instruction::Or:
1166     case Instruction::Xor:
1167     case Instruction::ICmp:
1168     case Instruction::FCmp:
1169     case Instruction::Trunc:
1170     case Instruction::ZExt:
1171     case Instruction::SExt:
1172     case Instruction::FPToUI:
1173     case Instruction::FPToSI:
1174     case Instruction::UIToFP:
1175     case Instruction::SIToFP:
1176     case Instruction::FPTrunc:
1177     case Instruction::FPExt:
1178     case Instruction::Select:
1179     case Instruction::GetElementPtr: {
1180       SmallVector<Value*, 8> NewOps;
1181       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1182       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1183         Value *V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1184         NewOps.push_back(V);
1185         NeedsRebuild |= (V != I->getOperand(i));
1186       }
1187       if (NeedsRebuild) {
1188         return buildNew(I, NewOps);
1189       }
1190       return I;
1191     }
1192     case Instruction::InsertElement: {
1193       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1194 
1195       // The insertelement was inserting at Element. Figure out which element
1196       // that becomes after shuffling. The answer is guaranteed to be unique
1197       // by CanEvaluateShuffled.
1198       bool Found = false;
1199       int Index = 0;
1200       for (int e = Mask.size(); Index != e; ++Index) {
1201         if (Mask[Index] == Element) {
1202           Found = true;
1203           break;
1204         }
1205       }
1206 
1207       // If element is not in Mask, no need to handle the operand 1 (element to
1208       // be inserted). Just evaluate values in operand 0 according to Mask.
1209       if (!Found)
1210         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1211 
1212       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1213       return InsertElementInst::Create(V, I->getOperand(1),
1214                                        ConstantInt::get(I32Ty, Index), "", I);
1215     }
1216   }
1217   llvm_unreachable("failed to reorder elements of vector instruction!");
1218 }
1219 
1220 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1221                                   bool &isLHSID, bool &isRHSID) {
1222   isLHSID = isRHSID = true;
1223 
1224   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1225     if (Mask[i] < 0) continue;  // Ignore undef values.
1226     // Is this an identity shuffle of the LHS value?
1227     isLHSID &= (Mask[i] == (int)i);
1228 
1229     // Is this an identity shuffle of the RHS value?
1230     isRHSID &= (Mask[i]-e == i);
1231   }
1232 }
1233 
1234 // Returns true if the shuffle is extracting a contiguous range of values from
1235 // LHS, for example:
1236 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1237 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1238 //   Shuffles to:  |EE|FF|GG|HH|
1239 //                 +--+--+--+--+
1240 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1241                                        SmallVector<int, 16> &Mask) {
1242   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1243   unsigned MaskElems = Mask.size();
1244   unsigned BegIdx = Mask.front();
1245   unsigned EndIdx = Mask.back();
1246   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1247     return false;
1248   for (unsigned I = 0; I != MaskElems; ++I)
1249     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1250       return false;
1251   return true;
1252 }
1253 
1254 /// These are the ingredients in an alternate form binary operator as described
1255 /// below.
1256 struct BinopElts {
1257   BinaryOperator::BinaryOps Opcode;
1258   Value *Op0;
1259   Value *Op1;
1260   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1261             Value *V0 = nullptr, Value *V1 = nullptr) :
1262       Opcode(Opc), Op0(V0), Op1(V1) {}
1263   operator bool() const { return Opcode != 0; }
1264 };
1265 
1266 /// Binops may be transformed into binops with different opcodes and operands.
1267 /// Reverse the usual canonicalization to enable folds with the non-canonical
1268 /// form of the binop. If a transform is possible, return the elements of the
1269 /// new binop. If not, return invalid elements.
1270 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1271   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1272   Type *Ty = BO->getType();
1273   switch (BO->getOpcode()) {
1274     case Instruction::Shl: {
1275       // shl X, C --> mul X, (1 << C)
1276       Constant *C;
1277       if (match(BO1, m_Constant(C))) {
1278         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1279         return { Instruction::Mul, BO0, ShlOne };
1280       }
1281       break;
1282     }
1283     case Instruction::Or: {
1284       // or X, C --> add X, C (when X and C have no common bits set)
1285       const APInt *C;
1286       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1287         return { Instruction::Add, BO0, BO1 };
1288       break;
1289     }
1290     default:
1291       break;
1292   }
1293   return {};
1294 }
1295 
1296 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1297   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1298 
1299   // Are we shuffling together some value and that same value after it has been
1300   // modified by a binop with a constant?
1301   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1302   Constant *C;
1303   bool Op0IsBinop;
1304   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1305     Op0IsBinop = true;
1306   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1307     Op0IsBinop = false;
1308   else
1309     return nullptr;
1310 
1311   // The identity constant for a binop leaves a variable operand unchanged. For
1312   // a vector, this is a splat of something like 0, -1, or 1.
1313   // If there's no identity constant for this binop, we're done.
1314   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1315   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1316   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1317   if (!IdC)
1318     return nullptr;
1319 
1320   // Shuffle identity constants into the lanes that return the original value.
1321   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1322   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1323   // The existing binop constant vector remains in the same operand position.
1324   Constant *Mask = Shuf.getMask();
1325   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1326                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1327 
1328   bool MightCreatePoisonOrUB =
1329       Mask->containsUndefElement() &&
1330       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1331   if (MightCreatePoisonOrUB)
1332     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1333 
1334   // shuf (bop X, C), X, M --> bop X, C'
1335   // shuf X, (bop X, C), M --> bop X, C'
1336   Value *X = Op0IsBinop ? Op1 : Op0;
1337   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1338   NewBO->copyIRFlags(BO);
1339 
1340   // An undef shuffle mask element may propagate as an undef constant element in
1341   // the new binop. That would produce poison where the original code might not.
1342   // If we already made a safe constant, then there's no danger.
1343   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1344     NewBO->dropPoisonGeneratingFlags();
1345   return NewBO;
1346 }
1347 
1348 /// Try to fold shuffles that are the equivalent of a vector select.
1349 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1350                                       InstCombiner::BuilderTy &Builder,
1351                                       const DataLayout &DL) {
1352   if (!Shuf.isSelect())
1353     return nullptr;
1354 
1355   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1356     return I;
1357 
1358   BinaryOperator *B0, *B1;
1359   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1360       !match(Shuf.getOperand(1), m_BinOp(B1)))
1361     return nullptr;
1362 
1363   Value *X, *Y;
1364   Constant *C0, *C1;
1365   bool ConstantsAreOp1;
1366   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1367       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1368     ConstantsAreOp1 = true;
1369   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1370            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1371     ConstantsAreOp1 = false;
1372   else
1373     return nullptr;
1374 
1375   // We need matching binops to fold the lanes together.
1376   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1377   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1378   bool DropNSW = false;
1379   if (ConstantsAreOp1 && Opc0 != Opc1) {
1380     // TODO: We drop "nsw" if shift is converted into multiply because it may
1381     // not be correct when the shift amount is BitWidth - 1. We could examine
1382     // each vector element to determine if it is safe to keep that flag.
1383     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1384       DropNSW = true;
1385     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1386       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1387       Opc0 = AltB0.Opcode;
1388       C0 = cast<Constant>(AltB0.Op1);
1389     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1390       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1391       Opc1 = AltB1.Opcode;
1392       C1 = cast<Constant>(AltB1.Op1);
1393     }
1394   }
1395 
1396   if (Opc0 != Opc1)
1397     return nullptr;
1398 
1399   // The opcodes must be the same. Use a new name to make that clear.
1400   BinaryOperator::BinaryOps BOpc = Opc0;
1401 
1402   // Select the constant elements needed for the single binop.
1403   Constant *Mask = Shuf.getMask();
1404   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1405 
1406   // We are moving a binop after a shuffle. When a shuffle has an undefined
1407   // mask element, the result is undefined, but it is not poison or undefined
1408   // behavior. That is not necessarily true for div/rem/shift.
1409   bool MightCreatePoisonOrUB =
1410       Mask->containsUndefElement() &&
1411       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1412   if (MightCreatePoisonOrUB)
1413     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1414 
1415   Value *V;
1416   if (X == Y) {
1417     // Remove a binop and the shuffle by rearranging the constant:
1418     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1419     // shuffle (op C0, V), (op C1, V), M --> op C', V
1420     V = X;
1421   } else {
1422     // If there are 2 different variable operands, we must create a new shuffle
1423     // (select) first, so check uses to ensure that we don't end up with more
1424     // instructions than we started with.
1425     if (!B0->hasOneUse() && !B1->hasOneUse())
1426       return nullptr;
1427 
1428     // If we use the original shuffle mask and op1 is *variable*, we would be
1429     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1430     // poison. We do not have to guard against UB when *constants* are op1
1431     // because safe constants guarantee that we do not overflow sdiv/srem (and
1432     // there's no danger for other opcodes).
1433     // TODO: To allow this case, create a new shuffle mask with no undefs.
1434     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1435       return nullptr;
1436 
1437     // Note: In general, we do not create new shuffles in InstCombine because we
1438     // do not know if a target can lower an arbitrary shuffle optimally. In this
1439     // case, the shuffle uses the existing mask, so there is no additional risk.
1440 
1441     // Select the variable vectors first, then perform the binop:
1442     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1443     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1444     V = Builder.CreateShuffleVector(X, Y, Mask);
1445   }
1446 
1447   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1448                                          BinaryOperator::Create(BOpc, NewC, V);
1449 
1450   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1451   // 1. If we changed an opcode, poison conditions might have changed.
1452   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1453   //    where the original code did not. But if we already made a safe constant,
1454   //    then there's no danger.
1455   NewBO->copyIRFlags(B0);
1456   NewBO->andIRFlags(B1);
1457   if (DropNSW)
1458     NewBO->setHasNoSignedWrap(false);
1459   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1460     NewBO->dropPoisonGeneratingFlags();
1461   return NewBO;
1462 }
1463 
1464 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1465 /// narrowing (concatenating with undef and extracting back to the original
1466 /// length). This allows replacing the wide select with a narrow select.
1467 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1468                                        InstCombiner::BuilderTy &Builder) {
1469   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1470   // of the 1st vector operand of a shuffle.
1471   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1472     return nullptr;
1473 
1474   // The vector being shuffled must be a vector select that we can eliminate.
1475   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1476   Value *Cond, *X, *Y;
1477   if (!match(Shuf.getOperand(0),
1478              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1479     return nullptr;
1480 
1481   // We need a narrow condition value. It must be extended with undef elements
1482   // and have the same number of elements as this shuffle.
1483   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1484   Value *NarrowCond;
1485   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1486                                             m_Constant()))) ||
1487       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1488       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1489     return nullptr;
1490 
1491   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1492   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1493   Value *Undef = UndefValue::get(X->getType());
1494   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1495   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1496   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1497 }
1498 
1499 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1500 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1501   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1502   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1503     return nullptr;
1504 
1505   Value *X, *Y;
1506   Constant *Mask;
1507   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1508     return nullptr;
1509 
1510   // We are extracting a subvector from a shuffle. Remove excess elements from
1511   // the 1st shuffle mask to eliminate the extract.
1512   //
1513   // This transform is conservatively limited to identity extracts because we do
1514   // not allow arbitrary shuffle mask creation as a target-independent transform
1515   // (because we can't guarantee that will lower efficiently).
1516   //
1517   // If the extracting shuffle has an undef mask element, it transfers to the
1518   // new shuffle mask. Otherwise, copy the original mask element. Example:
1519   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1520   //   shuf X, Y, <C0, undef, C2, undef>
1521   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1522   SmallVector<Constant *, 16> NewMask(NumElts);
1523   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1524          "Identity with extract must have less elements than its inputs");
1525 
1526   for (unsigned i = 0; i != NumElts; ++i) {
1527     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1528     Constant *MaskElt = Mask->getAggregateElement(i);
1529     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1530   }
1531   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1532 }
1533 
1534 /// Try to replace a shuffle with an insertelement.
1535 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1536   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1537   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1538 
1539   // The shuffle must not change vector sizes.
1540   // TODO: This restriction could be removed if the insert has only one use
1541   //       (because the transform would require a new length-changing shuffle).
1542   int NumElts = Mask.size();
1543   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1544     return nullptr;
1545 
1546   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1547   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1548     // We need an insertelement with a constant index.
1549     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1550                                    m_ConstantInt(IndexC))))
1551       return false;
1552 
1553     // Test the shuffle mask to see if it splices the inserted scalar into the
1554     // operand 1 vector of the shuffle.
1555     int NewInsIndex = -1;
1556     for (int i = 0; i != NumElts; ++i) {
1557       // Ignore undef mask elements.
1558       if (Mask[i] == -1)
1559         continue;
1560 
1561       // The shuffle takes elements of operand 1 without lane changes.
1562       if (Mask[i] == NumElts + i)
1563         continue;
1564 
1565       // The shuffle must choose the inserted scalar exactly once.
1566       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1567         return false;
1568 
1569       // The shuffle is placing the inserted scalar into element i.
1570       NewInsIndex = i;
1571     }
1572 
1573     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1574 
1575     // Index is updated to the potentially translated insertion lane.
1576     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1577     return true;
1578   };
1579 
1580   // If the shuffle is unnecessary, insert the scalar operand directly into
1581   // operand 1 of the shuffle. Example:
1582   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1583   Value *Scalar;
1584   ConstantInt *IndexC;
1585   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1586     return InsertElementInst::Create(V1, Scalar, IndexC);
1587 
1588   // Try again after commuting shuffle. Example:
1589   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1590   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1591   std::swap(V0, V1);
1592   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1593   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1594     return InsertElementInst::Create(V1, Scalar, IndexC);
1595 
1596   return nullptr;
1597 }
1598 
1599 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1600   Value *LHS = SVI.getOperand(0);
1601   Value *RHS = SVI.getOperand(1);
1602   if (auto *V = SimplifyShuffleVectorInst(
1603           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1604     return replaceInstUsesWith(SVI, V);
1605 
1606   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1607     return I;
1608 
1609   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1610     return I;
1611 
1612   unsigned VWidth = SVI.getType()->getVectorNumElements();
1613   APInt UndefElts(VWidth, 0);
1614   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1615   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1616     if (V != &SVI)
1617       return replaceInstUsesWith(SVI, V);
1618     return &SVI;
1619   }
1620 
1621   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1622     return I;
1623 
1624   // This transform has the potential to lose undef knowledge, so it is
1625   // intentionally placed after SimplifyDemandedVectorElts().
1626   if (Instruction *I = foldShuffleWithInsert(SVI))
1627     return I;
1628 
1629   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1630   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1631   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1632   bool MadeChange = false;
1633 
1634   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1635   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1636   if (LHS == RHS || isa<UndefValue>(LHS)) {
1637     // Remap any references to RHS to use LHS.
1638     SmallVector<Constant*, 16> Elts;
1639     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1640       if (Mask[i] < 0) {
1641         Elts.push_back(UndefValue::get(Int32Ty));
1642         continue;
1643       }
1644 
1645       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1646           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1647         Mask[i] = -1;     // Turn into undef.
1648         Elts.push_back(UndefValue::get(Int32Ty));
1649       } else {
1650         Mask[i] = Mask[i] % e;  // Force to LHS.
1651         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1652       }
1653     }
1654     SVI.setOperand(0, SVI.getOperand(1));
1655     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1656     SVI.setOperand(2, ConstantVector::get(Elts));
1657     LHS = SVI.getOperand(0);
1658     RHS = SVI.getOperand(1);
1659     MadeChange = true;
1660   }
1661 
1662   if (VWidth == LHSWidth) {
1663     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1664     bool isLHSID, isRHSID;
1665     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1666 
1667     // Eliminate identity shuffles.
1668     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1669     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1670   }
1671 
1672   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1673     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1674     return replaceInstUsesWith(SVI, V);
1675   }
1676 
1677   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1678   // a non-vector type. We can instead bitcast the original vector followed by
1679   // an extract of the desired element:
1680   //
1681   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1682   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1683   //   %1 = bitcast <4 x i8> %sroa to i32
1684   // Becomes:
1685   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1686   //   %ext = extractelement <4 x i32> %bc, i32 0
1687   //
1688   // If the shuffle is extracting a contiguous range of values from the input
1689   // vector then each use which is a bitcast of the extracted size can be
1690   // replaced. This will work if the vector types are compatible, and the begin
1691   // index is aligned to a value in the casted vector type. If the begin index
1692   // isn't aligned then we can shuffle the original vector (keeping the same
1693   // vector type) before extracting.
1694   //
1695   // This code will bail out if the target type is fundamentally incompatible
1696   // with vectors of the source type.
1697   //
1698   // Example of <16 x i8>, target type i32:
1699   // Index range [4,8):         v-----------v Will work.
1700   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1701   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1702   //     <4 x i32>: |           |           |           |           |
1703   //                +-----------+-----------+-----------+-----------+
1704   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1705   // Target type i40:           ^--------------^ Won't work, bail.
1706   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1707     Value *V = LHS;
1708     unsigned MaskElems = Mask.size();
1709     VectorType *SrcTy = cast<VectorType>(V->getType());
1710     unsigned VecBitWidth = SrcTy->getBitWidth();
1711     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1712     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1713     unsigned SrcNumElems = SrcTy->getNumElements();
1714     SmallVector<BitCastInst *, 8> BCs;
1715     DenseMap<Type *, Value *> NewBCs;
1716     for (User *U : SVI.users())
1717       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1718         if (!BC->use_empty())
1719           // Only visit bitcasts that weren't previously handled.
1720           BCs.push_back(BC);
1721     for (BitCastInst *BC : BCs) {
1722       unsigned BegIdx = Mask.front();
1723       Type *TgtTy = BC->getDestTy();
1724       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1725       if (!TgtElemBitWidth)
1726         continue;
1727       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1728       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1729       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1730       if (!VecBitWidthsEqual)
1731         continue;
1732       if (!VectorType::isValidElementType(TgtTy))
1733         continue;
1734       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1735       if (!BegIsAligned) {
1736         // Shuffle the input so [0,NumElements) contains the output, and
1737         // [NumElems,SrcNumElems) is undef.
1738         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1739                                                 UndefValue::get(Int32Ty));
1740         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1741           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1742         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1743                                         ConstantVector::get(ShuffleMask),
1744                                         SVI.getName() + ".extract");
1745         BegIdx = 0;
1746       }
1747       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1748       assert(SrcElemsPerTgtElem);
1749       BegIdx /= SrcElemsPerTgtElem;
1750       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1751       auto *NewBC =
1752           BCAlreadyExists
1753               ? NewBCs[CastSrcTy]
1754               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1755       if (!BCAlreadyExists)
1756         NewBCs[CastSrcTy] = NewBC;
1757       auto *Ext = Builder.CreateExtractElement(
1758           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1759       // The shufflevector isn't being replaced: the bitcast that used it
1760       // is. InstCombine will visit the newly-created instructions.
1761       replaceInstUsesWith(*BC, Ext);
1762       MadeChange = true;
1763     }
1764   }
1765 
1766   // If the LHS is a shufflevector itself, see if we can combine it with this
1767   // one without producing an unusual shuffle.
1768   // Cases that might be simplified:
1769   // 1.
1770   // x1=shuffle(v1,v2,mask1)
1771   //  x=shuffle(x1,undef,mask)
1772   //        ==>
1773   //  x=shuffle(v1,undef,newMask)
1774   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1775   // 2.
1776   // x1=shuffle(v1,undef,mask1)
1777   //  x=shuffle(x1,x2,mask)
1778   // where v1.size() == mask1.size()
1779   //        ==>
1780   //  x=shuffle(v1,x2,newMask)
1781   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1782   // 3.
1783   // x2=shuffle(v2,undef,mask2)
1784   //  x=shuffle(x1,x2,mask)
1785   // where v2.size() == mask2.size()
1786   //        ==>
1787   //  x=shuffle(x1,v2,newMask)
1788   // newMask[i] = (mask[i] < x1.size())
1789   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1790   // 4.
1791   // x1=shuffle(v1,undef,mask1)
1792   // x2=shuffle(v2,undef,mask2)
1793   //  x=shuffle(x1,x2,mask)
1794   // where v1.size() == v2.size()
1795   //        ==>
1796   //  x=shuffle(v1,v2,newMask)
1797   // newMask[i] = (mask[i] < x1.size())
1798   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1799   //
1800   // Here we are really conservative:
1801   // we are absolutely afraid of producing a shuffle mask not in the input
1802   // program, because the code gen may not be smart enough to turn a merged
1803   // shuffle into two specific shuffles: it may produce worse code.  As such,
1804   // we only merge two shuffles if the result is either a splat or one of the
1805   // input shuffle masks.  In this case, merging the shuffles just removes
1806   // one instruction, which we know is safe.  This is good for things like
1807   // turning: (splat(splat)) -> splat, or
1808   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1809   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1810   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1811   if (LHSShuffle)
1812     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1813       LHSShuffle = nullptr;
1814   if (RHSShuffle)
1815     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1816       RHSShuffle = nullptr;
1817   if (!LHSShuffle && !RHSShuffle)
1818     return MadeChange ? &SVI : nullptr;
1819 
1820   Value* LHSOp0 = nullptr;
1821   Value* LHSOp1 = nullptr;
1822   Value* RHSOp0 = nullptr;
1823   unsigned LHSOp0Width = 0;
1824   unsigned RHSOp0Width = 0;
1825   if (LHSShuffle) {
1826     LHSOp0 = LHSShuffle->getOperand(0);
1827     LHSOp1 = LHSShuffle->getOperand(1);
1828     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1829   }
1830   if (RHSShuffle) {
1831     RHSOp0 = RHSShuffle->getOperand(0);
1832     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1833   }
1834   Value* newLHS = LHS;
1835   Value* newRHS = RHS;
1836   if (LHSShuffle) {
1837     // case 1
1838     if (isa<UndefValue>(RHS)) {
1839       newLHS = LHSOp0;
1840       newRHS = LHSOp1;
1841     }
1842     // case 2 or 4
1843     else if (LHSOp0Width == LHSWidth) {
1844       newLHS = LHSOp0;
1845     }
1846   }
1847   // case 3 or 4
1848   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1849     newRHS = RHSOp0;
1850   }
1851   // case 4
1852   if (LHSOp0 == RHSOp0) {
1853     newLHS = LHSOp0;
1854     newRHS = nullptr;
1855   }
1856 
1857   if (newLHS == LHS && newRHS == RHS)
1858     return MadeChange ? &SVI : nullptr;
1859 
1860   SmallVector<int, 16> LHSMask;
1861   SmallVector<int, 16> RHSMask;
1862   if (newLHS != LHS)
1863     LHSMask = LHSShuffle->getShuffleMask();
1864   if (RHSShuffle && newRHS != RHS)
1865     RHSMask = RHSShuffle->getShuffleMask();
1866 
1867   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1868   SmallVector<int, 16> newMask;
1869   bool isSplat = true;
1870   int SplatElt = -1;
1871   // Create a new mask for the new ShuffleVectorInst so that the new
1872   // ShuffleVectorInst is equivalent to the original one.
1873   for (unsigned i = 0; i < VWidth; ++i) {
1874     int eltMask;
1875     if (Mask[i] < 0) {
1876       // This element is an undef value.
1877       eltMask = -1;
1878     } else if (Mask[i] < (int)LHSWidth) {
1879       // This element is from left hand side vector operand.
1880       //
1881       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1882       // new mask value for the element.
1883       if (newLHS != LHS) {
1884         eltMask = LHSMask[Mask[i]];
1885         // If the value selected is an undef value, explicitly specify it
1886         // with a -1 mask value.
1887         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1888           eltMask = -1;
1889       } else
1890         eltMask = Mask[i];
1891     } else {
1892       // This element is from right hand side vector operand
1893       //
1894       // If the value selected is an undef value, explicitly specify it
1895       // with a -1 mask value. (case 1)
1896       if (isa<UndefValue>(RHS))
1897         eltMask = -1;
1898       // If RHS is going to be replaced (case 3 or 4), calculate the
1899       // new mask value for the element.
1900       else if (newRHS != RHS) {
1901         eltMask = RHSMask[Mask[i]-LHSWidth];
1902         // If the value selected is an undef value, explicitly specify it
1903         // with a -1 mask value.
1904         if (eltMask >= (int)RHSOp0Width) {
1905           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1906                  && "should have been check above");
1907           eltMask = -1;
1908         }
1909       } else
1910         eltMask = Mask[i]-LHSWidth;
1911 
1912       // If LHS's width is changed, shift the mask value accordingly.
1913       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
1914       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1915       // If newRHS == newLHS, we want to remap any references from newRHS to
1916       // newLHS so that we can properly identify splats that may occur due to
1917       // obfuscation across the two vectors.
1918       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1919         eltMask += newLHSWidth;
1920     }
1921 
1922     // Check if this could still be a splat.
1923     if (eltMask >= 0) {
1924       if (SplatElt >= 0 && SplatElt != eltMask)
1925         isSplat = false;
1926       SplatElt = eltMask;
1927     }
1928 
1929     newMask.push_back(eltMask);
1930   }
1931 
1932   // If the result mask is equal to one of the original shuffle masks,
1933   // or is a splat, do the replacement.
1934   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1935     SmallVector<Constant*, 16> Elts;
1936     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1937       if (newMask[i] < 0) {
1938         Elts.push_back(UndefValue::get(Int32Ty));
1939       } else {
1940         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1941       }
1942     }
1943     if (!newRHS)
1944       newRHS = UndefValue::get(newLHS->getType());
1945     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1946   }
1947 
1948   // If the result mask is an identity, replace uses of this instruction with
1949   // corresponding argument.
1950   bool isLHSID, isRHSID;
1951   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1952   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1953   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1954 
1955   return MadeChange ? &SVI : nullptr;
1956 }
1957