1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 unsigned NumSrcElts = SrcTy->getNumElements(); 189 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 190 if (NumSrcElts == NumElts) 191 if (Value *Elt = findScalarElement(X, ExtIndexC)) 192 return new BitCastInst(Elt, DestTy); 193 194 // If the source elements are wider than the destination, try to shift and 195 // truncate a subset of scalar bits of an insert op. 196 if (NumSrcElts < NumElts) { 197 Value *Scalar; 198 uint64_t InsIndexC; 199 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 200 m_ConstantInt(InsIndexC)))) 201 return nullptr; 202 203 // The extract must be from the subset of vector elements that we inserted 204 // into. Example: if we inserted element 1 of a <2 x i64> and we are 205 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 206 // of elements 4-7 of the bitcasted vector. 207 unsigned NarrowingRatio = NumElts / NumSrcElts; 208 if (ExtIndexC / NarrowingRatio != InsIndexC) 209 return nullptr; 210 211 // We are extracting part of the original scalar. How that scalar is 212 // inserted into the vector depends on the endian-ness. Example: 213 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 214 // +--+--+--+--+--+--+--+--+ 215 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 216 // extelt <4 x i16> V', 3: | |S2|S3| 217 // +--+--+--+--+--+--+--+--+ 218 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 219 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 220 // In this example, we must right-shift little-endian. Big-endian is just a 221 // truncate. 222 unsigned Chunk = ExtIndexC % NarrowingRatio; 223 if (IsBigEndian) 224 Chunk = NarrowingRatio - 1 - Chunk; 225 226 // Bail out if this is an FP vector to FP vector sequence. That would take 227 // more instructions than we started with unless there is no shift, and it 228 // may not be handled as well in the backend. 229 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 230 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 231 if (NeedSrcBitcast && NeedDestBitcast) 232 return nullptr; 233 234 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 235 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 236 unsigned ShAmt = Chunk * DestWidth; 237 238 // TODO: This limitation is more strict than necessary. We could sum the 239 // number of new instructions and subtract the number eliminated to know if 240 // we can proceed. 241 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 242 if (NeedSrcBitcast || NeedDestBitcast) 243 return nullptr; 244 245 if (NeedSrcBitcast) { 246 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 247 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 248 } 249 250 if (ShAmt) { 251 // Bail out if we could end with more instructions than we started with. 252 if (!Ext.getVectorOperand()->hasOneUse()) 253 return nullptr; 254 Scalar = Builder.CreateLShr(Scalar, ShAmt); 255 } 256 257 if (NeedDestBitcast) { 258 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 259 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 260 } 261 return new TruncInst(Scalar, DestTy); 262 } 263 264 return nullptr; 265 } 266 267 /// Find elements of V demanded by UserInstr. 268 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 269 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 270 271 // Conservatively assume that all elements are needed. 272 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 273 274 switch (UserInstr->getOpcode()) { 275 case Instruction::ExtractElement: { 276 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 277 assert(EEI->getVectorOperand() == V); 278 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 279 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 280 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 281 } 282 break; 283 } 284 case Instruction::ShuffleVector: { 285 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 286 unsigned MaskNumElts = 287 cast<VectorType>(UserInstr->getType())->getNumElements(); 288 289 UsedElts = APInt(VWidth, 0); 290 for (unsigned i = 0; i < MaskNumElts; i++) { 291 unsigned MaskVal = Shuffle->getMaskValue(i); 292 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 293 continue; 294 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 295 UsedElts.setBit(MaskVal); 296 if (Shuffle->getOperand(1) == V && 297 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 298 UsedElts.setBit(MaskVal - VWidth); 299 } 300 break; 301 } 302 default: 303 break; 304 } 305 return UsedElts; 306 } 307 308 /// Find union of elements of V demanded by all its users. 309 /// If it is known by querying findDemandedEltsBySingleUser that 310 /// no user demands an element of V, then the corresponding bit 311 /// remains unset in the returned value. 312 static APInt findDemandedEltsByAllUsers(Value *V) { 313 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 314 315 APInt UnionUsedElts(VWidth, 0); 316 for (const Use &U : V->uses()) { 317 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 318 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 319 } else { 320 UnionUsedElts = APInt::getAllOnesValue(VWidth); 321 break; 322 } 323 324 if (UnionUsedElts.isAllOnesValue()) 325 break; 326 } 327 328 return UnionUsedElts; 329 } 330 331 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 332 Value *SrcVec = EI.getVectorOperand(); 333 Value *Index = EI.getIndexOperand(); 334 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 335 SQ.getWithInstruction(&EI))) 336 return replaceInstUsesWith(EI, V); 337 338 // If extracting a specified index from the vector, see if we can recursively 339 // find a previously computed scalar that was inserted into the vector. 340 auto *IndexC = dyn_cast<ConstantInt>(Index); 341 if (IndexC) { 342 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 343 unsigned NumElts = EC.Min; 344 345 // InstSimplify should handle cases where the index is invalid. 346 // For fixed-length vector, it's invalid to extract out-of-range element. 347 if (!EC.Scalable && IndexC->getValue().uge(NumElts)) 348 return nullptr; 349 350 // This instruction only demands the single element from the input vector. 351 // Skip for scalable type, the number of elements is unknown at 352 // compile-time. 353 if (!EC.Scalable && NumElts != 1) { 354 // If the input vector has a single use, simplify it based on this use 355 // property. 356 if (SrcVec->hasOneUse()) { 357 APInt UndefElts(NumElts, 0); 358 APInt DemandedElts(NumElts, 0); 359 DemandedElts.setBit(IndexC->getZExtValue()); 360 if (Value *V = 361 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 362 return replaceOperand(EI, 0, V); 363 } else { 364 // If the input vector has multiple uses, simplify it based on a union 365 // of all elements used. 366 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 367 if (!DemandedElts.isAllOnesValue()) { 368 APInt UndefElts(NumElts, 0); 369 if (Value *V = SimplifyDemandedVectorElts( 370 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 371 true /* AllowMultipleUsers */)) { 372 if (V != SrcVec) { 373 SrcVec->replaceAllUsesWith(V); 374 return &EI; 375 } 376 } 377 } 378 } 379 } 380 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 381 return I; 382 383 // If there's a vector PHI feeding a scalar use through this extractelement 384 // instruction, try to scalarize the PHI. 385 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 386 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 387 return ScalarPHI; 388 } 389 390 // TODO come up with a n-ary matcher that subsumes both unary and 391 // binary matchers. 392 UnaryOperator *UO; 393 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 394 // extelt (unop X), Index --> unop (extelt X, Index) 395 Value *X = UO->getOperand(0); 396 Value *E = Builder.CreateExtractElement(X, Index); 397 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 398 } 399 400 BinaryOperator *BO; 401 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 402 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 403 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 404 Value *E0 = Builder.CreateExtractElement(X, Index); 405 Value *E1 = Builder.CreateExtractElement(Y, Index); 406 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 407 } 408 409 Value *X, *Y; 410 CmpInst::Predicate Pred; 411 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 412 cheapToScalarize(SrcVec, IndexC)) { 413 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 414 Value *E0 = Builder.CreateExtractElement(X, Index); 415 Value *E1 = Builder.CreateExtractElement(Y, Index); 416 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 417 } 418 419 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 420 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 421 // Extracting the inserted element? 422 if (IE->getOperand(2) == Index) 423 return replaceInstUsesWith(EI, IE->getOperand(1)); 424 // If the inserted and extracted elements are constants, they must not 425 // be the same value, extract from the pre-inserted value instead. 426 if (isa<Constant>(IE->getOperand(2)) && IndexC) 427 return replaceOperand(EI, 0, IE->getOperand(0)); 428 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 429 // If this is extracting an element from a shufflevector, figure out where 430 // it came from and extract from the appropriate input element instead. 431 // Restrict the following transformation to fixed-length vector. 432 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 433 int SrcIdx = 434 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 435 Value *Src; 436 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 437 ->getNumElements(); 438 439 if (SrcIdx < 0) 440 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 441 if (SrcIdx < (int)LHSWidth) 442 Src = SVI->getOperand(0); 443 else { 444 SrcIdx -= LHSWidth; 445 Src = SVI->getOperand(1); 446 } 447 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 448 return ExtractElementInst::Create( 449 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 450 } 451 } else if (auto *CI = dyn_cast<CastInst>(I)) { 452 // Canonicalize extractelement(cast) -> cast(extractelement). 453 // Bitcasts can change the number of vector elements, and they cost 454 // nothing. 455 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 456 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 457 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 458 } 459 } 460 } 461 return nullptr; 462 } 463 464 /// If V is a shuffle of values that ONLY returns elements from either LHS or 465 /// RHS, return the shuffle mask and true. Otherwise, return false. 466 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 467 SmallVectorImpl<int> &Mask) { 468 assert(LHS->getType() == RHS->getType() && 469 "Invalid CollectSingleShuffleElements"); 470 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 471 472 if (isa<UndefValue>(V)) { 473 Mask.assign(NumElts, -1); 474 return true; 475 } 476 477 if (V == LHS) { 478 for (unsigned i = 0; i != NumElts; ++i) 479 Mask.push_back(i); 480 return true; 481 } 482 483 if (V == RHS) { 484 for (unsigned i = 0; i != NumElts; ++i) 485 Mask.push_back(i + NumElts); 486 return true; 487 } 488 489 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 490 // If this is an insert of an extract from some other vector, include it. 491 Value *VecOp = IEI->getOperand(0); 492 Value *ScalarOp = IEI->getOperand(1); 493 Value *IdxOp = IEI->getOperand(2); 494 495 if (!isa<ConstantInt>(IdxOp)) 496 return false; 497 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 498 499 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 500 // We can handle this if the vector we are inserting into is 501 // transitively ok. 502 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 503 // If so, update the mask to reflect the inserted undef. 504 Mask[InsertedIdx] = -1; 505 return true; 506 } 507 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 508 if (isa<ConstantInt>(EI->getOperand(1))) { 509 unsigned ExtractedIdx = 510 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 511 unsigned NumLHSElts = 512 cast<VectorType>(LHS->getType())->getNumElements(); 513 514 // This must be extracting from either LHS or RHS. 515 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 516 // We can handle this if the vector we are inserting into is 517 // transitively ok. 518 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 519 // If so, update the mask to reflect the inserted value. 520 if (EI->getOperand(0) == LHS) { 521 Mask[InsertedIdx % NumElts] = ExtractedIdx; 522 } else { 523 assert(EI->getOperand(0) == RHS); 524 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 525 } 526 return true; 527 } 528 } 529 } 530 } 531 } 532 533 return false; 534 } 535 536 /// If we have insertion into a vector that is wider than the vector that we 537 /// are extracting from, try to widen the source vector to allow a single 538 /// shufflevector to replace one or more insert/extract pairs. 539 static void replaceExtractElements(InsertElementInst *InsElt, 540 ExtractElementInst *ExtElt, 541 InstCombinerImpl &IC) { 542 VectorType *InsVecType = InsElt->getType(); 543 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 544 unsigned NumInsElts = InsVecType->getNumElements(); 545 unsigned NumExtElts = ExtVecType->getNumElements(); 546 547 // The inserted-to vector must be wider than the extracted-from vector. 548 if (InsVecType->getElementType() != ExtVecType->getElementType() || 549 NumExtElts >= NumInsElts) 550 return; 551 552 // Create a shuffle mask to widen the extended-from vector using undefined 553 // values. The mask selects all of the values of the original vector followed 554 // by as many undefined values as needed to create a vector of the same length 555 // as the inserted-to vector. 556 SmallVector<int, 16> ExtendMask; 557 for (unsigned i = 0; i < NumExtElts; ++i) 558 ExtendMask.push_back(i); 559 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 560 ExtendMask.push_back(-1); 561 562 Value *ExtVecOp = ExtElt->getVectorOperand(); 563 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 564 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 565 ? ExtVecOpInst->getParent() 566 : ExtElt->getParent(); 567 568 // TODO: This restriction matches the basic block check below when creating 569 // new extractelement instructions. If that limitation is removed, this one 570 // could also be removed. But for now, we just bail out to ensure that we 571 // will replace the extractelement instruction that is feeding our 572 // insertelement instruction. This allows the insertelement to then be 573 // replaced by a shufflevector. If the insertelement is not replaced, we can 574 // induce infinite looping because there's an optimization for extractelement 575 // that will delete our widening shuffle. This would trigger another attempt 576 // here to create that shuffle, and we spin forever. 577 if (InsertionBlock != InsElt->getParent()) 578 return; 579 580 // TODO: This restriction matches the check in visitInsertElementInst() and 581 // prevents an infinite loop caused by not turning the extract/insert pair 582 // into a shuffle. We really should not need either check, but we're lacking 583 // folds for shufflevectors because we're afraid to generate shuffle masks 584 // that the backend can't handle. 585 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 586 return; 587 588 auto *WideVec = 589 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 590 591 // Insert the new shuffle after the vector operand of the extract is defined 592 // (as long as it's not a PHI) or at the start of the basic block of the 593 // extract, so any subsequent extracts in the same basic block can use it. 594 // TODO: Insert before the earliest ExtractElementInst that is replaced. 595 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 596 WideVec->insertAfter(ExtVecOpInst); 597 else 598 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 599 600 // Replace extracts from the original narrow vector with extracts from the new 601 // wide vector. 602 for (User *U : ExtVecOp->users()) { 603 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 604 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 605 continue; 606 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 607 NewExt->insertAfter(OldExt); 608 IC.replaceInstUsesWith(*OldExt, NewExt); 609 } 610 } 611 612 /// We are building a shuffle to create V, which is a sequence of insertelement, 613 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 614 /// not rely on the second vector source. Return a std::pair containing the 615 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 616 /// parameter as required. 617 /// 618 /// Note: we intentionally don't try to fold earlier shuffles since they have 619 /// often been chosen carefully to be efficiently implementable on the target. 620 using ShuffleOps = std::pair<Value *, Value *>; 621 622 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 623 Value *PermittedRHS, 624 InstCombinerImpl &IC) { 625 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 626 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 627 628 if (isa<UndefValue>(V)) { 629 Mask.assign(NumElts, -1); 630 return std::make_pair( 631 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 632 } 633 634 if (isa<ConstantAggregateZero>(V)) { 635 Mask.assign(NumElts, 0); 636 return std::make_pair(V, nullptr); 637 } 638 639 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 640 // If this is an insert of an extract from some other vector, include it. 641 Value *VecOp = IEI->getOperand(0); 642 Value *ScalarOp = IEI->getOperand(1); 643 Value *IdxOp = IEI->getOperand(2); 644 645 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 646 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 647 unsigned ExtractedIdx = 648 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 649 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 650 651 // Either the extracted from or inserted into vector must be RHSVec, 652 // otherwise we'd end up with a shuffle of three inputs. 653 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 654 Value *RHS = EI->getOperand(0); 655 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 656 assert(LR.second == nullptr || LR.second == RHS); 657 658 if (LR.first->getType() != RHS->getType()) { 659 // Although we are giving up for now, see if we can create extracts 660 // that match the inserts for another round of combining. 661 replaceExtractElements(IEI, EI, IC); 662 663 // We tried our best, but we can't find anything compatible with RHS 664 // further up the chain. Return a trivial shuffle. 665 for (unsigned i = 0; i < NumElts; ++i) 666 Mask[i] = i; 667 return std::make_pair(V, nullptr); 668 } 669 670 unsigned NumLHSElts = 671 cast<VectorType>(RHS->getType())->getNumElements(); 672 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 673 return std::make_pair(LR.first, RHS); 674 } 675 676 if (VecOp == PermittedRHS) { 677 // We've gone as far as we can: anything on the other side of the 678 // extractelement will already have been converted into a shuffle. 679 unsigned NumLHSElts = 680 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 681 for (unsigned i = 0; i != NumElts; ++i) 682 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 683 return std::make_pair(EI->getOperand(0), PermittedRHS); 684 } 685 686 // If this insertelement is a chain that comes from exactly these two 687 // vectors, return the vector and the effective shuffle. 688 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 689 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 690 Mask)) 691 return std::make_pair(EI->getOperand(0), PermittedRHS); 692 } 693 } 694 } 695 696 // Otherwise, we can't do anything fancy. Return an identity vector. 697 for (unsigned i = 0; i != NumElts; ++i) 698 Mask.push_back(i); 699 return std::make_pair(V, nullptr); 700 } 701 702 /// Look for chain of insertvalue's that fully define an aggregate, and trace 703 /// back the values inserted, see if they are all were extractvalue'd from 704 /// the same source aggregate from the exact same element indexes. 705 /// If they were, just reuse the source aggregate. 706 /// This potentially deals with PHI indirections. 707 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 708 InsertValueInst &OrigIVI) { 709 BasicBlock *UseBB = OrigIVI.getParent(); 710 Type *AggTy = OrigIVI.getType(); 711 unsigned NumAggElts; 712 switch (AggTy->getTypeID()) { 713 case Type::StructTyID: 714 NumAggElts = AggTy->getStructNumElements(); 715 break; 716 case Type::ArrayTyID: 717 NumAggElts = AggTy->getArrayNumElements(); 718 break; 719 default: 720 llvm_unreachable("Unhandled aggregate type?"); 721 } 722 723 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 724 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 725 // FIXME: any interesting patterns to be caught with larger limit? 726 assert(NumAggElts > 0 && "Aggregate should have elements."); 727 if (NumAggElts > 2) 728 return nullptr; 729 730 static constexpr auto NotFound = None; 731 static constexpr auto FoundMismatch = nullptr; 732 733 // Try to find a value of each element of an aggregate. 734 // FIXME: deal with more complex, not one-dimensional, aggregate types 735 SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound); 736 737 // Do we know values for each element of the aggregate? 738 auto KnowAllElts = [&AggElts]() { 739 return all_of(AggElts, 740 [](Optional<Value *> Elt) { return Elt != NotFound; }); 741 }; 742 743 int Depth = 0; 744 745 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 746 // every element being overwritten twice, which should never happen. 747 static const int DepthLimit = 2 * NumAggElts; 748 749 // Recurse up the chain of `insertvalue` aggregate operands until either we've 750 // reconstructed full initializer or can't visit any more `insertvalue`'s. 751 for (InsertValueInst *CurrIVI = &OrigIVI; 752 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 753 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 754 ++Depth) { 755 Value *InsertedValue = CurrIVI->getInsertedValueOperand(); 756 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 757 758 // Don't bother with more than single-level aggregates. 759 if (Indices.size() != 1) 760 return nullptr; // FIXME: deal with more complex aggregates? 761 762 // Now, we may have already previously recorded the value for this element 763 // of an aggregate. If we did, that means the CurrIVI will later be 764 // overwritten with the already-recorded value. But if not, let's record it! 765 Optional<Value *> &Elt = AggElts[Indices.front()]; 766 Elt = Elt.getValueOr(InsertedValue); 767 768 // FIXME: should we handle chain-terminating undef base operand? 769 } 770 771 // Was that sufficient to deduce the full initializer for the aggregate? 772 if (!KnowAllElts()) 773 return nullptr; // Give up then. 774 775 // We now want to find the source[s] of the aggregate elements we've found. 776 // And with "source" we mean the original aggregate[s] from which 777 // the inserted elements were extracted. This may require PHI translation. 778 779 enum class AggregateDescription { 780 /// When analyzing the value that was inserted into an aggregate, we did 781 /// not manage to find defining `extractvalue` instruction to analyze. 782 NotFound, 783 /// When analyzing the value that was inserted into an aggregate, we did 784 /// manage to find defining `extractvalue` instruction[s], and everything 785 /// matched perfectly - aggregate type, element insertion/extraction index. 786 Found, 787 /// When analyzing the value that was inserted into an aggregate, we did 788 /// manage to find defining `extractvalue` instruction, but there was 789 /// a mismatch: either the source type from which the extraction was didn't 790 /// match the aggregate type into which the insertion was, 791 /// or the extraction/insertion channels mismatched, 792 /// or different elements had different source aggregates. 793 FoundMismatch 794 }; 795 auto Describe = [](Optional<Value *> SourceAggregate) { 796 if (SourceAggregate == NotFound) 797 return AggregateDescription::NotFound; 798 if (*SourceAggregate == FoundMismatch) 799 return AggregateDescription::FoundMismatch; 800 return AggregateDescription::Found; 801 }; 802 803 // Given the value \p Elt that was being inserted into element \p EltIdx of an 804 // aggregate AggTy, see if \p Elt was originally defined by an 805 // appropriate extractvalue (same element index, same aggregate type). 806 // If found, return the source aggregate from which the extraction was. 807 // If \p PredBB is provided, does PHI translation of an \p Elt first. 808 auto FindSourceAggregate = 809 [&](Value *Elt, unsigned EltIdx, 810 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 811 // For now(?), only deal with, at most, a single level of PHI indirection. 812 if (PredBB) 813 Elt = Elt->DoPHITranslation(UseBB, *PredBB); 814 // FIXME: deal with multiple levels of PHI indirection? 815 816 // Did we find an extraction? 817 auto *EVI = dyn_cast<ExtractValueInst>(Elt); 818 if (!EVI) 819 return NotFound; 820 821 Value *SourceAggregate = EVI->getAggregateOperand(); 822 823 // Is the extraction from the same type into which the insertion was? 824 if (SourceAggregate->getType() != AggTy) 825 return FoundMismatch; 826 // And the element index doesn't change between extraction and insertion? 827 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 828 return FoundMismatch; 829 830 return SourceAggregate; // AggregateDescription::Found 831 }; 832 833 // Given elements AggElts that were constructing an aggregate OrigIVI, 834 // see if we can find appropriate source aggregate for each of the elements, 835 // and see it's the same aggregate for each element. If so, return it. 836 auto FindCommonSourceAggregate = 837 [&](Optional<BasicBlock *> PredBB) -> Optional<Value *> { 838 Optional<Value *> SourceAggregate; 839 840 for (auto I : enumerate(AggElts)) { 841 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 842 "We don't store nullptr in SourceAggregate!"); 843 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 844 (I.index() != 0) && 845 "SourceAggregate should be valid after the the first element,"); 846 847 // For this element, is there a plausible source aggregate? 848 // FIXME: we could special-case undef element, IFF we know that in the 849 // source aggregate said element isn't poison. 850 Optional<Value *> SourceAggregateForElement = 851 FindSourceAggregate(*I.value(), I.index(), PredBB); 852 853 // Okay, what have we found? Does that correlate with previous findings? 854 855 // Regardless of whether or not we have previously found source 856 // aggregate for previous elements (if any), if we didn't find one for 857 // this element, passthrough whatever we have just found. 858 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 859 return SourceAggregateForElement; 860 861 // Okay, we have found source aggregate for this element. 862 // Let's see what we already know from previous elements, if any. 863 switch (Describe(SourceAggregate)) { 864 case AggregateDescription::NotFound: 865 // This is apparently the first element that we have examined. 866 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 867 continue; // Great, now look at next element. 868 case AggregateDescription::Found: 869 // We have previously already successfully examined other elements. 870 // Is this the same source aggregate we've found for other elements? 871 if (*SourceAggregateForElement != *SourceAggregate) 872 return FoundMismatch; 873 continue; // Still the same aggregate, look at next element. 874 case AggregateDescription::FoundMismatch: 875 llvm_unreachable("Can't happen. We would have early-exited then."); 876 }; 877 } 878 879 assert(Describe(SourceAggregate) == AggregateDescription::Found && 880 "Must be a valid Value"); 881 return *SourceAggregate; 882 }; 883 884 Optional<Value *> SourceAggregate; 885 886 // Can we find the source aggregate without looking at predecessors? 887 SourceAggregate = FindCommonSourceAggregate(/*PredBB=*/None); 888 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 889 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 890 return nullptr; // Conflicting source aggregates! 891 ++NumAggregateReconstructionsSimplified; 892 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 893 } 894 895 // If we didn't manage to find source aggregate without looking at 896 // predecessors, and there are no predecessors to look at, then we're done. 897 if (pred_empty(UseBB)) 898 return nullptr; 899 900 // Okay, apparently we need to look at predecessors. 901 902 // Arbitrary predecessor count limit. 903 static const int PredCountLimit = 64; 904 // Don't bother if there are too many predecessors. 905 if (UseBB->hasNPredecessorsOrMore(PredCountLimit + 1)) 906 return nullptr; 907 908 // For each predecessor, what is the source aggregate, 909 // from which all the elements were originally extracted from? 910 // Note that we want for the map to have stable iteration order! 911 SmallMapVector<BasicBlock *, Value *, 4> SourceAggregates; 912 for (BasicBlock *Pred : predecessors(UseBB)) { 913 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 914 SourceAggregates.insert({Pred, nullptr}); 915 // Did we already evaluate this predecessor? 916 if (!IV.second) 917 continue; 918 919 // Let's hope that when coming from predecessor Pred, all elements of the 920 // aggregate produced by OrigIVI must have been originally extracted from 921 // the same aggregate. Is that so? Can we find said original aggregate? 922 SourceAggregate = FindCommonSourceAggregate(Pred); 923 if (Describe(SourceAggregate) != AggregateDescription::Found) 924 return nullptr; // Give up. 925 IV.first->second = *SourceAggregate; 926 } 927 928 // All good! Now we just need to thread the source aggregates here. 929 auto *PHI = PHINode::Create(AggTy, SourceAggregates.size(), 930 OrigIVI.getName() + ".merged"); 931 for (const std::pair<BasicBlock *, Value *> &SourceAggregate : 932 SourceAggregates) 933 PHI->addIncoming(SourceAggregate.second, SourceAggregate.first); 934 935 ++NumAggregateReconstructionsSimplified; 936 return PHI; 937 } 938 939 /// Try to find redundant insertvalue instructions, like the following ones: 940 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 941 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 942 /// Here the second instruction inserts values at the same indices, as the 943 /// first one, making the first one redundant. 944 /// It should be transformed to: 945 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 946 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 947 bool IsRedundant = false; 948 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 949 950 // If there is a chain of insertvalue instructions (each of them except the 951 // last one has only one use and it's another insertvalue insn from this 952 // chain), check if any of the 'children' uses the same indices as the first 953 // instruction. In this case, the first one is redundant. 954 Value *V = &I; 955 unsigned Depth = 0; 956 while (V->hasOneUse() && Depth < 10) { 957 User *U = V->user_back(); 958 auto UserInsInst = dyn_cast<InsertValueInst>(U); 959 if (!UserInsInst || U->getOperand(0) != V) 960 break; 961 if (UserInsInst->getIndices() == FirstIndices) { 962 IsRedundant = true; 963 break; 964 } 965 V = UserInsInst; 966 Depth++; 967 } 968 969 if (IsRedundant) 970 return replaceInstUsesWith(I, I.getOperand(0)); 971 972 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 973 return NewI; 974 975 return nullptr; 976 } 977 978 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 979 // Can not analyze scalable type, the number of elements is not a compile-time 980 // constant. 981 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 982 return false; 983 984 int MaskSize = Shuf.getShuffleMask().size(); 985 int VecSize = 986 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 987 988 // A vector select does not change the size of the operands. 989 if (MaskSize != VecSize) 990 return false; 991 992 // Each mask element must be undefined or choose a vector element from one of 993 // the source operands without crossing vector lanes. 994 for (int i = 0; i != MaskSize; ++i) { 995 int Elt = Shuf.getMaskValue(i); 996 if (Elt != -1 && Elt != i && Elt != i + VecSize) 997 return false; 998 } 999 1000 return true; 1001 } 1002 1003 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1004 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1005 /// shufflevector(insertelt(X, %k, 0), undef, zero) 1006 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1007 // We are interested in the last insert in a chain. So if this insert has a 1008 // single user and that user is an insert, bail. 1009 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1010 return nullptr; 1011 1012 VectorType *VecTy = InsElt.getType(); 1013 // Can not handle scalable type, the number of elements is not a compile-time 1014 // constant. 1015 if (isa<ScalableVectorType>(VecTy)) 1016 return nullptr; 1017 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1018 1019 // Do not try to do this for a one-element vector, since that's a nop, 1020 // and will cause an inf-loop. 1021 if (NumElements == 1) 1022 return nullptr; 1023 1024 Value *SplatVal = InsElt.getOperand(1); 1025 InsertElementInst *CurrIE = &InsElt; 1026 SmallBitVector ElementPresent(NumElements, false); 1027 InsertElementInst *FirstIE = nullptr; 1028 1029 // Walk the chain backwards, keeping track of which indices we inserted into, 1030 // until we hit something that isn't an insert of the splatted value. 1031 while (CurrIE) { 1032 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1033 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1034 return nullptr; 1035 1036 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1037 // Check none of the intermediate steps have any additional uses, except 1038 // for the root insertelement instruction, which can be re-used, if it 1039 // inserts at position 0. 1040 if (CurrIE != &InsElt && 1041 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1042 return nullptr; 1043 1044 ElementPresent[Idx->getZExtValue()] = true; 1045 FirstIE = CurrIE; 1046 CurrIE = NextIE; 1047 } 1048 1049 // If this is just a single insertelement (not a sequence), we are done. 1050 if (FirstIE == &InsElt) 1051 return nullptr; 1052 1053 // If we are not inserting into an undef vector, make sure we've seen an 1054 // insert into every element. 1055 // TODO: If the base vector is not undef, it might be better to create a splat 1056 // and then a select-shuffle (blend) with the base vector. 1057 if (!isa<UndefValue>(FirstIE->getOperand(0))) 1058 if (!ElementPresent.all()) 1059 return nullptr; 1060 1061 // Create the insert + shuffle. 1062 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1063 UndefValue *UndefVec = UndefValue::get(VecTy); 1064 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1065 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1066 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 1067 1068 // Splat from element 0, but replace absent elements with undef in the mask. 1069 SmallVector<int, 16> Mask(NumElements, 0); 1070 for (unsigned i = 0; i != NumElements; ++i) 1071 if (!ElementPresent[i]) 1072 Mask[i] = -1; 1073 1074 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 1075 } 1076 1077 /// Try to fold an insert element into an existing splat shuffle by changing 1078 /// the shuffle's mask to include the index of this insert element. 1079 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1080 // Check if the vector operand of this insert is a canonical splat shuffle. 1081 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1082 if (!Shuf || !Shuf->isZeroEltSplat()) 1083 return nullptr; 1084 1085 // Bail out early if shuffle is scalable type. The number of elements in 1086 // shuffle mask is unknown at compile-time. 1087 if (isa<ScalableVectorType>(Shuf->getType())) 1088 return nullptr; 1089 1090 // Check for a constant insertion index. 1091 uint64_t IdxC; 1092 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1093 return nullptr; 1094 1095 // Check if the splat shuffle's input is the same as this insert's scalar op. 1096 Value *X = InsElt.getOperand(1); 1097 Value *Op0 = Shuf->getOperand(0); 1098 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1099 return nullptr; 1100 1101 // Replace the shuffle mask element at the index of this insert with a zero. 1102 // For example: 1103 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1104 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1105 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 1106 SmallVector<int, 16> NewMask(NumMaskElts); 1107 for (unsigned i = 0; i != NumMaskElts; ++i) 1108 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1109 1110 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1111 } 1112 1113 /// Try to fold an extract+insert element into an existing identity shuffle by 1114 /// changing the shuffle's mask to include the index of this insert element. 1115 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1116 // Check if the vector operand of this insert is an identity shuffle. 1117 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1118 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 1119 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1120 return nullptr; 1121 1122 // Bail out early if shuffle is scalable type. The number of elements in 1123 // shuffle mask is unknown at compile-time. 1124 if (isa<ScalableVectorType>(Shuf->getType())) 1125 return nullptr; 1126 1127 // Check for a constant insertion index. 1128 uint64_t IdxC; 1129 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1130 return nullptr; 1131 1132 // Check if this insert's scalar op is extracted from the identity shuffle's 1133 // input vector. 1134 Value *Scalar = InsElt.getOperand(1); 1135 Value *X = Shuf->getOperand(0); 1136 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1137 return nullptr; 1138 1139 // Replace the shuffle mask element at the index of this extract+insert with 1140 // that same index value. 1141 // For example: 1142 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1143 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 1144 SmallVector<int, 16> NewMask(NumMaskElts); 1145 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1146 for (unsigned i = 0; i != NumMaskElts; ++i) { 1147 if (i != IdxC) { 1148 // All mask elements besides the inserted element remain the same. 1149 NewMask[i] = OldMask[i]; 1150 } else if (OldMask[i] == (int)IdxC) { 1151 // If the mask element was already set, there's nothing to do 1152 // (demanded elements analysis may unset it later). 1153 return nullptr; 1154 } else { 1155 assert(OldMask[i] == UndefMaskElem && 1156 "Unexpected shuffle mask element for identity shuffle"); 1157 NewMask[i] = IdxC; 1158 } 1159 } 1160 1161 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1162 } 1163 1164 /// If we have an insertelement instruction feeding into another insertelement 1165 /// and the 2nd is inserting a constant into the vector, canonicalize that 1166 /// constant insertion before the insertion of a variable: 1167 /// 1168 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1169 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1170 /// 1171 /// This has the potential of eliminating the 2nd insertelement instruction 1172 /// via constant folding of the scalar constant into a vector constant. 1173 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1174 InstCombiner::BuilderTy &Builder) { 1175 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1176 if (!InsElt1 || !InsElt1->hasOneUse()) 1177 return nullptr; 1178 1179 Value *X, *Y; 1180 Constant *ScalarC; 1181 ConstantInt *IdxC1, *IdxC2; 1182 if (match(InsElt1->getOperand(0), m_Value(X)) && 1183 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1184 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1185 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1186 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1187 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1188 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1189 } 1190 1191 return nullptr; 1192 } 1193 1194 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1195 /// --> shufflevector X, CVec', Mask' 1196 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1197 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1198 // Bail out if the parent has more than one use. In that case, we'd be 1199 // replacing the insertelt with a shuffle, and that's not a clear win. 1200 if (!Inst || !Inst->hasOneUse()) 1201 return nullptr; 1202 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1203 // The shuffle must have a constant vector operand. The insertelt must have 1204 // a constant scalar being inserted at a constant position in the vector. 1205 Constant *ShufConstVec, *InsEltScalar; 1206 uint64_t InsEltIndex; 1207 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1208 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1209 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1210 return nullptr; 1211 1212 // Adding an element to an arbitrary shuffle could be expensive, but a 1213 // shuffle that selects elements from vectors without crossing lanes is 1214 // assumed cheap. 1215 // If we're just adding a constant into that shuffle, it will still be 1216 // cheap. 1217 if (!isShuffleEquivalentToSelect(*Shuf)) 1218 return nullptr; 1219 1220 // From the above 'select' check, we know that the mask has the same number 1221 // of elements as the vector input operands. We also know that each constant 1222 // input element is used in its lane and can not be used more than once by 1223 // the shuffle. Therefore, replace the constant in the shuffle's constant 1224 // vector with the insertelt constant. Replace the constant in the shuffle's 1225 // mask vector with the insertelt index plus the length of the vector 1226 // (because the constant vector operand of a shuffle is always the 2nd 1227 // operand). 1228 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1229 unsigned NumElts = Mask.size(); 1230 SmallVector<Constant *, 16> NewShufElts(NumElts); 1231 SmallVector<int, 16> NewMaskElts(NumElts); 1232 for (unsigned I = 0; I != NumElts; ++I) { 1233 if (I == InsEltIndex) { 1234 NewShufElts[I] = InsEltScalar; 1235 NewMaskElts[I] = InsEltIndex + NumElts; 1236 } else { 1237 // Copy over the existing values. 1238 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1239 NewMaskElts[I] = Mask[I]; 1240 } 1241 } 1242 1243 // Create new operands for a shuffle that includes the constant of the 1244 // original insertelt. The old shuffle will be dead now. 1245 return new ShuffleVectorInst(Shuf->getOperand(0), 1246 ConstantVector::get(NewShufElts), NewMaskElts); 1247 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1248 // Transform sequences of insertelements ops with constant data/indexes into 1249 // a single shuffle op. 1250 // Can not handle scalable type, the number of elements needed to create 1251 // shuffle mask is not a compile-time constant. 1252 if (isa<ScalableVectorType>(InsElt.getType())) 1253 return nullptr; 1254 unsigned NumElts = 1255 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1256 1257 uint64_t InsertIdx[2]; 1258 Constant *Val[2]; 1259 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1260 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1261 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1262 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1263 return nullptr; 1264 SmallVector<Constant *, 16> Values(NumElts); 1265 SmallVector<int, 16> Mask(NumElts); 1266 auto ValI = std::begin(Val); 1267 // Generate new constant vector and mask. 1268 // We have 2 values/masks from the insertelements instructions. Insert them 1269 // into new value/mask vectors. 1270 for (uint64_t I : InsertIdx) { 1271 if (!Values[I]) { 1272 Values[I] = *ValI; 1273 Mask[I] = NumElts + I; 1274 } 1275 ++ValI; 1276 } 1277 // Remaining values are filled with 'undef' values. 1278 for (unsigned I = 0; I < NumElts; ++I) { 1279 if (!Values[I]) { 1280 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1281 Mask[I] = I; 1282 } 1283 } 1284 // Create new operands for a shuffle that includes the constant of the 1285 // original insertelt. 1286 return new ShuffleVectorInst(IEI->getOperand(0), 1287 ConstantVector::get(Values), Mask); 1288 } 1289 return nullptr; 1290 } 1291 1292 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1293 Value *VecOp = IE.getOperand(0); 1294 Value *ScalarOp = IE.getOperand(1); 1295 Value *IdxOp = IE.getOperand(2); 1296 1297 if (auto *V = SimplifyInsertElementInst( 1298 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1299 return replaceInstUsesWith(IE, V); 1300 1301 // If the scalar is bitcast and inserted into undef, do the insert in the 1302 // source type followed by bitcast. 1303 // TODO: Generalize for insert into any constant, not just undef? 1304 Value *ScalarSrc; 1305 if (match(VecOp, m_Undef()) && 1306 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1307 (ScalarSrc->getType()->isIntegerTy() || 1308 ScalarSrc->getType()->isFloatingPointTy())) { 1309 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1310 // bitcast (inselt undef, ScalarSrc, IdxOp) 1311 Type *ScalarTy = ScalarSrc->getType(); 1312 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1313 UndefValue *NewUndef = UndefValue::get(VecTy); 1314 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1315 return new BitCastInst(NewInsElt, IE.getType()); 1316 } 1317 1318 // If the vector and scalar are both bitcast from the same element type, do 1319 // the insert in that source type followed by bitcast. 1320 Value *VecSrc; 1321 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1322 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1323 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1324 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1325 cast<VectorType>(VecSrc->getType())->getElementType() == 1326 ScalarSrc->getType()) { 1327 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1328 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1329 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1330 return new BitCastInst(NewInsElt, IE.getType()); 1331 } 1332 1333 // If the inserted element was extracted from some other fixed-length vector 1334 // and both indexes are valid constants, try to turn this into a shuffle. 1335 // Can not handle scalable vector type, the number of elements needed to 1336 // create shuffle mask is not a compile-time constant. 1337 uint64_t InsertedIdx, ExtractedIdx; 1338 Value *ExtVecOp; 1339 if (isa<FixedVectorType>(IE.getType()) && 1340 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1341 match(ScalarOp, 1342 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1343 isa<FixedVectorType>(ExtVecOp->getType()) && 1344 ExtractedIdx < 1345 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1346 // TODO: Looking at the user(s) to determine if this insert is a 1347 // fold-to-shuffle opportunity does not match the usual instcombine 1348 // constraints. We should decide if the transform is worthy based only 1349 // on this instruction and its operands, but that may not work currently. 1350 // 1351 // Here, we are trying to avoid creating shuffles before reaching 1352 // the end of a chain of extract-insert pairs. This is complicated because 1353 // we do not generally form arbitrary shuffle masks in instcombine 1354 // (because those may codegen poorly), but collectShuffleElements() does 1355 // exactly that. 1356 // 1357 // The rules for determining what is an acceptable target-independent 1358 // shuffle mask are fuzzy because they evolve based on the backend's 1359 // capabilities and real-world impact. 1360 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1361 if (!Insert.hasOneUse()) 1362 return true; 1363 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1364 if (!InsertUser) 1365 return true; 1366 return false; 1367 }; 1368 1369 // Try to form a shuffle from a chain of extract-insert ops. 1370 if (isShuffleRootCandidate(IE)) { 1371 SmallVector<int, 16> Mask; 1372 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1373 1374 // The proposed shuffle may be trivial, in which case we shouldn't 1375 // perform the combine. 1376 if (LR.first != &IE && LR.second != &IE) { 1377 // We now have a shuffle of LHS, RHS, Mask. 1378 if (LR.second == nullptr) 1379 LR.second = UndefValue::get(LR.first->getType()); 1380 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1381 } 1382 } 1383 } 1384 1385 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1386 unsigned VWidth = VecTy->getNumElements(); 1387 APInt UndefElts(VWidth, 0); 1388 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1389 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1390 if (V != &IE) 1391 return replaceInstUsesWith(IE, V); 1392 return &IE; 1393 } 1394 } 1395 1396 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1397 return Shuf; 1398 1399 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1400 return NewInsElt; 1401 1402 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1403 return Broadcast; 1404 1405 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1406 return Splat; 1407 1408 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1409 return IdentityShuf; 1410 1411 return nullptr; 1412 } 1413 1414 /// Return true if we can evaluate the specified expression tree if the vector 1415 /// elements were shuffled in a different order. 1416 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1417 unsigned Depth = 5) { 1418 // We can always reorder the elements of a constant. 1419 if (isa<Constant>(V)) 1420 return true; 1421 1422 // We won't reorder vector arguments. No IPO here. 1423 Instruction *I = dyn_cast<Instruction>(V); 1424 if (!I) return false; 1425 1426 // Two users may expect different orders of the elements. Don't try it. 1427 if (!I->hasOneUse()) 1428 return false; 1429 1430 if (Depth == 0) return false; 1431 1432 switch (I->getOpcode()) { 1433 case Instruction::UDiv: 1434 case Instruction::SDiv: 1435 case Instruction::URem: 1436 case Instruction::SRem: 1437 // Propagating an undefined shuffle mask element to integer div/rem is not 1438 // allowed because those opcodes can create immediate undefined behavior 1439 // from an undefined element in an operand. 1440 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1441 return false; 1442 LLVM_FALLTHROUGH; 1443 case Instruction::Add: 1444 case Instruction::FAdd: 1445 case Instruction::Sub: 1446 case Instruction::FSub: 1447 case Instruction::Mul: 1448 case Instruction::FMul: 1449 case Instruction::FDiv: 1450 case Instruction::FRem: 1451 case Instruction::Shl: 1452 case Instruction::LShr: 1453 case Instruction::AShr: 1454 case Instruction::And: 1455 case Instruction::Or: 1456 case Instruction::Xor: 1457 case Instruction::ICmp: 1458 case Instruction::FCmp: 1459 case Instruction::Trunc: 1460 case Instruction::ZExt: 1461 case Instruction::SExt: 1462 case Instruction::FPToUI: 1463 case Instruction::FPToSI: 1464 case Instruction::UIToFP: 1465 case Instruction::SIToFP: 1466 case Instruction::FPTrunc: 1467 case Instruction::FPExt: 1468 case Instruction::GetElementPtr: { 1469 // Bail out if we would create longer vector ops. We could allow creating 1470 // longer vector ops, but that may result in more expensive codegen. 1471 Type *ITy = I->getType(); 1472 if (ITy->isVectorTy() && 1473 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1474 return false; 1475 for (Value *Operand : I->operands()) { 1476 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1477 return false; 1478 } 1479 return true; 1480 } 1481 case Instruction::InsertElement: { 1482 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1483 if (!CI) return false; 1484 int ElementNumber = CI->getLimitedValue(); 1485 1486 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1487 // can't put an element into multiple indices. 1488 bool SeenOnce = false; 1489 for (int i = 0, e = Mask.size(); i != e; ++i) { 1490 if (Mask[i] == ElementNumber) { 1491 if (SeenOnce) 1492 return false; 1493 SeenOnce = true; 1494 } 1495 } 1496 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1497 } 1498 } 1499 return false; 1500 } 1501 1502 /// Rebuild a new instruction just like 'I' but with the new operands given. 1503 /// In the event of type mismatch, the type of the operands is correct. 1504 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1505 // We don't want to use the IRBuilder here because we want the replacement 1506 // instructions to appear next to 'I', not the builder's insertion point. 1507 switch (I->getOpcode()) { 1508 case Instruction::Add: 1509 case Instruction::FAdd: 1510 case Instruction::Sub: 1511 case Instruction::FSub: 1512 case Instruction::Mul: 1513 case Instruction::FMul: 1514 case Instruction::UDiv: 1515 case Instruction::SDiv: 1516 case Instruction::FDiv: 1517 case Instruction::URem: 1518 case Instruction::SRem: 1519 case Instruction::FRem: 1520 case Instruction::Shl: 1521 case Instruction::LShr: 1522 case Instruction::AShr: 1523 case Instruction::And: 1524 case Instruction::Or: 1525 case Instruction::Xor: { 1526 BinaryOperator *BO = cast<BinaryOperator>(I); 1527 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1528 BinaryOperator *New = 1529 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1530 NewOps[0], NewOps[1], "", BO); 1531 if (isa<OverflowingBinaryOperator>(BO)) { 1532 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1533 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1534 } 1535 if (isa<PossiblyExactOperator>(BO)) { 1536 New->setIsExact(BO->isExact()); 1537 } 1538 if (isa<FPMathOperator>(BO)) 1539 New->copyFastMathFlags(I); 1540 return New; 1541 } 1542 case Instruction::ICmp: 1543 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1544 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1545 NewOps[0], NewOps[1]); 1546 case Instruction::FCmp: 1547 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1548 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1549 NewOps[0], NewOps[1]); 1550 case Instruction::Trunc: 1551 case Instruction::ZExt: 1552 case Instruction::SExt: 1553 case Instruction::FPToUI: 1554 case Instruction::FPToSI: 1555 case Instruction::UIToFP: 1556 case Instruction::SIToFP: 1557 case Instruction::FPTrunc: 1558 case Instruction::FPExt: { 1559 // It's possible that the mask has a different number of elements from 1560 // the original cast. We recompute the destination type to match the mask. 1561 Type *DestTy = VectorType::get( 1562 I->getType()->getScalarType(), 1563 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1564 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1565 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1566 "", I); 1567 } 1568 case Instruction::GetElementPtr: { 1569 Value *Ptr = NewOps[0]; 1570 ArrayRef<Value*> Idx = NewOps.slice(1); 1571 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1572 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1573 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1574 return GEP; 1575 } 1576 } 1577 llvm_unreachable("failed to rebuild vector instructions"); 1578 } 1579 1580 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1581 // Mask.size() does not need to be equal to the number of vector elements. 1582 1583 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1584 Type *EltTy = V->getType()->getScalarType(); 1585 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1586 if (isa<UndefValue>(V)) 1587 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1588 1589 if (isa<ConstantAggregateZero>(V)) 1590 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1591 1592 if (Constant *C = dyn_cast<Constant>(V)) 1593 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1594 Mask); 1595 1596 Instruction *I = cast<Instruction>(V); 1597 switch (I->getOpcode()) { 1598 case Instruction::Add: 1599 case Instruction::FAdd: 1600 case Instruction::Sub: 1601 case Instruction::FSub: 1602 case Instruction::Mul: 1603 case Instruction::FMul: 1604 case Instruction::UDiv: 1605 case Instruction::SDiv: 1606 case Instruction::FDiv: 1607 case Instruction::URem: 1608 case Instruction::SRem: 1609 case Instruction::FRem: 1610 case Instruction::Shl: 1611 case Instruction::LShr: 1612 case Instruction::AShr: 1613 case Instruction::And: 1614 case Instruction::Or: 1615 case Instruction::Xor: 1616 case Instruction::ICmp: 1617 case Instruction::FCmp: 1618 case Instruction::Trunc: 1619 case Instruction::ZExt: 1620 case Instruction::SExt: 1621 case Instruction::FPToUI: 1622 case Instruction::FPToSI: 1623 case Instruction::UIToFP: 1624 case Instruction::SIToFP: 1625 case Instruction::FPTrunc: 1626 case Instruction::FPExt: 1627 case Instruction::Select: 1628 case Instruction::GetElementPtr: { 1629 SmallVector<Value*, 8> NewOps; 1630 bool NeedsRebuild = 1631 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1632 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1633 Value *V; 1634 // Recursively call evaluateInDifferentElementOrder on vector arguments 1635 // as well. E.g. GetElementPtr may have scalar operands even if the 1636 // return value is a vector, so we need to examine the operand type. 1637 if (I->getOperand(i)->getType()->isVectorTy()) 1638 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1639 else 1640 V = I->getOperand(i); 1641 NewOps.push_back(V); 1642 NeedsRebuild |= (V != I->getOperand(i)); 1643 } 1644 if (NeedsRebuild) { 1645 return buildNew(I, NewOps); 1646 } 1647 return I; 1648 } 1649 case Instruction::InsertElement: { 1650 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1651 1652 // The insertelement was inserting at Element. Figure out which element 1653 // that becomes after shuffling. The answer is guaranteed to be unique 1654 // by CanEvaluateShuffled. 1655 bool Found = false; 1656 int Index = 0; 1657 for (int e = Mask.size(); Index != e; ++Index) { 1658 if (Mask[Index] == Element) { 1659 Found = true; 1660 break; 1661 } 1662 } 1663 1664 // If element is not in Mask, no need to handle the operand 1 (element to 1665 // be inserted). Just evaluate values in operand 0 according to Mask. 1666 if (!Found) 1667 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1668 1669 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1670 return InsertElementInst::Create(V, I->getOperand(1), 1671 ConstantInt::get(I32Ty, Index), "", I); 1672 } 1673 } 1674 llvm_unreachable("failed to reorder elements of vector instruction!"); 1675 } 1676 1677 // Returns true if the shuffle is extracting a contiguous range of values from 1678 // LHS, for example: 1679 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1680 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1681 // Shuffles to: |EE|FF|GG|HH| 1682 // +--+--+--+--+ 1683 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1684 ArrayRef<int> Mask) { 1685 unsigned LHSElems = 1686 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1687 unsigned MaskElems = Mask.size(); 1688 unsigned BegIdx = Mask.front(); 1689 unsigned EndIdx = Mask.back(); 1690 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1691 return false; 1692 for (unsigned I = 0; I != MaskElems; ++I) 1693 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1694 return false; 1695 return true; 1696 } 1697 1698 /// These are the ingredients in an alternate form binary operator as described 1699 /// below. 1700 struct BinopElts { 1701 BinaryOperator::BinaryOps Opcode; 1702 Value *Op0; 1703 Value *Op1; 1704 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1705 Value *V0 = nullptr, Value *V1 = nullptr) : 1706 Opcode(Opc), Op0(V0), Op1(V1) {} 1707 operator bool() const { return Opcode != 0; } 1708 }; 1709 1710 /// Binops may be transformed into binops with different opcodes and operands. 1711 /// Reverse the usual canonicalization to enable folds with the non-canonical 1712 /// form of the binop. If a transform is possible, return the elements of the 1713 /// new binop. If not, return invalid elements. 1714 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1715 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1716 Type *Ty = BO->getType(); 1717 switch (BO->getOpcode()) { 1718 case Instruction::Shl: { 1719 // shl X, C --> mul X, (1 << C) 1720 Constant *C; 1721 if (match(BO1, m_Constant(C))) { 1722 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1723 return { Instruction::Mul, BO0, ShlOne }; 1724 } 1725 break; 1726 } 1727 case Instruction::Or: { 1728 // or X, C --> add X, C (when X and C have no common bits set) 1729 const APInt *C; 1730 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1731 return { Instruction::Add, BO0, BO1 }; 1732 break; 1733 } 1734 default: 1735 break; 1736 } 1737 return {}; 1738 } 1739 1740 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1741 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1742 1743 // Are we shuffling together some value and that same value after it has been 1744 // modified by a binop with a constant? 1745 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1746 Constant *C; 1747 bool Op0IsBinop; 1748 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1749 Op0IsBinop = true; 1750 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1751 Op0IsBinop = false; 1752 else 1753 return nullptr; 1754 1755 // The identity constant for a binop leaves a variable operand unchanged. For 1756 // a vector, this is a splat of something like 0, -1, or 1. 1757 // If there's no identity constant for this binop, we're done. 1758 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1759 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1760 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1761 if (!IdC) 1762 return nullptr; 1763 1764 // Shuffle identity constants into the lanes that return the original value. 1765 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1766 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1767 // The existing binop constant vector remains in the same operand position. 1768 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1769 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1770 ConstantExpr::getShuffleVector(IdC, C, Mask); 1771 1772 bool MightCreatePoisonOrUB = 1773 is_contained(Mask, UndefMaskElem) && 1774 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1775 if (MightCreatePoisonOrUB) 1776 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1777 1778 // shuf (bop X, C), X, M --> bop X, C' 1779 // shuf X, (bop X, C), M --> bop X, C' 1780 Value *X = Op0IsBinop ? Op1 : Op0; 1781 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1782 NewBO->copyIRFlags(BO); 1783 1784 // An undef shuffle mask element may propagate as an undef constant element in 1785 // the new binop. That would produce poison where the original code might not. 1786 // If we already made a safe constant, then there's no danger. 1787 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1788 NewBO->dropPoisonGeneratingFlags(); 1789 return NewBO; 1790 } 1791 1792 /// If we have an insert of a scalar to a non-zero element of an undefined 1793 /// vector and then shuffle that value, that's the same as inserting to the zero 1794 /// element and shuffling. Splatting from the zero element is recognized as the 1795 /// canonical form of splat. 1796 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1797 InstCombiner::BuilderTy &Builder) { 1798 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1799 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1800 Value *X; 1801 uint64_t IndexC; 1802 1803 // Match a shuffle that is a splat to a non-zero element. 1804 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1805 m_ConstantInt(IndexC)))) || 1806 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1807 return nullptr; 1808 1809 // Insert into element 0 of an undef vector. 1810 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1811 Constant *Zero = Builder.getInt32(0); 1812 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1813 1814 // Splat from element 0. Any mask element that is undefined remains undefined. 1815 // For example: 1816 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1817 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1818 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1819 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1820 for (unsigned i = 0; i != NumMaskElts; ++i) 1821 if (Mask[i] == UndefMaskElem) 1822 NewMask[i] = Mask[i]; 1823 1824 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1825 } 1826 1827 /// Try to fold shuffles that are the equivalent of a vector select. 1828 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1829 InstCombiner::BuilderTy &Builder, 1830 const DataLayout &DL) { 1831 if (!Shuf.isSelect()) 1832 return nullptr; 1833 1834 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1835 // Commuting undef to operand 0 conflicts with another canonicalization. 1836 unsigned NumElts = Shuf.getType()->getNumElements(); 1837 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1838 Shuf.getMaskValue(0) >= (int)NumElts) { 1839 // TODO: Can we assert that both operands of a shuffle-select are not undef 1840 // (otherwise, it would have been folded by instsimplify? 1841 Shuf.commute(); 1842 return &Shuf; 1843 } 1844 1845 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1846 return I; 1847 1848 BinaryOperator *B0, *B1; 1849 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1850 !match(Shuf.getOperand(1), m_BinOp(B1))) 1851 return nullptr; 1852 1853 Value *X, *Y; 1854 Constant *C0, *C1; 1855 bool ConstantsAreOp1; 1856 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1857 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1858 ConstantsAreOp1 = true; 1859 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1860 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1861 ConstantsAreOp1 = false; 1862 else 1863 return nullptr; 1864 1865 // We need matching binops to fold the lanes together. 1866 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1867 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1868 bool DropNSW = false; 1869 if (ConstantsAreOp1 && Opc0 != Opc1) { 1870 // TODO: We drop "nsw" if shift is converted into multiply because it may 1871 // not be correct when the shift amount is BitWidth - 1. We could examine 1872 // each vector element to determine if it is safe to keep that flag. 1873 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1874 DropNSW = true; 1875 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1876 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1877 Opc0 = AltB0.Opcode; 1878 C0 = cast<Constant>(AltB0.Op1); 1879 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1880 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1881 Opc1 = AltB1.Opcode; 1882 C1 = cast<Constant>(AltB1.Op1); 1883 } 1884 } 1885 1886 if (Opc0 != Opc1) 1887 return nullptr; 1888 1889 // The opcodes must be the same. Use a new name to make that clear. 1890 BinaryOperator::BinaryOps BOpc = Opc0; 1891 1892 // Select the constant elements needed for the single binop. 1893 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1894 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1895 1896 // We are moving a binop after a shuffle. When a shuffle has an undefined 1897 // mask element, the result is undefined, but it is not poison or undefined 1898 // behavior. That is not necessarily true for div/rem/shift. 1899 bool MightCreatePoisonOrUB = 1900 is_contained(Mask, UndefMaskElem) && 1901 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1902 if (MightCreatePoisonOrUB) 1903 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 1904 ConstantsAreOp1); 1905 1906 Value *V; 1907 if (X == Y) { 1908 // Remove a binop and the shuffle by rearranging the constant: 1909 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1910 // shuffle (op C0, V), (op C1, V), M --> op C', V 1911 V = X; 1912 } else { 1913 // If there are 2 different variable operands, we must create a new shuffle 1914 // (select) first, so check uses to ensure that we don't end up with more 1915 // instructions than we started with. 1916 if (!B0->hasOneUse() && !B1->hasOneUse()) 1917 return nullptr; 1918 1919 // If we use the original shuffle mask and op1 is *variable*, we would be 1920 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1921 // poison. We do not have to guard against UB when *constants* are op1 1922 // because safe constants guarantee that we do not overflow sdiv/srem (and 1923 // there's no danger for other opcodes). 1924 // TODO: To allow this case, create a new shuffle mask with no undefs. 1925 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1926 return nullptr; 1927 1928 // Note: In general, we do not create new shuffles in InstCombine because we 1929 // do not know if a target can lower an arbitrary shuffle optimally. In this 1930 // case, the shuffle uses the existing mask, so there is no additional risk. 1931 1932 // Select the variable vectors first, then perform the binop: 1933 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1934 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1935 V = Builder.CreateShuffleVector(X, Y, Mask); 1936 } 1937 1938 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1939 BinaryOperator::Create(BOpc, NewC, V); 1940 1941 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1942 // 1. If we changed an opcode, poison conditions might have changed. 1943 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1944 // where the original code did not. But if we already made a safe constant, 1945 // then there's no danger. 1946 NewBO->copyIRFlags(B0); 1947 NewBO->andIRFlags(B1); 1948 if (DropNSW) 1949 NewBO->setHasNoSignedWrap(false); 1950 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1951 NewBO->dropPoisonGeneratingFlags(); 1952 return NewBO; 1953 } 1954 1955 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1956 /// Example (little endian): 1957 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1958 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1959 bool IsBigEndian) { 1960 // This must be a bitcasted shuffle of 1 vector integer operand. 1961 Type *DestType = Shuf.getType(); 1962 Value *X; 1963 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1964 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1965 return nullptr; 1966 1967 // The source type must have the same number of elements as the shuffle, 1968 // and the source element type must be larger than the shuffle element type. 1969 Type *SrcType = X->getType(); 1970 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1971 cast<VectorType>(SrcType)->getNumElements() != 1972 cast<VectorType>(DestType)->getNumElements() || 1973 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1974 return nullptr; 1975 1976 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1977 "Expected a shuffle that decreases length"); 1978 1979 // Last, check that the mask chooses the correct low bits for each narrow 1980 // element in the result. 1981 uint64_t TruncRatio = 1982 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1983 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1984 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1985 if (Mask[i] == UndefMaskElem) 1986 continue; 1987 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1988 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1989 "Overflowed 32-bits"); 1990 if (Mask[i] != (int)LSBIndex) 1991 return nullptr; 1992 } 1993 1994 return new TruncInst(X, DestType); 1995 } 1996 1997 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1998 /// narrowing (concatenating with undef and extracting back to the original 1999 /// length). This allows replacing the wide select with a narrow select. 2000 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2001 InstCombiner::BuilderTy &Builder) { 2002 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2003 // of the 1st vector operand of a shuffle. 2004 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2005 return nullptr; 2006 2007 // The vector being shuffled must be a vector select that we can eliminate. 2008 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2009 Value *Cond, *X, *Y; 2010 if (!match(Shuf.getOperand(0), 2011 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2012 return nullptr; 2013 2014 // We need a narrow condition value. It must be extended with undef elements 2015 // and have the same number of elements as this shuffle. 2016 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 2017 Value *NarrowCond; 2018 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2019 cast<VectorType>(NarrowCond->getType())->getNumElements() != 2020 NarrowNumElts || 2021 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2022 return nullptr; 2023 2024 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2025 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2026 Value *Undef = UndefValue::get(X->getType()); 2027 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 2028 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 2029 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2030 } 2031 2032 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2033 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2034 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2035 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 2036 return nullptr; 2037 2038 Value *X, *Y; 2039 ArrayRef<int> Mask; 2040 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2041 return nullptr; 2042 2043 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2044 // then combining may result in worse codegen. 2045 if (!Op0->hasOneUse()) 2046 return nullptr; 2047 2048 // We are extracting a subvector from a shuffle. Remove excess elements from 2049 // the 1st shuffle mask to eliminate the extract. 2050 // 2051 // This transform is conservatively limited to identity extracts because we do 2052 // not allow arbitrary shuffle mask creation as a target-independent transform 2053 // (because we can't guarantee that will lower efficiently). 2054 // 2055 // If the extracting shuffle has an undef mask element, it transfers to the 2056 // new shuffle mask. Otherwise, copy the original mask element. Example: 2057 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2058 // shuf X, Y, <C0, undef, C2, undef> 2059 unsigned NumElts = Shuf.getType()->getNumElements(); 2060 SmallVector<int, 16> NewMask(NumElts); 2061 assert(NumElts < Mask.size() && 2062 "Identity with extract must have less elements than its inputs"); 2063 2064 for (unsigned i = 0; i != NumElts; ++i) { 2065 int ExtractMaskElt = Shuf.getMaskValue(i); 2066 int MaskElt = Mask[i]; 2067 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2068 } 2069 return new ShuffleVectorInst(X, Y, NewMask); 2070 } 2071 2072 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2073 /// operand with the operand of an insertelement. 2074 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2075 InstCombinerImpl &IC) { 2076 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2077 SmallVector<int, 16> Mask; 2078 Shuf.getShuffleMask(Mask); 2079 2080 // The shuffle must not change vector sizes. 2081 // TODO: This restriction could be removed if the insert has only one use 2082 // (because the transform would require a new length-changing shuffle). 2083 int NumElts = Mask.size(); 2084 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 2085 return nullptr; 2086 2087 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2088 // not be able to handle it there if the insertelement has >1 use. 2089 // If the shuffle has an insertelement operand but does not choose the 2090 // inserted scalar element from that value, then we can replace that shuffle 2091 // operand with the source vector of the insertelement. 2092 Value *X; 2093 uint64_t IdxC; 2094 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2095 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2096 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 2097 return IC.replaceOperand(Shuf, 0, X); 2098 } 2099 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2100 // Offset the index constant by the vector width because we are checking for 2101 // accesses to the 2nd vector input of the shuffle. 2102 IdxC += NumElts; 2103 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2104 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 2105 return IC.replaceOperand(Shuf, 1, X); 2106 } 2107 2108 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2109 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2110 // We need an insertelement with a constant index. 2111 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2112 m_ConstantInt(IndexC)))) 2113 return false; 2114 2115 // Test the shuffle mask to see if it splices the inserted scalar into the 2116 // operand 1 vector of the shuffle. 2117 int NewInsIndex = -1; 2118 for (int i = 0; i != NumElts; ++i) { 2119 // Ignore undef mask elements. 2120 if (Mask[i] == -1) 2121 continue; 2122 2123 // The shuffle takes elements of operand 1 without lane changes. 2124 if (Mask[i] == NumElts + i) 2125 continue; 2126 2127 // The shuffle must choose the inserted scalar exactly once. 2128 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2129 return false; 2130 2131 // The shuffle is placing the inserted scalar into element i. 2132 NewInsIndex = i; 2133 } 2134 2135 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2136 2137 // Index is updated to the potentially translated insertion lane. 2138 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2139 return true; 2140 }; 2141 2142 // If the shuffle is unnecessary, insert the scalar operand directly into 2143 // operand 1 of the shuffle. Example: 2144 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2145 Value *Scalar; 2146 ConstantInt *IndexC; 2147 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2148 return InsertElementInst::Create(V1, Scalar, IndexC); 2149 2150 // Try again after commuting shuffle. Example: 2151 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2152 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2153 std::swap(V0, V1); 2154 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2155 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2156 return InsertElementInst::Create(V1, Scalar, IndexC); 2157 2158 return nullptr; 2159 } 2160 2161 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2162 // Match the operands as identity with padding (also known as concatenation 2163 // with undef) shuffles of the same source type. The backend is expected to 2164 // recreate these concatenations from a shuffle of narrow operands. 2165 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2166 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2167 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2168 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2169 return nullptr; 2170 2171 // We limit this transform to power-of-2 types because we expect that the 2172 // backend can convert the simplified IR patterns to identical nodes as the 2173 // original IR. 2174 // TODO: If we can verify the same behavior for arbitrary types, the 2175 // power-of-2 checks can be removed. 2176 Value *X = Shuffle0->getOperand(0); 2177 Value *Y = Shuffle1->getOperand(0); 2178 if (X->getType() != Y->getType() || 2179 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 2180 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 2181 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 2182 isa<UndefValue>(X) || isa<UndefValue>(Y)) 2183 return nullptr; 2184 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 2185 isa<UndefValue>(Shuffle1->getOperand(1)) && 2186 "Unexpected operand for identity shuffle"); 2187 2188 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2189 // operands directly by adjusting the shuffle mask to account for the narrower 2190 // types: 2191 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2192 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 2193 int WideElts = Shuffle0->getType()->getNumElements(); 2194 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2195 2196 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2197 SmallVector<int, 16> NewMask(Mask.size(), -1); 2198 for (int i = 0, e = Mask.size(); i != e; ++i) { 2199 if (Mask[i] == -1) 2200 continue; 2201 2202 // If this shuffle is choosing an undef element from 1 of the sources, that 2203 // element is undef. 2204 if (Mask[i] < WideElts) { 2205 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2206 continue; 2207 } else { 2208 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2209 continue; 2210 } 2211 2212 // If this shuffle is choosing from the 1st narrow op, the mask element is 2213 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2214 // element is offset down to adjust for the narrow vector widths. 2215 if (Mask[i] < WideElts) { 2216 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2217 NewMask[i] = Mask[i]; 2218 } else { 2219 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2220 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2221 } 2222 } 2223 return new ShuffleVectorInst(X, Y, NewMask); 2224 } 2225 2226 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2227 Value *LHS = SVI.getOperand(0); 2228 Value *RHS = SVI.getOperand(1); 2229 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2230 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2231 SVI.getType(), ShufQuery)) 2232 return replaceInstUsesWith(SVI, V); 2233 2234 // shuffle x, x, mask --> shuffle x, undef, mask' 2235 unsigned VWidth = SVI.getType()->getNumElements(); 2236 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 2237 ArrayRef<int> Mask = SVI.getShuffleMask(); 2238 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2239 2240 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2241 // simulated shuffle can simplify, then this shuffle is unnecessary: 2242 // shuf (bitcast X), undef, Mask --> bitcast X' 2243 // TODO: This could be extended to allow length-changing shuffles. 2244 // The transform might also be obsoleted if we allowed canonicalization 2245 // of bitcasted shuffles. 2246 Value *X; 2247 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2248 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2249 // Try to create a scaled mask constant. 2250 auto *XType = cast<VectorType>(X->getType()); 2251 unsigned XNumElts = XType->getNumElements(); 2252 SmallVector<int, 16> ScaledMask; 2253 if (XNumElts >= VWidth) { 2254 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2255 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2256 } else { 2257 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2258 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2259 ScaledMask.clear(); 2260 } 2261 if (!ScaledMask.empty()) { 2262 // If the shuffled source vector simplifies, cast that value to this 2263 // shuffle's type. 2264 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2265 ScaledMask, XType, ShufQuery)) 2266 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2267 } 2268 } 2269 2270 if (LHS == RHS) { 2271 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2272 // Remap any references to RHS to use LHS. 2273 SmallVector<int, 16> Elts; 2274 for (unsigned i = 0; i != VWidth; ++i) { 2275 // Propagate undef elements or force mask to LHS. 2276 if (Mask[i] < 0) 2277 Elts.push_back(UndefMaskElem); 2278 else 2279 Elts.push_back(Mask[i] % LHSWidth); 2280 } 2281 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2282 } 2283 2284 // shuffle undef, x, mask --> shuffle x, undef, mask' 2285 if (isa<UndefValue>(LHS)) { 2286 SVI.commute(); 2287 return &SVI; 2288 } 2289 2290 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2291 return I; 2292 2293 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2294 return I; 2295 2296 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2297 return I; 2298 2299 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2300 return I; 2301 2302 APInt UndefElts(VWidth, 0); 2303 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2304 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2305 if (V != &SVI) 2306 return replaceInstUsesWith(SVI, V); 2307 return &SVI; 2308 } 2309 2310 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2311 return I; 2312 2313 // These transforms have the potential to lose undef knowledge, so they are 2314 // intentionally placed after SimplifyDemandedVectorElts(). 2315 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2316 return I; 2317 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2318 return I; 2319 2320 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2321 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2322 return replaceInstUsesWith(SVI, V); 2323 } 2324 2325 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2326 // a non-vector type. We can instead bitcast the original vector followed by 2327 // an extract of the desired element: 2328 // 2329 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2330 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2331 // %1 = bitcast <4 x i8> %sroa to i32 2332 // Becomes: 2333 // %bc = bitcast <16 x i8> %in to <4 x i32> 2334 // %ext = extractelement <4 x i32> %bc, i32 0 2335 // 2336 // If the shuffle is extracting a contiguous range of values from the input 2337 // vector then each use which is a bitcast of the extracted size can be 2338 // replaced. This will work if the vector types are compatible, and the begin 2339 // index is aligned to a value in the casted vector type. If the begin index 2340 // isn't aligned then we can shuffle the original vector (keeping the same 2341 // vector type) before extracting. 2342 // 2343 // This code will bail out if the target type is fundamentally incompatible 2344 // with vectors of the source type. 2345 // 2346 // Example of <16 x i8>, target type i32: 2347 // Index range [4,8): v-----------v Will work. 2348 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2349 // <16 x i8>: | | | | | | | | | | | | | | | | | 2350 // <4 x i32>: | | | | | 2351 // +-----------+-----------+-----------+-----------+ 2352 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2353 // Target type i40: ^--------------^ Won't work, bail. 2354 bool MadeChange = false; 2355 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2356 Value *V = LHS; 2357 unsigned MaskElems = Mask.size(); 2358 VectorType *SrcTy = cast<VectorType>(V->getType()); 2359 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2360 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2361 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2362 unsigned SrcNumElems = SrcTy->getNumElements(); 2363 SmallVector<BitCastInst *, 8> BCs; 2364 DenseMap<Type *, Value *> NewBCs; 2365 for (User *U : SVI.users()) 2366 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2367 if (!BC->use_empty()) 2368 // Only visit bitcasts that weren't previously handled. 2369 BCs.push_back(BC); 2370 for (BitCastInst *BC : BCs) { 2371 unsigned BegIdx = Mask.front(); 2372 Type *TgtTy = BC->getDestTy(); 2373 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2374 if (!TgtElemBitWidth) 2375 continue; 2376 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2377 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2378 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2379 if (!VecBitWidthsEqual) 2380 continue; 2381 if (!VectorType::isValidElementType(TgtTy)) 2382 continue; 2383 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2384 if (!BegIsAligned) { 2385 // Shuffle the input so [0,NumElements) contains the output, and 2386 // [NumElems,SrcNumElems) is undef. 2387 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2388 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2389 ShuffleMask[I] = Idx; 2390 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2391 ShuffleMask, 2392 SVI.getName() + ".extract"); 2393 BegIdx = 0; 2394 } 2395 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2396 assert(SrcElemsPerTgtElem); 2397 BegIdx /= SrcElemsPerTgtElem; 2398 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2399 auto *NewBC = 2400 BCAlreadyExists 2401 ? NewBCs[CastSrcTy] 2402 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2403 if (!BCAlreadyExists) 2404 NewBCs[CastSrcTy] = NewBC; 2405 auto *Ext = Builder.CreateExtractElement( 2406 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2407 // The shufflevector isn't being replaced: the bitcast that used it 2408 // is. InstCombine will visit the newly-created instructions. 2409 replaceInstUsesWith(*BC, Ext); 2410 MadeChange = true; 2411 } 2412 } 2413 2414 // If the LHS is a shufflevector itself, see if we can combine it with this 2415 // one without producing an unusual shuffle. 2416 // Cases that might be simplified: 2417 // 1. 2418 // x1=shuffle(v1,v2,mask1) 2419 // x=shuffle(x1,undef,mask) 2420 // ==> 2421 // x=shuffle(v1,undef,newMask) 2422 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2423 // 2. 2424 // x1=shuffle(v1,undef,mask1) 2425 // x=shuffle(x1,x2,mask) 2426 // where v1.size() == mask1.size() 2427 // ==> 2428 // x=shuffle(v1,x2,newMask) 2429 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2430 // 3. 2431 // x2=shuffle(v2,undef,mask2) 2432 // x=shuffle(x1,x2,mask) 2433 // where v2.size() == mask2.size() 2434 // ==> 2435 // x=shuffle(x1,v2,newMask) 2436 // newMask[i] = (mask[i] < x1.size()) 2437 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2438 // 4. 2439 // x1=shuffle(v1,undef,mask1) 2440 // x2=shuffle(v2,undef,mask2) 2441 // x=shuffle(x1,x2,mask) 2442 // where v1.size() == v2.size() 2443 // ==> 2444 // x=shuffle(v1,v2,newMask) 2445 // newMask[i] = (mask[i] < x1.size()) 2446 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2447 // 2448 // Here we are really conservative: 2449 // we are absolutely afraid of producing a shuffle mask not in the input 2450 // program, because the code gen may not be smart enough to turn a merged 2451 // shuffle into two specific shuffles: it may produce worse code. As such, 2452 // we only merge two shuffles if the result is either a splat or one of the 2453 // input shuffle masks. In this case, merging the shuffles just removes 2454 // one instruction, which we know is safe. This is good for things like 2455 // turning: (splat(splat)) -> splat, or 2456 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2457 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2458 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2459 if (LHSShuffle) 2460 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2461 LHSShuffle = nullptr; 2462 if (RHSShuffle) 2463 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2464 RHSShuffle = nullptr; 2465 if (!LHSShuffle && !RHSShuffle) 2466 return MadeChange ? &SVI : nullptr; 2467 2468 Value* LHSOp0 = nullptr; 2469 Value* LHSOp1 = nullptr; 2470 Value* RHSOp0 = nullptr; 2471 unsigned LHSOp0Width = 0; 2472 unsigned RHSOp0Width = 0; 2473 if (LHSShuffle) { 2474 LHSOp0 = LHSShuffle->getOperand(0); 2475 LHSOp1 = LHSShuffle->getOperand(1); 2476 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2477 } 2478 if (RHSShuffle) { 2479 RHSOp0 = RHSShuffle->getOperand(0); 2480 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2481 } 2482 Value* newLHS = LHS; 2483 Value* newRHS = RHS; 2484 if (LHSShuffle) { 2485 // case 1 2486 if (isa<UndefValue>(RHS)) { 2487 newLHS = LHSOp0; 2488 newRHS = LHSOp1; 2489 } 2490 // case 2 or 4 2491 else if (LHSOp0Width == LHSWidth) { 2492 newLHS = LHSOp0; 2493 } 2494 } 2495 // case 3 or 4 2496 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2497 newRHS = RHSOp0; 2498 } 2499 // case 4 2500 if (LHSOp0 == RHSOp0) { 2501 newLHS = LHSOp0; 2502 newRHS = nullptr; 2503 } 2504 2505 if (newLHS == LHS && newRHS == RHS) 2506 return MadeChange ? &SVI : nullptr; 2507 2508 ArrayRef<int> LHSMask; 2509 ArrayRef<int> RHSMask; 2510 if (newLHS != LHS) 2511 LHSMask = LHSShuffle->getShuffleMask(); 2512 if (RHSShuffle && newRHS != RHS) 2513 RHSMask = RHSShuffle->getShuffleMask(); 2514 2515 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2516 SmallVector<int, 16> newMask; 2517 bool isSplat = true; 2518 int SplatElt = -1; 2519 // Create a new mask for the new ShuffleVectorInst so that the new 2520 // ShuffleVectorInst is equivalent to the original one. 2521 for (unsigned i = 0; i < VWidth; ++i) { 2522 int eltMask; 2523 if (Mask[i] < 0) { 2524 // This element is an undef value. 2525 eltMask = -1; 2526 } else if (Mask[i] < (int)LHSWidth) { 2527 // This element is from left hand side vector operand. 2528 // 2529 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2530 // new mask value for the element. 2531 if (newLHS != LHS) { 2532 eltMask = LHSMask[Mask[i]]; 2533 // If the value selected is an undef value, explicitly specify it 2534 // with a -1 mask value. 2535 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2536 eltMask = -1; 2537 } else 2538 eltMask = Mask[i]; 2539 } else { 2540 // This element is from right hand side vector operand 2541 // 2542 // If the value selected is an undef value, explicitly specify it 2543 // with a -1 mask value. (case 1) 2544 if (isa<UndefValue>(RHS)) 2545 eltMask = -1; 2546 // If RHS is going to be replaced (case 3 or 4), calculate the 2547 // new mask value for the element. 2548 else if (newRHS != RHS) { 2549 eltMask = RHSMask[Mask[i]-LHSWidth]; 2550 // If the value selected is an undef value, explicitly specify it 2551 // with a -1 mask value. 2552 if (eltMask >= (int)RHSOp0Width) { 2553 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2554 && "should have been check above"); 2555 eltMask = -1; 2556 } 2557 } else 2558 eltMask = Mask[i]-LHSWidth; 2559 2560 // If LHS's width is changed, shift the mask value accordingly. 2561 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2562 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2563 // If newRHS == newLHS, we want to remap any references from newRHS to 2564 // newLHS so that we can properly identify splats that may occur due to 2565 // obfuscation across the two vectors. 2566 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2567 eltMask += newLHSWidth; 2568 } 2569 2570 // Check if this could still be a splat. 2571 if (eltMask >= 0) { 2572 if (SplatElt >= 0 && SplatElt != eltMask) 2573 isSplat = false; 2574 SplatElt = eltMask; 2575 } 2576 2577 newMask.push_back(eltMask); 2578 } 2579 2580 // If the result mask is equal to one of the original shuffle masks, 2581 // or is a splat, do the replacement. 2582 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2583 SmallVector<Constant*, 16> Elts; 2584 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2585 if (newMask[i] < 0) { 2586 Elts.push_back(UndefValue::get(Int32Ty)); 2587 } else { 2588 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2589 } 2590 } 2591 if (!newRHS) 2592 newRHS = UndefValue::get(newLHS->getType()); 2593 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2594 } 2595 2596 return MadeChange ? &SVI : nullptr; 2597 } 2598