1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/User.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <iterator> 40 #include <utility> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "instcombine" 46 47 /// Return true if the value is cheaper to scalarize than it is to leave as a 48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 49 /// one known element from a vector constant. 50 /// 51 /// FIXME: It's possible to create more instructions than previously existed. 52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 53 // If we can pick a scalar constant value out of a vector, that is free. 54 if (auto *C = dyn_cast<Constant>(V)) 55 return IsConstantExtractIndex || C->getSplatValue(); 56 57 // An insertelement to the same constant index as our extract will simplify 58 // to the scalar inserted element. An insertelement to a different constant 59 // index is irrelevant to our extract. 60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 61 return IsConstantExtractIndex; 62 63 if (match(V, m_OneUse(m_Load(m_Value())))) 64 return true; 65 66 if (match(V, m_OneUse(m_UnOp()))) 67 return true; 68 69 Value *V0, *V1; 70 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 71 if (cheapToScalarize(V0, IsConstantExtractIndex) || 72 cheapToScalarize(V1, IsConstantExtractIndex)) 73 return true; 74 75 CmpInst::Predicate UnusedPred; 76 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 77 if (cheapToScalarize(V0, IsConstantExtractIndex) || 78 cheapToScalarize(V1, IsConstantExtractIndex)) 79 return true; 80 81 return false; 82 } 83 84 // If we have a PHI node with a vector type that is only used to feed 85 // itself and be an operand of extractelement at a constant location, 86 // try to replace the PHI of the vector type with a PHI of a scalar type. 87 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 88 SmallVector<Instruction *, 2> Extracts; 89 // The users we want the PHI to have are: 90 // 1) The EI ExtractElement (we already know this) 91 // 2) Possibly more ExtractElements with the same index. 92 // 3) Another operand, which will feed back into the PHI. 93 Instruction *PHIUser = nullptr; 94 for (auto U : PN->users()) { 95 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 96 if (EI.getIndexOperand() == EU->getIndexOperand()) 97 Extracts.push_back(EU); 98 else 99 return nullptr; 100 } else if (!PHIUser) { 101 PHIUser = cast<Instruction>(U); 102 } else { 103 return nullptr; 104 } 105 } 106 107 if (!PHIUser) 108 return nullptr; 109 110 // Verify that this PHI user has one use, which is the PHI itself, 111 // and that it is a binary operation which is cheap to scalarize. 112 // otherwise return nullptr. 113 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 114 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 115 return nullptr; 116 117 // Create a scalar PHI node that will replace the vector PHI node 118 // just before the current PHI node. 119 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 120 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 121 // Scalarize each PHI operand. 122 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 123 Value *PHIInVal = PN->getIncomingValue(i); 124 BasicBlock *inBB = PN->getIncomingBlock(i); 125 Value *Elt = EI.getIndexOperand(); 126 // If the operand is the PHI induction variable: 127 if (PHIInVal == PHIUser) { 128 // Scalarize the binary operation. Its first operand is the 129 // scalar PHI, and the second operand is extracted from the other 130 // vector operand. 131 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 132 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 133 Value *Op = InsertNewInstWith( 134 ExtractElementInst::Create(B0->getOperand(opId), Elt, 135 B0->getOperand(opId)->getName() + ".Elt"), 136 *B0); 137 Value *newPHIUser = InsertNewInstWith( 138 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 139 scalarPHI, Op, B0), *B0); 140 scalarPHI->addIncoming(newPHIUser, inBB); 141 } else { 142 // Scalarize PHI input: 143 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 144 // Insert the new instruction into the predecessor basic block. 145 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 146 BasicBlock::iterator InsertPos; 147 if (pos && !isa<PHINode>(pos)) { 148 InsertPos = ++pos->getIterator(); 149 } else { 150 InsertPos = inBB->getFirstInsertionPt(); 151 } 152 153 InsertNewInstWith(newEI, *InsertPos); 154 155 scalarPHI->addIncoming(newEI, inBB); 156 } 157 } 158 159 for (auto E : Extracts) 160 replaceInstUsesWith(*E, scalarPHI); 161 162 return &EI; 163 } 164 165 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 166 InstCombiner::BuilderTy &Builder, 167 bool IsBigEndian) { 168 Value *X; 169 uint64_t ExtIndexC; 170 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 171 !X->getType()->isVectorTy() || 172 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 173 return nullptr; 174 175 // If this extractelement is using a bitcast from a vector of the same number 176 // of elements, see if we can find the source element from the source vector: 177 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 178 auto *SrcTy = cast<VectorType>(X->getType()); 179 Type *DestTy = Ext.getType(); 180 unsigned NumSrcElts = SrcTy->getNumElements(); 181 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 182 if (NumSrcElts == NumElts) 183 if (Value *Elt = findScalarElement(X, ExtIndexC)) 184 return new BitCastInst(Elt, DestTy); 185 186 // If the source elements are wider than the destination, try to shift and 187 // truncate a subset of scalar bits of an insert op. 188 if (NumSrcElts < NumElts) { 189 Value *Scalar; 190 uint64_t InsIndexC; 191 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 192 m_ConstantInt(InsIndexC)))) 193 return nullptr; 194 195 // The extract must be from the subset of vector elements that we inserted 196 // into. Example: if we inserted element 1 of a <2 x i64> and we are 197 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 198 // of elements 4-7 of the bitcasted vector. 199 unsigned NarrowingRatio = NumElts / NumSrcElts; 200 if (ExtIndexC / NarrowingRatio != InsIndexC) 201 return nullptr; 202 203 // We are extracting part of the original scalar. How that scalar is 204 // inserted into the vector depends on the endian-ness. Example: 205 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 206 // +--+--+--+--+--+--+--+--+ 207 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 208 // extelt <4 x i16> V', 3: | |S2|S3| 209 // +--+--+--+--+--+--+--+--+ 210 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 211 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 212 // In this example, we must right-shift little-endian. Big-endian is just a 213 // truncate. 214 unsigned Chunk = ExtIndexC % NarrowingRatio; 215 if (IsBigEndian) 216 Chunk = NarrowingRatio - 1 - Chunk; 217 218 // Bail out if this is an FP vector to FP vector sequence. That would take 219 // more instructions than we started with unless there is no shift, and it 220 // may not be handled as well in the backend. 221 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 222 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 223 if (NeedSrcBitcast && NeedDestBitcast) 224 return nullptr; 225 226 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 227 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 228 unsigned ShAmt = Chunk * DestWidth; 229 230 // TODO: This limitation is more strict than necessary. We could sum the 231 // number of new instructions and subtract the number eliminated to know if 232 // we can proceed. 233 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 234 if (NeedSrcBitcast || NeedDestBitcast) 235 return nullptr; 236 237 if (NeedSrcBitcast) { 238 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 239 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 240 } 241 242 if (ShAmt) { 243 // Bail out if we could end with more instructions than we started with. 244 if (!Ext.getVectorOperand()->hasOneUse()) 245 return nullptr; 246 Scalar = Builder.CreateLShr(Scalar, ShAmt); 247 } 248 249 if (NeedDestBitcast) { 250 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 251 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 252 } 253 return new TruncInst(Scalar, DestTy); 254 } 255 256 return nullptr; 257 } 258 259 /// Find elements of V demanded by UserInstr. 260 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 261 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 262 263 // Conservatively assume that all elements are needed. 264 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 265 266 switch (UserInstr->getOpcode()) { 267 case Instruction::ExtractElement: { 268 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 269 assert(EEI->getVectorOperand() == V); 270 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 271 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 272 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 273 } 274 break; 275 } 276 case Instruction::ShuffleVector: { 277 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 278 unsigned MaskNumElts = 279 cast<VectorType>(UserInstr->getType())->getNumElements(); 280 281 UsedElts = APInt(VWidth, 0); 282 for (unsigned i = 0; i < MaskNumElts; i++) { 283 unsigned MaskVal = Shuffle->getMaskValue(i); 284 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 285 continue; 286 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 287 UsedElts.setBit(MaskVal); 288 if (Shuffle->getOperand(1) == V && 289 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 290 UsedElts.setBit(MaskVal - VWidth); 291 } 292 break; 293 } 294 default: 295 break; 296 } 297 return UsedElts; 298 } 299 300 /// Find union of elements of V demanded by all its users. 301 /// If it is known by querying findDemandedEltsBySingleUser that 302 /// no user demands an element of V, then the corresponding bit 303 /// remains unset in the returned value. 304 static APInt findDemandedEltsByAllUsers(Value *V) { 305 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 306 307 APInt UnionUsedElts(VWidth, 0); 308 for (const Use &U : V->uses()) { 309 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 310 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 311 } else { 312 UnionUsedElts = APInt::getAllOnesValue(VWidth); 313 break; 314 } 315 316 if (UnionUsedElts.isAllOnesValue()) 317 break; 318 } 319 320 return UnionUsedElts; 321 } 322 323 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 324 Value *SrcVec = EI.getVectorOperand(); 325 Value *Index = EI.getIndexOperand(); 326 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 327 SQ.getWithInstruction(&EI))) 328 return replaceInstUsesWith(EI, V); 329 330 // If extracting a specified index from the vector, see if we can recursively 331 // find a previously computed scalar that was inserted into the vector. 332 auto *IndexC = dyn_cast<ConstantInt>(Index); 333 if (IndexC) { 334 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 335 336 // InstSimplify should handle cases where the index is invalid. 337 if (!IndexC->getValue().ule(NumElts)) 338 return nullptr; 339 340 // This instruction only demands the single element from the input vector. 341 if (NumElts != 1) { 342 // If the input vector has a single use, simplify it based on this use 343 // property. 344 if (SrcVec->hasOneUse()) { 345 APInt UndefElts(NumElts, 0); 346 APInt DemandedElts(NumElts, 0); 347 DemandedElts.setBit(IndexC->getZExtValue()); 348 if (Value *V = 349 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 350 return replaceOperand(EI, 0, V); 351 } else { 352 // If the input vector has multiple uses, simplify it based on a union 353 // of all elements used. 354 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 355 if (!DemandedElts.isAllOnesValue()) { 356 APInt UndefElts(NumElts, 0); 357 if (Value *V = SimplifyDemandedVectorElts( 358 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 359 true /* AllowMultipleUsers */)) { 360 if (V != SrcVec) { 361 SrcVec->replaceAllUsesWith(V); 362 return &EI; 363 } 364 } 365 } 366 } 367 } 368 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 369 return I; 370 371 // If there's a vector PHI feeding a scalar use through this extractelement 372 // instruction, try to scalarize the PHI. 373 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 374 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 375 return ScalarPHI; 376 } 377 378 // TODO come up with a n-ary matcher that subsumes both unary and 379 // binary matchers. 380 UnaryOperator *UO; 381 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 382 // extelt (unop X), Index --> unop (extelt X, Index) 383 Value *X = UO->getOperand(0); 384 Value *E = Builder.CreateExtractElement(X, Index); 385 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 386 } 387 388 BinaryOperator *BO; 389 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 390 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 391 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 392 Value *E0 = Builder.CreateExtractElement(X, Index); 393 Value *E1 = Builder.CreateExtractElement(Y, Index); 394 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 395 } 396 397 Value *X, *Y; 398 CmpInst::Predicate Pred; 399 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 400 cheapToScalarize(SrcVec, IndexC)) { 401 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 402 Value *E0 = Builder.CreateExtractElement(X, Index); 403 Value *E1 = Builder.CreateExtractElement(Y, Index); 404 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 405 } 406 407 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 408 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 409 // Extracting the inserted element? 410 if (IE->getOperand(2) == Index) 411 return replaceInstUsesWith(EI, IE->getOperand(1)); 412 // If the inserted and extracted elements are constants, they must not 413 // be the same value, extract from the pre-inserted value instead. 414 if (isa<Constant>(IE->getOperand(2)) && IndexC) 415 return replaceOperand(EI, 0, IE->getOperand(0)); 416 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 417 // If this is extracting an element from a shufflevector, figure out where 418 // it came from and extract from the appropriate input element instead. 419 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 420 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 421 Value *Src; 422 unsigned LHSWidth = 423 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); 424 425 if (SrcIdx < 0) 426 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 427 if (SrcIdx < (int)LHSWidth) 428 Src = SVI->getOperand(0); 429 else { 430 SrcIdx -= LHSWidth; 431 Src = SVI->getOperand(1); 432 } 433 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 434 return ExtractElementInst::Create(Src, 435 ConstantInt::get(Int32Ty, 436 SrcIdx, false)); 437 } 438 } else if (auto *CI = dyn_cast<CastInst>(I)) { 439 // Canonicalize extractelement(cast) -> cast(extractelement). 440 // Bitcasts can change the number of vector elements, and they cost 441 // nothing. 442 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 443 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 444 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 445 } 446 } 447 } 448 return nullptr; 449 } 450 451 /// If V is a shuffle of values that ONLY returns elements from either LHS or 452 /// RHS, return the shuffle mask and true. Otherwise, return false. 453 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 454 SmallVectorImpl<Constant*> &Mask) { 455 assert(LHS->getType() == RHS->getType() && 456 "Invalid CollectSingleShuffleElements"); 457 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 458 459 if (isa<UndefValue>(V)) { 460 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 461 return true; 462 } 463 464 if (V == LHS) { 465 for (unsigned i = 0; i != NumElts; ++i) 466 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 467 return true; 468 } 469 470 if (V == RHS) { 471 for (unsigned i = 0; i != NumElts; ++i) 472 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 473 i+NumElts)); 474 return true; 475 } 476 477 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 478 // If this is an insert of an extract from some other vector, include it. 479 Value *VecOp = IEI->getOperand(0); 480 Value *ScalarOp = IEI->getOperand(1); 481 Value *IdxOp = IEI->getOperand(2); 482 483 if (!isa<ConstantInt>(IdxOp)) 484 return false; 485 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 486 487 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 488 // We can handle this if the vector we are inserting into is 489 // transitively ok. 490 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 491 // If so, update the mask to reflect the inserted undef. 492 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 493 return true; 494 } 495 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 496 if (isa<ConstantInt>(EI->getOperand(1))) { 497 unsigned ExtractedIdx = 498 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 499 unsigned NumLHSElts = 500 cast<VectorType>(LHS->getType())->getNumElements(); 501 502 // This must be extracting from either LHS or RHS. 503 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 504 // We can handle this if the vector we are inserting into is 505 // transitively ok. 506 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 507 // If so, update the mask to reflect the inserted value. 508 if (EI->getOperand(0) == LHS) { 509 Mask[InsertedIdx % NumElts] = 510 ConstantInt::get(Type::getInt32Ty(V->getContext()), 511 ExtractedIdx); 512 } else { 513 assert(EI->getOperand(0) == RHS); 514 Mask[InsertedIdx % NumElts] = 515 ConstantInt::get(Type::getInt32Ty(V->getContext()), 516 ExtractedIdx + NumLHSElts); 517 } 518 return true; 519 } 520 } 521 } 522 } 523 } 524 525 return false; 526 } 527 528 /// If we have insertion into a vector that is wider than the vector that we 529 /// are extracting from, try to widen the source vector to allow a single 530 /// shufflevector to replace one or more insert/extract pairs. 531 static void replaceExtractElements(InsertElementInst *InsElt, 532 ExtractElementInst *ExtElt, 533 InstCombiner &IC) { 534 VectorType *InsVecType = InsElt->getType(); 535 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 536 unsigned NumInsElts = InsVecType->getNumElements(); 537 unsigned NumExtElts = ExtVecType->getNumElements(); 538 539 // The inserted-to vector must be wider than the extracted-from vector. 540 if (InsVecType->getElementType() != ExtVecType->getElementType() || 541 NumExtElts >= NumInsElts) 542 return; 543 544 // Create a shuffle mask to widen the extended-from vector using undefined 545 // values. The mask selects all of the values of the original vector followed 546 // by as many undefined values as needed to create a vector of the same length 547 // as the inserted-to vector. 548 SmallVector<Constant *, 16> ExtendMask; 549 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 550 for (unsigned i = 0; i < NumExtElts; ++i) 551 ExtendMask.push_back(ConstantInt::get(IntType, i)); 552 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 553 ExtendMask.push_back(UndefValue::get(IntType)); 554 555 Value *ExtVecOp = ExtElt->getVectorOperand(); 556 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 557 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 558 ? ExtVecOpInst->getParent() 559 : ExtElt->getParent(); 560 561 // TODO: This restriction matches the basic block check below when creating 562 // new extractelement instructions. If that limitation is removed, this one 563 // could also be removed. But for now, we just bail out to ensure that we 564 // will replace the extractelement instruction that is feeding our 565 // insertelement instruction. This allows the insertelement to then be 566 // replaced by a shufflevector. If the insertelement is not replaced, we can 567 // induce infinite looping because there's an optimization for extractelement 568 // that will delete our widening shuffle. This would trigger another attempt 569 // here to create that shuffle, and we spin forever. 570 if (InsertionBlock != InsElt->getParent()) 571 return; 572 573 // TODO: This restriction matches the check in visitInsertElementInst() and 574 // prevents an infinite loop caused by not turning the extract/insert pair 575 // into a shuffle. We really should not need either check, but we're lacking 576 // folds for shufflevectors because we're afraid to generate shuffle masks 577 // that the backend can't handle. 578 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 579 return; 580 581 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 582 ConstantVector::get(ExtendMask)); 583 584 // Insert the new shuffle after the vector operand of the extract is defined 585 // (as long as it's not a PHI) or at the start of the basic block of the 586 // extract, so any subsequent extracts in the same basic block can use it. 587 // TODO: Insert before the earliest ExtractElementInst that is replaced. 588 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 589 WideVec->insertAfter(ExtVecOpInst); 590 else 591 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 592 593 // Replace extracts from the original narrow vector with extracts from the new 594 // wide vector. 595 for (User *U : ExtVecOp->users()) { 596 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 597 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 598 continue; 599 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 600 NewExt->insertAfter(OldExt); 601 IC.replaceInstUsesWith(*OldExt, NewExt); 602 } 603 } 604 605 /// We are building a shuffle to create V, which is a sequence of insertelement, 606 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 607 /// not rely on the second vector source. Return a std::pair containing the 608 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 609 /// parameter as required. 610 /// 611 /// Note: we intentionally don't try to fold earlier shuffles since they have 612 /// often been chosen carefully to be efficiently implementable on the target. 613 using ShuffleOps = std::pair<Value *, Value *>; 614 615 static ShuffleOps collectShuffleElements(Value *V, 616 SmallVectorImpl<Constant *> &Mask, 617 Value *PermittedRHS, 618 InstCombiner &IC) { 619 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 620 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 621 622 if (isa<UndefValue>(V)) { 623 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 624 return std::make_pair( 625 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 626 } 627 628 if (isa<ConstantAggregateZero>(V)) { 629 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 630 return std::make_pair(V, nullptr); 631 } 632 633 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 634 // If this is an insert of an extract from some other vector, include it. 635 Value *VecOp = IEI->getOperand(0); 636 Value *ScalarOp = IEI->getOperand(1); 637 Value *IdxOp = IEI->getOperand(2); 638 639 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 640 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 641 unsigned ExtractedIdx = 642 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 643 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 644 645 // Either the extracted from or inserted into vector must be RHSVec, 646 // otherwise we'd end up with a shuffle of three inputs. 647 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 648 Value *RHS = EI->getOperand(0); 649 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 650 assert(LR.second == nullptr || LR.second == RHS); 651 652 if (LR.first->getType() != RHS->getType()) { 653 // Although we are giving up for now, see if we can create extracts 654 // that match the inserts for another round of combining. 655 replaceExtractElements(IEI, EI, IC); 656 657 // We tried our best, but we can't find anything compatible with RHS 658 // further up the chain. Return a trivial shuffle. 659 for (unsigned i = 0; i < NumElts; ++i) 660 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 661 return std::make_pair(V, nullptr); 662 } 663 664 unsigned NumLHSElts = 665 cast<VectorType>(RHS->getType())->getNumElements(); 666 Mask[InsertedIdx % NumElts] = 667 ConstantInt::get(Type::getInt32Ty(V->getContext()), 668 NumLHSElts+ExtractedIdx); 669 return std::make_pair(LR.first, RHS); 670 } 671 672 if (VecOp == PermittedRHS) { 673 // We've gone as far as we can: anything on the other side of the 674 // extractelement will already have been converted into a shuffle. 675 unsigned NumLHSElts = 676 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 677 for (unsigned i = 0; i != NumElts; ++i) 678 Mask.push_back(ConstantInt::get( 679 Type::getInt32Ty(V->getContext()), 680 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 681 return std::make_pair(EI->getOperand(0), PermittedRHS); 682 } 683 684 // If this insertelement is a chain that comes from exactly these two 685 // vectors, return the vector and the effective shuffle. 686 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 687 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 688 Mask)) 689 return std::make_pair(EI->getOperand(0), PermittedRHS); 690 } 691 } 692 } 693 694 // Otherwise, we can't do anything fancy. Return an identity vector. 695 for (unsigned i = 0; i != NumElts; ++i) 696 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 697 return std::make_pair(V, nullptr); 698 } 699 700 /// Try to find redundant insertvalue instructions, like the following ones: 701 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 702 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 703 /// Here the second instruction inserts values at the same indices, as the 704 /// first one, making the first one redundant. 705 /// It should be transformed to: 706 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 707 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 708 bool IsRedundant = false; 709 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 710 711 // If there is a chain of insertvalue instructions (each of them except the 712 // last one has only one use and it's another insertvalue insn from this 713 // chain), check if any of the 'children' uses the same indices as the first 714 // instruction. In this case, the first one is redundant. 715 Value *V = &I; 716 unsigned Depth = 0; 717 while (V->hasOneUse() && Depth < 10) { 718 User *U = V->user_back(); 719 auto UserInsInst = dyn_cast<InsertValueInst>(U); 720 if (!UserInsInst || U->getOperand(0) != V) 721 break; 722 if (UserInsInst->getIndices() == FirstIndices) { 723 IsRedundant = true; 724 break; 725 } 726 V = UserInsInst; 727 Depth++; 728 } 729 730 if (IsRedundant) 731 return replaceInstUsesWith(I, I.getOperand(0)); 732 return nullptr; 733 } 734 735 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 736 int MaskSize = Shuf.getShuffleMask().size(); 737 int VecSize = 738 cast<VectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 739 740 // A vector select does not change the size of the operands. 741 if (MaskSize != VecSize) 742 return false; 743 744 // Each mask element must be undefined or choose a vector element from one of 745 // the source operands without crossing vector lanes. 746 for (int i = 0; i != MaskSize; ++i) { 747 int Elt = Shuf.getMaskValue(i); 748 if (Elt != -1 && Elt != i && Elt != i + VecSize) 749 return false; 750 } 751 752 return true; 753 } 754 755 /// Turn a chain of inserts that splats a value into an insert + shuffle: 756 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 757 /// shufflevector(insertelt(X, %k, 0), undef, zero) 758 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 759 // We are interested in the last insert in a chain. So if this insert has a 760 // single user and that user is an insert, bail. 761 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 762 return nullptr; 763 764 auto *VecTy = cast<VectorType>(InsElt.getType()); 765 unsigned NumElements = VecTy->getNumElements(); 766 767 // Do not try to do this for a one-element vector, since that's a nop, 768 // and will cause an inf-loop. 769 if (NumElements == 1) 770 return nullptr; 771 772 Value *SplatVal = InsElt.getOperand(1); 773 InsertElementInst *CurrIE = &InsElt; 774 SmallVector<bool, 16> ElementPresent(NumElements, false); 775 InsertElementInst *FirstIE = nullptr; 776 777 // Walk the chain backwards, keeping track of which indices we inserted into, 778 // until we hit something that isn't an insert of the splatted value. 779 while (CurrIE) { 780 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 781 if (!Idx || CurrIE->getOperand(1) != SplatVal) 782 return nullptr; 783 784 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 785 // Check none of the intermediate steps have any additional uses, except 786 // for the root insertelement instruction, which can be re-used, if it 787 // inserts at position 0. 788 if (CurrIE != &InsElt && 789 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 790 return nullptr; 791 792 ElementPresent[Idx->getZExtValue()] = true; 793 FirstIE = CurrIE; 794 CurrIE = NextIE; 795 } 796 797 // If this is just a single insertelement (not a sequence), we are done. 798 if (FirstIE == &InsElt) 799 return nullptr; 800 801 // If we are not inserting into an undef vector, make sure we've seen an 802 // insert into every element. 803 // TODO: If the base vector is not undef, it might be better to create a splat 804 // and then a select-shuffle (blend) with the base vector. 805 if (!isa<UndefValue>(FirstIE->getOperand(0))) 806 if (any_of(ElementPresent, [](bool Present) { return !Present; })) 807 return nullptr; 808 809 // Create the insert + shuffle. 810 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 811 UndefValue *UndefVec = UndefValue::get(VecTy); 812 Constant *Zero = ConstantInt::get(Int32Ty, 0); 813 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 814 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 815 816 // Splat from element 0, but replace absent elements with undef in the mask. 817 SmallVector<Constant *, 16> Mask(NumElements, Zero); 818 for (unsigned i = 0; i != NumElements; ++i) 819 if (!ElementPresent[i]) 820 Mask[i] = UndefValue::get(Int32Ty); 821 822 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); 823 } 824 825 /// Try to fold an insert element into an existing splat shuffle by changing 826 /// the shuffle's mask to include the index of this insert element. 827 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 828 // Check if the vector operand of this insert is a canonical splat shuffle. 829 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 830 if (!Shuf || !Shuf->isZeroEltSplat()) 831 return nullptr; 832 833 // Check for a constant insertion index. 834 uint64_t IdxC; 835 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 836 return nullptr; 837 838 // Check if the splat shuffle's input is the same as this insert's scalar op. 839 Value *X = InsElt.getOperand(1); 840 Value *Op0 = Shuf->getOperand(0); 841 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 842 return nullptr; 843 844 // Replace the shuffle mask element at the index of this insert with a zero. 845 // For example: 846 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 847 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 848 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 849 SmallVector<int, 16> NewMask(NumMaskElts); 850 for (unsigned i = 0; i != NumMaskElts; ++i) 851 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 852 853 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 854 } 855 856 /// Try to fold an extract+insert element into an existing identity shuffle by 857 /// changing the shuffle's mask to include the index of this insert element. 858 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 859 // Check if the vector operand of this insert is an identity shuffle. 860 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 861 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 862 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 863 return nullptr; 864 865 // Check for a constant insertion index. 866 uint64_t IdxC; 867 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 868 return nullptr; 869 870 // Check if this insert's scalar op is extracted from the identity shuffle's 871 // input vector. 872 Value *Scalar = InsElt.getOperand(1); 873 Value *X = Shuf->getOperand(0); 874 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 875 return nullptr; 876 877 // Replace the shuffle mask element at the index of this extract+insert with 878 // that same index value. 879 // For example: 880 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 881 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 882 SmallVector<int, 16> NewMask(NumMaskElts); 883 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 884 for (unsigned i = 0; i != NumMaskElts; ++i) { 885 if (i != IdxC) { 886 // All mask elements besides the inserted element remain the same. 887 NewMask[i] = OldMask[i]; 888 } else if (OldMask[i] == (int)IdxC) { 889 // If the mask element was already set, there's nothing to do 890 // (demanded elements analysis may unset it later). 891 return nullptr; 892 } else { 893 assert(OldMask[i] == UndefMaskElem && 894 "Unexpected shuffle mask element for identity shuffle"); 895 NewMask[i] = IdxC; 896 } 897 } 898 899 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 900 } 901 902 /// If we have an insertelement instruction feeding into another insertelement 903 /// and the 2nd is inserting a constant into the vector, canonicalize that 904 /// constant insertion before the insertion of a variable: 905 /// 906 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 907 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 908 /// 909 /// This has the potential of eliminating the 2nd insertelement instruction 910 /// via constant folding of the scalar constant into a vector constant. 911 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 912 InstCombiner::BuilderTy &Builder) { 913 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 914 if (!InsElt1 || !InsElt1->hasOneUse()) 915 return nullptr; 916 917 Value *X, *Y; 918 Constant *ScalarC; 919 ConstantInt *IdxC1, *IdxC2; 920 if (match(InsElt1->getOperand(0), m_Value(X)) && 921 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 922 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 923 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 924 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 925 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 926 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 927 } 928 929 return nullptr; 930 } 931 932 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 933 /// --> shufflevector X, CVec', Mask' 934 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 935 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 936 // Bail out if the parent has more than one use. In that case, we'd be 937 // replacing the insertelt with a shuffle, and that's not a clear win. 938 if (!Inst || !Inst->hasOneUse()) 939 return nullptr; 940 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 941 // The shuffle must have a constant vector operand. The insertelt must have 942 // a constant scalar being inserted at a constant position in the vector. 943 Constant *ShufConstVec, *InsEltScalar; 944 uint64_t InsEltIndex; 945 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 946 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 947 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 948 return nullptr; 949 950 // Adding an element to an arbitrary shuffle could be expensive, but a 951 // shuffle that selects elements from vectors without crossing lanes is 952 // assumed cheap. 953 // If we're just adding a constant into that shuffle, it will still be 954 // cheap. 955 if (!isShuffleEquivalentToSelect(*Shuf)) 956 return nullptr; 957 958 // From the above 'select' check, we know that the mask has the same number 959 // of elements as the vector input operands. We also know that each constant 960 // input element is used in its lane and can not be used more than once by 961 // the shuffle. Therefore, replace the constant in the shuffle's constant 962 // vector with the insertelt constant. Replace the constant in the shuffle's 963 // mask vector with the insertelt index plus the length of the vector 964 // (because the constant vector operand of a shuffle is always the 2nd 965 // operand). 966 ArrayRef<int> Mask = Shuf->getShuffleMask(); 967 unsigned NumElts = Mask.size(); 968 SmallVector<Constant *, 16> NewShufElts(NumElts); 969 SmallVector<int, 16> NewMaskElts(NumElts); 970 for (unsigned I = 0; I != NumElts; ++I) { 971 if (I == InsEltIndex) { 972 NewShufElts[I] = InsEltScalar; 973 NewMaskElts[I] = InsEltIndex + NumElts; 974 } else { 975 // Copy over the existing values. 976 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 977 NewMaskElts[I] = Mask[I]; 978 } 979 } 980 981 // Create new operands for a shuffle that includes the constant of the 982 // original insertelt. The old shuffle will be dead now. 983 return new ShuffleVectorInst(Shuf->getOperand(0), 984 ConstantVector::get(NewShufElts), NewMaskElts); 985 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 986 // Transform sequences of insertelements ops with constant data/indexes into 987 // a single shuffle op. 988 unsigned NumElts = InsElt.getType()->getNumElements(); 989 990 uint64_t InsertIdx[2]; 991 Constant *Val[2]; 992 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 993 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 994 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 995 !match(IEI->getOperand(1), m_Constant(Val[1]))) 996 return nullptr; 997 SmallVector<Constant *, 16> Values(NumElts); 998 SmallVector<Constant *, 16> Mask(NumElts); 999 auto ValI = std::begin(Val); 1000 // Generate new constant vector and mask. 1001 // We have 2 values/masks from the insertelements instructions. Insert them 1002 // into new value/mask vectors. 1003 for (uint64_t I : InsertIdx) { 1004 if (!Values[I]) { 1005 assert(!Mask[I]); 1006 Values[I] = *ValI; 1007 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 1008 NumElts + I); 1009 } 1010 ++ValI; 1011 } 1012 // Remaining values are filled with 'undef' values. 1013 for (unsigned I = 0; I < NumElts; ++I) { 1014 if (!Values[I]) { 1015 assert(!Mask[I]); 1016 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1017 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 1018 } 1019 } 1020 // Create new operands for a shuffle that includes the constant of the 1021 // original insertelt. 1022 return new ShuffleVectorInst(IEI->getOperand(0), 1023 ConstantVector::get(Values), 1024 ConstantVector::get(Mask)); 1025 } 1026 return nullptr; 1027 } 1028 1029 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1030 Value *VecOp = IE.getOperand(0); 1031 Value *ScalarOp = IE.getOperand(1); 1032 Value *IdxOp = IE.getOperand(2); 1033 1034 if (auto *V = SimplifyInsertElementInst( 1035 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1036 return replaceInstUsesWith(IE, V); 1037 1038 // If the vector and scalar are both bitcast from the same element type, do 1039 // the insert in that source type followed by bitcast. 1040 Value *VecSrc, *ScalarSrc; 1041 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1042 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1043 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1044 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1045 cast<VectorType>(VecSrc->getType())->getElementType() == 1046 ScalarSrc->getType()) { 1047 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1048 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1049 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1050 return new BitCastInst(NewInsElt, IE.getType()); 1051 } 1052 1053 // If the inserted element was extracted from some other vector and both 1054 // indexes are valid constants, try to turn this into a shuffle. 1055 uint64_t InsertedIdx, ExtractedIdx; 1056 Value *ExtVecOp; 1057 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 1058 match(ScalarOp, 1059 m_ExtractElement(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1060 ExtractedIdx < cast<VectorType>(ExtVecOp->getType())->getNumElements()) { 1061 // TODO: Looking at the user(s) to determine if this insert is a 1062 // fold-to-shuffle opportunity does not match the usual instcombine 1063 // constraints. We should decide if the transform is worthy based only 1064 // on this instruction and its operands, but that may not work currently. 1065 // 1066 // Here, we are trying to avoid creating shuffles before reaching 1067 // the end of a chain of extract-insert pairs. This is complicated because 1068 // we do not generally form arbitrary shuffle masks in instcombine 1069 // (because those may codegen poorly), but collectShuffleElements() does 1070 // exactly that. 1071 // 1072 // The rules for determining what is an acceptable target-independent 1073 // shuffle mask are fuzzy because they evolve based on the backend's 1074 // capabilities and real-world impact. 1075 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1076 if (!Insert.hasOneUse()) 1077 return true; 1078 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1079 if (!InsertUser) 1080 return true; 1081 return false; 1082 }; 1083 1084 // Try to form a shuffle from a chain of extract-insert ops. 1085 if (isShuffleRootCandidate(IE)) { 1086 SmallVector<Constant*, 16> Mask; 1087 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1088 1089 // The proposed shuffle may be trivial, in which case we shouldn't 1090 // perform the combine. 1091 if (LR.first != &IE && LR.second != &IE) { 1092 // We now have a shuffle of LHS, RHS, Mask. 1093 if (LR.second == nullptr) 1094 LR.second = UndefValue::get(LR.first->getType()); 1095 return new ShuffleVectorInst(LR.first, LR.second, 1096 ConstantVector::get(Mask)); 1097 } 1098 } 1099 } 1100 1101 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); 1102 APInt UndefElts(VWidth, 0); 1103 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1104 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1105 if (V != &IE) 1106 return replaceInstUsesWith(IE, V); 1107 return &IE; 1108 } 1109 1110 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1111 return Shuf; 1112 1113 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1114 return NewInsElt; 1115 1116 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1117 return Broadcast; 1118 1119 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1120 return Splat; 1121 1122 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1123 return IdentityShuf; 1124 1125 return nullptr; 1126 } 1127 1128 /// Return true if we can evaluate the specified expression tree if the vector 1129 /// elements were shuffled in a different order. 1130 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1131 unsigned Depth = 5) { 1132 // We can always reorder the elements of a constant. 1133 if (isa<Constant>(V)) 1134 return true; 1135 1136 // We won't reorder vector arguments. No IPO here. 1137 Instruction *I = dyn_cast<Instruction>(V); 1138 if (!I) return false; 1139 1140 // Two users may expect different orders of the elements. Don't try it. 1141 if (!I->hasOneUse()) 1142 return false; 1143 1144 if (Depth == 0) return false; 1145 1146 switch (I->getOpcode()) { 1147 case Instruction::UDiv: 1148 case Instruction::SDiv: 1149 case Instruction::URem: 1150 case Instruction::SRem: 1151 // Propagating an undefined shuffle mask element to integer div/rem is not 1152 // allowed because those opcodes can create immediate undefined behavior 1153 // from an undefined element in an operand. 1154 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1155 return false; 1156 LLVM_FALLTHROUGH; 1157 case Instruction::Add: 1158 case Instruction::FAdd: 1159 case Instruction::Sub: 1160 case Instruction::FSub: 1161 case Instruction::Mul: 1162 case Instruction::FMul: 1163 case Instruction::FDiv: 1164 case Instruction::FRem: 1165 case Instruction::Shl: 1166 case Instruction::LShr: 1167 case Instruction::AShr: 1168 case Instruction::And: 1169 case Instruction::Or: 1170 case Instruction::Xor: 1171 case Instruction::ICmp: 1172 case Instruction::FCmp: 1173 case Instruction::Trunc: 1174 case Instruction::ZExt: 1175 case Instruction::SExt: 1176 case Instruction::FPToUI: 1177 case Instruction::FPToSI: 1178 case Instruction::UIToFP: 1179 case Instruction::SIToFP: 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::GetElementPtr: { 1183 // Bail out if we would create longer vector ops. We could allow creating 1184 // longer vector ops, but that may result in more expensive codegen. 1185 Type *ITy = I->getType(); 1186 if (ITy->isVectorTy() && 1187 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1188 return false; 1189 for (Value *Operand : I->operands()) { 1190 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1191 return false; 1192 } 1193 return true; 1194 } 1195 case Instruction::InsertElement: { 1196 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1197 if (!CI) return false; 1198 int ElementNumber = CI->getLimitedValue(); 1199 1200 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1201 // can't put an element into multiple indices. 1202 bool SeenOnce = false; 1203 for (int i = 0, e = Mask.size(); i != e; ++i) { 1204 if (Mask[i] == ElementNumber) { 1205 if (SeenOnce) 1206 return false; 1207 SeenOnce = true; 1208 } 1209 } 1210 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1211 } 1212 } 1213 return false; 1214 } 1215 1216 /// Rebuild a new instruction just like 'I' but with the new operands given. 1217 /// In the event of type mismatch, the type of the operands is correct. 1218 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1219 // We don't want to use the IRBuilder here because we want the replacement 1220 // instructions to appear next to 'I', not the builder's insertion point. 1221 switch (I->getOpcode()) { 1222 case Instruction::Add: 1223 case Instruction::FAdd: 1224 case Instruction::Sub: 1225 case Instruction::FSub: 1226 case Instruction::Mul: 1227 case Instruction::FMul: 1228 case Instruction::UDiv: 1229 case Instruction::SDiv: 1230 case Instruction::FDiv: 1231 case Instruction::URem: 1232 case Instruction::SRem: 1233 case Instruction::FRem: 1234 case Instruction::Shl: 1235 case Instruction::LShr: 1236 case Instruction::AShr: 1237 case Instruction::And: 1238 case Instruction::Or: 1239 case Instruction::Xor: { 1240 BinaryOperator *BO = cast<BinaryOperator>(I); 1241 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1242 BinaryOperator *New = 1243 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1244 NewOps[0], NewOps[1], "", BO); 1245 if (isa<OverflowingBinaryOperator>(BO)) { 1246 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1247 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1248 } 1249 if (isa<PossiblyExactOperator>(BO)) { 1250 New->setIsExact(BO->isExact()); 1251 } 1252 if (isa<FPMathOperator>(BO)) 1253 New->copyFastMathFlags(I); 1254 return New; 1255 } 1256 case Instruction::ICmp: 1257 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1258 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1259 NewOps[0], NewOps[1]); 1260 case Instruction::FCmp: 1261 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1262 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1263 NewOps[0], NewOps[1]); 1264 case Instruction::Trunc: 1265 case Instruction::ZExt: 1266 case Instruction::SExt: 1267 case Instruction::FPToUI: 1268 case Instruction::FPToSI: 1269 case Instruction::UIToFP: 1270 case Instruction::SIToFP: 1271 case Instruction::FPTrunc: 1272 case Instruction::FPExt: { 1273 // It's possible that the mask has a different number of elements from 1274 // the original cast. We recompute the destination type to match the mask. 1275 Type *DestTy = VectorType::get( 1276 I->getType()->getScalarType(), 1277 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1278 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1279 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1280 "", I); 1281 } 1282 case Instruction::GetElementPtr: { 1283 Value *Ptr = NewOps[0]; 1284 ArrayRef<Value*> Idx = NewOps.slice(1); 1285 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1286 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1287 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1288 return GEP; 1289 } 1290 } 1291 llvm_unreachable("failed to rebuild vector instructions"); 1292 } 1293 1294 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1295 // Mask.size() does not need to be equal to the number of vector elements. 1296 1297 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1298 Type *EltTy = V->getType()->getScalarType(); 1299 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1300 if (isa<UndefValue>(V)) 1301 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1302 1303 if (isa<ConstantAggregateZero>(V)) 1304 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1305 1306 if (Constant *C = dyn_cast<Constant>(V)) 1307 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1308 Mask); 1309 1310 Instruction *I = cast<Instruction>(V); 1311 switch (I->getOpcode()) { 1312 case Instruction::Add: 1313 case Instruction::FAdd: 1314 case Instruction::Sub: 1315 case Instruction::FSub: 1316 case Instruction::Mul: 1317 case Instruction::FMul: 1318 case Instruction::UDiv: 1319 case Instruction::SDiv: 1320 case Instruction::FDiv: 1321 case Instruction::URem: 1322 case Instruction::SRem: 1323 case Instruction::FRem: 1324 case Instruction::Shl: 1325 case Instruction::LShr: 1326 case Instruction::AShr: 1327 case Instruction::And: 1328 case Instruction::Or: 1329 case Instruction::Xor: 1330 case Instruction::ICmp: 1331 case Instruction::FCmp: 1332 case Instruction::Trunc: 1333 case Instruction::ZExt: 1334 case Instruction::SExt: 1335 case Instruction::FPToUI: 1336 case Instruction::FPToSI: 1337 case Instruction::UIToFP: 1338 case Instruction::SIToFP: 1339 case Instruction::FPTrunc: 1340 case Instruction::FPExt: 1341 case Instruction::Select: 1342 case Instruction::GetElementPtr: { 1343 SmallVector<Value*, 8> NewOps; 1344 bool NeedsRebuild = 1345 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1346 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1347 Value *V; 1348 // Recursively call evaluateInDifferentElementOrder on vector arguments 1349 // as well. E.g. GetElementPtr may have scalar operands even if the 1350 // return value is a vector, so we need to examine the operand type. 1351 if (I->getOperand(i)->getType()->isVectorTy()) 1352 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1353 else 1354 V = I->getOperand(i); 1355 NewOps.push_back(V); 1356 NeedsRebuild |= (V != I->getOperand(i)); 1357 } 1358 if (NeedsRebuild) { 1359 return buildNew(I, NewOps); 1360 } 1361 return I; 1362 } 1363 case Instruction::InsertElement: { 1364 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1365 1366 // The insertelement was inserting at Element. Figure out which element 1367 // that becomes after shuffling. The answer is guaranteed to be unique 1368 // by CanEvaluateShuffled. 1369 bool Found = false; 1370 int Index = 0; 1371 for (int e = Mask.size(); Index != e; ++Index) { 1372 if (Mask[Index] == Element) { 1373 Found = true; 1374 break; 1375 } 1376 } 1377 1378 // If element is not in Mask, no need to handle the operand 1 (element to 1379 // be inserted). Just evaluate values in operand 0 according to Mask. 1380 if (!Found) 1381 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1382 1383 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1384 return InsertElementInst::Create(V, I->getOperand(1), 1385 ConstantInt::get(I32Ty, Index), "", I); 1386 } 1387 } 1388 llvm_unreachable("failed to reorder elements of vector instruction!"); 1389 } 1390 1391 // Returns true if the shuffle is extracting a contiguous range of values from 1392 // LHS, for example: 1393 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1394 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1395 // Shuffles to: |EE|FF|GG|HH| 1396 // +--+--+--+--+ 1397 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1398 ArrayRef<int> Mask) { 1399 unsigned LHSElems = 1400 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1401 unsigned MaskElems = Mask.size(); 1402 unsigned BegIdx = Mask.front(); 1403 unsigned EndIdx = Mask.back(); 1404 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1405 return false; 1406 for (unsigned I = 0; I != MaskElems; ++I) 1407 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1408 return false; 1409 return true; 1410 } 1411 1412 /// These are the ingredients in an alternate form binary operator as described 1413 /// below. 1414 struct BinopElts { 1415 BinaryOperator::BinaryOps Opcode; 1416 Value *Op0; 1417 Value *Op1; 1418 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1419 Value *V0 = nullptr, Value *V1 = nullptr) : 1420 Opcode(Opc), Op0(V0), Op1(V1) {} 1421 operator bool() const { return Opcode != 0; } 1422 }; 1423 1424 /// Binops may be transformed into binops with different opcodes and operands. 1425 /// Reverse the usual canonicalization to enable folds with the non-canonical 1426 /// form of the binop. If a transform is possible, return the elements of the 1427 /// new binop. If not, return invalid elements. 1428 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1429 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1430 Type *Ty = BO->getType(); 1431 switch (BO->getOpcode()) { 1432 case Instruction::Shl: { 1433 // shl X, C --> mul X, (1 << C) 1434 Constant *C; 1435 if (match(BO1, m_Constant(C))) { 1436 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1437 return { Instruction::Mul, BO0, ShlOne }; 1438 } 1439 break; 1440 } 1441 case Instruction::Or: { 1442 // or X, C --> add X, C (when X and C have no common bits set) 1443 const APInt *C; 1444 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1445 return { Instruction::Add, BO0, BO1 }; 1446 break; 1447 } 1448 default: 1449 break; 1450 } 1451 return {}; 1452 } 1453 1454 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1455 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1456 1457 // Are we shuffling together some value and that same value after it has been 1458 // modified by a binop with a constant? 1459 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1460 Constant *C; 1461 bool Op0IsBinop; 1462 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1463 Op0IsBinop = true; 1464 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1465 Op0IsBinop = false; 1466 else 1467 return nullptr; 1468 1469 // The identity constant for a binop leaves a variable operand unchanged. For 1470 // a vector, this is a splat of something like 0, -1, or 1. 1471 // If there's no identity constant for this binop, we're done. 1472 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1473 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1474 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1475 if (!IdC) 1476 return nullptr; 1477 1478 // Shuffle identity constants into the lanes that return the original value. 1479 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1480 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1481 // The existing binop constant vector remains in the same operand position. 1482 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1483 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1484 ConstantExpr::getShuffleVector(IdC, C, Mask); 1485 1486 bool MightCreatePoisonOrUB = 1487 is_contained(Mask, UndefMaskElem) && 1488 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1489 if (MightCreatePoisonOrUB) 1490 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1491 1492 // shuf (bop X, C), X, M --> bop X, C' 1493 // shuf X, (bop X, C), M --> bop X, C' 1494 Value *X = Op0IsBinop ? Op1 : Op0; 1495 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1496 NewBO->copyIRFlags(BO); 1497 1498 // An undef shuffle mask element may propagate as an undef constant element in 1499 // the new binop. That would produce poison where the original code might not. 1500 // If we already made a safe constant, then there's no danger. 1501 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1502 NewBO->dropPoisonGeneratingFlags(); 1503 return NewBO; 1504 } 1505 1506 /// If we have an insert of a scalar to a non-zero element of an undefined 1507 /// vector and then shuffle that value, that's the same as inserting to the zero 1508 /// element and shuffling. Splatting from the zero element is recognized as the 1509 /// canonical form of splat. 1510 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1511 InstCombiner::BuilderTy &Builder) { 1512 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1513 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1514 Value *X; 1515 uint64_t IndexC; 1516 1517 // Match a shuffle that is a splat to a non-zero element. 1518 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1519 m_ConstantInt(IndexC)))) || 1520 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1521 return nullptr; 1522 1523 // Insert into element 0 of an undef vector. 1524 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1525 Constant *Zero = Builder.getInt32(0); 1526 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1527 1528 // Splat from element 0. Any mask element that is undefined remains undefined. 1529 // For example: 1530 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1531 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1532 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1533 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1534 for (unsigned i = 0; i != NumMaskElts; ++i) 1535 if (Mask[i] == UndefMaskElem) 1536 NewMask[i] = Mask[i]; 1537 1538 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1539 } 1540 1541 /// Try to fold shuffles that are the equivalent of a vector select. 1542 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1543 InstCombiner::BuilderTy &Builder, 1544 const DataLayout &DL) { 1545 if (!Shuf.isSelect()) 1546 return nullptr; 1547 1548 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1549 // Commuting undef to operand 0 conflicts with another canonicalization. 1550 unsigned NumElts = Shuf.getType()->getNumElements(); 1551 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1552 Shuf.getMaskValue(0) >= (int)NumElts) { 1553 // TODO: Can we assert that both operands of a shuffle-select are not undef 1554 // (otherwise, it would have been folded by instsimplify? 1555 Shuf.commute(); 1556 return &Shuf; 1557 } 1558 1559 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1560 return I; 1561 1562 BinaryOperator *B0, *B1; 1563 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1564 !match(Shuf.getOperand(1), m_BinOp(B1))) 1565 return nullptr; 1566 1567 Value *X, *Y; 1568 Constant *C0, *C1; 1569 bool ConstantsAreOp1; 1570 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1571 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1572 ConstantsAreOp1 = true; 1573 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1574 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1575 ConstantsAreOp1 = false; 1576 else 1577 return nullptr; 1578 1579 // We need matching binops to fold the lanes together. 1580 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1581 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1582 bool DropNSW = false; 1583 if (ConstantsAreOp1 && Opc0 != Opc1) { 1584 // TODO: We drop "nsw" if shift is converted into multiply because it may 1585 // not be correct when the shift amount is BitWidth - 1. We could examine 1586 // each vector element to determine if it is safe to keep that flag. 1587 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1588 DropNSW = true; 1589 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1590 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1591 Opc0 = AltB0.Opcode; 1592 C0 = cast<Constant>(AltB0.Op1); 1593 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1594 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1595 Opc1 = AltB1.Opcode; 1596 C1 = cast<Constant>(AltB1.Op1); 1597 } 1598 } 1599 1600 if (Opc0 != Opc1) 1601 return nullptr; 1602 1603 // The opcodes must be the same. Use a new name to make that clear. 1604 BinaryOperator::BinaryOps BOpc = Opc0; 1605 1606 // Select the constant elements needed for the single binop. 1607 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1608 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1609 1610 // We are moving a binop after a shuffle. When a shuffle has an undefined 1611 // mask element, the result is undefined, but it is not poison or undefined 1612 // behavior. That is not necessarily true for div/rem/shift. 1613 bool MightCreatePoisonOrUB = 1614 is_contained(Mask, UndefMaskElem) && 1615 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1616 if (MightCreatePoisonOrUB) 1617 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1618 1619 Value *V; 1620 if (X == Y) { 1621 // Remove a binop and the shuffle by rearranging the constant: 1622 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1623 // shuffle (op C0, V), (op C1, V), M --> op C', V 1624 V = X; 1625 } else { 1626 // If there are 2 different variable operands, we must create a new shuffle 1627 // (select) first, so check uses to ensure that we don't end up with more 1628 // instructions than we started with. 1629 if (!B0->hasOneUse() && !B1->hasOneUse()) 1630 return nullptr; 1631 1632 // If we use the original shuffle mask and op1 is *variable*, we would be 1633 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1634 // poison. We do not have to guard against UB when *constants* are op1 1635 // because safe constants guarantee that we do not overflow sdiv/srem (and 1636 // there's no danger for other opcodes). 1637 // TODO: To allow this case, create a new shuffle mask with no undefs. 1638 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1639 return nullptr; 1640 1641 // Note: In general, we do not create new shuffles in InstCombine because we 1642 // do not know if a target can lower an arbitrary shuffle optimally. In this 1643 // case, the shuffle uses the existing mask, so there is no additional risk. 1644 1645 // Select the variable vectors first, then perform the binop: 1646 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1647 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1648 V = Builder.CreateShuffleVector(X, Y, Mask); 1649 } 1650 1651 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1652 BinaryOperator::Create(BOpc, NewC, V); 1653 1654 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1655 // 1. If we changed an opcode, poison conditions might have changed. 1656 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1657 // where the original code did not. But if we already made a safe constant, 1658 // then there's no danger. 1659 NewBO->copyIRFlags(B0); 1660 NewBO->andIRFlags(B1); 1661 if (DropNSW) 1662 NewBO->setHasNoSignedWrap(false); 1663 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1664 NewBO->dropPoisonGeneratingFlags(); 1665 return NewBO; 1666 } 1667 1668 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1669 /// Example (little endian): 1670 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 1671 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 1672 bool IsBigEndian) { 1673 // This must be a bitcasted shuffle of 1 vector integer operand. 1674 Type *DestType = Shuf.getType(); 1675 Value *X; 1676 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 1677 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 1678 return nullptr; 1679 1680 // The source type must have the same number of elements as the shuffle, 1681 // and the source element type must be larger than the shuffle element type. 1682 Type *SrcType = X->getType(); 1683 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 1684 cast<VectorType>(SrcType)->getNumElements() != 1685 cast<VectorType>(DestType)->getNumElements() || 1686 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 1687 return nullptr; 1688 1689 assert(Shuf.changesLength() && !Shuf.increasesLength() && 1690 "Expected a shuffle that decreases length"); 1691 1692 // Last, check that the mask chooses the correct low bits for each narrow 1693 // element in the result. 1694 uint64_t TruncRatio = 1695 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 1696 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1697 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1698 if (Mask[i] == UndefMaskElem) 1699 continue; 1700 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 1701 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 1702 "Overflowed 32-bits"); 1703 if (Mask[i] != (int)LSBIndex) 1704 return nullptr; 1705 } 1706 1707 return new TruncInst(X, DestType); 1708 } 1709 1710 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1711 /// narrowing (concatenating with undef and extracting back to the original 1712 /// length). This allows replacing the wide select with a narrow select. 1713 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1714 InstCombiner::BuilderTy &Builder) { 1715 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1716 // of the 1st vector operand of a shuffle. 1717 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1718 return nullptr; 1719 1720 // The vector being shuffled must be a vector select that we can eliminate. 1721 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1722 Value *Cond, *X, *Y; 1723 if (!match(Shuf.getOperand(0), 1724 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1725 return nullptr; 1726 1727 // We need a narrow condition value. It must be extended with undef elements 1728 // and have the same number of elements as this shuffle. 1729 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 1730 Value *NarrowCond; 1731 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) || 1732 cast<VectorType>(NarrowCond->getType())->getNumElements() != 1733 NarrowNumElts || 1734 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1735 return nullptr; 1736 1737 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1738 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1739 Value *Undef = UndefValue::get(X->getType()); 1740 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1741 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1742 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1743 } 1744 1745 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1746 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1747 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1748 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1749 return nullptr; 1750 1751 Value *X, *Y; 1752 ArrayRef<int> Mask; 1753 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1754 return nullptr; 1755 1756 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1757 // then combining may result in worse codegen. 1758 if (!Op0->hasOneUse()) 1759 return nullptr; 1760 1761 // We are extracting a subvector from a shuffle. Remove excess elements from 1762 // the 1st shuffle mask to eliminate the extract. 1763 // 1764 // This transform is conservatively limited to identity extracts because we do 1765 // not allow arbitrary shuffle mask creation as a target-independent transform 1766 // (because we can't guarantee that will lower efficiently). 1767 // 1768 // If the extracting shuffle has an undef mask element, it transfers to the 1769 // new shuffle mask. Otherwise, copy the original mask element. Example: 1770 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1771 // shuf X, Y, <C0, undef, C2, undef> 1772 unsigned NumElts = Shuf.getType()->getNumElements(); 1773 SmallVector<int, 16> NewMask(NumElts); 1774 assert(NumElts < Mask.size() && 1775 "Identity with extract must have less elements than its inputs"); 1776 1777 for (unsigned i = 0; i != NumElts; ++i) { 1778 int ExtractMaskElt = Shuf.getMaskValue(i); 1779 int MaskElt = Mask[i]; 1780 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1781 } 1782 return new ShuffleVectorInst(X, Y, NewMask); 1783 } 1784 1785 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1786 /// operand with the operand of an insertelement. 1787 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1788 InstCombiner &IC) { 1789 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1790 SmallVector<int, 16> Mask; 1791 Shuf.getShuffleMask(Mask); 1792 1793 // The shuffle must not change vector sizes. 1794 // TODO: This restriction could be removed if the insert has only one use 1795 // (because the transform would require a new length-changing shuffle). 1796 int NumElts = Mask.size(); 1797 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 1798 return nullptr; 1799 1800 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1801 // not be able to handle it there if the insertelement has >1 use. 1802 // If the shuffle has an insertelement operand but does not choose the 1803 // inserted scalar element from that value, then we can replace that shuffle 1804 // operand with the source vector of the insertelement. 1805 Value *X; 1806 uint64_t IdxC; 1807 if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1808 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1809 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1810 return IC.replaceOperand(Shuf, 0, X); 1811 } 1812 if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1813 // Offset the index constant by the vector width because we are checking for 1814 // accesses to the 2nd vector input of the shuffle. 1815 IdxC += NumElts; 1816 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1817 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1818 return IC.replaceOperand(Shuf, 1, X); 1819 } 1820 1821 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1822 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1823 // We need an insertelement with a constant index. 1824 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1825 m_ConstantInt(IndexC)))) 1826 return false; 1827 1828 // Test the shuffle mask to see if it splices the inserted scalar into the 1829 // operand 1 vector of the shuffle. 1830 int NewInsIndex = -1; 1831 for (int i = 0; i != NumElts; ++i) { 1832 // Ignore undef mask elements. 1833 if (Mask[i] == -1) 1834 continue; 1835 1836 // The shuffle takes elements of operand 1 without lane changes. 1837 if (Mask[i] == NumElts + i) 1838 continue; 1839 1840 // The shuffle must choose the inserted scalar exactly once. 1841 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1842 return false; 1843 1844 // The shuffle is placing the inserted scalar into element i. 1845 NewInsIndex = i; 1846 } 1847 1848 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1849 1850 // Index is updated to the potentially translated insertion lane. 1851 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1852 return true; 1853 }; 1854 1855 // If the shuffle is unnecessary, insert the scalar operand directly into 1856 // operand 1 of the shuffle. Example: 1857 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1858 Value *Scalar; 1859 ConstantInt *IndexC; 1860 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1861 return InsertElementInst::Create(V1, Scalar, IndexC); 1862 1863 // Try again after commuting shuffle. Example: 1864 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1865 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1866 std::swap(V0, V1); 1867 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1868 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1869 return InsertElementInst::Create(V1, Scalar, IndexC); 1870 1871 return nullptr; 1872 } 1873 1874 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1875 // Match the operands as identity with padding (also known as concatenation 1876 // with undef) shuffles of the same source type. The backend is expected to 1877 // recreate these concatenations from a shuffle of narrow operands. 1878 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1879 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1880 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1881 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1882 return nullptr; 1883 1884 // We limit this transform to power-of-2 types because we expect that the 1885 // backend can convert the simplified IR patterns to identical nodes as the 1886 // original IR. 1887 // TODO: If we can verify the same behavior for arbitrary types, the 1888 // power-of-2 checks can be removed. 1889 Value *X = Shuffle0->getOperand(0); 1890 Value *Y = Shuffle1->getOperand(0); 1891 if (X->getType() != Y->getType() || 1892 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 1893 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 1894 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 1895 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1896 return nullptr; 1897 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1898 isa<UndefValue>(Shuffle1->getOperand(1)) && 1899 "Unexpected operand for identity shuffle"); 1900 1901 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1902 // operands directly by adjusting the shuffle mask to account for the narrower 1903 // types: 1904 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1905 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 1906 int WideElts = Shuffle0->getType()->getNumElements(); 1907 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1908 1909 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); 1910 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1911 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); 1912 for (int i = 0, e = Mask.size(); i != e; ++i) { 1913 if (Mask[i] == -1) 1914 continue; 1915 1916 // If this shuffle is choosing an undef element from 1 of the sources, that 1917 // element is undef. 1918 if (Mask[i] < WideElts) { 1919 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1920 continue; 1921 } else { 1922 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1923 continue; 1924 } 1925 1926 // If this shuffle is choosing from the 1st narrow op, the mask element is 1927 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1928 // element is offset down to adjust for the narrow vector widths. 1929 if (Mask[i] < WideElts) { 1930 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1931 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); 1932 } else { 1933 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1934 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); 1935 } 1936 } 1937 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1938 } 1939 1940 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1941 Value *LHS = SVI.getOperand(0); 1942 Value *RHS = SVI.getOperand(1); 1943 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 1944 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1945 SVI.getType(), ShufQuery)) 1946 return replaceInstUsesWith(SVI, V); 1947 1948 // shuffle x, x, mask --> shuffle x, undef, mask' 1949 unsigned VWidth = SVI.getType()->getNumElements(); 1950 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 1951 ArrayRef<int> Mask = SVI.getShuffleMask(); 1952 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1953 1954 // Peek through a bitcasted shuffle operand by scaling the mask. If the 1955 // simulated shuffle can simplify, then this shuffle is unnecessary: 1956 // shuf (bitcast X), undef, Mask --> bitcast X' 1957 // TODO: This could be extended to allow length-changing shuffles and/or casts 1958 // to narrower elements. The transform might also be obsoleted if we 1959 // allowed canonicalization of bitcasted shuffles. 1960 Value *X; 1961 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 1962 X->getType()->isVectorTy() && VWidth == LHSWidth && 1963 cast<VectorType>(X->getType())->getNumElements() >= VWidth) { 1964 // Create the scaled mask constant. 1965 auto *XType = cast<VectorType>(X->getType()); 1966 unsigned XNumElts = XType->getNumElements(); 1967 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 1968 unsigned ScaleFactor = XNumElts / VWidth; 1969 SmallVector<int, 16> ScaledMask; 1970 scaleShuffleMask(ScaleFactor, Mask, ScaledMask); 1971 1972 // If the shuffled source vector simplifies, cast that value to this 1973 // shuffle's type. 1974 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 1975 ScaledMask, XType, ShufQuery)) 1976 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 1977 } 1978 1979 if (LHS == RHS) { 1980 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 1981 // Remap any references to RHS to use LHS. 1982 SmallVector<int, 16> Elts; 1983 for (unsigned i = 0; i != VWidth; ++i) { 1984 // Propagate undef elements or force mask to LHS. 1985 if (Mask[i] < 0) 1986 Elts.push_back(UndefMaskElem); 1987 else 1988 Elts.push_back(Mask[i] % LHSWidth); 1989 } 1990 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 1991 } 1992 1993 // shuffle undef, x, mask --> shuffle x, undef, mask' 1994 if (isa<UndefValue>(LHS)) { 1995 SVI.commute(); 1996 return &SVI; 1997 } 1998 1999 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2000 return I; 2001 2002 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2003 return I; 2004 2005 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2006 return I; 2007 2008 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2009 return I; 2010 2011 APInt UndefElts(VWidth, 0); 2012 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2013 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2014 if (V != &SVI) 2015 return replaceInstUsesWith(SVI, V); 2016 return &SVI; 2017 } 2018 2019 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2020 return I; 2021 2022 // These transforms have the potential to lose undef knowledge, so they are 2023 // intentionally placed after SimplifyDemandedVectorElts(). 2024 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2025 return I; 2026 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2027 return I; 2028 2029 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2030 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2031 return replaceInstUsesWith(SVI, V); 2032 } 2033 2034 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2035 // a non-vector type. We can instead bitcast the original vector followed by 2036 // an extract of the desired element: 2037 // 2038 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2039 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2040 // %1 = bitcast <4 x i8> %sroa to i32 2041 // Becomes: 2042 // %bc = bitcast <16 x i8> %in to <4 x i32> 2043 // %ext = extractelement <4 x i32> %bc, i32 0 2044 // 2045 // If the shuffle is extracting a contiguous range of values from the input 2046 // vector then each use which is a bitcast of the extracted size can be 2047 // replaced. This will work if the vector types are compatible, and the begin 2048 // index is aligned to a value in the casted vector type. If the begin index 2049 // isn't aligned then we can shuffle the original vector (keeping the same 2050 // vector type) before extracting. 2051 // 2052 // This code will bail out if the target type is fundamentally incompatible 2053 // with vectors of the source type. 2054 // 2055 // Example of <16 x i8>, target type i32: 2056 // Index range [4,8): v-----------v Will work. 2057 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2058 // <16 x i8>: | | | | | | | | | | | | | | | | | 2059 // <4 x i32>: | | | | | 2060 // +-----------+-----------+-----------+-----------+ 2061 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2062 // Target type i40: ^--------------^ Won't work, bail. 2063 bool MadeChange = false; 2064 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2065 Value *V = LHS; 2066 unsigned MaskElems = Mask.size(); 2067 VectorType *SrcTy = cast<VectorType>(V->getType()); 2068 unsigned VecBitWidth = SrcTy->getBitWidth(); 2069 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2070 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2071 unsigned SrcNumElems = SrcTy->getNumElements(); 2072 SmallVector<BitCastInst *, 8> BCs; 2073 DenseMap<Type *, Value *> NewBCs; 2074 for (User *U : SVI.users()) 2075 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2076 if (!BC->use_empty()) 2077 // Only visit bitcasts that weren't previously handled. 2078 BCs.push_back(BC); 2079 for (BitCastInst *BC : BCs) { 2080 unsigned BegIdx = Mask.front(); 2081 Type *TgtTy = BC->getDestTy(); 2082 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2083 if (!TgtElemBitWidth) 2084 continue; 2085 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2086 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2087 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2088 if (!VecBitWidthsEqual) 2089 continue; 2090 if (!VectorType::isValidElementType(TgtTy)) 2091 continue; 2092 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2093 if (!BegIsAligned) { 2094 // Shuffle the input so [0,NumElements) contains the output, and 2095 // [NumElems,SrcNumElems) is undef. 2096 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 2097 UndefValue::get(Int32Ty)); 2098 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2099 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 2100 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2101 ConstantVector::get(ShuffleMask), 2102 SVI.getName() + ".extract"); 2103 BegIdx = 0; 2104 } 2105 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2106 assert(SrcElemsPerTgtElem); 2107 BegIdx /= SrcElemsPerTgtElem; 2108 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2109 auto *NewBC = 2110 BCAlreadyExists 2111 ? NewBCs[CastSrcTy] 2112 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2113 if (!BCAlreadyExists) 2114 NewBCs[CastSrcTy] = NewBC; 2115 auto *Ext = Builder.CreateExtractElement( 2116 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2117 // The shufflevector isn't being replaced: the bitcast that used it 2118 // is. InstCombine will visit the newly-created instructions. 2119 replaceInstUsesWith(*BC, Ext); 2120 MadeChange = true; 2121 } 2122 } 2123 2124 // If the LHS is a shufflevector itself, see if we can combine it with this 2125 // one without producing an unusual shuffle. 2126 // Cases that might be simplified: 2127 // 1. 2128 // x1=shuffle(v1,v2,mask1) 2129 // x=shuffle(x1,undef,mask) 2130 // ==> 2131 // x=shuffle(v1,undef,newMask) 2132 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2133 // 2. 2134 // x1=shuffle(v1,undef,mask1) 2135 // x=shuffle(x1,x2,mask) 2136 // where v1.size() == mask1.size() 2137 // ==> 2138 // x=shuffle(v1,x2,newMask) 2139 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2140 // 3. 2141 // x2=shuffle(v2,undef,mask2) 2142 // x=shuffle(x1,x2,mask) 2143 // where v2.size() == mask2.size() 2144 // ==> 2145 // x=shuffle(x1,v2,newMask) 2146 // newMask[i] = (mask[i] < x1.size()) 2147 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2148 // 4. 2149 // x1=shuffle(v1,undef,mask1) 2150 // x2=shuffle(v2,undef,mask2) 2151 // x=shuffle(x1,x2,mask) 2152 // where v1.size() == v2.size() 2153 // ==> 2154 // x=shuffle(v1,v2,newMask) 2155 // newMask[i] = (mask[i] < x1.size()) 2156 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2157 // 2158 // Here we are really conservative: 2159 // we are absolutely afraid of producing a shuffle mask not in the input 2160 // program, because the code gen may not be smart enough to turn a merged 2161 // shuffle into two specific shuffles: it may produce worse code. As such, 2162 // we only merge two shuffles if the result is either a splat or one of the 2163 // input shuffle masks. In this case, merging the shuffles just removes 2164 // one instruction, which we know is safe. This is good for things like 2165 // turning: (splat(splat)) -> splat, or 2166 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2167 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2168 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2169 if (LHSShuffle) 2170 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2171 LHSShuffle = nullptr; 2172 if (RHSShuffle) 2173 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2174 RHSShuffle = nullptr; 2175 if (!LHSShuffle && !RHSShuffle) 2176 return MadeChange ? &SVI : nullptr; 2177 2178 Value* LHSOp0 = nullptr; 2179 Value* LHSOp1 = nullptr; 2180 Value* RHSOp0 = nullptr; 2181 unsigned LHSOp0Width = 0; 2182 unsigned RHSOp0Width = 0; 2183 if (LHSShuffle) { 2184 LHSOp0 = LHSShuffle->getOperand(0); 2185 LHSOp1 = LHSShuffle->getOperand(1); 2186 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2187 } 2188 if (RHSShuffle) { 2189 RHSOp0 = RHSShuffle->getOperand(0); 2190 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2191 } 2192 Value* newLHS = LHS; 2193 Value* newRHS = RHS; 2194 if (LHSShuffle) { 2195 // case 1 2196 if (isa<UndefValue>(RHS)) { 2197 newLHS = LHSOp0; 2198 newRHS = LHSOp1; 2199 } 2200 // case 2 or 4 2201 else if (LHSOp0Width == LHSWidth) { 2202 newLHS = LHSOp0; 2203 } 2204 } 2205 // case 3 or 4 2206 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2207 newRHS = RHSOp0; 2208 } 2209 // case 4 2210 if (LHSOp0 == RHSOp0) { 2211 newLHS = LHSOp0; 2212 newRHS = nullptr; 2213 } 2214 2215 if (newLHS == LHS && newRHS == RHS) 2216 return MadeChange ? &SVI : nullptr; 2217 2218 ArrayRef<int> LHSMask; 2219 ArrayRef<int> RHSMask; 2220 if (newLHS != LHS) 2221 LHSMask = LHSShuffle->getShuffleMask(); 2222 if (RHSShuffle && newRHS != RHS) 2223 RHSMask = RHSShuffle->getShuffleMask(); 2224 2225 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2226 SmallVector<int, 16> newMask; 2227 bool isSplat = true; 2228 int SplatElt = -1; 2229 // Create a new mask for the new ShuffleVectorInst so that the new 2230 // ShuffleVectorInst is equivalent to the original one. 2231 for (unsigned i = 0; i < VWidth; ++i) { 2232 int eltMask; 2233 if (Mask[i] < 0) { 2234 // This element is an undef value. 2235 eltMask = -1; 2236 } else if (Mask[i] < (int)LHSWidth) { 2237 // This element is from left hand side vector operand. 2238 // 2239 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2240 // new mask value for the element. 2241 if (newLHS != LHS) { 2242 eltMask = LHSMask[Mask[i]]; 2243 // If the value selected is an undef value, explicitly specify it 2244 // with a -1 mask value. 2245 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2246 eltMask = -1; 2247 } else 2248 eltMask = Mask[i]; 2249 } else { 2250 // This element is from right hand side vector operand 2251 // 2252 // If the value selected is an undef value, explicitly specify it 2253 // with a -1 mask value. (case 1) 2254 if (isa<UndefValue>(RHS)) 2255 eltMask = -1; 2256 // If RHS is going to be replaced (case 3 or 4), calculate the 2257 // new mask value for the element. 2258 else if (newRHS != RHS) { 2259 eltMask = RHSMask[Mask[i]-LHSWidth]; 2260 // If the value selected is an undef value, explicitly specify it 2261 // with a -1 mask value. 2262 if (eltMask >= (int)RHSOp0Width) { 2263 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2264 && "should have been check above"); 2265 eltMask = -1; 2266 } 2267 } else 2268 eltMask = Mask[i]-LHSWidth; 2269 2270 // If LHS's width is changed, shift the mask value accordingly. 2271 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2272 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2273 // If newRHS == newLHS, we want to remap any references from newRHS to 2274 // newLHS so that we can properly identify splats that may occur due to 2275 // obfuscation across the two vectors. 2276 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2277 eltMask += newLHSWidth; 2278 } 2279 2280 // Check if this could still be a splat. 2281 if (eltMask >= 0) { 2282 if (SplatElt >= 0 && SplatElt != eltMask) 2283 isSplat = false; 2284 SplatElt = eltMask; 2285 } 2286 2287 newMask.push_back(eltMask); 2288 } 2289 2290 // If the result mask is equal to one of the original shuffle masks, 2291 // or is a splat, do the replacement. 2292 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2293 SmallVector<Constant*, 16> Elts; 2294 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2295 if (newMask[i] < 0) { 2296 Elts.push_back(UndefValue::get(Int32Ty)); 2297 } else { 2298 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2299 } 2300 } 2301 if (!newRHS) 2302 newRHS = UndefValue::get(newLHS->getType()); 2303 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2304 } 2305 2306 return MadeChange ? &SVI : nullptr; 2307 } 2308