1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   if (match(V, m_OneUse(m_UnOp())))
67     return true;
68 
69   Value *V0, *V1;
70   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
71     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
72         cheapToScalarize(V1, IsConstantExtractIndex))
73       return true;
74 
75   CmpInst::Predicate UnusedPred;
76   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
77     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
78         cheapToScalarize(V1, IsConstantExtractIndex))
79       return true;
80 
81   return false;
82 }
83 
84 // If we have a PHI node with a vector type that is only used to feed
85 // itself and be an operand of extractelement at a constant location,
86 // try to replace the PHI of the vector type with a PHI of a scalar type.
87 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
88   SmallVector<Instruction *, 2> Extracts;
89   // The users we want the PHI to have are:
90   // 1) The EI ExtractElement (we already know this)
91   // 2) Possibly more ExtractElements with the same index.
92   // 3) Another operand, which will feed back into the PHI.
93   Instruction *PHIUser = nullptr;
94   for (auto U : PN->users()) {
95     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
96       if (EI.getIndexOperand() == EU->getIndexOperand())
97         Extracts.push_back(EU);
98       else
99         return nullptr;
100     } else if (!PHIUser) {
101       PHIUser = cast<Instruction>(U);
102     } else {
103       return nullptr;
104     }
105   }
106 
107   if (!PHIUser)
108     return nullptr;
109 
110   // Verify that this PHI user has one use, which is the PHI itself,
111   // and that it is a binary operation which is cheap to scalarize.
112   // otherwise return nullptr.
113   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
114       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
115     return nullptr;
116 
117   // Create a scalar PHI node that will replace the vector PHI node
118   // just before the current PHI node.
119   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
120       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
121   // Scalarize each PHI operand.
122   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
123     Value *PHIInVal = PN->getIncomingValue(i);
124     BasicBlock *inBB = PN->getIncomingBlock(i);
125     Value *Elt = EI.getIndexOperand();
126     // If the operand is the PHI induction variable:
127     if (PHIInVal == PHIUser) {
128       // Scalarize the binary operation. Its first operand is the
129       // scalar PHI, and the second operand is extracted from the other
130       // vector operand.
131       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
132       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
133       Value *Op = InsertNewInstWith(
134           ExtractElementInst::Create(B0->getOperand(opId), Elt,
135                                      B0->getOperand(opId)->getName() + ".Elt"),
136           *B0);
137       Value *newPHIUser = InsertNewInstWith(
138           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
139                                                 scalarPHI, Op, B0), *B0);
140       scalarPHI->addIncoming(newPHIUser, inBB);
141     } else {
142       // Scalarize PHI input:
143       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
144       // Insert the new instruction into the predecessor basic block.
145       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
146       BasicBlock::iterator InsertPos;
147       if (pos && !isa<PHINode>(pos)) {
148         InsertPos = ++pos->getIterator();
149       } else {
150         InsertPos = inBB->getFirstInsertionPt();
151       }
152 
153       InsertNewInstWith(newEI, *InsertPos);
154 
155       scalarPHI->addIncoming(newEI, inBB);
156     }
157   }
158 
159   for (auto E : Extracts)
160     replaceInstUsesWith(*E, scalarPHI);
161 
162   return &EI;
163 }
164 
165 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
166                                       InstCombiner::BuilderTy &Builder,
167                                       bool IsBigEndian) {
168   Value *X;
169   uint64_t ExtIndexC;
170   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
171       !X->getType()->isVectorTy() ||
172       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
173     return nullptr;
174 
175   // If this extractelement is using a bitcast from a vector of the same number
176   // of elements, see if we can find the source element from the source vector:
177   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
178   Type *SrcTy = X->getType();
179   Type *DestTy = Ext.getType();
180   unsigned NumSrcElts = SrcTy->getVectorNumElements();
181   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
182   if (NumSrcElts == NumElts)
183     if (Value *Elt = findScalarElement(X, ExtIndexC))
184       return new BitCastInst(Elt, DestTy);
185 
186   // If the source elements are wider than the destination, try to shift and
187   // truncate a subset of scalar bits of an insert op.
188   if (NumSrcElts < NumElts) {
189     Value *Scalar;
190     uint64_t InsIndexC;
191     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
192                                   m_ConstantInt(InsIndexC))))
193       return nullptr;
194 
195     // The extract must be from the subset of vector elements that we inserted
196     // into. Example: if we inserted element 1 of a <2 x i64> and we are
197     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
198     // of elements 4-7 of the bitcasted vector.
199     unsigned NarrowingRatio = NumElts / NumSrcElts;
200     if (ExtIndexC / NarrowingRatio != InsIndexC)
201       return nullptr;
202 
203     // We are extracting part of the original scalar. How that scalar is
204     // inserted into the vector depends on the endian-ness. Example:
205     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
206     //                                       +--+--+--+--+--+--+--+--+
207     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
208     // extelt <4 x i16> V', 3:               |                 |S2|S3|
209     //                                       +--+--+--+--+--+--+--+--+
210     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
211     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
212     // In this example, we must right-shift little-endian. Big-endian is just a
213     // truncate.
214     unsigned Chunk = ExtIndexC % NarrowingRatio;
215     if (IsBigEndian)
216       Chunk = NarrowingRatio - 1 - Chunk;
217 
218     // Bail out if this is an FP vector to FP vector sequence. That would take
219     // more instructions than we started with unless there is no shift, and it
220     // may not be handled as well in the backend.
221     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
222     bool NeedDestBitcast = DestTy->isFloatingPointTy();
223     if (NeedSrcBitcast && NeedDestBitcast)
224       return nullptr;
225 
226     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
227     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
228     unsigned ShAmt = Chunk * DestWidth;
229 
230     // TODO: This limitation is more strict than necessary. We could sum the
231     // number of new instructions and subtract the number eliminated to know if
232     // we can proceed.
233     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
234       if (NeedSrcBitcast || NeedDestBitcast)
235         return nullptr;
236 
237     if (NeedSrcBitcast) {
238       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
239       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
240     }
241 
242     if (ShAmt) {
243       // Bail out if we could end with more instructions than we started with.
244       if (!Ext.getVectorOperand()->hasOneUse())
245         return nullptr;
246       Scalar = Builder.CreateLShr(Scalar, ShAmt);
247     }
248 
249     if (NeedDestBitcast) {
250       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
251       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
252     }
253     return new TruncInst(Scalar, DestTy);
254   }
255 
256   return nullptr;
257 }
258 
259 /// Find elements of V demanded by UserInstr.
260 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
261   unsigned VWidth = V->getType()->getVectorNumElements();
262 
263   // Conservatively assume that all elements are needed.
264   APInt UsedElts(APInt::getAllOnesValue(VWidth));
265 
266   switch (UserInstr->getOpcode()) {
267   case Instruction::ExtractElement: {
268     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
269     assert(EEI->getVectorOperand() == V);
270     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
271     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
272       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
273     }
274     break;
275   }
276   case Instruction::ShuffleVector: {
277     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
278     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
279 
280     UsedElts = APInt(VWidth, 0);
281     for (unsigned i = 0; i < MaskNumElts; i++) {
282       unsigned MaskVal = Shuffle->getMaskValue(i);
283       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
284         continue;
285       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
286         UsedElts.setBit(MaskVal);
287       if (Shuffle->getOperand(1) == V &&
288           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
289         UsedElts.setBit(MaskVal - VWidth);
290     }
291     break;
292   }
293   default:
294     break;
295   }
296   return UsedElts;
297 }
298 
299 /// Find union of elements of V demanded by all its users.
300 /// If it is known by querying findDemandedEltsBySingleUser that
301 /// no user demands an element of V, then the corresponding bit
302 /// remains unset in the returned value.
303 static APInt findDemandedEltsByAllUsers(Value *V) {
304   unsigned VWidth = V->getType()->getVectorNumElements();
305 
306   APInt UnionUsedElts(VWidth, 0);
307   for (const Use &U : V->uses()) {
308     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
309       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
310     } else {
311       UnionUsedElts = APInt::getAllOnesValue(VWidth);
312       break;
313     }
314 
315     if (UnionUsedElts.isAllOnesValue())
316       break;
317   }
318 
319   return UnionUsedElts;
320 }
321 
322 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
323   Value *SrcVec = EI.getVectorOperand();
324   Value *Index = EI.getIndexOperand();
325   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
326                                             SQ.getWithInstruction(&EI)))
327     return replaceInstUsesWith(EI, V);
328 
329   // If extracting a specified index from the vector, see if we can recursively
330   // find a previously computed scalar that was inserted into the vector.
331   auto *IndexC = dyn_cast<ConstantInt>(Index);
332   if (IndexC) {
333     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
334 
335     // InstSimplify should handle cases where the index is invalid.
336     if (!IndexC->getValue().ule(NumElts))
337       return nullptr;
338 
339     // This instruction only demands the single element from the input vector.
340     if (NumElts != 1) {
341       // If the input vector has a single use, simplify it based on this use
342       // property.
343       if (SrcVec->hasOneUse()) {
344         APInt UndefElts(NumElts, 0);
345         APInt DemandedElts(NumElts, 0);
346         DemandedElts.setBit(IndexC->getZExtValue());
347         if (Value *V =
348                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
349           return replaceOperand(EI, 0, V);
350       } else {
351         // If the input vector has multiple uses, simplify it based on a union
352         // of all elements used.
353         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
354         if (!DemandedElts.isAllOnesValue()) {
355           APInt UndefElts(NumElts, 0);
356           if (Value *V = SimplifyDemandedVectorElts(
357                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
358                   true /* AllowMultipleUsers */)) {
359             if (V != SrcVec) {
360               SrcVec->replaceAllUsesWith(V);
361               return &EI;
362             }
363           }
364         }
365       }
366     }
367     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
368       return I;
369 
370     // If there's a vector PHI feeding a scalar use through this extractelement
371     // instruction, try to scalarize the PHI.
372     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
373       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
374         return ScalarPHI;
375   }
376 
377   // TODO come up with a n-ary matcher that subsumes both unary and
378   // binary matchers.
379   UnaryOperator *UO;
380   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
381     // extelt (unop X), Index --> unop (extelt X, Index)
382     Value *X = UO->getOperand(0);
383     Value *E = Builder.CreateExtractElement(X, Index);
384     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
385   }
386 
387   BinaryOperator *BO;
388   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
389     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
390     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
391     Value *E0 = Builder.CreateExtractElement(X, Index);
392     Value *E1 = Builder.CreateExtractElement(Y, Index);
393     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
394   }
395 
396   Value *X, *Y;
397   CmpInst::Predicate Pred;
398   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
399       cheapToScalarize(SrcVec, IndexC)) {
400     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
401     Value *E0 = Builder.CreateExtractElement(X, Index);
402     Value *E1 = Builder.CreateExtractElement(Y, Index);
403     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
404   }
405 
406   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
407     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
408       // Extracting the inserted element?
409       if (IE->getOperand(2) == Index)
410         return replaceInstUsesWith(EI, IE->getOperand(1));
411       // If the inserted and extracted elements are constants, they must not
412       // be the same value, extract from the pre-inserted value instead.
413       if (isa<Constant>(IE->getOperand(2)) && IndexC)
414         return replaceOperand(EI, 0, IE->getOperand(0));
415     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
416       // If this is extracting an element from a shufflevector, figure out where
417       // it came from and extract from the appropriate input element instead.
418       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
419         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
420         Value *Src;
421         unsigned LHSWidth =
422           SVI->getOperand(0)->getType()->getVectorNumElements();
423 
424         if (SrcIdx < 0)
425           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
426         if (SrcIdx < (int)LHSWidth)
427           Src = SVI->getOperand(0);
428         else {
429           SrcIdx -= LHSWidth;
430           Src = SVI->getOperand(1);
431         }
432         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
433         return ExtractElementInst::Create(Src,
434                                           ConstantInt::get(Int32Ty,
435                                                            SrcIdx, false));
436       }
437     } else if (auto *CI = dyn_cast<CastInst>(I)) {
438       // Canonicalize extractelement(cast) -> cast(extractelement).
439       // Bitcasts can change the number of vector elements, and they cost
440       // nothing.
441       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
442         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
443         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
444       }
445     }
446   }
447   return nullptr;
448 }
449 
450 /// If V is a shuffle of values that ONLY returns elements from either LHS or
451 /// RHS, return the shuffle mask and true. Otherwise, return false.
452 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
453                                          SmallVectorImpl<Constant*> &Mask) {
454   assert(LHS->getType() == RHS->getType() &&
455          "Invalid CollectSingleShuffleElements");
456   unsigned NumElts = V->getType()->getVectorNumElements();
457 
458   if (isa<UndefValue>(V)) {
459     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
460     return true;
461   }
462 
463   if (V == LHS) {
464     for (unsigned i = 0; i != NumElts; ++i)
465       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
466     return true;
467   }
468 
469   if (V == RHS) {
470     for (unsigned i = 0; i != NumElts; ++i)
471       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
472                                       i+NumElts));
473     return true;
474   }
475 
476   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
477     // If this is an insert of an extract from some other vector, include it.
478     Value *VecOp    = IEI->getOperand(0);
479     Value *ScalarOp = IEI->getOperand(1);
480     Value *IdxOp    = IEI->getOperand(2);
481 
482     if (!isa<ConstantInt>(IdxOp))
483       return false;
484     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
485 
486     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
487       // We can handle this if the vector we are inserting into is
488       // transitively ok.
489       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
490         // If so, update the mask to reflect the inserted undef.
491         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
492         return true;
493       }
494     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
495       if (isa<ConstantInt>(EI->getOperand(1))) {
496         unsigned ExtractedIdx =
497         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
498         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
499 
500         // This must be extracting from either LHS or RHS.
501         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
502           // We can handle this if the vector we are inserting into is
503           // transitively ok.
504           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
505             // If so, update the mask to reflect the inserted value.
506             if (EI->getOperand(0) == LHS) {
507               Mask[InsertedIdx % NumElts] =
508               ConstantInt::get(Type::getInt32Ty(V->getContext()),
509                                ExtractedIdx);
510             } else {
511               assert(EI->getOperand(0) == RHS);
512               Mask[InsertedIdx % NumElts] =
513               ConstantInt::get(Type::getInt32Ty(V->getContext()),
514                                ExtractedIdx + NumLHSElts);
515             }
516             return true;
517           }
518         }
519       }
520     }
521   }
522 
523   return false;
524 }
525 
526 /// If we have insertion into a vector that is wider than the vector that we
527 /// are extracting from, try to widen the source vector to allow a single
528 /// shufflevector to replace one or more insert/extract pairs.
529 static void replaceExtractElements(InsertElementInst *InsElt,
530                                    ExtractElementInst *ExtElt,
531                                    InstCombiner &IC) {
532   VectorType *InsVecType = InsElt->getType();
533   VectorType *ExtVecType = ExtElt->getVectorOperandType();
534   unsigned NumInsElts = InsVecType->getVectorNumElements();
535   unsigned NumExtElts = ExtVecType->getVectorNumElements();
536 
537   // The inserted-to vector must be wider than the extracted-from vector.
538   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
539       NumExtElts >= NumInsElts)
540     return;
541 
542   // Create a shuffle mask to widen the extended-from vector using undefined
543   // values. The mask selects all of the values of the original vector followed
544   // by as many undefined values as needed to create a vector of the same length
545   // as the inserted-to vector.
546   SmallVector<Constant *, 16> ExtendMask;
547   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
548   for (unsigned i = 0; i < NumExtElts; ++i)
549     ExtendMask.push_back(ConstantInt::get(IntType, i));
550   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
551     ExtendMask.push_back(UndefValue::get(IntType));
552 
553   Value *ExtVecOp = ExtElt->getVectorOperand();
554   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
555   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
556                                    ? ExtVecOpInst->getParent()
557                                    : ExtElt->getParent();
558 
559   // TODO: This restriction matches the basic block check below when creating
560   // new extractelement instructions. If that limitation is removed, this one
561   // could also be removed. But for now, we just bail out to ensure that we
562   // will replace the extractelement instruction that is feeding our
563   // insertelement instruction. This allows the insertelement to then be
564   // replaced by a shufflevector. If the insertelement is not replaced, we can
565   // induce infinite looping because there's an optimization for extractelement
566   // that will delete our widening shuffle. This would trigger another attempt
567   // here to create that shuffle, and we spin forever.
568   if (InsertionBlock != InsElt->getParent())
569     return;
570 
571   // TODO: This restriction matches the check in visitInsertElementInst() and
572   // prevents an infinite loop caused by not turning the extract/insert pair
573   // into a shuffle. We really should not need either check, but we're lacking
574   // folds for shufflevectors because we're afraid to generate shuffle masks
575   // that the backend can't handle.
576   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
577     return;
578 
579   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
580                                         ConstantVector::get(ExtendMask));
581 
582   // Insert the new shuffle after the vector operand of the extract is defined
583   // (as long as it's not a PHI) or at the start of the basic block of the
584   // extract, so any subsequent extracts in the same basic block can use it.
585   // TODO: Insert before the earliest ExtractElementInst that is replaced.
586   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
587     WideVec->insertAfter(ExtVecOpInst);
588   else
589     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
590 
591   // Replace extracts from the original narrow vector with extracts from the new
592   // wide vector.
593   for (User *U : ExtVecOp->users()) {
594     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
595     if (!OldExt || OldExt->getParent() != WideVec->getParent())
596       continue;
597     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
598     NewExt->insertAfter(OldExt);
599     IC.replaceInstUsesWith(*OldExt, NewExt);
600   }
601 }
602 
603 /// We are building a shuffle to create V, which is a sequence of insertelement,
604 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
605 /// not rely on the second vector source. Return a std::pair containing the
606 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
607 /// parameter as required.
608 ///
609 /// Note: we intentionally don't try to fold earlier shuffles since they have
610 /// often been chosen carefully to be efficiently implementable on the target.
611 using ShuffleOps = std::pair<Value *, Value *>;
612 
613 static ShuffleOps collectShuffleElements(Value *V,
614                                          SmallVectorImpl<Constant *> &Mask,
615                                          Value *PermittedRHS,
616                                          InstCombiner &IC) {
617   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
618   unsigned NumElts = V->getType()->getVectorNumElements();
619 
620   if (isa<UndefValue>(V)) {
621     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
622     return std::make_pair(
623         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
624   }
625 
626   if (isa<ConstantAggregateZero>(V)) {
627     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
628     return std::make_pair(V, nullptr);
629   }
630 
631   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
632     // If this is an insert of an extract from some other vector, include it.
633     Value *VecOp    = IEI->getOperand(0);
634     Value *ScalarOp = IEI->getOperand(1);
635     Value *IdxOp    = IEI->getOperand(2);
636 
637     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
638       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
639         unsigned ExtractedIdx =
640           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
641         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
642 
643         // Either the extracted from or inserted into vector must be RHSVec,
644         // otherwise we'd end up with a shuffle of three inputs.
645         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
646           Value *RHS = EI->getOperand(0);
647           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
648           assert(LR.second == nullptr || LR.second == RHS);
649 
650           if (LR.first->getType() != RHS->getType()) {
651             // Although we are giving up for now, see if we can create extracts
652             // that match the inserts for another round of combining.
653             replaceExtractElements(IEI, EI, IC);
654 
655             // We tried our best, but we can't find anything compatible with RHS
656             // further up the chain. Return a trivial shuffle.
657             for (unsigned i = 0; i < NumElts; ++i)
658               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
659             return std::make_pair(V, nullptr);
660           }
661 
662           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
663           Mask[InsertedIdx % NumElts] =
664             ConstantInt::get(Type::getInt32Ty(V->getContext()),
665                              NumLHSElts+ExtractedIdx);
666           return std::make_pair(LR.first, RHS);
667         }
668 
669         if (VecOp == PermittedRHS) {
670           // We've gone as far as we can: anything on the other side of the
671           // extractelement will already have been converted into a shuffle.
672           unsigned NumLHSElts =
673               EI->getOperand(0)->getType()->getVectorNumElements();
674           for (unsigned i = 0; i != NumElts; ++i)
675             Mask.push_back(ConstantInt::get(
676                 Type::getInt32Ty(V->getContext()),
677                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
678           return std::make_pair(EI->getOperand(0), PermittedRHS);
679         }
680 
681         // If this insertelement is a chain that comes from exactly these two
682         // vectors, return the vector and the effective shuffle.
683         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
684             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
685                                          Mask))
686           return std::make_pair(EI->getOperand(0), PermittedRHS);
687       }
688     }
689   }
690 
691   // Otherwise, we can't do anything fancy. Return an identity vector.
692   for (unsigned i = 0; i != NumElts; ++i)
693     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
694   return std::make_pair(V, nullptr);
695 }
696 
697 /// Try to find redundant insertvalue instructions, like the following ones:
698 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
699 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
700 /// Here the second instruction inserts values at the same indices, as the
701 /// first one, making the first one redundant.
702 /// It should be transformed to:
703 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
704 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
705   bool IsRedundant = false;
706   ArrayRef<unsigned int> FirstIndices = I.getIndices();
707 
708   // If there is a chain of insertvalue instructions (each of them except the
709   // last one has only one use and it's another insertvalue insn from this
710   // chain), check if any of the 'children' uses the same indices as the first
711   // instruction. In this case, the first one is redundant.
712   Value *V = &I;
713   unsigned Depth = 0;
714   while (V->hasOneUse() && Depth < 10) {
715     User *U = V->user_back();
716     auto UserInsInst = dyn_cast<InsertValueInst>(U);
717     if (!UserInsInst || U->getOperand(0) != V)
718       break;
719     if (UserInsInst->getIndices() == FirstIndices) {
720       IsRedundant = true;
721       break;
722     }
723     V = UserInsInst;
724     Depth++;
725   }
726 
727   if (IsRedundant)
728     return replaceInstUsesWith(I, I.getOperand(0));
729   return nullptr;
730 }
731 
732 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
733   int MaskSize = Shuf.getShuffleMask().size();
734   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
735 
736   // A vector select does not change the size of the operands.
737   if (MaskSize != VecSize)
738     return false;
739 
740   // Each mask element must be undefined or choose a vector element from one of
741   // the source operands without crossing vector lanes.
742   for (int i = 0; i != MaskSize; ++i) {
743     int Elt = Shuf.getMaskValue(i);
744     if (Elt != -1 && Elt != i && Elt != i + VecSize)
745       return false;
746   }
747 
748   return true;
749 }
750 
751 /// Turn a chain of inserts that splats a value into an insert + shuffle:
752 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
753 /// shufflevector(insertelt(X, %k, 0), undef, zero)
754 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
755   // We are interested in the last insert in a chain. So if this insert has a
756   // single user and that user is an insert, bail.
757   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
758     return nullptr;
759 
760   auto *VecTy = cast<VectorType>(InsElt.getType());
761   unsigned NumElements = VecTy->getNumElements();
762 
763   // Do not try to do this for a one-element vector, since that's a nop,
764   // and will cause an inf-loop.
765   if (NumElements == 1)
766     return nullptr;
767 
768   Value *SplatVal = InsElt.getOperand(1);
769   InsertElementInst *CurrIE = &InsElt;
770   SmallVector<bool, 16> ElementPresent(NumElements, false);
771   InsertElementInst *FirstIE = nullptr;
772 
773   // Walk the chain backwards, keeping track of which indices we inserted into,
774   // until we hit something that isn't an insert of the splatted value.
775   while (CurrIE) {
776     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
777     if (!Idx || CurrIE->getOperand(1) != SplatVal)
778       return nullptr;
779 
780     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
781     // Check none of the intermediate steps have any additional uses, except
782     // for the root insertelement instruction, which can be re-used, if it
783     // inserts at position 0.
784     if (CurrIE != &InsElt &&
785         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
786       return nullptr;
787 
788     ElementPresent[Idx->getZExtValue()] = true;
789     FirstIE = CurrIE;
790     CurrIE = NextIE;
791   }
792 
793   // If this is just a single insertelement (not a sequence), we are done.
794   if (FirstIE == &InsElt)
795     return nullptr;
796 
797   // If we are not inserting into an undef vector, make sure we've seen an
798   // insert into every element.
799   // TODO: If the base vector is not undef, it might be better to create a splat
800   //       and then a select-shuffle (blend) with the base vector.
801   if (!isa<UndefValue>(FirstIE->getOperand(0)))
802     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
803       return nullptr;
804 
805   // Create the insert + shuffle.
806   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
807   UndefValue *UndefVec = UndefValue::get(VecTy);
808   Constant *Zero = ConstantInt::get(Int32Ty, 0);
809   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
810     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
811 
812   // Splat from element 0, but replace absent elements with undef in the mask.
813   SmallVector<Constant *, 16> Mask(NumElements, Zero);
814   for (unsigned i = 0; i != NumElements; ++i)
815     if (!ElementPresent[i])
816       Mask[i] = UndefValue::get(Int32Ty);
817 
818   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
819 }
820 
821 /// Try to fold an insert element into an existing splat shuffle by changing
822 /// the shuffle's mask to include the index of this insert element.
823 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
824   // Check if the vector operand of this insert is a canonical splat shuffle.
825   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
826   if (!Shuf || !Shuf->isZeroEltSplat())
827     return nullptr;
828 
829   // Check for a constant insertion index.
830   uint64_t IdxC;
831   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
832     return nullptr;
833 
834   // Check if the splat shuffle's input is the same as this insert's scalar op.
835   Value *X = InsElt.getOperand(1);
836   Value *Op0 = Shuf->getOperand(0);
837   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
838     return nullptr;
839 
840   // Replace the shuffle mask element at the index of this insert with a zero.
841   // For example:
842   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
843   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
844   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
845   SmallVector<int, 16> NewMask(NumMaskElts);
846   for (unsigned i = 0; i != NumMaskElts; ++i)
847     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
848 
849   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
850 }
851 
852 /// Try to fold an extract+insert element into an existing identity shuffle by
853 /// changing the shuffle's mask to include the index of this insert element.
854 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
855   // Check if the vector operand of this insert is an identity shuffle.
856   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
857   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
858       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
859     return nullptr;
860 
861   // Check for a constant insertion index.
862   uint64_t IdxC;
863   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
864     return nullptr;
865 
866   // Check if this insert's scalar op is extracted from the identity shuffle's
867   // input vector.
868   Value *Scalar = InsElt.getOperand(1);
869   Value *X = Shuf->getOperand(0);
870   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
871     return nullptr;
872 
873   // Replace the shuffle mask element at the index of this extract+insert with
874   // that same index value.
875   // For example:
876   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
877   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
878   SmallVector<int, 16> NewMask(NumMaskElts);
879   ArrayRef<int> OldMask = Shuf->getShuffleMask();
880   for (unsigned i = 0; i != NumMaskElts; ++i) {
881     if (i != IdxC) {
882       // All mask elements besides the inserted element remain the same.
883       NewMask[i] = OldMask[i];
884     } else if (OldMask[i] == (int)IdxC) {
885       // If the mask element was already set, there's nothing to do
886       // (demanded elements analysis may unset it later).
887       return nullptr;
888     } else {
889       assert(OldMask[i] == UndefMaskElem &&
890              "Unexpected shuffle mask element for identity shuffle");
891       NewMask[i] = IdxC;
892     }
893   }
894 
895   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
896 }
897 
898 /// If we have an insertelement instruction feeding into another insertelement
899 /// and the 2nd is inserting a constant into the vector, canonicalize that
900 /// constant insertion before the insertion of a variable:
901 ///
902 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
903 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
904 ///
905 /// This has the potential of eliminating the 2nd insertelement instruction
906 /// via constant folding of the scalar constant into a vector constant.
907 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
908                                      InstCombiner::BuilderTy &Builder) {
909   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
910   if (!InsElt1 || !InsElt1->hasOneUse())
911     return nullptr;
912 
913   Value *X, *Y;
914   Constant *ScalarC;
915   ConstantInt *IdxC1, *IdxC2;
916   if (match(InsElt1->getOperand(0), m_Value(X)) &&
917       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
918       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
919       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
920       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
921     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
922     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
923   }
924 
925   return nullptr;
926 }
927 
928 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
929 /// --> shufflevector X, CVec', Mask'
930 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
931   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
932   // Bail out if the parent has more than one use. In that case, we'd be
933   // replacing the insertelt with a shuffle, and that's not a clear win.
934   if (!Inst || !Inst->hasOneUse())
935     return nullptr;
936   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
937     // The shuffle must have a constant vector operand. The insertelt must have
938     // a constant scalar being inserted at a constant position in the vector.
939     Constant *ShufConstVec, *InsEltScalar;
940     uint64_t InsEltIndex;
941     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
942         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
943         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
944       return nullptr;
945 
946     // Adding an element to an arbitrary shuffle could be expensive, but a
947     // shuffle that selects elements from vectors without crossing lanes is
948     // assumed cheap.
949     // If we're just adding a constant into that shuffle, it will still be
950     // cheap.
951     if (!isShuffleEquivalentToSelect(*Shuf))
952       return nullptr;
953 
954     // From the above 'select' check, we know that the mask has the same number
955     // of elements as the vector input operands. We also know that each constant
956     // input element is used in its lane and can not be used more than once by
957     // the shuffle. Therefore, replace the constant in the shuffle's constant
958     // vector with the insertelt constant. Replace the constant in the shuffle's
959     // mask vector with the insertelt index plus the length of the vector
960     // (because the constant vector operand of a shuffle is always the 2nd
961     // operand).
962     ArrayRef<int> Mask = Shuf->getShuffleMask();
963     unsigned NumElts = Mask.size();
964     SmallVector<Constant *, 16> NewShufElts(NumElts);
965     SmallVector<int, 16> NewMaskElts(NumElts);
966     for (unsigned I = 0; I != NumElts; ++I) {
967       if (I == InsEltIndex) {
968         NewShufElts[I] = InsEltScalar;
969         NewMaskElts[I] = InsEltIndex + NumElts;
970       } else {
971         // Copy over the existing values.
972         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
973         NewMaskElts[I] = Mask[I];
974       }
975     }
976 
977     // Create new operands for a shuffle that includes the constant of the
978     // original insertelt. The old shuffle will be dead now.
979     return new ShuffleVectorInst(Shuf->getOperand(0),
980                                  ConstantVector::get(NewShufElts), NewMaskElts);
981   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
982     // Transform sequences of insertelements ops with constant data/indexes into
983     // a single shuffle op.
984     unsigned NumElts = InsElt.getType()->getNumElements();
985 
986     uint64_t InsertIdx[2];
987     Constant *Val[2];
988     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
989         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
990         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
991         !match(IEI->getOperand(1), m_Constant(Val[1])))
992       return nullptr;
993     SmallVector<Constant *, 16> Values(NumElts);
994     SmallVector<Constant *, 16> Mask(NumElts);
995     auto ValI = std::begin(Val);
996     // Generate new constant vector and mask.
997     // We have 2 values/masks from the insertelements instructions. Insert them
998     // into new value/mask vectors.
999     for (uint64_t I : InsertIdx) {
1000       if (!Values[I]) {
1001         assert(!Mask[I]);
1002         Values[I] = *ValI;
1003         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1004                                    NumElts + I);
1005       }
1006       ++ValI;
1007     }
1008     // Remaining values are filled with 'undef' values.
1009     for (unsigned I = 0; I < NumElts; ++I) {
1010       if (!Values[I]) {
1011         assert(!Mask[I]);
1012         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1013         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1014       }
1015     }
1016     // Create new operands for a shuffle that includes the constant of the
1017     // original insertelt.
1018     return new ShuffleVectorInst(IEI->getOperand(0),
1019                                  ConstantVector::get(Values),
1020                                  ConstantVector::get(Mask));
1021   }
1022   return nullptr;
1023 }
1024 
1025 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1026   Value *VecOp    = IE.getOperand(0);
1027   Value *ScalarOp = IE.getOperand(1);
1028   Value *IdxOp    = IE.getOperand(2);
1029 
1030   if (auto *V = SimplifyInsertElementInst(
1031           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1032     return replaceInstUsesWith(IE, V);
1033 
1034   // If the vector and scalar are both bitcast from the same element type, do
1035   // the insert in that source type followed by bitcast.
1036   Value *VecSrc, *ScalarSrc;
1037   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1038       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1039       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1040       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1041       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1042     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1043     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1044     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1045     return new BitCastInst(NewInsElt, IE.getType());
1046   }
1047 
1048   // If the inserted element was extracted from some other vector and both
1049   // indexes are valid constants, try to turn this into a shuffle.
1050   uint64_t InsertedIdx, ExtractedIdx;
1051   Value *ExtVecOp;
1052   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1053       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1054                                        m_ConstantInt(ExtractedIdx))) &&
1055       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1056     // TODO: Looking at the user(s) to determine if this insert is a
1057     // fold-to-shuffle opportunity does not match the usual instcombine
1058     // constraints. We should decide if the transform is worthy based only
1059     // on this instruction and its operands, but that may not work currently.
1060     //
1061     // Here, we are trying to avoid creating shuffles before reaching
1062     // the end of a chain of extract-insert pairs. This is complicated because
1063     // we do not generally form arbitrary shuffle masks in instcombine
1064     // (because those may codegen poorly), but collectShuffleElements() does
1065     // exactly that.
1066     //
1067     // The rules for determining what is an acceptable target-independent
1068     // shuffle mask are fuzzy because they evolve based on the backend's
1069     // capabilities and real-world impact.
1070     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1071       if (!Insert.hasOneUse())
1072         return true;
1073       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1074       if (!InsertUser)
1075         return true;
1076       return false;
1077     };
1078 
1079     // Try to form a shuffle from a chain of extract-insert ops.
1080     if (isShuffleRootCandidate(IE)) {
1081       SmallVector<Constant*, 16> Mask;
1082       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1083 
1084       // The proposed shuffle may be trivial, in which case we shouldn't
1085       // perform the combine.
1086       if (LR.first != &IE && LR.second != &IE) {
1087         // We now have a shuffle of LHS, RHS, Mask.
1088         if (LR.second == nullptr)
1089           LR.second = UndefValue::get(LR.first->getType());
1090         return new ShuffleVectorInst(LR.first, LR.second,
1091                                      ConstantVector::get(Mask));
1092       }
1093     }
1094   }
1095 
1096   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1097   APInt UndefElts(VWidth, 0);
1098   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1099   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1100     if (V != &IE)
1101       return replaceInstUsesWith(IE, V);
1102     return &IE;
1103   }
1104 
1105   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1106     return Shuf;
1107 
1108   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1109     return NewInsElt;
1110 
1111   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1112     return Broadcast;
1113 
1114   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1115     return Splat;
1116 
1117   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1118     return IdentityShuf;
1119 
1120   return nullptr;
1121 }
1122 
1123 /// Return true if we can evaluate the specified expression tree if the vector
1124 /// elements were shuffled in a different order.
1125 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1126                                 unsigned Depth = 5) {
1127   // We can always reorder the elements of a constant.
1128   if (isa<Constant>(V))
1129     return true;
1130 
1131   // We won't reorder vector arguments. No IPO here.
1132   Instruction *I = dyn_cast<Instruction>(V);
1133   if (!I) return false;
1134 
1135   // Two users may expect different orders of the elements. Don't try it.
1136   if (!I->hasOneUse())
1137     return false;
1138 
1139   if (Depth == 0) return false;
1140 
1141   switch (I->getOpcode()) {
1142     case Instruction::UDiv:
1143     case Instruction::SDiv:
1144     case Instruction::URem:
1145     case Instruction::SRem:
1146       // Propagating an undefined shuffle mask element to integer div/rem is not
1147       // allowed because those opcodes can create immediate undefined behavior
1148       // from an undefined element in an operand.
1149       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1150         return false;
1151       LLVM_FALLTHROUGH;
1152     case Instruction::Add:
1153     case Instruction::FAdd:
1154     case Instruction::Sub:
1155     case Instruction::FSub:
1156     case Instruction::Mul:
1157     case Instruction::FMul:
1158     case Instruction::FDiv:
1159     case Instruction::FRem:
1160     case Instruction::Shl:
1161     case Instruction::LShr:
1162     case Instruction::AShr:
1163     case Instruction::And:
1164     case Instruction::Or:
1165     case Instruction::Xor:
1166     case Instruction::ICmp:
1167     case Instruction::FCmp:
1168     case Instruction::Trunc:
1169     case Instruction::ZExt:
1170     case Instruction::SExt:
1171     case Instruction::FPToUI:
1172     case Instruction::FPToSI:
1173     case Instruction::UIToFP:
1174     case Instruction::SIToFP:
1175     case Instruction::FPTrunc:
1176     case Instruction::FPExt:
1177     case Instruction::GetElementPtr: {
1178       // Bail out if we would create longer vector ops. We could allow creating
1179       // longer vector ops, but that may result in more expensive codegen.
1180       Type *ITy = I->getType();
1181       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1182         return false;
1183       for (Value *Operand : I->operands()) {
1184         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1185           return false;
1186       }
1187       return true;
1188     }
1189     case Instruction::InsertElement: {
1190       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1191       if (!CI) return false;
1192       int ElementNumber = CI->getLimitedValue();
1193 
1194       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1195       // can't put an element into multiple indices.
1196       bool SeenOnce = false;
1197       for (int i = 0, e = Mask.size(); i != e; ++i) {
1198         if (Mask[i] == ElementNumber) {
1199           if (SeenOnce)
1200             return false;
1201           SeenOnce = true;
1202         }
1203       }
1204       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1205     }
1206   }
1207   return false;
1208 }
1209 
1210 /// Rebuild a new instruction just like 'I' but with the new operands given.
1211 /// In the event of type mismatch, the type of the operands is correct.
1212 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1213   // We don't want to use the IRBuilder here because we want the replacement
1214   // instructions to appear next to 'I', not the builder's insertion point.
1215   switch (I->getOpcode()) {
1216     case Instruction::Add:
1217     case Instruction::FAdd:
1218     case Instruction::Sub:
1219     case Instruction::FSub:
1220     case Instruction::Mul:
1221     case Instruction::FMul:
1222     case Instruction::UDiv:
1223     case Instruction::SDiv:
1224     case Instruction::FDiv:
1225     case Instruction::URem:
1226     case Instruction::SRem:
1227     case Instruction::FRem:
1228     case Instruction::Shl:
1229     case Instruction::LShr:
1230     case Instruction::AShr:
1231     case Instruction::And:
1232     case Instruction::Or:
1233     case Instruction::Xor: {
1234       BinaryOperator *BO = cast<BinaryOperator>(I);
1235       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1236       BinaryOperator *New =
1237           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1238                                  NewOps[0], NewOps[1], "", BO);
1239       if (isa<OverflowingBinaryOperator>(BO)) {
1240         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1241         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1242       }
1243       if (isa<PossiblyExactOperator>(BO)) {
1244         New->setIsExact(BO->isExact());
1245       }
1246       if (isa<FPMathOperator>(BO))
1247         New->copyFastMathFlags(I);
1248       return New;
1249     }
1250     case Instruction::ICmp:
1251       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1252       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1253                           NewOps[0], NewOps[1]);
1254     case Instruction::FCmp:
1255       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1256       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1257                           NewOps[0], NewOps[1]);
1258     case Instruction::Trunc:
1259     case Instruction::ZExt:
1260     case Instruction::SExt:
1261     case Instruction::FPToUI:
1262     case Instruction::FPToSI:
1263     case Instruction::UIToFP:
1264     case Instruction::SIToFP:
1265     case Instruction::FPTrunc:
1266     case Instruction::FPExt: {
1267       // It's possible that the mask has a different number of elements from
1268       // the original cast. We recompute the destination type to match the mask.
1269       Type *DestTy =
1270           VectorType::get(I->getType()->getScalarType(),
1271                           NewOps[0]->getType()->getVectorNumElements());
1272       assert(NewOps.size() == 1 && "cast with #ops != 1");
1273       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1274                               "", I);
1275     }
1276     case Instruction::GetElementPtr: {
1277       Value *Ptr = NewOps[0];
1278       ArrayRef<Value*> Idx = NewOps.slice(1);
1279       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1280           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1281       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1282       return GEP;
1283     }
1284   }
1285   llvm_unreachable("failed to rebuild vector instructions");
1286 }
1287 
1288 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1289   // Mask.size() does not need to be equal to the number of vector elements.
1290 
1291   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1292   Type *EltTy = V->getType()->getScalarType();
1293   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1294   if (isa<UndefValue>(V))
1295     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1296 
1297   if (isa<ConstantAggregateZero>(V))
1298     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1299 
1300   if (Constant *C = dyn_cast<Constant>(V))
1301     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1302                                           Mask);
1303 
1304   Instruction *I = cast<Instruction>(V);
1305   switch (I->getOpcode()) {
1306     case Instruction::Add:
1307     case Instruction::FAdd:
1308     case Instruction::Sub:
1309     case Instruction::FSub:
1310     case Instruction::Mul:
1311     case Instruction::FMul:
1312     case Instruction::UDiv:
1313     case Instruction::SDiv:
1314     case Instruction::FDiv:
1315     case Instruction::URem:
1316     case Instruction::SRem:
1317     case Instruction::FRem:
1318     case Instruction::Shl:
1319     case Instruction::LShr:
1320     case Instruction::AShr:
1321     case Instruction::And:
1322     case Instruction::Or:
1323     case Instruction::Xor:
1324     case Instruction::ICmp:
1325     case Instruction::FCmp:
1326     case Instruction::Trunc:
1327     case Instruction::ZExt:
1328     case Instruction::SExt:
1329     case Instruction::FPToUI:
1330     case Instruction::FPToSI:
1331     case Instruction::UIToFP:
1332     case Instruction::SIToFP:
1333     case Instruction::FPTrunc:
1334     case Instruction::FPExt:
1335     case Instruction::Select:
1336     case Instruction::GetElementPtr: {
1337       SmallVector<Value*, 8> NewOps;
1338       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1339       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1340         Value *V;
1341         // Recursively call evaluateInDifferentElementOrder on vector arguments
1342         // as well. E.g. GetElementPtr may have scalar operands even if the
1343         // return value is a vector, so we need to examine the operand type.
1344         if (I->getOperand(i)->getType()->isVectorTy())
1345           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1346         else
1347           V = I->getOperand(i);
1348         NewOps.push_back(V);
1349         NeedsRebuild |= (V != I->getOperand(i));
1350       }
1351       if (NeedsRebuild) {
1352         return buildNew(I, NewOps);
1353       }
1354       return I;
1355     }
1356     case Instruction::InsertElement: {
1357       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1358 
1359       // The insertelement was inserting at Element. Figure out which element
1360       // that becomes after shuffling. The answer is guaranteed to be unique
1361       // by CanEvaluateShuffled.
1362       bool Found = false;
1363       int Index = 0;
1364       for (int e = Mask.size(); Index != e; ++Index) {
1365         if (Mask[Index] == Element) {
1366           Found = true;
1367           break;
1368         }
1369       }
1370 
1371       // If element is not in Mask, no need to handle the operand 1 (element to
1372       // be inserted). Just evaluate values in operand 0 according to Mask.
1373       if (!Found)
1374         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1375 
1376       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1377       return InsertElementInst::Create(V, I->getOperand(1),
1378                                        ConstantInt::get(I32Ty, Index), "", I);
1379     }
1380   }
1381   llvm_unreachable("failed to reorder elements of vector instruction!");
1382 }
1383 
1384 // Returns true if the shuffle is extracting a contiguous range of values from
1385 // LHS, for example:
1386 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1387 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1388 //   Shuffles to:  |EE|FF|GG|HH|
1389 //                 +--+--+--+--+
1390 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1391                                        ArrayRef<int> Mask) {
1392   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1393   unsigned MaskElems = Mask.size();
1394   unsigned BegIdx = Mask.front();
1395   unsigned EndIdx = Mask.back();
1396   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1397     return false;
1398   for (unsigned I = 0; I != MaskElems; ++I)
1399     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1400       return false;
1401   return true;
1402 }
1403 
1404 /// These are the ingredients in an alternate form binary operator as described
1405 /// below.
1406 struct BinopElts {
1407   BinaryOperator::BinaryOps Opcode;
1408   Value *Op0;
1409   Value *Op1;
1410   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1411             Value *V0 = nullptr, Value *V1 = nullptr) :
1412       Opcode(Opc), Op0(V0), Op1(V1) {}
1413   operator bool() const { return Opcode != 0; }
1414 };
1415 
1416 /// Binops may be transformed into binops with different opcodes and operands.
1417 /// Reverse the usual canonicalization to enable folds with the non-canonical
1418 /// form of the binop. If a transform is possible, return the elements of the
1419 /// new binop. If not, return invalid elements.
1420 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1421   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1422   Type *Ty = BO->getType();
1423   switch (BO->getOpcode()) {
1424     case Instruction::Shl: {
1425       // shl X, C --> mul X, (1 << C)
1426       Constant *C;
1427       if (match(BO1, m_Constant(C))) {
1428         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1429         return { Instruction::Mul, BO0, ShlOne };
1430       }
1431       break;
1432     }
1433     case Instruction::Or: {
1434       // or X, C --> add X, C (when X and C have no common bits set)
1435       const APInt *C;
1436       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1437         return { Instruction::Add, BO0, BO1 };
1438       break;
1439     }
1440     default:
1441       break;
1442   }
1443   return {};
1444 }
1445 
1446 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1447   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1448 
1449   // Are we shuffling together some value and that same value after it has been
1450   // modified by a binop with a constant?
1451   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1452   Constant *C;
1453   bool Op0IsBinop;
1454   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1455     Op0IsBinop = true;
1456   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1457     Op0IsBinop = false;
1458   else
1459     return nullptr;
1460 
1461   // The identity constant for a binop leaves a variable operand unchanged. For
1462   // a vector, this is a splat of something like 0, -1, or 1.
1463   // If there's no identity constant for this binop, we're done.
1464   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1465   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1466   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1467   if (!IdC)
1468     return nullptr;
1469 
1470   // Shuffle identity constants into the lanes that return the original value.
1471   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1472   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1473   // The existing binop constant vector remains in the same operand position.
1474   ArrayRef<int> Mask = Shuf.getShuffleMask();
1475   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1476                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1477 
1478   bool MightCreatePoisonOrUB =
1479       is_contained(Mask, UndefMaskElem) &&
1480       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1481   if (MightCreatePoisonOrUB)
1482     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1483 
1484   // shuf (bop X, C), X, M --> bop X, C'
1485   // shuf X, (bop X, C), M --> bop X, C'
1486   Value *X = Op0IsBinop ? Op1 : Op0;
1487   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1488   NewBO->copyIRFlags(BO);
1489 
1490   // An undef shuffle mask element may propagate as an undef constant element in
1491   // the new binop. That would produce poison where the original code might not.
1492   // If we already made a safe constant, then there's no danger.
1493   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1494     NewBO->dropPoisonGeneratingFlags();
1495   return NewBO;
1496 }
1497 
1498 /// If we have an insert of a scalar to a non-zero element of an undefined
1499 /// vector and then shuffle that value, that's the same as inserting to the zero
1500 /// element and shuffling. Splatting from the zero element is recognized as the
1501 /// canonical form of splat.
1502 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1503                                             InstCombiner::BuilderTy &Builder) {
1504   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1505   ArrayRef<int> Mask = Shuf.getShuffleMask();
1506   Value *X;
1507   uint64_t IndexC;
1508 
1509   // Match a shuffle that is a splat to a non-zero element.
1510   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1511                                            m_ConstantInt(IndexC)))) ||
1512       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1513     return nullptr;
1514 
1515   // Insert into element 0 of an undef vector.
1516   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1517   Constant *Zero = Builder.getInt32(0);
1518   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1519 
1520   // Splat from element 0. Any mask element that is undefined remains undefined.
1521   // For example:
1522   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1523   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1524   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1525   SmallVector<int, 16> NewMask(NumMaskElts, 0);
1526   for (unsigned i = 0; i != NumMaskElts; ++i)
1527     if (Mask[i] == UndefMaskElem)
1528       NewMask[i] = Mask[i];
1529 
1530   return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1531 }
1532 
1533 /// Try to fold shuffles that are the equivalent of a vector select.
1534 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1535                                       InstCombiner::BuilderTy &Builder,
1536                                       const DataLayout &DL) {
1537   if (!Shuf.isSelect())
1538     return nullptr;
1539 
1540   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1541   // Commuting undef to operand 0 conflicts with another canonicalization.
1542   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1543   if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1544       Shuf.getMaskValue(0) >= (int)NumElts) {
1545     // TODO: Can we assert that both operands of a shuffle-select are not undef
1546     // (otherwise, it would have been folded by instsimplify?
1547     Shuf.commute();
1548     return &Shuf;
1549   }
1550 
1551   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1552     return I;
1553 
1554   BinaryOperator *B0, *B1;
1555   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1556       !match(Shuf.getOperand(1), m_BinOp(B1)))
1557     return nullptr;
1558 
1559   Value *X, *Y;
1560   Constant *C0, *C1;
1561   bool ConstantsAreOp1;
1562   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1563       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1564     ConstantsAreOp1 = true;
1565   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1566            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1567     ConstantsAreOp1 = false;
1568   else
1569     return nullptr;
1570 
1571   // We need matching binops to fold the lanes together.
1572   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1573   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1574   bool DropNSW = false;
1575   if (ConstantsAreOp1 && Opc0 != Opc1) {
1576     // TODO: We drop "nsw" if shift is converted into multiply because it may
1577     // not be correct when the shift amount is BitWidth - 1. We could examine
1578     // each vector element to determine if it is safe to keep that flag.
1579     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1580       DropNSW = true;
1581     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1582       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1583       Opc0 = AltB0.Opcode;
1584       C0 = cast<Constant>(AltB0.Op1);
1585     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1586       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1587       Opc1 = AltB1.Opcode;
1588       C1 = cast<Constant>(AltB1.Op1);
1589     }
1590   }
1591 
1592   if (Opc0 != Opc1)
1593     return nullptr;
1594 
1595   // The opcodes must be the same. Use a new name to make that clear.
1596   BinaryOperator::BinaryOps BOpc = Opc0;
1597 
1598   // Select the constant elements needed for the single binop.
1599   ArrayRef<int> Mask = Shuf.getShuffleMask();
1600   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1601 
1602   // We are moving a binop after a shuffle. When a shuffle has an undefined
1603   // mask element, the result is undefined, but it is not poison or undefined
1604   // behavior. That is not necessarily true for div/rem/shift.
1605   bool MightCreatePoisonOrUB =
1606       is_contained(Mask, UndefMaskElem) &&
1607       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1608   if (MightCreatePoisonOrUB)
1609     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1610 
1611   Value *V;
1612   if (X == Y) {
1613     // Remove a binop and the shuffle by rearranging the constant:
1614     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1615     // shuffle (op C0, V), (op C1, V), M --> op C', V
1616     V = X;
1617   } else {
1618     // If there are 2 different variable operands, we must create a new shuffle
1619     // (select) first, so check uses to ensure that we don't end up with more
1620     // instructions than we started with.
1621     if (!B0->hasOneUse() && !B1->hasOneUse())
1622       return nullptr;
1623 
1624     // If we use the original shuffle mask and op1 is *variable*, we would be
1625     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1626     // poison. We do not have to guard against UB when *constants* are op1
1627     // because safe constants guarantee that we do not overflow sdiv/srem (and
1628     // there's no danger for other opcodes).
1629     // TODO: To allow this case, create a new shuffle mask with no undefs.
1630     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1631       return nullptr;
1632 
1633     // Note: In general, we do not create new shuffles in InstCombine because we
1634     // do not know if a target can lower an arbitrary shuffle optimally. In this
1635     // case, the shuffle uses the existing mask, so there is no additional risk.
1636 
1637     // Select the variable vectors first, then perform the binop:
1638     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1639     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1640     V = Builder.CreateShuffleVector(X, Y, Mask);
1641   }
1642 
1643   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1644                                          BinaryOperator::Create(BOpc, NewC, V);
1645 
1646   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1647   // 1. If we changed an opcode, poison conditions might have changed.
1648   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1649   //    where the original code did not. But if we already made a safe constant,
1650   //    then there's no danger.
1651   NewBO->copyIRFlags(B0);
1652   NewBO->andIRFlags(B1);
1653   if (DropNSW)
1654     NewBO->setHasNoSignedWrap(false);
1655   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1656     NewBO->dropPoisonGeneratingFlags();
1657   return NewBO;
1658 }
1659 
1660 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
1661 /// Example (little endian):
1662 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
1663 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
1664                                      bool IsBigEndian) {
1665   // This must be a bitcasted shuffle of 1 vector integer operand.
1666   Type *DestType = Shuf.getType();
1667   Value *X;
1668   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
1669       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
1670     return nullptr;
1671 
1672   // The source type must have the same number of elements as the shuffle,
1673   // and the source element type must be larger than the shuffle element type.
1674   Type *SrcType = X->getType();
1675   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
1676       SrcType->getVectorNumElements() != DestType->getVectorNumElements() ||
1677       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
1678     return nullptr;
1679 
1680   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
1681          "Expected a shuffle that decreases length");
1682 
1683   // Last, check that the mask chooses the correct low bits for each narrow
1684   // element in the result.
1685   uint64_t TruncRatio =
1686       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
1687   ArrayRef<int> Mask = Shuf.getShuffleMask();
1688   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1689     if (Mask[i] == UndefMaskElem)
1690       continue;
1691     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
1692     assert(LSBIndex <= std::numeric_limits<int32_t>::max() &&
1693            "Overflowed 32-bits");
1694     if (Mask[i] != (int)LSBIndex)
1695       return nullptr;
1696   }
1697 
1698   return new TruncInst(X, DestType);
1699 }
1700 
1701 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1702 /// narrowing (concatenating with undef and extracting back to the original
1703 /// length). This allows replacing the wide select with a narrow select.
1704 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1705                                        InstCombiner::BuilderTy &Builder) {
1706   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1707   // of the 1st vector operand of a shuffle.
1708   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1709     return nullptr;
1710 
1711   // The vector being shuffled must be a vector select that we can eliminate.
1712   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1713   Value *Cond, *X, *Y;
1714   if (!match(Shuf.getOperand(0),
1715              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1716     return nullptr;
1717 
1718   // We need a narrow condition value. It must be extended with undef elements
1719   // and have the same number of elements as this shuffle.
1720   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1721   Value *NarrowCond;
1722   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) ||
1723       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1724       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1725     return nullptr;
1726 
1727   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1728   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1729   Value *Undef = UndefValue::get(X->getType());
1730   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask());
1731   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask());
1732   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1733 }
1734 
1735 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1736 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1737   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1738   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1739     return nullptr;
1740 
1741   Value *X, *Y;
1742   ArrayRef<int> Mask;
1743   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask))))
1744     return nullptr;
1745 
1746   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1747   // then combining may result in worse codegen.
1748   if (!Op0->hasOneUse())
1749     return nullptr;
1750 
1751   // We are extracting a subvector from a shuffle. Remove excess elements from
1752   // the 1st shuffle mask to eliminate the extract.
1753   //
1754   // This transform is conservatively limited to identity extracts because we do
1755   // not allow arbitrary shuffle mask creation as a target-independent transform
1756   // (because we can't guarantee that will lower efficiently).
1757   //
1758   // If the extracting shuffle has an undef mask element, it transfers to the
1759   // new shuffle mask. Otherwise, copy the original mask element. Example:
1760   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1761   //   shuf X, Y, <C0, undef, C2, undef>
1762   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1763   SmallVector<int, 16> NewMask(NumElts);
1764   assert(NumElts < Mask.size() &&
1765          "Identity with extract must have less elements than its inputs");
1766 
1767   for (unsigned i = 0; i != NumElts; ++i) {
1768     int ExtractMaskElt = Shuf.getMaskValue(i);
1769     int MaskElt = Mask[i];
1770     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
1771   }
1772   return new ShuffleVectorInst(X, Y, NewMask);
1773 }
1774 
1775 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
1776 /// operand with the operand of an insertelement.
1777 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
1778                                           InstCombiner &IC) {
1779   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1780   SmallVector<int, 16> Mask;
1781   Shuf.getShuffleMask(Mask);
1782 
1783   // The shuffle must not change vector sizes.
1784   // TODO: This restriction could be removed if the insert has only one use
1785   //       (because the transform would require a new length-changing shuffle).
1786   int NumElts = Mask.size();
1787   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1788     return nullptr;
1789 
1790   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1791   // not be able to handle it there if the insertelement has >1 use.
1792   // If the shuffle has an insertelement operand but does not choose the
1793   // inserted scalar element from that value, then we can replace that shuffle
1794   // operand with the source vector of the insertelement.
1795   Value *X;
1796   uint64_t IdxC;
1797   if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1798     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1799     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1800       return IC.replaceOperand(Shuf, 0, X);
1801   }
1802   if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1803     // Offset the index constant by the vector width because we are checking for
1804     // accesses to the 2nd vector input of the shuffle.
1805     IdxC += NumElts;
1806     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1807     if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; }))
1808       return IC.replaceOperand(Shuf, 1, X);
1809   }
1810 
1811   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1812   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1813     // We need an insertelement with a constant index.
1814     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1815                                    m_ConstantInt(IndexC))))
1816       return false;
1817 
1818     // Test the shuffle mask to see if it splices the inserted scalar into the
1819     // operand 1 vector of the shuffle.
1820     int NewInsIndex = -1;
1821     for (int i = 0; i != NumElts; ++i) {
1822       // Ignore undef mask elements.
1823       if (Mask[i] == -1)
1824         continue;
1825 
1826       // The shuffle takes elements of operand 1 without lane changes.
1827       if (Mask[i] == NumElts + i)
1828         continue;
1829 
1830       // The shuffle must choose the inserted scalar exactly once.
1831       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1832         return false;
1833 
1834       // The shuffle is placing the inserted scalar into element i.
1835       NewInsIndex = i;
1836     }
1837 
1838     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1839 
1840     // Index is updated to the potentially translated insertion lane.
1841     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1842     return true;
1843   };
1844 
1845   // If the shuffle is unnecessary, insert the scalar operand directly into
1846   // operand 1 of the shuffle. Example:
1847   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1848   Value *Scalar;
1849   ConstantInt *IndexC;
1850   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1851     return InsertElementInst::Create(V1, Scalar, IndexC);
1852 
1853   // Try again after commuting shuffle. Example:
1854   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1855   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1856   std::swap(V0, V1);
1857   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1858   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1859     return InsertElementInst::Create(V1, Scalar, IndexC);
1860 
1861   return nullptr;
1862 }
1863 
1864 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1865   // Match the operands as identity with padding (also known as concatenation
1866   // with undef) shuffles of the same source type. The backend is expected to
1867   // recreate these concatenations from a shuffle of narrow operands.
1868   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1869   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1870   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1871       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1872     return nullptr;
1873 
1874   // We limit this transform to power-of-2 types because we expect that the
1875   // backend can convert the simplified IR patterns to identical nodes as the
1876   // original IR.
1877   // TODO: If we can verify the same behavior for arbitrary types, the
1878   //       power-of-2 checks can be removed.
1879   Value *X = Shuffle0->getOperand(0);
1880   Value *Y = Shuffle1->getOperand(0);
1881   if (X->getType() != Y->getType() ||
1882       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1883       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1884       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1885       isa<UndefValue>(X) || isa<UndefValue>(Y))
1886     return nullptr;
1887   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1888          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1889          "Unexpected operand for identity shuffle");
1890 
1891   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1892   // operands directly by adjusting the shuffle mask to account for the narrower
1893   // types:
1894   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1895   int NarrowElts = X->getType()->getVectorNumElements();
1896   int WideElts = Shuffle0->getType()->getVectorNumElements();
1897   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1898 
1899   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1900   ArrayRef<int> Mask = Shuf.getShuffleMask();
1901   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1902   for (int i = 0, e = Mask.size(); i != e; ++i) {
1903     if (Mask[i] == -1)
1904       continue;
1905 
1906     // If this shuffle is choosing an undef element from 1 of the sources, that
1907     // element is undef.
1908     if (Mask[i] < WideElts) {
1909       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1910         continue;
1911     } else {
1912       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1913         continue;
1914     }
1915 
1916     // If this shuffle is choosing from the 1st narrow op, the mask element is
1917     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1918     // element is offset down to adjust for the narrow vector widths.
1919     if (Mask[i] < WideElts) {
1920       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1921       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1922     } else {
1923       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1924       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1925     }
1926   }
1927   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1928 }
1929 
1930 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1931   Value *LHS = SVI.getOperand(0);
1932   Value *RHS = SVI.getOperand(1);
1933   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
1934   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
1935                                           SVI.getType(), ShufQuery))
1936     return replaceInstUsesWith(SVI, V);
1937 
1938   // shuffle x, x, mask --> shuffle x, undef, mask'
1939   unsigned VWidth = SVI.getType()->getVectorNumElements();
1940   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1941   ArrayRef<int> Mask = SVI.getShuffleMask();
1942   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1943 
1944   // Peek through a bitcasted shuffle operand by scaling the mask. If the
1945   // simulated shuffle can simplify, then this shuffle is unnecessary:
1946   // shuf (bitcast X), undef, Mask --> bitcast X'
1947   // TODO: This could be extended to allow length-changing shuffles and/or casts
1948   //       to narrower elements. The transform might also be obsoleted if we
1949   //       allowed canonicalization of bitcasted shuffles.
1950   Value *X;
1951   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
1952       X->getType()->isVectorTy() && VWidth == LHSWidth &&
1953       X->getType()->getVectorNumElements() >= VWidth) {
1954     // Create the scaled mask constant.
1955     Type *XType = X->getType();
1956     unsigned XNumElts = XType->getVectorNumElements();
1957     assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
1958     unsigned ScaleFactor = XNumElts / VWidth;
1959     SmallVector<int, 16> ScaledMask;
1960     scaleShuffleMask(ScaleFactor, Mask, ScaledMask);
1961 
1962     // If the shuffled source vector simplifies, cast that value to this
1963     // shuffle's type.
1964     if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
1965                                             ScaledMask, XType, ShufQuery))
1966       return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
1967   }
1968 
1969   if (LHS == RHS) {
1970     assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
1971     // Remap any references to RHS to use LHS.
1972     SmallVector<int, 16> Elts;
1973     for (unsigned i = 0; i != VWidth; ++i) {
1974       // Propagate undef elements or force mask to LHS.
1975       if (Mask[i] < 0)
1976         Elts.push_back(UndefMaskElem);
1977       else
1978         Elts.push_back(Mask[i] % LHSWidth);
1979     }
1980     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
1981   }
1982 
1983   // shuffle undef, x, mask --> shuffle x, undef, mask'
1984   if (isa<UndefValue>(LHS)) {
1985     SVI.commute();
1986     return &SVI;
1987   }
1988 
1989   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1990     return I;
1991 
1992   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1993     return I;
1994 
1995   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
1996     return I;
1997 
1998   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1999     return I;
2000 
2001   APInt UndefElts(VWidth, 0);
2002   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2003   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2004     if (V != &SVI)
2005       return replaceInstUsesWith(SVI, V);
2006     return &SVI;
2007   }
2008 
2009   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2010     return I;
2011 
2012   // These transforms have the potential to lose undef knowledge, so they are
2013   // intentionally placed after SimplifyDemandedVectorElts().
2014   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2015     return I;
2016   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2017     return I;
2018 
2019   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
2020     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2021     return replaceInstUsesWith(SVI, V);
2022   }
2023 
2024   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2025   // a non-vector type. We can instead bitcast the original vector followed by
2026   // an extract of the desired element:
2027   //
2028   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2029   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2030   //   %1 = bitcast <4 x i8> %sroa to i32
2031   // Becomes:
2032   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2033   //   %ext = extractelement <4 x i32> %bc, i32 0
2034   //
2035   // If the shuffle is extracting a contiguous range of values from the input
2036   // vector then each use which is a bitcast of the extracted size can be
2037   // replaced. This will work if the vector types are compatible, and the begin
2038   // index is aligned to a value in the casted vector type. If the begin index
2039   // isn't aligned then we can shuffle the original vector (keeping the same
2040   // vector type) before extracting.
2041   //
2042   // This code will bail out if the target type is fundamentally incompatible
2043   // with vectors of the source type.
2044   //
2045   // Example of <16 x i8>, target type i32:
2046   // Index range [4,8):         v-----------v Will work.
2047   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2048   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2049   //     <4 x i32>: |           |           |           |           |
2050   //                +-----------+-----------+-----------+-----------+
2051   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2052   // Target type i40:           ^--------------^ Won't work, bail.
2053   bool MadeChange = false;
2054   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2055     Value *V = LHS;
2056     unsigned MaskElems = Mask.size();
2057     VectorType *SrcTy = cast<VectorType>(V->getType());
2058     unsigned VecBitWidth = SrcTy->getBitWidth();
2059     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2060     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2061     unsigned SrcNumElems = SrcTy->getNumElements();
2062     SmallVector<BitCastInst *, 8> BCs;
2063     DenseMap<Type *, Value *> NewBCs;
2064     for (User *U : SVI.users())
2065       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2066         if (!BC->use_empty())
2067           // Only visit bitcasts that weren't previously handled.
2068           BCs.push_back(BC);
2069     for (BitCastInst *BC : BCs) {
2070       unsigned BegIdx = Mask.front();
2071       Type *TgtTy = BC->getDestTy();
2072       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2073       if (!TgtElemBitWidth)
2074         continue;
2075       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2076       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2077       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2078       if (!VecBitWidthsEqual)
2079         continue;
2080       if (!VectorType::isValidElementType(TgtTy))
2081         continue;
2082       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2083       if (!BegIsAligned) {
2084         // Shuffle the input so [0,NumElements) contains the output, and
2085         // [NumElems,SrcNumElems) is undef.
2086         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2087                                                 UndefValue::get(Int32Ty));
2088         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2089           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2090         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2091                                         ConstantVector::get(ShuffleMask),
2092                                         SVI.getName() + ".extract");
2093         BegIdx = 0;
2094       }
2095       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2096       assert(SrcElemsPerTgtElem);
2097       BegIdx /= SrcElemsPerTgtElem;
2098       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2099       auto *NewBC =
2100           BCAlreadyExists
2101               ? NewBCs[CastSrcTy]
2102               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2103       if (!BCAlreadyExists)
2104         NewBCs[CastSrcTy] = NewBC;
2105       auto *Ext = Builder.CreateExtractElement(
2106           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2107       // The shufflevector isn't being replaced: the bitcast that used it
2108       // is. InstCombine will visit the newly-created instructions.
2109       replaceInstUsesWith(*BC, Ext);
2110       MadeChange = true;
2111     }
2112   }
2113 
2114   // If the LHS is a shufflevector itself, see if we can combine it with this
2115   // one without producing an unusual shuffle.
2116   // Cases that might be simplified:
2117   // 1.
2118   // x1=shuffle(v1,v2,mask1)
2119   //  x=shuffle(x1,undef,mask)
2120   //        ==>
2121   //  x=shuffle(v1,undef,newMask)
2122   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2123   // 2.
2124   // x1=shuffle(v1,undef,mask1)
2125   //  x=shuffle(x1,x2,mask)
2126   // where v1.size() == mask1.size()
2127   //        ==>
2128   //  x=shuffle(v1,x2,newMask)
2129   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2130   // 3.
2131   // x2=shuffle(v2,undef,mask2)
2132   //  x=shuffle(x1,x2,mask)
2133   // where v2.size() == mask2.size()
2134   //        ==>
2135   //  x=shuffle(x1,v2,newMask)
2136   // newMask[i] = (mask[i] < x1.size())
2137   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2138   // 4.
2139   // x1=shuffle(v1,undef,mask1)
2140   // x2=shuffle(v2,undef,mask2)
2141   //  x=shuffle(x1,x2,mask)
2142   // where v1.size() == v2.size()
2143   //        ==>
2144   //  x=shuffle(v1,v2,newMask)
2145   // newMask[i] = (mask[i] < x1.size())
2146   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2147   //
2148   // Here we are really conservative:
2149   // we are absolutely afraid of producing a shuffle mask not in the input
2150   // program, because the code gen may not be smart enough to turn a merged
2151   // shuffle into two specific shuffles: it may produce worse code.  As such,
2152   // we only merge two shuffles if the result is either a splat or one of the
2153   // input shuffle masks.  In this case, merging the shuffles just removes
2154   // one instruction, which we know is safe.  This is good for things like
2155   // turning: (splat(splat)) -> splat, or
2156   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2157   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2158   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2159   if (LHSShuffle)
2160     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2161       LHSShuffle = nullptr;
2162   if (RHSShuffle)
2163     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2164       RHSShuffle = nullptr;
2165   if (!LHSShuffle && !RHSShuffle)
2166     return MadeChange ? &SVI : nullptr;
2167 
2168   Value* LHSOp0 = nullptr;
2169   Value* LHSOp1 = nullptr;
2170   Value* RHSOp0 = nullptr;
2171   unsigned LHSOp0Width = 0;
2172   unsigned RHSOp0Width = 0;
2173   if (LHSShuffle) {
2174     LHSOp0 = LHSShuffle->getOperand(0);
2175     LHSOp1 = LHSShuffle->getOperand(1);
2176     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2177   }
2178   if (RHSShuffle) {
2179     RHSOp0 = RHSShuffle->getOperand(0);
2180     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2181   }
2182   Value* newLHS = LHS;
2183   Value* newRHS = RHS;
2184   if (LHSShuffle) {
2185     // case 1
2186     if (isa<UndefValue>(RHS)) {
2187       newLHS = LHSOp0;
2188       newRHS = LHSOp1;
2189     }
2190     // case 2 or 4
2191     else if (LHSOp0Width == LHSWidth) {
2192       newLHS = LHSOp0;
2193     }
2194   }
2195   // case 3 or 4
2196   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2197     newRHS = RHSOp0;
2198   }
2199   // case 4
2200   if (LHSOp0 == RHSOp0) {
2201     newLHS = LHSOp0;
2202     newRHS = nullptr;
2203   }
2204 
2205   if (newLHS == LHS && newRHS == RHS)
2206     return MadeChange ? &SVI : nullptr;
2207 
2208   ArrayRef<int> LHSMask;
2209   ArrayRef<int> RHSMask;
2210   if (newLHS != LHS)
2211     LHSMask = LHSShuffle->getShuffleMask();
2212   if (RHSShuffle && newRHS != RHS)
2213     RHSMask = RHSShuffle->getShuffleMask();
2214 
2215   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2216   SmallVector<int, 16> newMask;
2217   bool isSplat = true;
2218   int SplatElt = -1;
2219   // Create a new mask for the new ShuffleVectorInst so that the new
2220   // ShuffleVectorInst is equivalent to the original one.
2221   for (unsigned i = 0; i < VWidth; ++i) {
2222     int eltMask;
2223     if (Mask[i] < 0) {
2224       // This element is an undef value.
2225       eltMask = -1;
2226     } else if (Mask[i] < (int)LHSWidth) {
2227       // This element is from left hand side vector operand.
2228       //
2229       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2230       // new mask value for the element.
2231       if (newLHS != LHS) {
2232         eltMask = LHSMask[Mask[i]];
2233         // If the value selected is an undef value, explicitly specify it
2234         // with a -1 mask value.
2235         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2236           eltMask = -1;
2237       } else
2238         eltMask = Mask[i];
2239     } else {
2240       // This element is from right hand side vector operand
2241       //
2242       // If the value selected is an undef value, explicitly specify it
2243       // with a -1 mask value. (case 1)
2244       if (isa<UndefValue>(RHS))
2245         eltMask = -1;
2246       // If RHS is going to be replaced (case 3 or 4), calculate the
2247       // new mask value for the element.
2248       else if (newRHS != RHS) {
2249         eltMask = RHSMask[Mask[i]-LHSWidth];
2250         // If the value selected is an undef value, explicitly specify it
2251         // with a -1 mask value.
2252         if (eltMask >= (int)RHSOp0Width) {
2253           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2254                  && "should have been check above");
2255           eltMask = -1;
2256         }
2257       } else
2258         eltMask = Mask[i]-LHSWidth;
2259 
2260       // If LHS's width is changed, shift the mask value accordingly.
2261       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2262       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2263       // If newRHS == newLHS, we want to remap any references from newRHS to
2264       // newLHS so that we can properly identify splats that may occur due to
2265       // obfuscation across the two vectors.
2266       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2267         eltMask += newLHSWidth;
2268     }
2269 
2270     // Check if this could still be a splat.
2271     if (eltMask >= 0) {
2272       if (SplatElt >= 0 && SplatElt != eltMask)
2273         isSplat = false;
2274       SplatElt = eltMask;
2275     }
2276 
2277     newMask.push_back(eltMask);
2278   }
2279 
2280   // If the result mask is equal to one of the original shuffle masks,
2281   // or is a splat, do the replacement.
2282   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2283     SmallVector<Constant*, 16> Elts;
2284     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2285       if (newMask[i] < 0) {
2286         Elts.push_back(UndefValue::get(Int32Ty));
2287       } else {
2288         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2289       }
2290     }
2291     if (!newRHS)
2292       newRHS = UndefValue::get(newLHS->getType());
2293     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2294   }
2295 
2296   return MadeChange ? &SVI : nullptr;
2297 }
2298