1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
39 #include "llvm/Transforms/InstCombine/InstCombiner.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 STATISTIC(NumAggregateReconstructionsSimplified,
51           "Number of aggregate reconstructions turned into reuse of the "
52           "original aggregate");
53 
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
56 /// one known element from a vector constant.
57 ///
58 /// FIXME: It's possible to create more instructions than previously existed.
59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
60   // If we can pick a scalar constant value out of a vector, that is free.
61   if (auto *C = dyn_cast<Constant>(V))
62     return IsConstantExtractIndex || C->getSplatValue();
63 
64   // An insertelement to the same constant index as our extract will simplify
65   // to the scalar inserted element. An insertelement to a different constant
66   // index is irrelevant to our extract.
67   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
68     return IsConstantExtractIndex;
69 
70   if (match(V, m_OneUse(m_Load(m_Value()))))
71     return true;
72 
73   if (match(V, m_OneUse(m_UnOp())))
74     return true;
75 
76   Value *V0, *V1;
77   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
78     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
79         cheapToScalarize(V1, IsConstantExtractIndex))
80       return true;
81 
82   CmpInst::Predicate UnusedPred;
83   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
84     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
85         cheapToScalarize(V1, IsConstantExtractIndex))
86       return true;
87 
88   return false;
89 }
90 
91 // If we have a PHI node with a vector type that is only used to feed
92 // itself and be an operand of extractelement at a constant location,
93 // try to replace the PHI of the vector type with a PHI of a scalar type.
94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
95                                             PHINode *PN) {
96   SmallVector<Instruction *, 2> Extracts;
97   // The users we want the PHI to have are:
98   // 1) The EI ExtractElement (we already know this)
99   // 2) Possibly more ExtractElements with the same index.
100   // 3) Another operand, which will feed back into the PHI.
101   Instruction *PHIUser = nullptr;
102   for (auto U : PN->users()) {
103     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
104       if (EI.getIndexOperand() == EU->getIndexOperand())
105         Extracts.push_back(EU);
106       else
107         return nullptr;
108     } else if (!PHIUser) {
109       PHIUser = cast<Instruction>(U);
110     } else {
111       return nullptr;
112     }
113   }
114 
115   if (!PHIUser)
116     return nullptr;
117 
118   // Verify that this PHI user has one use, which is the PHI itself,
119   // and that it is a binary operation which is cheap to scalarize.
120   // otherwise return nullptr.
121   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
122       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
123     return nullptr;
124 
125   // Create a scalar PHI node that will replace the vector PHI node
126   // just before the current PHI node.
127   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
128       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
129   // Scalarize each PHI operand.
130   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
131     Value *PHIInVal = PN->getIncomingValue(i);
132     BasicBlock *inBB = PN->getIncomingBlock(i);
133     Value *Elt = EI.getIndexOperand();
134     // If the operand is the PHI induction variable:
135     if (PHIInVal == PHIUser) {
136       // Scalarize the binary operation. Its first operand is the
137       // scalar PHI, and the second operand is extracted from the other
138       // vector operand.
139       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
140       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
141       Value *Op = InsertNewInstWith(
142           ExtractElementInst::Create(B0->getOperand(opId), Elt,
143                                      B0->getOperand(opId)->getName() + ".Elt"),
144           *B0);
145       Value *newPHIUser = InsertNewInstWith(
146           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
147                                                 scalarPHI, Op, B0), *B0);
148       scalarPHI->addIncoming(newPHIUser, inBB);
149     } else {
150       // Scalarize PHI input:
151       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
152       // Insert the new instruction into the predecessor basic block.
153       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
154       BasicBlock::iterator InsertPos;
155       if (pos && !isa<PHINode>(pos)) {
156         InsertPos = ++pos->getIterator();
157       } else {
158         InsertPos = inBB->getFirstInsertionPt();
159       }
160 
161       InsertNewInstWith(newEI, *InsertPos);
162 
163       scalarPHI->addIncoming(newEI, inBB);
164     }
165   }
166 
167   for (auto E : Extracts)
168     replaceInstUsesWith(*E, scalarPHI);
169 
170   return &EI;
171 }
172 
173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
174                                       InstCombiner::BuilderTy &Builder,
175                                       bool IsBigEndian) {
176   Value *X;
177   uint64_t ExtIndexC;
178   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
179       !X->getType()->isVectorTy() ||
180       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
181     return nullptr;
182 
183   // If this extractelement is using a bitcast from a vector of the same number
184   // of elements, see if we can find the source element from the source vector:
185   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
186   auto *SrcTy = cast<VectorType>(X->getType());
187   Type *DestTy = Ext.getType();
188   ElementCount NumSrcElts = SrcTy->getElementCount();
189   ElementCount NumElts =
190       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
191   if (NumSrcElts == NumElts)
192     if (Value *Elt = findScalarElement(X, ExtIndexC))
193       return new BitCastInst(Elt, DestTy);
194 
195   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
196          "Src and Dst must be the same sort of vector type");
197 
198   // If the source elements are wider than the destination, try to shift and
199   // truncate a subset of scalar bits of an insert op.
200   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
201     Value *Scalar;
202     uint64_t InsIndexC;
203     if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
204                               m_ConstantInt(InsIndexC))))
205       return nullptr;
206 
207     // The extract must be from the subset of vector elements that we inserted
208     // into. Example: if we inserted element 1 of a <2 x i64> and we are
209     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
210     // of elements 4-7 of the bitcasted vector.
211     unsigned NarrowingRatio =
212         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
213     if (ExtIndexC / NarrowingRatio != InsIndexC)
214       return nullptr;
215 
216     // We are extracting part of the original scalar. How that scalar is
217     // inserted into the vector depends on the endian-ness. Example:
218     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
219     //                                       +--+--+--+--+--+--+--+--+
220     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
221     // extelt <4 x i16> V', 3:               |                 |S2|S3|
222     //                                       +--+--+--+--+--+--+--+--+
223     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
224     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
225     // In this example, we must right-shift little-endian. Big-endian is just a
226     // truncate.
227     unsigned Chunk = ExtIndexC % NarrowingRatio;
228     if (IsBigEndian)
229       Chunk = NarrowingRatio - 1 - Chunk;
230 
231     // Bail out if this is an FP vector to FP vector sequence. That would take
232     // more instructions than we started with unless there is no shift, and it
233     // may not be handled as well in the backend.
234     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
235     bool NeedDestBitcast = DestTy->isFloatingPointTy();
236     if (NeedSrcBitcast && NeedDestBitcast)
237       return nullptr;
238 
239     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
240     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
241     unsigned ShAmt = Chunk * DestWidth;
242 
243     // TODO: This limitation is more strict than necessary. We could sum the
244     // number of new instructions and subtract the number eliminated to know if
245     // we can proceed.
246     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
247       if (NeedSrcBitcast || NeedDestBitcast)
248         return nullptr;
249 
250     if (NeedSrcBitcast) {
251       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
252       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
253     }
254 
255     if (ShAmt) {
256       // Bail out if we could end with more instructions than we started with.
257       if (!Ext.getVectorOperand()->hasOneUse())
258         return nullptr;
259       Scalar = Builder.CreateLShr(Scalar, ShAmt);
260     }
261 
262     if (NeedDestBitcast) {
263       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
264       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
265     }
266     return new TruncInst(Scalar, DestTy);
267   }
268 
269   return nullptr;
270 }
271 
272 /// Find elements of V demanded by UserInstr.
273 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
274   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
275 
276   // Conservatively assume that all elements are needed.
277   APInt UsedElts(APInt::getAllOnesValue(VWidth));
278 
279   switch (UserInstr->getOpcode()) {
280   case Instruction::ExtractElement: {
281     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
282     assert(EEI->getVectorOperand() == V);
283     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
284     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
285       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
286     }
287     break;
288   }
289   case Instruction::ShuffleVector: {
290     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
291     unsigned MaskNumElts =
292         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
293 
294     UsedElts = APInt(VWidth, 0);
295     for (unsigned i = 0; i < MaskNumElts; i++) {
296       unsigned MaskVal = Shuffle->getMaskValue(i);
297       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
298         continue;
299       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
300         UsedElts.setBit(MaskVal);
301       if (Shuffle->getOperand(1) == V &&
302           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
303         UsedElts.setBit(MaskVal - VWidth);
304     }
305     break;
306   }
307   default:
308     break;
309   }
310   return UsedElts;
311 }
312 
313 /// Find union of elements of V demanded by all its users.
314 /// If it is known by querying findDemandedEltsBySingleUser that
315 /// no user demands an element of V, then the corresponding bit
316 /// remains unset in the returned value.
317 static APInt findDemandedEltsByAllUsers(Value *V) {
318   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
319 
320   APInt UnionUsedElts(VWidth, 0);
321   for (const Use &U : V->uses()) {
322     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
323       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
324     } else {
325       UnionUsedElts = APInt::getAllOnesValue(VWidth);
326       break;
327     }
328 
329     if (UnionUsedElts.isAllOnesValue())
330       break;
331   }
332 
333   return UnionUsedElts;
334 }
335 
336 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
337   Value *SrcVec = EI.getVectorOperand();
338   Value *Index = EI.getIndexOperand();
339   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
340                                             SQ.getWithInstruction(&EI)))
341     return replaceInstUsesWith(EI, V);
342 
343   // If extracting a specified index from the vector, see if we can recursively
344   // find a previously computed scalar that was inserted into the vector.
345   auto *IndexC = dyn_cast<ConstantInt>(Index);
346   if (IndexC) {
347     ElementCount EC = EI.getVectorOperandType()->getElementCount();
348     unsigned NumElts = EC.getKnownMinValue();
349 
350     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
351       Intrinsic::ID IID = II->getIntrinsicID();
352       // Index needs to be lower than the minimum size of the vector, because
353       // for scalable vector, the vector size is known at run time.
354       if (IID == Intrinsic::experimental_stepvector &&
355           IndexC->getValue().ult(NumElts)) {
356         Type *Ty = EI.getType();
357         unsigned BitWidth = Ty->getIntegerBitWidth();
358         Value *Idx;
359         // Return index when its value does not exceed the allowed limit
360         // for the element type of the vector, otherwise return undefined.
361         if (IndexC->getValue().getActiveBits() <= BitWidth)
362           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
363         else
364           Idx = UndefValue::get(Ty);
365         return replaceInstUsesWith(EI, Idx);
366       }
367     }
368     // InstSimplify should handle cases where the index is invalid.
369     // For fixed-length vector, it's invalid to extract out-of-range element.
370     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
371       return nullptr;
372 
373     // This instruction only demands the single element from the input vector.
374     // Skip for scalable type, the number of elements is unknown at
375     // compile-time.
376     if (!EC.isScalable() && NumElts != 1) {
377       // If the input vector has a single use, simplify it based on this use
378       // property.
379       if (SrcVec->hasOneUse()) {
380         APInt UndefElts(NumElts, 0);
381         APInt DemandedElts(NumElts, 0);
382         DemandedElts.setBit(IndexC->getZExtValue());
383         if (Value *V =
384                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
385           return replaceOperand(EI, 0, V);
386       } else {
387         // If the input vector has multiple uses, simplify it based on a union
388         // of all elements used.
389         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
390         if (!DemandedElts.isAllOnesValue()) {
391           APInt UndefElts(NumElts, 0);
392           if (Value *V = SimplifyDemandedVectorElts(
393                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
394                   true /* AllowMultipleUsers */)) {
395             if (V != SrcVec) {
396               SrcVec->replaceAllUsesWith(V);
397               return &EI;
398             }
399           }
400         }
401       }
402     }
403     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
404       return I;
405 
406     // If there's a vector PHI feeding a scalar use through this extractelement
407     // instruction, try to scalarize the PHI.
408     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
409       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
410         return ScalarPHI;
411   }
412 
413   // TODO come up with a n-ary matcher that subsumes both unary and
414   // binary matchers.
415   UnaryOperator *UO;
416   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) {
417     // extelt (unop X), Index --> unop (extelt X, Index)
418     Value *X = UO->getOperand(0);
419     Value *E = Builder.CreateExtractElement(X, Index);
420     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
421   }
422 
423   BinaryOperator *BO;
424   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
425     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
426     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
427     Value *E0 = Builder.CreateExtractElement(X, Index);
428     Value *E1 = Builder.CreateExtractElement(Y, Index);
429     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
430   }
431 
432   Value *X, *Y;
433   CmpInst::Predicate Pred;
434   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
435       cheapToScalarize(SrcVec, IndexC)) {
436     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
437     Value *E0 = Builder.CreateExtractElement(X, Index);
438     Value *E1 = Builder.CreateExtractElement(Y, Index);
439     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
440   }
441 
442   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
443     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
444       // Extracting the inserted element?
445       if (IE->getOperand(2) == Index)
446         return replaceInstUsesWith(EI, IE->getOperand(1));
447       // If the inserted and extracted elements are constants, they must not
448       // be the same value, extract from the pre-inserted value instead.
449       if (isa<Constant>(IE->getOperand(2)) && IndexC)
450         return replaceOperand(EI, 0, IE->getOperand(0));
451     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
452       auto *VecType = cast<VectorType>(GEP->getType());
453       ElementCount EC = VecType->getElementCount();
454       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
455       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
456         // Find out why we have a vector result - these are a few examples:
457         //  1. We have a scalar pointer and a vector of indices, or
458         //  2. We have a vector of pointers and a scalar index, or
459         //  3. We have a vector of pointers and a vector of indices, etc.
460         // Here we only consider combining when there is exactly one vector
461         // operand, since the optimization is less obviously a win due to
462         // needing more than one extractelements.
463 
464         unsigned VectorOps =
465             llvm::count_if(GEP->operands(), [](const Value *V) {
466               return isa<VectorType>(V->getType());
467             });
468         if (VectorOps > 1)
469           return nullptr;
470         assert(VectorOps == 1 && "Expected exactly one vector GEP operand!");
471 
472         Value *NewPtr = GEP->getPointerOperand();
473         if (isa<VectorType>(NewPtr->getType()))
474           NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
475 
476         SmallVector<Value *> NewOps;
477         for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
478           Value *Op = GEP->getOperand(I);
479           if (isa<VectorType>(Op->getType()))
480             NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
481           else
482             NewOps.push_back(Op);
483         }
484 
485         GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
486             cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr,
487             NewOps);
488         NewGEP->setIsInBounds(GEP->isInBounds());
489         return NewGEP;
490       }
491       return nullptr;
492     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
493       // If this is extracting an element from a shufflevector, figure out where
494       // it came from and extract from the appropriate input element instead.
495       // Restrict the following transformation to fixed-length vector.
496       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
497         int SrcIdx =
498             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
499         Value *Src;
500         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
501                                 ->getNumElements();
502 
503         if (SrcIdx < 0)
504           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
505         if (SrcIdx < (int)LHSWidth)
506           Src = SVI->getOperand(0);
507         else {
508           SrcIdx -= LHSWidth;
509           Src = SVI->getOperand(1);
510         }
511         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
512         return ExtractElementInst::Create(
513             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
514       }
515     } else if (auto *CI = dyn_cast<CastInst>(I)) {
516       // Canonicalize extractelement(cast) -> cast(extractelement).
517       // Bitcasts can change the number of vector elements, and they cost
518       // nothing.
519       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
520         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
521         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
522       }
523     }
524   }
525   return nullptr;
526 }
527 
528 /// If V is a shuffle of values that ONLY returns elements from either LHS or
529 /// RHS, return the shuffle mask and true. Otherwise, return false.
530 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
531                                          SmallVectorImpl<int> &Mask) {
532   assert(LHS->getType() == RHS->getType() &&
533          "Invalid CollectSingleShuffleElements");
534   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
535 
536   if (match(V, m_Undef())) {
537     Mask.assign(NumElts, -1);
538     return true;
539   }
540 
541   if (V == LHS) {
542     for (unsigned i = 0; i != NumElts; ++i)
543       Mask.push_back(i);
544     return true;
545   }
546 
547   if (V == RHS) {
548     for (unsigned i = 0; i != NumElts; ++i)
549       Mask.push_back(i + NumElts);
550     return true;
551   }
552 
553   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
554     // If this is an insert of an extract from some other vector, include it.
555     Value *VecOp    = IEI->getOperand(0);
556     Value *ScalarOp = IEI->getOperand(1);
557     Value *IdxOp    = IEI->getOperand(2);
558 
559     if (!isa<ConstantInt>(IdxOp))
560       return false;
561     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
562 
563     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
564       // We can handle this if the vector we are inserting into is
565       // transitively ok.
566       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
567         // If so, update the mask to reflect the inserted undef.
568         Mask[InsertedIdx] = -1;
569         return true;
570       }
571     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
572       if (isa<ConstantInt>(EI->getOperand(1))) {
573         unsigned ExtractedIdx =
574         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
575         unsigned NumLHSElts =
576             cast<FixedVectorType>(LHS->getType())->getNumElements();
577 
578         // This must be extracting from either LHS or RHS.
579         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
580           // We can handle this if the vector we are inserting into is
581           // transitively ok.
582           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
583             // If so, update the mask to reflect the inserted value.
584             if (EI->getOperand(0) == LHS) {
585               Mask[InsertedIdx % NumElts] = ExtractedIdx;
586             } else {
587               assert(EI->getOperand(0) == RHS);
588               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
589             }
590             return true;
591           }
592         }
593       }
594     }
595   }
596 
597   return false;
598 }
599 
600 /// If we have insertion into a vector that is wider than the vector that we
601 /// are extracting from, try to widen the source vector to allow a single
602 /// shufflevector to replace one or more insert/extract pairs.
603 static void replaceExtractElements(InsertElementInst *InsElt,
604                                    ExtractElementInst *ExtElt,
605                                    InstCombinerImpl &IC) {
606   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
607   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
608   unsigned NumInsElts = InsVecType->getNumElements();
609   unsigned NumExtElts = ExtVecType->getNumElements();
610 
611   // The inserted-to vector must be wider than the extracted-from vector.
612   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
613       NumExtElts >= NumInsElts)
614     return;
615 
616   // Create a shuffle mask to widen the extended-from vector using poison
617   // values. The mask selects all of the values of the original vector followed
618   // by as many poison values as needed to create a vector of the same length
619   // as the inserted-to vector.
620   SmallVector<int, 16> ExtendMask;
621   for (unsigned i = 0; i < NumExtElts; ++i)
622     ExtendMask.push_back(i);
623   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
624     ExtendMask.push_back(-1);
625 
626   Value *ExtVecOp = ExtElt->getVectorOperand();
627   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
628   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
629                                    ? ExtVecOpInst->getParent()
630                                    : ExtElt->getParent();
631 
632   // TODO: This restriction matches the basic block check below when creating
633   // new extractelement instructions. If that limitation is removed, this one
634   // could also be removed. But for now, we just bail out to ensure that we
635   // will replace the extractelement instruction that is feeding our
636   // insertelement instruction. This allows the insertelement to then be
637   // replaced by a shufflevector. If the insertelement is not replaced, we can
638   // induce infinite looping because there's an optimization for extractelement
639   // that will delete our widening shuffle. This would trigger another attempt
640   // here to create that shuffle, and we spin forever.
641   if (InsertionBlock != InsElt->getParent())
642     return;
643 
644   // TODO: This restriction matches the check in visitInsertElementInst() and
645   // prevents an infinite loop caused by not turning the extract/insert pair
646   // into a shuffle. We really should not need either check, but we're lacking
647   // folds for shufflevectors because we're afraid to generate shuffle masks
648   // that the backend can't handle.
649   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
650     return;
651 
652   auto *WideVec =
653       new ShuffleVectorInst(ExtVecOp, PoisonValue::get(ExtVecType), ExtendMask);
654 
655   // Insert the new shuffle after the vector operand of the extract is defined
656   // (as long as it's not a PHI) or at the start of the basic block of the
657   // extract, so any subsequent extracts in the same basic block can use it.
658   // TODO: Insert before the earliest ExtractElementInst that is replaced.
659   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
660     WideVec->insertAfter(ExtVecOpInst);
661   else
662     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
663 
664   // Replace extracts from the original narrow vector with extracts from the new
665   // wide vector.
666   for (User *U : ExtVecOp->users()) {
667     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
668     if (!OldExt || OldExt->getParent() != WideVec->getParent())
669       continue;
670     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
671     NewExt->insertAfter(OldExt);
672     IC.replaceInstUsesWith(*OldExt, NewExt);
673   }
674 }
675 
676 /// We are building a shuffle to create V, which is a sequence of insertelement,
677 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
678 /// not rely on the second vector source. Return a std::pair containing the
679 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
680 /// parameter as required.
681 ///
682 /// Note: we intentionally don't try to fold earlier shuffles since they have
683 /// often been chosen carefully to be efficiently implementable on the target.
684 using ShuffleOps = std::pair<Value *, Value *>;
685 
686 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
687                                          Value *PermittedRHS,
688                                          InstCombinerImpl &IC) {
689   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
690   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
691 
692   if (match(V, m_Undef())) {
693     Mask.assign(NumElts, -1);
694     return std::make_pair(
695         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
696   }
697 
698   if (isa<ConstantAggregateZero>(V)) {
699     Mask.assign(NumElts, 0);
700     return std::make_pair(V, nullptr);
701   }
702 
703   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
704     // If this is an insert of an extract from some other vector, include it.
705     Value *VecOp    = IEI->getOperand(0);
706     Value *ScalarOp = IEI->getOperand(1);
707     Value *IdxOp    = IEI->getOperand(2);
708 
709     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
710       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
711         unsigned ExtractedIdx =
712           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
713         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
714 
715         // Either the extracted from or inserted into vector must be RHSVec,
716         // otherwise we'd end up with a shuffle of three inputs.
717         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
718           Value *RHS = EI->getOperand(0);
719           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
720           assert(LR.second == nullptr || LR.second == RHS);
721 
722           if (LR.first->getType() != RHS->getType()) {
723             // Although we are giving up for now, see if we can create extracts
724             // that match the inserts for another round of combining.
725             replaceExtractElements(IEI, EI, IC);
726 
727             // We tried our best, but we can't find anything compatible with RHS
728             // further up the chain. Return a trivial shuffle.
729             for (unsigned i = 0; i < NumElts; ++i)
730               Mask[i] = i;
731             return std::make_pair(V, nullptr);
732           }
733 
734           unsigned NumLHSElts =
735               cast<FixedVectorType>(RHS->getType())->getNumElements();
736           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
737           return std::make_pair(LR.first, RHS);
738         }
739 
740         if (VecOp == PermittedRHS) {
741           // We've gone as far as we can: anything on the other side of the
742           // extractelement will already have been converted into a shuffle.
743           unsigned NumLHSElts =
744               cast<FixedVectorType>(EI->getOperand(0)->getType())
745                   ->getNumElements();
746           for (unsigned i = 0; i != NumElts; ++i)
747             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
748           return std::make_pair(EI->getOperand(0), PermittedRHS);
749         }
750 
751         // If this insertelement is a chain that comes from exactly these two
752         // vectors, return the vector and the effective shuffle.
753         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
754             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
755                                          Mask))
756           return std::make_pair(EI->getOperand(0), PermittedRHS);
757       }
758     }
759   }
760 
761   // Otherwise, we can't do anything fancy. Return an identity vector.
762   for (unsigned i = 0; i != NumElts; ++i)
763     Mask.push_back(i);
764   return std::make_pair(V, nullptr);
765 }
766 
767 /// Look for chain of insertvalue's that fully define an aggregate, and trace
768 /// back the values inserted, see if they are all were extractvalue'd from
769 /// the same source aggregate from the exact same element indexes.
770 /// If they were, just reuse the source aggregate.
771 /// This potentially deals with PHI indirections.
772 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
773     InsertValueInst &OrigIVI) {
774   Type *AggTy = OrigIVI.getType();
775   unsigned NumAggElts;
776   switch (AggTy->getTypeID()) {
777   case Type::StructTyID:
778     NumAggElts = AggTy->getStructNumElements();
779     break;
780   case Type::ArrayTyID:
781     NumAggElts = AggTy->getArrayNumElements();
782     break;
783   default:
784     llvm_unreachable("Unhandled aggregate type?");
785   }
786 
787   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
788   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
789   // FIXME: any interesting patterns to be caught with larger limit?
790   assert(NumAggElts > 0 && "Aggregate should have elements.");
791   if (NumAggElts > 2)
792     return nullptr;
793 
794   static constexpr auto NotFound = None;
795   static constexpr auto FoundMismatch = nullptr;
796 
797   // Try to find a value of each element of an aggregate.
798   // FIXME: deal with more complex, not one-dimensional, aggregate types
799   SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound);
800 
801   // Do we know values for each element of the aggregate?
802   auto KnowAllElts = [&AggElts]() {
803     return all_of(AggElts,
804                   [](Optional<Value *> Elt) { return Elt != NotFound; });
805   };
806 
807   int Depth = 0;
808 
809   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
810   // every element being overwritten twice, which should never happen.
811   static const int DepthLimit = 2 * NumAggElts;
812 
813   // Recurse up the chain of `insertvalue` aggregate operands until either we've
814   // reconstructed full initializer or can't visit any more `insertvalue`'s.
815   for (InsertValueInst *CurrIVI = &OrigIVI;
816        Depth < DepthLimit && CurrIVI && !KnowAllElts();
817        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
818                        ++Depth) {
819     Value *InsertedValue = CurrIVI->getInsertedValueOperand();
820     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
821 
822     // Don't bother with more than single-level aggregates.
823     if (Indices.size() != 1)
824       return nullptr; // FIXME: deal with more complex aggregates?
825 
826     // Now, we may have already previously recorded the value for this element
827     // of an aggregate. If we did, that means the CurrIVI will later be
828     // overwritten with the already-recorded value. But if not, let's record it!
829     Optional<Value *> &Elt = AggElts[Indices.front()];
830     Elt = Elt.getValueOr(InsertedValue);
831 
832     // FIXME: should we handle chain-terminating undef base operand?
833   }
834 
835   // Was that sufficient to deduce the full initializer for the aggregate?
836   if (!KnowAllElts())
837     return nullptr; // Give up then.
838 
839   // We now want to find the source[s] of the aggregate elements we've found.
840   // And with "source" we mean the original aggregate[s] from which
841   // the inserted elements were extracted. This may require PHI translation.
842 
843   enum class AggregateDescription {
844     /// When analyzing the value that was inserted into an aggregate, we did
845     /// not manage to find defining `extractvalue` instruction to analyze.
846     NotFound,
847     /// When analyzing the value that was inserted into an aggregate, we did
848     /// manage to find defining `extractvalue` instruction[s], and everything
849     /// matched perfectly - aggregate type, element insertion/extraction index.
850     Found,
851     /// When analyzing the value that was inserted into an aggregate, we did
852     /// manage to find defining `extractvalue` instruction, but there was
853     /// a mismatch: either the source type from which the extraction was didn't
854     /// match the aggregate type into which the insertion was,
855     /// or the extraction/insertion channels mismatched,
856     /// or different elements had different source aggregates.
857     FoundMismatch
858   };
859   auto Describe = [](Optional<Value *> SourceAggregate) {
860     if (SourceAggregate == NotFound)
861       return AggregateDescription::NotFound;
862     if (*SourceAggregate == FoundMismatch)
863       return AggregateDescription::FoundMismatch;
864     return AggregateDescription::Found;
865   };
866 
867   // Given the value \p Elt that was being inserted into element \p EltIdx of an
868   // aggregate AggTy, see if \p Elt was originally defined by an
869   // appropriate extractvalue (same element index, same aggregate type).
870   // If found, return the source aggregate from which the extraction was.
871   // If \p PredBB is provided, does PHI translation of an \p Elt first.
872   auto FindSourceAggregate =
873       [&](Value *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
874           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
875     // For now(?), only deal with, at most, a single level of PHI indirection.
876     if (UseBB && PredBB)
877       Elt = Elt->DoPHITranslation(*UseBB, *PredBB);
878     // FIXME: deal with multiple levels of PHI indirection?
879 
880     // Did we find an extraction?
881     auto *EVI = dyn_cast<ExtractValueInst>(Elt);
882     if (!EVI)
883       return NotFound;
884 
885     Value *SourceAggregate = EVI->getAggregateOperand();
886 
887     // Is the extraction from the same type into which the insertion was?
888     if (SourceAggregate->getType() != AggTy)
889       return FoundMismatch;
890     // And the element index doesn't change between extraction and insertion?
891     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
892       return FoundMismatch;
893 
894     return SourceAggregate; // AggregateDescription::Found
895   };
896 
897   // Given elements AggElts that were constructing an aggregate OrigIVI,
898   // see if we can find appropriate source aggregate for each of the elements,
899   // and see it's the same aggregate for each element. If so, return it.
900   auto FindCommonSourceAggregate =
901       [&](Optional<BasicBlock *> UseBB,
902           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
903     Optional<Value *> SourceAggregate;
904 
905     for (auto I : enumerate(AggElts)) {
906       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
907              "We don't store nullptr in SourceAggregate!");
908       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
909                  (I.index() != 0) &&
910              "SourceAggregate should be valid after the the first element,");
911 
912       // For this element, is there a plausible source aggregate?
913       // FIXME: we could special-case undef element, IFF we know that in the
914       //        source aggregate said element isn't poison.
915       Optional<Value *> SourceAggregateForElement =
916           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
917 
918       // Okay, what have we found? Does that correlate with previous findings?
919 
920       // Regardless of whether or not we have previously found source
921       // aggregate for previous elements (if any), if we didn't find one for
922       // this element, passthrough whatever we have just found.
923       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
924         return SourceAggregateForElement;
925 
926       // Okay, we have found source aggregate for this element.
927       // Let's see what we already know from previous elements, if any.
928       switch (Describe(SourceAggregate)) {
929       case AggregateDescription::NotFound:
930         // This is apparently the first element that we have examined.
931         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
932         continue; // Great, now look at next element.
933       case AggregateDescription::Found:
934         // We have previously already successfully examined other elements.
935         // Is this the same source aggregate we've found for other elements?
936         if (*SourceAggregateForElement != *SourceAggregate)
937           return FoundMismatch;
938         continue; // Still the same aggregate, look at next element.
939       case AggregateDescription::FoundMismatch:
940         llvm_unreachable("Can't happen. We would have early-exited then.");
941       };
942     }
943 
944     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
945            "Must be a valid Value");
946     return *SourceAggregate;
947   };
948 
949   Optional<Value *> SourceAggregate;
950 
951   // Can we find the source aggregate without looking at predecessors?
952   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
953   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
954     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
955       return nullptr; // Conflicting source aggregates!
956     ++NumAggregateReconstructionsSimplified;
957     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
958   }
959 
960   // Okay, apparently we need to look at predecessors.
961 
962   // We should be smart about picking the "use" basic block, which will be the
963   // merge point for aggregate, where we'll insert the final PHI that will be
964   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
965   // We should look in which blocks each of the AggElts is being defined,
966   // they all should be defined in the same basic block.
967   BasicBlock *UseBB = nullptr;
968 
969   for (const Optional<Value *> &Elt : AggElts) {
970     // If this element's value was not defined by an instruction, ignore it.
971     auto *I = dyn_cast<Instruction>(*Elt);
972     if (!I)
973       continue;
974     // Otherwise, in which basic block is this instruction located?
975     BasicBlock *BB = I->getParent();
976     // If it's the first instruction we've encountered, record the basic block.
977     if (!UseBB) {
978       UseBB = BB;
979       continue;
980     }
981     // Otherwise, this must be the same basic block we've seen previously.
982     if (UseBB != BB)
983       return nullptr;
984   }
985 
986   // If *all* of the elements are basic-block-independent, meaning they are
987   // either function arguments, or constant expressions, then if we didn't
988   // handle them without predecessor-aware handling, we won't handle them now.
989   if (!UseBB)
990     return nullptr;
991 
992   // If we didn't manage to find source aggregate without looking at
993   // predecessors, and there are no predecessors to look at, then we're done.
994   if (pred_empty(UseBB))
995     return nullptr;
996 
997   // Arbitrary predecessor count limit.
998   static const int PredCountLimit = 64;
999 
1000   // Cache the (non-uniqified!) list of predecessors in a vector,
1001   // checking the limit at the same time for efficiency.
1002   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1003   for (BasicBlock *Pred : predecessors(UseBB)) {
1004     // Don't bother if there are too many predecessors.
1005     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1006       return nullptr;
1007     Preds.emplace_back(Pred);
1008   }
1009 
1010   // For each predecessor, what is the source aggregate,
1011   // from which all the elements were originally extracted from?
1012   // Note that we want for the map to have stable iteration order!
1013   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1014   for (BasicBlock *Pred : Preds) {
1015     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1016         SourceAggregates.insert({Pred, nullptr});
1017     // Did we already evaluate this predecessor?
1018     if (!IV.second)
1019       continue;
1020 
1021     // Let's hope that when coming from predecessor Pred, all elements of the
1022     // aggregate produced by OrigIVI must have been originally extracted from
1023     // the same aggregate. Is that so? Can we find said original aggregate?
1024     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1025     if (Describe(SourceAggregate) != AggregateDescription::Found)
1026       return nullptr; // Give up.
1027     IV.first->second = *SourceAggregate;
1028   }
1029 
1030   // All good! Now we just need to thread the source aggregates here.
1031   // Note that we have to insert the new PHI here, ourselves, because we can't
1032   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1033   // Note that the same block can be a predecessor more than once,
1034   // and we need to preserve that invariant for the PHI node.
1035   BuilderTy::InsertPointGuard Guard(Builder);
1036   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1037   auto *PHI =
1038       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1039   for (BasicBlock *Pred : Preds)
1040     PHI->addIncoming(SourceAggregates[Pred], Pred);
1041 
1042   ++NumAggregateReconstructionsSimplified;
1043   return replaceInstUsesWith(OrigIVI, PHI);
1044 }
1045 
1046 /// Try to find redundant insertvalue instructions, like the following ones:
1047 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1048 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1049 /// Here the second instruction inserts values at the same indices, as the
1050 /// first one, making the first one redundant.
1051 /// It should be transformed to:
1052 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1053 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1054   bool IsRedundant = false;
1055   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1056 
1057   // If there is a chain of insertvalue instructions (each of them except the
1058   // last one has only one use and it's another insertvalue insn from this
1059   // chain), check if any of the 'children' uses the same indices as the first
1060   // instruction. In this case, the first one is redundant.
1061   Value *V = &I;
1062   unsigned Depth = 0;
1063   while (V->hasOneUse() && Depth < 10) {
1064     User *U = V->user_back();
1065     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1066     if (!UserInsInst || U->getOperand(0) != V)
1067       break;
1068     if (UserInsInst->getIndices() == FirstIndices) {
1069       IsRedundant = true;
1070       break;
1071     }
1072     V = UserInsInst;
1073     Depth++;
1074   }
1075 
1076   if (IsRedundant)
1077     return replaceInstUsesWith(I, I.getOperand(0));
1078 
1079   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1080     return NewI;
1081 
1082   return nullptr;
1083 }
1084 
1085 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1086   // Can not analyze scalable type, the number of elements is not a compile-time
1087   // constant.
1088   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1089     return false;
1090 
1091   int MaskSize = Shuf.getShuffleMask().size();
1092   int VecSize =
1093       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1094 
1095   // A vector select does not change the size of the operands.
1096   if (MaskSize != VecSize)
1097     return false;
1098 
1099   // Each mask element must be undefined or choose a vector element from one of
1100   // the source operands without crossing vector lanes.
1101   for (int i = 0; i != MaskSize; ++i) {
1102     int Elt = Shuf.getMaskValue(i);
1103     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1104       return false;
1105   }
1106 
1107   return true;
1108 }
1109 
1110 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1111 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1112 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1113 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1114   // We are interested in the last insert in a chain. So if this insert has a
1115   // single user and that user is an insert, bail.
1116   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1117     return nullptr;
1118 
1119   VectorType *VecTy = InsElt.getType();
1120   // Can not handle scalable type, the number of elements is not a compile-time
1121   // constant.
1122   if (isa<ScalableVectorType>(VecTy))
1123     return nullptr;
1124   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1125 
1126   // Do not try to do this for a one-element vector, since that's a nop,
1127   // and will cause an inf-loop.
1128   if (NumElements == 1)
1129     return nullptr;
1130 
1131   Value *SplatVal = InsElt.getOperand(1);
1132   InsertElementInst *CurrIE = &InsElt;
1133   SmallBitVector ElementPresent(NumElements, false);
1134   InsertElementInst *FirstIE = nullptr;
1135 
1136   // Walk the chain backwards, keeping track of which indices we inserted into,
1137   // until we hit something that isn't an insert of the splatted value.
1138   while (CurrIE) {
1139     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1140     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1141       return nullptr;
1142 
1143     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1144     // Check none of the intermediate steps have any additional uses, except
1145     // for the root insertelement instruction, which can be re-used, if it
1146     // inserts at position 0.
1147     if (CurrIE != &InsElt &&
1148         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1149       return nullptr;
1150 
1151     ElementPresent[Idx->getZExtValue()] = true;
1152     FirstIE = CurrIE;
1153     CurrIE = NextIE;
1154   }
1155 
1156   // If this is just a single insertelement (not a sequence), we are done.
1157   if (FirstIE == &InsElt)
1158     return nullptr;
1159 
1160   // If we are not inserting into an undef vector, make sure we've seen an
1161   // insert into every element.
1162   // TODO: If the base vector is not undef, it might be better to create a splat
1163   //       and then a select-shuffle (blend) with the base vector.
1164   if (!match(FirstIE->getOperand(0), m_Undef()))
1165     if (!ElementPresent.all())
1166       return nullptr;
1167 
1168   // Create the insert + shuffle.
1169   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1170   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1171   Constant *Zero = ConstantInt::get(Int32Ty, 0);
1172   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1173     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1174 
1175   // Splat from element 0, but replace absent elements with undef in the mask.
1176   SmallVector<int, 16> Mask(NumElements, 0);
1177   for (unsigned i = 0; i != NumElements; ++i)
1178     if (!ElementPresent[i])
1179       Mask[i] = -1;
1180 
1181   return new ShuffleVectorInst(FirstIE, PoisonVec, Mask);
1182 }
1183 
1184 /// Try to fold an insert element into an existing splat shuffle by changing
1185 /// the shuffle's mask to include the index of this insert element.
1186 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1187   // Check if the vector operand of this insert is a canonical splat shuffle.
1188   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1189   if (!Shuf || !Shuf->isZeroEltSplat())
1190     return nullptr;
1191 
1192   // Bail out early if shuffle is scalable type. The number of elements in
1193   // shuffle mask is unknown at compile-time.
1194   if (isa<ScalableVectorType>(Shuf->getType()))
1195     return nullptr;
1196 
1197   // Check for a constant insertion index.
1198   uint64_t IdxC;
1199   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1200     return nullptr;
1201 
1202   // Check if the splat shuffle's input is the same as this insert's scalar op.
1203   Value *X = InsElt.getOperand(1);
1204   Value *Op0 = Shuf->getOperand(0);
1205   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1206     return nullptr;
1207 
1208   // Replace the shuffle mask element at the index of this insert with a zero.
1209   // For example:
1210   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
1211   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
1212   unsigned NumMaskElts =
1213       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1214   SmallVector<int, 16> NewMask(NumMaskElts);
1215   for (unsigned i = 0; i != NumMaskElts; ++i)
1216     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1217 
1218   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
1219 }
1220 
1221 /// Try to fold an extract+insert element into an existing identity shuffle by
1222 /// changing the shuffle's mask to include the index of this insert element.
1223 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1224   // Check if the vector operand of this insert is an identity shuffle.
1225   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1226   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1227       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1228     return nullptr;
1229 
1230   // Bail out early if shuffle is scalable type. The number of elements in
1231   // shuffle mask is unknown at compile-time.
1232   if (isa<ScalableVectorType>(Shuf->getType()))
1233     return nullptr;
1234 
1235   // Check for a constant insertion index.
1236   uint64_t IdxC;
1237   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1238     return nullptr;
1239 
1240   // Check if this insert's scalar op is extracted from the identity shuffle's
1241   // input vector.
1242   Value *Scalar = InsElt.getOperand(1);
1243   Value *X = Shuf->getOperand(0);
1244   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1245     return nullptr;
1246 
1247   // Replace the shuffle mask element at the index of this extract+insert with
1248   // that same index value.
1249   // For example:
1250   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1251   unsigned NumMaskElts =
1252       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1253   SmallVector<int, 16> NewMask(NumMaskElts);
1254   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1255   for (unsigned i = 0; i != NumMaskElts; ++i) {
1256     if (i != IdxC) {
1257       // All mask elements besides the inserted element remain the same.
1258       NewMask[i] = OldMask[i];
1259     } else if (OldMask[i] == (int)IdxC) {
1260       // If the mask element was already set, there's nothing to do
1261       // (demanded elements analysis may unset it later).
1262       return nullptr;
1263     } else {
1264       assert(OldMask[i] == UndefMaskElem &&
1265              "Unexpected shuffle mask element for identity shuffle");
1266       NewMask[i] = IdxC;
1267     }
1268   }
1269 
1270   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1271 }
1272 
1273 /// If we have an insertelement instruction feeding into another insertelement
1274 /// and the 2nd is inserting a constant into the vector, canonicalize that
1275 /// constant insertion before the insertion of a variable:
1276 ///
1277 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1278 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1279 ///
1280 /// This has the potential of eliminating the 2nd insertelement instruction
1281 /// via constant folding of the scalar constant into a vector constant.
1282 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1283                                      InstCombiner::BuilderTy &Builder) {
1284   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1285   if (!InsElt1 || !InsElt1->hasOneUse())
1286     return nullptr;
1287 
1288   Value *X, *Y;
1289   Constant *ScalarC;
1290   ConstantInt *IdxC1, *IdxC2;
1291   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1292       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1293       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1294       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1295       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1296     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1297     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1298   }
1299 
1300   return nullptr;
1301 }
1302 
1303 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1304 /// --> shufflevector X, CVec', Mask'
1305 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1306   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1307   // Bail out if the parent has more than one use. In that case, we'd be
1308   // replacing the insertelt with a shuffle, and that's not a clear win.
1309   if (!Inst || !Inst->hasOneUse())
1310     return nullptr;
1311   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1312     // The shuffle must have a constant vector operand. The insertelt must have
1313     // a constant scalar being inserted at a constant position in the vector.
1314     Constant *ShufConstVec, *InsEltScalar;
1315     uint64_t InsEltIndex;
1316     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1317         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1318         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1319       return nullptr;
1320 
1321     // Adding an element to an arbitrary shuffle could be expensive, but a
1322     // shuffle that selects elements from vectors without crossing lanes is
1323     // assumed cheap.
1324     // If we're just adding a constant into that shuffle, it will still be
1325     // cheap.
1326     if (!isShuffleEquivalentToSelect(*Shuf))
1327       return nullptr;
1328 
1329     // From the above 'select' check, we know that the mask has the same number
1330     // of elements as the vector input operands. We also know that each constant
1331     // input element is used in its lane and can not be used more than once by
1332     // the shuffle. Therefore, replace the constant in the shuffle's constant
1333     // vector with the insertelt constant. Replace the constant in the shuffle's
1334     // mask vector with the insertelt index plus the length of the vector
1335     // (because the constant vector operand of a shuffle is always the 2nd
1336     // operand).
1337     ArrayRef<int> Mask = Shuf->getShuffleMask();
1338     unsigned NumElts = Mask.size();
1339     SmallVector<Constant *, 16> NewShufElts(NumElts);
1340     SmallVector<int, 16> NewMaskElts(NumElts);
1341     for (unsigned I = 0; I != NumElts; ++I) {
1342       if (I == InsEltIndex) {
1343         NewShufElts[I] = InsEltScalar;
1344         NewMaskElts[I] = InsEltIndex + NumElts;
1345       } else {
1346         // Copy over the existing values.
1347         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1348         NewMaskElts[I] = Mask[I];
1349       }
1350     }
1351 
1352     // Create new operands for a shuffle that includes the constant of the
1353     // original insertelt. The old shuffle will be dead now.
1354     return new ShuffleVectorInst(Shuf->getOperand(0),
1355                                  ConstantVector::get(NewShufElts), NewMaskElts);
1356   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1357     // Transform sequences of insertelements ops with constant data/indexes into
1358     // a single shuffle op.
1359     // Can not handle scalable type, the number of elements needed to create
1360     // shuffle mask is not a compile-time constant.
1361     if (isa<ScalableVectorType>(InsElt.getType()))
1362       return nullptr;
1363     unsigned NumElts =
1364         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1365 
1366     uint64_t InsertIdx[2];
1367     Constant *Val[2];
1368     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1369         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1370         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1371         !match(IEI->getOperand(1), m_Constant(Val[1])))
1372       return nullptr;
1373     SmallVector<Constant *, 16> Values(NumElts);
1374     SmallVector<int, 16> Mask(NumElts);
1375     auto ValI = std::begin(Val);
1376     // Generate new constant vector and mask.
1377     // We have 2 values/masks from the insertelements instructions. Insert them
1378     // into new value/mask vectors.
1379     for (uint64_t I : InsertIdx) {
1380       if (!Values[I]) {
1381         Values[I] = *ValI;
1382         Mask[I] = NumElts + I;
1383       }
1384       ++ValI;
1385     }
1386     // Remaining values are filled with 'undef' values.
1387     for (unsigned I = 0; I < NumElts; ++I) {
1388       if (!Values[I]) {
1389         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1390         Mask[I] = I;
1391       }
1392     }
1393     // Create new operands for a shuffle that includes the constant of the
1394     // original insertelt.
1395     return new ShuffleVectorInst(IEI->getOperand(0),
1396                                  ConstantVector::get(Values), Mask);
1397   }
1398   return nullptr;
1399 }
1400 
1401 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1402   Value *VecOp    = IE.getOperand(0);
1403   Value *ScalarOp = IE.getOperand(1);
1404   Value *IdxOp    = IE.getOperand(2);
1405 
1406   if (auto *V = SimplifyInsertElementInst(
1407           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1408     return replaceInstUsesWith(IE, V);
1409 
1410   // If the scalar is bitcast and inserted into undef, do the insert in the
1411   // source type followed by bitcast.
1412   // TODO: Generalize for insert into any constant, not just undef?
1413   Value *ScalarSrc;
1414   if (match(VecOp, m_Undef()) &&
1415       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1416       (ScalarSrc->getType()->isIntegerTy() ||
1417        ScalarSrc->getType()->isFloatingPointTy())) {
1418     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1419     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1420     Type *ScalarTy = ScalarSrc->getType();
1421     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1422     UndefValue *NewUndef = UndefValue::get(VecTy);
1423     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1424     return new BitCastInst(NewInsElt, IE.getType());
1425   }
1426 
1427   // If the vector and scalar are both bitcast from the same element type, do
1428   // the insert in that source type followed by bitcast.
1429   Value *VecSrc;
1430   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1431       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1432       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1433       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1434       cast<VectorType>(VecSrc->getType())->getElementType() ==
1435           ScalarSrc->getType()) {
1436     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1437     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1438     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1439     return new BitCastInst(NewInsElt, IE.getType());
1440   }
1441 
1442   // If the inserted element was extracted from some other fixed-length vector
1443   // and both indexes are valid constants, try to turn this into a shuffle.
1444   // Can not handle scalable vector type, the number of elements needed to
1445   // create shuffle mask is not a compile-time constant.
1446   uint64_t InsertedIdx, ExtractedIdx;
1447   Value *ExtVecOp;
1448   if (isa<FixedVectorType>(IE.getType()) &&
1449       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1450       match(ScalarOp,
1451             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1452       isa<FixedVectorType>(ExtVecOp->getType()) &&
1453       ExtractedIdx <
1454           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1455     // TODO: Looking at the user(s) to determine if this insert is a
1456     // fold-to-shuffle opportunity does not match the usual instcombine
1457     // constraints. We should decide if the transform is worthy based only
1458     // on this instruction and its operands, but that may not work currently.
1459     //
1460     // Here, we are trying to avoid creating shuffles before reaching
1461     // the end of a chain of extract-insert pairs. This is complicated because
1462     // we do not generally form arbitrary shuffle masks in instcombine
1463     // (because those may codegen poorly), but collectShuffleElements() does
1464     // exactly that.
1465     //
1466     // The rules for determining what is an acceptable target-independent
1467     // shuffle mask are fuzzy because they evolve based on the backend's
1468     // capabilities and real-world impact.
1469     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1470       if (!Insert.hasOneUse())
1471         return true;
1472       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1473       if (!InsertUser)
1474         return true;
1475       return false;
1476     };
1477 
1478     // Try to form a shuffle from a chain of extract-insert ops.
1479     if (isShuffleRootCandidate(IE)) {
1480       SmallVector<int, 16> Mask;
1481       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1482 
1483       // The proposed shuffle may be trivial, in which case we shouldn't
1484       // perform the combine.
1485       if (LR.first != &IE && LR.second != &IE) {
1486         // We now have a shuffle of LHS, RHS, Mask.
1487         if (LR.second == nullptr)
1488           LR.second = UndefValue::get(LR.first->getType());
1489         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1490       }
1491     }
1492   }
1493 
1494   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1495     unsigned VWidth = VecTy->getNumElements();
1496     APInt UndefElts(VWidth, 0);
1497     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1498     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1499       if (V != &IE)
1500         return replaceInstUsesWith(IE, V);
1501       return &IE;
1502     }
1503   }
1504 
1505   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1506     return Shuf;
1507 
1508   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1509     return NewInsElt;
1510 
1511   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1512     return Broadcast;
1513 
1514   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1515     return Splat;
1516 
1517   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1518     return IdentityShuf;
1519 
1520   return nullptr;
1521 }
1522 
1523 /// Return true if we can evaluate the specified expression tree if the vector
1524 /// elements were shuffled in a different order.
1525 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1526                                 unsigned Depth = 5) {
1527   // We can always reorder the elements of a constant.
1528   if (isa<Constant>(V))
1529     return true;
1530 
1531   // We won't reorder vector arguments. No IPO here.
1532   Instruction *I = dyn_cast<Instruction>(V);
1533   if (!I) return false;
1534 
1535   // Two users may expect different orders of the elements. Don't try it.
1536   if (!I->hasOneUse())
1537     return false;
1538 
1539   if (Depth == 0) return false;
1540 
1541   switch (I->getOpcode()) {
1542     case Instruction::UDiv:
1543     case Instruction::SDiv:
1544     case Instruction::URem:
1545     case Instruction::SRem:
1546       // Propagating an undefined shuffle mask element to integer div/rem is not
1547       // allowed because those opcodes can create immediate undefined behavior
1548       // from an undefined element in an operand.
1549       if (llvm::is_contained(Mask, -1))
1550         return false;
1551       LLVM_FALLTHROUGH;
1552     case Instruction::Add:
1553     case Instruction::FAdd:
1554     case Instruction::Sub:
1555     case Instruction::FSub:
1556     case Instruction::Mul:
1557     case Instruction::FMul:
1558     case Instruction::FDiv:
1559     case Instruction::FRem:
1560     case Instruction::Shl:
1561     case Instruction::LShr:
1562     case Instruction::AShr:
1563     case Instruction::And:
1564     case Instruction::Or:
1565     case Instruction::Xor:
1566     case Instruction::ICmp:
1567     case Instruction::FCmp:
1568     case Instruction::Trunc:
1569     case Instruction::ZExt:
1570     case Instruction::SExt:
1571     case Instruction::FPToUI:
1572     case Instruction::FPToSI:
1573     case Instruction::UIToFP:
1574     case Instruction::SIToFP:
1575     case Instruction::FPTrunc:
1576     case Instruction::FPExt:
1577     case Instruction::GetElementPtr: {
1578       // Bail out if we would create longer vector ops. We could allow creating
1579       // longer vector ops, but that may result in more expensive codegen.
1580       Type *ITy = I->getType();
1581       if (ITy->isVectorTy() &&
1582           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1583         return false;
1584       for (Value *Operand : I->operands()) {
1585         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1586           return false;
1587       }
1588       return true;
1589     }
1590     case Instruction::InsertElement: {
1591       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1592       if (!CI) return false;
1593       int ElementNumber = CI->getLimitedValue();
1594 
1595       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1596       // can't put an element into multiple indices.
1597       bool SeenOnce = false;
1598       for (int i = 0, e = Mask.size(); i != e; ++i) {
1599         if (Mask[i] == ElementNumber) {
1600           if (SeenOnce)
1601             return false;
1602           SeenOnce = true;
1603         }
1604       }
1605       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1606     }
1607   }
1608   return false;
1609 }
1610 
1611 /// Rebuild a new instruction just like 'I' but with the new operands given.
1612 /// In the event of type mismatch, the type of the operands is correct.
1613 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1614   // We don't want to use the IRBuilder here because we want the replacement
1615   // instructions to appear next to 'I', not the builder's insertion point.
1616   switch (I->getOpcode()) {
1617     case Instruction::Add:
1618     case Instruction::FAdd:
1619     case Instruction::Sub:
1620     case Instruction::FSub:
1621     case Instruction::Mul:
1622     case Instruction::FMul:
1623     case Instruction::UDiv:
1624     case Instruction::SDiv:
1625     case Instruction::FDiv:
1626     case Instruction::URem:
1627     case Instruction::SRem:
1628     case Instruction::FRem:
1629     case Instruction::Shl:
1630     case Instruction::LShr:
1631     case Instruction::AShr:
1632     case Instruction::And:
1633     case Instruction::Or:
1634     case Instruction::Xor: {
1635       BinaryOperator *BO = cast<BinaryOperator>(I);
1636       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1637       BinaryOperator *New =
1638           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1639                                  NewOps[0], NewOps[1], "", BO);
1640       if (isa<OverflowingBinaryOperator>(BO)) {
1641         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1642         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1643       }
1644       if (isa<PossiblyExactOperator>(BO)) {
1645         New->setIsExact(BO->isExact());
1646       }
1647       if (isa<FPMathOperator>(BO))
1648         New->copyFastMathFlags(I);
1649       return New;
1650     }
1651     case Instruction::ICmp:
1652       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1653       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1654                           NewOps[0], NewOps[1]);
1655     case Instruction::FCmp:
1656       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1657       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1658                           NewOps[0], NewOps[1]);
1659     case Instruction::Trunc:
1660     case Instruction::ZExt:
1661     case Instruction::SExt:
1662     case Instruction::FPToUI:
1663     case Instruction::FPToSI:
1664     case Instruction::UIToFP:
1665     case Instruction::SIToFP:
1666     case Instruction::FPTrunc:
1667     case Instruction::FPExt: {
1668       // It's possible that the mask has a different number of elements from
1669       // the original cast. We recompute the destination type to match the mask.
1670       Type *DestTy = VectorType::get(
1671           I->getType()->getScalarType(),
1672           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1673       assert(NewOps.size() == 1 && "cast with #ops != 1");
1674       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1675                               "", I);
1676     }
1677     case Instruction::GetElementPtr: {
1678       Value *Ptr = NewOps[0];
1679       ArrayRef<Value*> Idx = NewOps.slice(1);
1680       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1681           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1682       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1683       return GEP;
1684     }
1685   }
1686   llvm_unreachable("failed to rebuild vector instructions");
1687 }
1688 
1689 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1690   // Mask.size() does not need to be equal to the number of vector elements.
1691 
1692   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1693   Type *EltTy = V->getType()->getScalarType();
1694   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1695   if (match(V, m_Undef()))
1696     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1697 
1698   if (isa<ConstantAggregateZero>(V))
1699     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1700 
1701   if (Constant *C = dyn_cast<Constant>(V))
1702     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1703                                           Mask);
1704 
1705   Instruction *I = cast<Instruction>(V);
1706   switch (I->getOpcode()) {
1707     case Instruction::Add:
1708     case Instruction::FAdd:
1709     case Instruction::Sub:
1710     case Instruction::FSub:
1711     case Instruction::Mul:
1712     case Instruction::FMul:
1713     case Instruction::UDiv:
1714     case Instruction::SDiv:
1715     case Instruction::FDiv:
1716     case Instruction::URem:
1717     case Instruction::SRem:
1718     case Instruction::FRem:
1719     case Instruction::Shl:
1720     case Instruction::LShr:
1721     case Instruction::AShr:
1722     case Instruction::And:
1723     case Instruction::Or:
1724     case Instruction::Xor:
1725     case Instruction::ICmp:
1726     case Instruction::FCmp:
1727     case Instruction::Trunc:
1728     case Instruction::ZExt:
1729     case Instruction::SExt:
1730     case Instruction::FPToUI:
1731     case Instruction::FPToSI:
1732     case Instruction::UIToFP:
1733     case Instruction::SIToFP:
1734     case Instruction::FPTrunc:
1735     case Instruction::FPExt:
1736     case Instruction::Select:
1737     case Instruction::GetElementPtr: {
1738       SmallVector<Value*, 8> NewOps;
1739       bool NeedsRebuild =
1740           (Mask.size() !=
1741            cast<FixedVectorType>(I->getType())->getNumElements());
1742       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1743         Value *V;
1744         // Recursively call evaluateInDifferentElementOrder on vector arguments
1745         // as well. E.g. GetElementPtr may have scalar operands even if the
1746         // return value is a vector, so we need to examine the operand type.
1747         if (I->getOperand(i)->getType()->isVectorTy())
1748           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1749         else
1750           V = I->getOperand(i);
1751         NewOps.push_back(V);
1752         NeedsRebuild |= (V != I->getOperand(i));
1753       }
1754       if (NeedsRebuild) {
1755         return buildNew(I, NewOps);
1756       }
1757       return I;
1758     }
1759     case Instruction::InsertElement: {
1760       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1761 
1762       // The insertelement was inserting at Element. Figure out which element
1763       // that becomes after shuffling. The answer is guaranteed to be unique
1764       // by CanEvaluateShuffled.
1765       bool Found = false;
1766       int Index = 0;
1767       for (int e = Mask.size(); Index != e; ++Index) {
1768         if (Mask[Index] == Element) {
1769           Found = true;
1770           break;
1771         }
1772       }
1773 
1774       // If element is not in Mask, no need to handle the operand 1 (element to
1775       // be inserted). Just evaluate values in operand 0 according to Mask.
1776       if (!Found)
1777         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1778 
1779       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1780       return InsertElementInst::Create(V, I->getOperand(1),
1781                                        ConstantInt::get(I32Ty, Index), "", I);
1782     }
1783   }
1784   llvm_unreachable("failed to reorder elements of vector instruction!");
1785 }
1786 
1787 // Returns true if the shuffle is extracting a contiguous range of values from
1788 // LHS, for example:
1789 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1790 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1791 //   Shuffles to:  |EE|FF|GG|HH|
1792 //                 +--+--+--+--+
1793 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1794                                        ArrayRef<int> Mask) {
1795   unsigned LHSElems =
1796       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1797   unsigned MaskElems = Mask.size();
1798   unsigned BegIdx = Mask.front();
1799   unsigned EndIdx = Mask.back();
1800   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1801     return false;
1802   for (unsigned I = 0; I != MaskElems; ++I)
1803     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1804       return false;
1805   return true;
1806 }
1807 
1808 /// These are the ingredients in an alternate form binary operator as described
1809 /// below.
1810 struct BinopElts {
1811   BinaryOperator::BinaryOps Opcode;
1812   Value *Op0;
1813   Value *Op1;
1814   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1815             Value *V0 = nullptr, Value *V1 = nullptr) :
1816       Opcode(Opc), Op0(V0), Op1(V1) {}
1817   operator bool() const { return Opcode != 0; }
1818 };
1819 
1820 /// Binops may be transformed into binops with different opcodes and operands.
1821 /// Reverse the usual canonicalization to enable folds with the non-canonical
1822 /// form of the binop. If a transform is possible, return the elements of the
1823 /// new binop. If not, return invalid elements.
1824 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1825   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1826   Type *Ty = BO->getType();
1827   switch (BO->getOpcode()) {
1828     case Instruction::Shl: {
1829       // shl X, C --> mul X, (1 << C)
1830       Constant *C;
1831       if (match(BO1, m_Constant(C))) {
1832         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1833         return { Instruction::Mul, BO0, ShlOne };
1834       }
1835       break;
1836     }
1837     case Instruction::Or: {
1838       // or X, C --> add X, C (when X and C have no common bits set)
1839       const APInt *C;
1840       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1841         return { Instruction::Add, BO0, BO1 };
1842       break;
1843     }
1844     default:
1845       break;
1846   }
1847   return {};
1848 }
1849 
1850 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1851   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1852 
1853   // Are we shuffling together some value and that same value after it has been
1854   // modified by a binop with a constant?
1855   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1856   Constant *C;
1857   bool Op0IsBinop;
1858   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1859     Op0IsBinop = true;
1860   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1861     Op0IsBinop = false;
1862   else
1863     return nullptr;
1864 
1865   // The identity constant for a binop leaves a variable operand unchanged. For
1866   // a vector, this is a splat of something like 0, -1, or 1.
1867   // If there's no identity constant for this binop, we're done.
1868   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1869   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1870   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1871   if (!IdC)
1872     return nullptr;
1873 
1874   // Shuffle identity constants into the lanes that return the original value.
1875   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1876   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1877   // The existing binop constant vector remains in the same operand position.
1878   ArrayRef<int> Mask = Shuf.getShuffleMask();
1879   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1880                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1881 
1882   bool MightCreatePoisonOrUB =
1883       is_contained(Mask, UndefMaskElem) &&
1884       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1885   if (MightCreatePoisonOrUB)
1886     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1887 
1888   // shuf (bop X, C), X, M --> bop X, C'
1889   // shuf X, (bop X, C), M --> bop X, C'
1890   Value *X = Op0IsBinop ? Op1 : Op0;
1891   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1892   NewBO->copyIRFlags(BO);
1893 
1894   // An undef shuffle mask element may propagate as an undef constant element in
1895   // the new binop. That would produce poison where the original code might not.
1896   // If we already made a safe constant, then there's no danger.
1897   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1898     NewBO->dropPoisonGeneratingFlags();
1899   return NewBO;
1900 }
1901 
1902 /// If we have an insert of a scalar to a non-zero element of an undefined
1903 /// vector and then shuffle that value, that's the same as inserting to the zero
1904 /// element and shuffling. Splatting from the zero element is recognized as the
1905 /// canonical form of splat.
1906 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1907                                             InstCombiner::BuilderTy &Builder) {
1908   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1909   ArrayRef<int> Mask = Shuf.getShuffleMask();
1910   Value *X;
1911   uint64_t IndexC;
1912 
1913   // Match a shuffle that is a splat to a non-zero element.
1914   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1915                                        m_ConstantInt(IndexC)))) ||
1916       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1917     return nullptr;
1918 
1919   // Insert into element 0 of an undef vector.
1920   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1921   Constant *Zero = Builder.getInt32(0);
1922   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1923 
1924   // Splat from element 0. Any mask element that is undefined remains undefined.
1925   // For example:
1926   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1927   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1928   unsigned NumMaskElts =
1929       cast<FixedVectorType>(Shuf.getType())->getNumElements();
1930   SmallVector<int, 16> NewMask(NumMaskElts, 0);
1931   for (unsigned i = 0; i != NumMaskElts; ++i)
1932     if (Mask[i] == UndefMaskElem)
1933       NewMask[i] = Mask[i];
1934 
1935   return new ShuffleVectorInst(NewIns, UndefVec, NewMask);
1936 }
1937 
1938 /// Try to fold shuffles that are the equivalent of a vector select.
1939 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1940                                       InstCombiner::BuilderTy &Builder,
1941                                       const DataLayout &DL) {
1942   if (!Shuf.isSelect())
1943     return nullptr;
1944 
1945   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1946   // Commuting undef to operand 0 conflicts with another canonicalization.
1947   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
1948   if (!match(Shuf.getOperand(1), m_Undef()) &&
1949       Shuf.getMaskValue(0) >= (int)NumElts) {
1950     // TODO: Can we assert that both operands of a shuffle-select are not undef
1951     // (otherwise, it would have been folded by instsimplify?
1952     Shuf.commute();
1953     return &Shuf;
1954   }
1955 
1956   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1957     return I;
1958 
1959   BinaryOperator *B0, *B1;
1960   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1961       !match(Shuf.getOperand(1), m_BinOp(B1)))
1962     return nullptr;
1963 
1964   Value *X, *Y;
1965   Constant *C0, *C1;
1966   bool ConstantsAreOp1;
1967   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1968       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1969     ConstantsAreOp1 = true;
1970   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1971            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1972     ConstantsAreOp1 = false;
1973   else
1974     return nullptr;
1975 
1976   // We need matching binops to fold the lanes together.
1977   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1978   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1979   bool DropNSW = false;
1980   if (ConstantsAreOp1 && Opc0 != Opc1) {
1981     // TODO: We drop "nsw" if shift is converted into multiply because it may
1982     // not be correct when the shift amount is BitWidth - 1. We could examine
1983     // each vector element to determine if it is safe to keep that flag.
1984     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1985       DropNSW = true;
1986     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1987       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1988       Opc0 = AltB0.Opcode;
1989       C0 = cast<Constant>(AltB0.Op1);
1990     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1991       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1992       Opc1 = AltB1.Opcode;
1993       C1 = cast<Constant>(AltB1.Op1);
1994     }
1995   }
1996 
1997   if (Opc0 != Opc1)
1998     return nullptr;
1999 
2000   // The opcodes must be the same. Use a new name to make that clear.
2001   BinaryOperator::BinaryOps BOpc = Opc0;
2002 
2003   // Select the constant elements needed for the single binop.
2004   ArrayRef<int> Mask = Shuf.getShuffleMask();
2005   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2006 
2007   // We are moving a binop after a shuffle. When a shuffle has an undefined
2008   // mask element, the result is undefined, but it is not poison or undefined
2009   // behavior. That is not necessarily true for div/rem/shift.
2010   bool MightCreatePoisonOrUB =
2011       is_contained(Mask, UndefMaskElem) &&
2012       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2013   if (MightCreatePoisonOrUB)
2014     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2015                                                        ConstantsAreOp1);
2016 
2017   Value *V;
2018   if (X == Y) {
2019     // Remove a binop and the shuffle by rearranging the constant:
2020     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2021     // shuffle (op C0, V), (op C1, V), M --> op C', V
2022     V = X;
2023   } else {
2024     // If there are 2 different variable operands, we must create a new shuffle
2025     // (select) first, so check uses to ensure that we don't end up with more
2026     // instructions than we started with.
2027     if (!B0->hasOneUse() && !B1->hasOneUse())
2028       return nullptr;
2029 
2030     // If we use the original shuffle mask and op1 is *variable*, we would be
2031     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2032     // poison. We do not have to guard against UB when *constants* are op1
2033     // because safe constants guarantee that we do not overflow sdiv/srem (and
2034     // there's no danger for other opcodes).
2035     // TODO: To allow this case, create a new shuffle mask with no undefs.
2036     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2037       return nullptr;
2038 
2039     // Note: In general, we do not create new shuffles in InstCombine because we
2040     // do not know if a target can lower an arbitrary shuffle optimally. In this
2041     // case, the shuffle uses the existing mask, so there is no additional risk.
2042 
2043     // Select the variable vectors first, then perform the binop:
2044     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2045     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2046     V = Builder.CreateShuffleVector(X, Y, Mask);
2047   }
2048 
2049   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
2050                                          BinaryOperator::Create(BOpc, NewC, V);
2051 
2052   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2053   // 1. If we changed an opcode, poison conditions might have changed.
2054   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2055   //    where the original code did not. But if we already made a safe constant,
2056   //    then there's no danger.
2057   NewBO->copyIRFlags(B0);
2058   NewBO->andIRFlags(B1);
2059   if (DropNSW)
2060     NewBO->setHasNoSignedWrap(false);
2061   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2062     NewBO->dropPoisonGeneratingFlags();
2063   return NewBO;
2064 }
2065 
2066 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2067 /// Example (little endian):
2068 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2069 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2070                                      bool IsBigEndian) {
2071   // This must be a bitcasted shuffle of 1 vector integer operand.
2072   Type *DestType = Shuf.getType();
2073   Value *X;
2074   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2075       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2076     return nullptr;
2077 
2078   // The source type must have the same number of elements as the shuffle,
2079   // and the source element type must be larger than the shuffle element type.
2080   Type *SrcType = X->getType();
2081   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2082       cast<FixedVectorType>(SrcType)->getNumElements() !=
2083           cast<FixedVectorType>(DestType)->getNumElements() ||
2084       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2085     return nullptr;
2086 
2087   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2088          "Expected a shuffle that decreases length");
2089 
2090   // Last, check that the mask chooses the correct low bits for each narrow
2091   // element in the result.
2092   uint64_t TruncRatio =
2093       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2094   ArrayRef<int> Mask = Shuf.getShuffleMask();
2095   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2096     if (Mask[i] == UndefMaskElem)
2097       continue;
2098     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2099     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2100     if (Mask[i] != (int)LSBIndex)
2101       return nullptr;
2102   }
2103 
2104   return new TruncInst(X, DestType);
2105 }
2106 
2107 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2108 /// narrowing (concatenating with undef and extracting back to the original
2109 /// length). This allows replacing the wide select with a narrow select.
2110 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2111                                        InstCombiner::BuilderTy &Builder) {
2112   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2113   // of the 1st vector operand of a shuffle.
2114   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2115     return nullptr;
2116 
2117   // The vector being shuffled must be a vector select that we can eliminate.
2118   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2119   Value *Cond, *X, *Y;
2120   if (!match(Shuf.getOperand(0),
2121              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2122     return nullptr;
2123 
2124   // We need a narrow condition value. It must be extended with undef elements
2125   // and have the same number of elements as this shuffle.
2126   unsigned NarrowNumElts =
2127       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2128   Value *NarrowCond;
2129   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2130       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2131           NarrowNumElts ||
2132       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2133     return nullptr;
2134 
2135   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2136   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2137   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2138   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2139   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2140 }
2141 
2142 /// Try to fold an extract subvector operation.
2143 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2144   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2145   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2146     return nullptr;
2147 
2148   // Check if we are extracting all bits of an inserted scalar:
2149   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2150   Value *X;
2151   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2152       X->getType()->getPrimitiveSizeInBits() ==
2153           Shuf.getType()->getPrimitiveSizeInBits())
2154     return new BitCastInst(X, Shuf.getType());
2155 
2156   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2157   Value *Y;
2158   ArrayRef<int> Mask;
2159   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2160     return nullptr;
2161 
2162   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2163   // then combining may result in worse codegen.
2164   if (!Op0->hasOneUse())
2165     return nullptr;
2166 
2167   // We are extracting a subvector from a shuffle. Remove excess elements from
2168   // the 1st shuffle mask to eliminate the extract.
2169   //
2170   // This transform is conservatively limited to identity extracts because we do
2171   // not allow arbitrary shuffle mask creation as a target-independent transform
2172   // (because we can't guarantee that will lower efficiently).
2173   //
2174   // If the extracting shuffle has an undef mask element, it transfers to the
2175   // new shuffle mask. Otherwise, copy the original mask element. Example:
2176   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2177   //   shuf X, Y, <C0, undef, C2, undef>
2178   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2179   SmallVector<int, 16> NewMask(NumElts);
2180   assert(NumElts < Mask.size() &&
2181          "Identity with extract must have less elements than its inputs");
2182 
2183   for (unsigned i = 0; i != NumElts; ++i) {
2184     int ExtractMaskElt = Shuf.getMaskValue(i);
2185     int MaskElt = Mask[i];
2186     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2187   }
2188   return new ShuffleVectorInst(X, Y, NewMask);
2189 }
2190 
2191 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2192 /// operand with the operand of an insertelement.
2193 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2194                                           InstCombinerImpl &IC) {
2195   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2196   SmallVector<int, 16> Mask;
2197   Shuf.getShuffleMask(Mask);
2198 
2199   // The shuffle must not change vector sizes.
2200   // TODO: This restriction could be removed if the insert has only one use
2201   //       (because the transform would require a new length-changing shuffle).
2202   int NumElts = Mask.size();
2203   if (NumElts != (int)(cast<FixedVectorType>(V0->getType())->getNumElements()))
2204     return nullptr;
2205 
2206   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2207   // not be able to handle it there if the insertelement has >1 use.
2208   // If the shuffle has an insertelement operand but does not choose the
2209   // inserted scalar element from that value, then we can replace that shuffle
2210   // operand with the source vector of the insertelement.
2211   Value *X;
2212   uint64_t IdxC;
2213   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2214     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2215     if (!is_contained(Mask, (int)IdxC))
2216       return IC.replaceOperand(Shuf, 0, X);
2217   }
2218   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2219     // Offset the index constant by the vector width because we are checking for
2220     // accesses to the 2nd vector input of the shuffle.
2221     IdxC += NumElts;
2222     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2223     if (!is_contained(Mask, (int)IdxC))
2224       return IC.replaceOperand(Shuf, 1, X);
2225   }
2226 
2227   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2228   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2229     // We need an insertelement with a constant index.
2230     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2231                                m_ConstantInt(IndexC))))
2232       return false;
2233 
2234     // Test the shuffle mask to see if it splices the inserted scalar into the
2235     // operand 1 vector of the shuffle.
2236     int NewInsIndex = -1;
2237     for (int i = 0; i != NumElts; ++i) {
2238       // Ignore undef mask elements.
2239       if (Mask[i] == -1)
2240         continue;
2241 
2242       // The shuffle takes elements of operand 1 without lane changes.
2243       if (Mask[i] == NumElts + i)
2244         continue;
2245 
2246       // The shuffle must choose the inserted scalar exactly once.
2247       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2248         return false;
2249 
2250       // The shuffle is placing the inserted scalar into element i.
2251       NewInsIndex = i;
2252     }
2253 
2254     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2255 
2256     // Index is updated to the potentially translated insertion lane.
2257     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2258     return true;
2259   };
2260 
2261   // If the shuffle is unnecessary, insert the scalar operand directly into
2262   // operand 1 of the shuffle. Example:
2263   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2264   Value *Scalar;
2265   ConstantInt *IndexC;
2266   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2267     return InsertElementInst::Create(V1, Scalar, IndexC);
2268 
2269   // Try again after commuting shuffle. Example:
2270   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2271   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2272   std::swap(V0, V1);
2273   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2274   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2275     return InsertElementInst::Create(V1, Scalar, IndexC);
2276 
2277   return nullptr;
2278 }
2279 
2280 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2281   // Match the operands as identity with padding (also known as concatenation
2282   // with undef) shuffles of the same source type. The backend is expected to
2283   // recreate these concatenations from a shuffle of narrow operands.
2284   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2285   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2286   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2287       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2288     return nullptr;
2289 
2290   // We limit this transform to power-of-2 types because we expect that the
2291   // backend can convert the simplified IR patterns to identical nodes as the
2292   // original IR.
2293   // TODO: If we can verify the same behavior for arbitrary types, the
2294   //       power-of-2 checks can be removed.
2295   Value *X = Shuffle0->getOperand(0);
2296   Value *Y = Shuffle1->getOperand(0);
2297   if (X->getType() != Y->getType() ||
2298       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2299       !isPowerOf2_32(
2300           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2301       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2302       match(X, m_Undef()) || match(Y, m_Undef()))
2303     return nullptr;
2304   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2305          match(Shuffle1->getOperand(1), m_Undef()) &&
2306          "Unexpected operand for identity shuffle");
2307 
2308   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2309   // operands directly by adjusting the shuffle mask to account for the narrower
2310   // types:
2311   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2312   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2313   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2314   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2315 
2316   ArrayRef<int> Mask = Shuf.getShuffleMask();
2317   SmallVector<int, 16> NewMask(Mask.size(), -1);
2318   for (int i = 0, e = Mask.size(); i != e; ++i) {
2319     if (Mask[i] == -1)
2320       continue;
2321 
2322     // If this shuffle is choosing an undef element from 1 of the sources, that
2323     // element is undef.
2324     if (Mask[i] < WideElts) {
2325       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2326         continue;
2327     } else {
2328       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2329         continue;
2330     }
2331 
2332     // If this shuffle is choosing from the 1st narrow op, the mask element is
2333     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2334     // element is offset down to adjust for the narrow vector widths.
2335     if (Mask[i] < WideElts) {
2336       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2337       NewMask[i] = Mask[i];
2338     } else {
2339       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2340       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2341     }
2342   }
2343   return new ShuffleVectorInst(X, Y, NewMask);
2344 }
2345 
2346 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2347   Value *LHS = SVI.getOperand(0);
2348   Value *RHS = SVI.getOperand(1);
2349   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2350   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2351                                           SVI.getType(), ShufQuery))
2352     return replaceInstUsesWith(SVI, V);
2353 
2354   // Bail out for scalable vectors
2355   if (isa<ScalableVectorType>(LHS->getType()))
2356     return nullptr;
2357 
2358   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2359   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2360 
2361   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2362   //
2363   // if X and Y are of the same (vector) type, and the element size is not
2364   // changed by the bitcasts, we can distribute the bitcasts through the
2365   // shuffle, hopefully reducing the number of instructions. We make sure that
2366   // at least one bitcast only has one use, so we don't *increase* the number of
2367   // instructions here.
2368   Value *X, *Y;
2369   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2370       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2371       X->getType()->getScalarSizeInBits() ==
2372           SVI.getType()->getScalarSizeInBits() &&
2373       (LHS->hasOneUse() || RHS->hasOneUse())) {
2374     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2375                                            SVI.getName() + ".uncasted");
2376     return new BitCastInst(V, SVI.getType());
2377   }
2378 
2379   ArrayRef<int> Mask = SVI.getShuffleMask();
2380   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2381 
2382   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2383   // simulated shuffle can simplify, then this shuffle is unnecessary:
2384   // shuf (bitcast X), undef, Mask --> bitcast X'
2385   // TODO: This could be extended to allow length-changing shuffles.
2386   //       The transform might also be obsoleted if we allowed canonicalization
2387   //       of bitcasted shuffles.
2388   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2389       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2390     // Try to create a scaled mask constant.
2391     auto *XType = cast<FixedVectorType>(X->getType());
2392     unsigned XNumElts = XType->getNumElements();
2393     SmallVector<int, 16> ScaledMask;
2394     if (XNumElts >= VWidth) {
2395       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2396       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2397     } else {
2398       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2399       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2400         ScaledMask.clear();
2401     }
2402     if (!ScaledMask.empty()) {
2403       // If the shuffled source vector simplifies, cast that value to this
2404       // shuffle's type.
2405       if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2406                                               ScaledMask, XType, ShufQuery))
2407         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2408     }
2409   }
2410 
2411   // shuffle x, x, mask --> shuffle x, undef, mask'
2412   if (LHS == RHS) {
2413     assert(!match(RHS, m_Undef()) &&
2414            "Shuffle with 2 undef ops not simplified?");
2415     // Remap any references to RHS to use LHS.
2416     SmallVector<int, 16> Elts;
2417     for (unsigned i = 0; i != VWidth; ++i) {
2418       // Propagate undef elements or force mask to LHS.
2419       if (Mask[i] < 0)
2420         Elts.push_back(UndefMaskElem);
2421       else
2422         Elts.push_back(Mask[i] % LHSWidth);
2423     }
2424     return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts);
2425   }
2426 
2427   // shuffle undef, x, mask --> shuffle x, undef, mask'
2428   if (match(LHS, m_Undef())) {
2429     SVI.commute();
2430     return &SVI;
2431   }
2432 
2433   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2434     return I;
2435 
2436   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2437     return I;
2438 
2439   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2440     return I;
2441 
2442   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2443     return I;
2444 
2445   APInt UndefElts(VWidth, 0);
2446   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2447   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2448     if (V != &SVI)
2449       return replaceInstUsesWith(SVI, V);
2450     return &SVI;
2451   }
2452 
2453   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2454     return I;
2455 
2456   // These transforms have the potential to lose undef knowledge, so they are
2457   // intentionally placed after SimplifyDemandedVectorElts().
2458   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2459     return I;
2460   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2461     return I;
2462 
2463   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2464     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2465     return replaceInstUsesWith(SVI, V);
2466   }
2467 
2468   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2469   // a non-vector type. We can instead bitcast the original vector followed by
2470   // an extract of the desired element:
2471   //
2472   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2473   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2474   //   %1 = bitcast <4 x i8> %sroa to i32
2475   // Becomes:
2476   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2477   //   %ext = extractelement <4 x i32> %bc, i32 0
2478   //
2479   // If the shuffle is extracting a contiguous range of values from the input
2480   // vector then each use which is a bitcast of the extracted size can be
2481   // replaced. This will work if the vector types are compatible, and the begin
2482   // index is aligned to a value in the casted vector type. If the begin index
2483   // isn't aligned then we can shuffle the original vector (keeping the same
2484   // vector type) before extracting.
2485   //
2486   // This code will bail out if the target type is fundamentally incompatible
2487   // with vectors of the source type.
2488   //
2489   // Example of <16 x i8>, target type i32:
2490   // Index range [4,8):         v-----------v Will work.
2491   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2492   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2493   //     <4 x i32>: |           |           |           |           |
2494   //                +-----------+-----------+-----------+-----------+
2495   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2496   // Target type i40:           ^--------------^ Won't work, bail.
2497   bool MadeChange = false;
2498   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2499     Value *V = LHS;
2500     unsigned MaskElems = Mask.size();
2501     auto *SrcTy = cast<FixedVectorType>(V->getType());
2502     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2503     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2504     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2505     unsigned SrcNumElems = SrcTy->getNumElements();
2506     SmallVector<BitCastInst *, 8> BCs;
2507     DenseMap<Type *, Value *> NewBCs;
2508     for (User *U : SVI.users())
2509       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2510         if (!BC->use_empty())
2511           // Only visit bitcasts that weren't previously handled.
2512           BCs.push_back(BC);
2513     for (BitCastInst *BC : BCs) {
2514       unsigned BegIdx = Mask.front();
2515       Type *TgtTy = BC->getDestTy();
2516       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2517       if (!TgtElemBitWidth)
2518         continue;
2519       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2520       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2521       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2522       if (!VecBitWidthsEqual)
2523         continue;
2524       if (!VectorType::isValidElementType(TgtTy))
2525         continue;
2526       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2527       if (!BegIsAligned) {
2528         // Shuffle the input so [0,NumElements) contains the output, and
2529         // [NumElems,SrcNumElems) is undef.
2530         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2531         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2532           ShuffleMask[I] = Idx;
2533         V = Builder.CreateShuffleVector(V, ShuffleMask,
2534                                         SVI.getName() + ".extract");
2535         BegIdx = 0;
2536       }
2537       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2538       assert(SrcElemsPerTgtElem);
2539       BegIdx /= SrcElemsPerTgtElem;
2540       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2541       auto *NewBC =
2542           BCAlreadyExists
2543               ? NewBCs[CastSrcTy]
2544               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2545       if (!BCAlreadyExists)
2546         NewBCs[CastSrcTy] = NewBC;
2547       auto *Ext = Builder.CreateExtractElement(
2548           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2549       // The shufflevector isn't being replaced: the bitcast that used it
2550       // is. InstCombine will visit the newly-created instructions.
2551       replaceInstUsesWith(*BC, Ext);
2552       MadeChange = true;
2553     }
2554   }
2555 
2556   // If the LHS is a shufflevector itself, see if we can combine it with this
2557   // one without producing an unusual shuffle.
2558   // Cases that might be simplified:
2559   // 1.
2560   // x1=shuffle(v1,v2,mask1)
2561   //  x=shuffle(x1,undef,mask)
2562   //        ==>
2563   //  x=shuffle(v1,undef,newMask)
2564   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2565   // 2.
2566   // x1=shuffle(v1,undef,mask1)
2567   //  x=shuffle(x1,x2,mask)
2568   // where v1.size() == mask1.size()
2569   //        ==>
2570   //  x=shuffle(v1,x2,newMask)
2571   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2572   // 3.
2573   // x2=shuffle(v2,undef,mask2)
2574   //  x=shuffle(x1,x2,mask)
2575   // where v2.size() == mask2.size()
2576   //        ==>
2577   //  x=shuffle(x1,v2,newMask)
2578   // newMask[i] = (mask[i] < x1.size())
2579   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2580   // 4.
2581   // x1=shuffle(v1,undef,mask1)
2582   // x2=shuffle(v2,undef,mask2)
2583   //  x=shuffle(x1,x2,mask)
2584   // where v1.size() == v2.size()
2585   //        ==>
2586   //  x=shuffle(v1,v2,newMask)
2587   // newMask[i] = (mask[i] < x1.size())
2588   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2589   //
2590   // Here we are really conservative:
2591   // we are absolutely afraid of producing a shuffle mask not in the input
2592   // program, because the code gen may not be smart enough to turn a merged
2593   // shuffle into two specific shuffles: it may produce worse code.  As such,
2594   // we only merge two shuffles if the result is either a splat or one of the
2595   // input shuffle masks.  In this case, merging the shuffles just removes
2596   // one instruction, which we know is safe.  This is good for things like
2597   // turning: (splat(splat)) -> splat, or
2598   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2599   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2600   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2601   if (LHSShuffle)
2602     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2603       LHSShuffle = nullptr;
2604   if (RHSShuffle)
2605     if (!match(RHSShuffle->getOperand(1), m_Undef()))
2606       RHSShuffle = nullptr;
2607   if (!LHSShuffle && !RHSShuffle)
2608     return MadeChange ? &SVI : nullptr;
2609 
2610   Value* LHSOp0 = nullptr;
2611   Value* LHSOp1 = nullptr;
2612   Value* RHSOp0 = nullptr;
2613   unsigned LHSOp0Width = 0;
2614   unsigned RHSOp0Width = 0;
2615   if (LHSShuffle) {
2616     LHSOp0 = LHSShuffle->getOperand(0);
2617     LHSOp1 = LHSShuffle->getOperand(1);
2618     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2619   }
2620   if (RHSShuffle) {
2621     RHSOp0 = RHSShuffle->getOperand(0);
2622     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2623   }
2624   Value* newLHS = LHS;
2625   Value* newRHS = RHS;
2626   if (LHSShuffle) {
2627     // case 1
2628     if (match(RHS, m_Undef())) {
2629       newLHS = LHSOp0;
2630       newRHS = LHSOp1;
2631     }
2632     // case 2 or 4
2633     else if (LHSOp0Width == LHSWidth) {
2634       newLHS = LHSOp0;
2635     }
2636   }
2637   // case 3 or 4
2638   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2639     newRHS = RHSOp0;
2640   }
2641   // case 4
2642   if (LHSOp0 == RHSOp0) {
2643     newLHS = LHSOp0;
2644     newRHS = nullptr;
2645   }
2646 
2647   if (newLHS == LHS && newRHS == RHS)
2648     return MadeChange ? &SVI : nullptr;
2649 
2650   ArrayRef<int> LHSMask;
2651   ArrayRef<int> RHSMask;
2652   if (newLHS != LHS)
2653     LHSMask = LHSShuffle->getShuffleMask();
2654   if (RHSShuffle && newRHS != RHS)
2655     RHSMask = RHSShuffle->getShuffleMask();
2656 
2657   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2658   SmallVector<int, 16> newMask;
2659   bool isSplat = true;
2660   int SplatElt = -1;
2661   // Create a new mask for the new ShuffleVectorInst so that the new
2662   // ShuffleVectorInst is equivalent to the original one.
2663   for (unsigned i = 0; i < VWidth; ++i) {
2664     int eltMask;
2665     if (Mask[i] < 0) {
2666       // This element is an undef value.
2667       eltMask = -1;
2668     } else if (Mask[i] < (int)LHSWidth) {
2669       // This element is from left hand side vector operand.
2670       //
2671       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2672       // new mask value for the element.
2673       if (newLHS != LHS) {
2674         eltMask = LHSMask[Mask[i]];
2675         // If the value selected is an undef value, explicitly specify it
2676         // with a -1 mask value.
2677         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2678           eltMask = -1;
2679       } else
2680         eltMask = Mask[i];
2681     } else {
2682       // This element is from right hand side vector operand
2683       //
2684       // If the value selected is an undef value, explicitly specify it
2685       // with a -1 mask value. (case 1)
2686       if (match(RHS, m_Undef()))
2687         eltMask = -1;
2688       // If RHS is going to be replaced (case 3 or 4), calculate the
2689       // new mask value for the element.
2690       else if (newRHS != RHS) {
2691         eltMask = RHSMask[Mask[i]-LHSWidth];
2692         // If the value selected is an undef value, explicitly specify it
2693         // with a -1 mask value.
2694         if (eltMask >= (int)RHSOp0Width) {
2695           assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2696                  "should have been check above");
2697           eltMask = -1;
2698         }
2699       } else
2700         eltMask = Mask[i]-LHSWidth;
2701 
2702       // If LHS's width is changed, shift the mask value accordingly.
2703       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2704       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2705       // If newRHS == newLHS, we want to remap any references from newRHS to
2706       // newLHS so that we can properly identify splats that may occur due to
2707       // obfuscation across the two vectors.
2708       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2709         eltMask += newLHSWidth;
2710     }
2711 
2712     // Check if this could still be a splat.
2713     if (eltMask >= 0) {
2714       if (SplatElt >= 0 && SplatElt != eltMask)
2715         isSplat = false;
2716       SplatElt = eltMask;
2717     }
2718 
2719     newMask.push_back(eltMask);
2720   }
2721 
2722   // If the result mask is equal to one of the original shuffle masks,
2723   // or is a splat, do the replacement.
2724   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2725     if (!newRHS)
2726       newRHS = UndefValue::get(newLHS->getType());
2727     return new ShuffleVectorInst(newLHS, newRHS, newMask);
2728   }
2729 
2730   return MadeChange ? &SVI : nullptr;
2731 }
2732