1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
257   Value *SrcVec = EI.getVectorOperand();
258   Value *Index = EI.getIndexOperand();
259   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
260                                             SQ.getWithInstruction(&EI)))
261     return replaceInstUsesWith(EI, V);
262 
263   // If extracting a specified index from the vector, see if we can recursively
264   // find a previously computed scalar that was inserted into the vector.
265   auto *IndexC = dyn_cast<ConstantInt>(Index);
266   if (IndexC) {
267     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
268 
269     // InstSimplify should handle cases where the index is invalid.
270     if (!IndexC->getValue().ule(NumElts))
271       return nullptr;
272 
273     // This instruction only demands the single element from the input vector.
274     // If the input vector has a single use, simplify it based on this use
275     // property.
276     if (SrcVec->hasOneUse() && NumElts != 1) {
277       APInt UndefElts(NumElts, 0);
278       APInt DemandedElts(NumElts, 0);
279       DemandedElts.setBit(IndexC->getZExtValue());
280       if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
281                                                 UndefElts)) {
282         EI.setOperand(0, V);
283         return &EI;
284       }
285     }
286 
287     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
288       return I;
289 
290     // If there's a vector PHI feeding a scalar use through this extractelement
291     // instruction, try to scalarize the PHI.
292     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
293       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
294         return ScalarPHI;
295   }
296 
297   BinaryOperator *BO;
298   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
299     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
300     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
301     Value *E0 = Builder.CreateExtractElement(X, Index);
302     Value *E1 = Builder.CreateExtractElement(Y, Index);
303     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
304   }
305 
306   Value *X, *Y;
307   CmpInst::Predicate Pred;
308   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
309       cheapToScalarize(SrcVec, IndexC)) {
310     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
311     Value *E0 = Builder.CreateExtractElement(X, Index);
312     Value *E1 = Builder.CreateExtractElement(Y, Index);
313     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
314   }
315 
316   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
317     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
318       // Extracting the inserted element?
319       if (IE->getOperand(2) == Index)
320         return replaceInstUsesWith(EI, IE->getOperand(1));
321       // If the inserted and extracted elements are constants, they must not
322       // be the same value, extract from the pre-inserted value instead.
323       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
324         Worklist.AddValue(SrcVec);
325         EI.setOperand(0, IE->getOperand(0));
326         return &EI;
327       }
328     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
329       // If this is extracting an element from a shufflevector, figure out where
330       // it came from and extract from the appropriate input element instead.
331       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
332         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
333         Value *Src;
334         unsigned LHSWidth =
335           SVI->getOperand(0)->getType()->getVectorNumElements();
336 
337         if (SrcIdx < 0)
338           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
339         if (SrcIdx < (int)LHSWidth)
340           Src = SVI->getOperand(0);
341         else {
342           SrcIdx -= LHSWidth;
343           Src = SVI->getOperand(1);
344         }
345         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
346         return ExtractElementInst::Create(Src,
347                                           ConstantInt::get(Int32Ty,
348                                                            SrcIdx, false));
349       }
350     } else if (auto *CI = dyn_cast<CastInst>(I)) {
351       // Canonicalize extractelement(cast) -> cast(extractelement).
352       // Bitcasts can change the number of vector elements, and they cost
353       // nothing.
354       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
355         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
356         Worklist.AddValue(EE);
357         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
358       }
359     }
360   }
361   return nullptr;
362 }
363 
364 /// If V is a shuffle of values that ONLY returns elements from either LHS or
365 /// RHS, return the shuffle mask and true. Otherwise, return false.
366 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
367                                          SmallVectorImpl<Constant*> &Mask) {
368   assert(LHS->getType() == RHS->getType() &&
369          "Invalid CollectSingleShuffleElements");
370   unsigned NumElts = V->getType()->getVectorNumElements();
371 
372   if (isa<UndefValue>(V)) {
373     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374     return true;
375   }
376 
377   if (V == LHS) {
378     for (unsigned i = 0; i != NumElts; ++i)
379       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
380     return true;
381   }
382 
383   if (V == RHS) {
384     for (unsigned i = 0; i != NumElts; ++i)
385       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
386                                       i+NumElts));
387     return true;
388   }
389 
390   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
391     // If this is an insert of an extract from some other vector, include it.
392     Value *VecOp    = IEI->getOperand(0);
393     Value *ScalarOp = IEI->getOperand(1);
394     Value *IdxOp    = IEI->getOperand(2);
395 
396     if (!isa<ConstantInt>(IdxOp))
397       return false;
398     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
399 
400     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
401       // We can handle this if the vector we are inserting into is
402       // transitively ok.
403       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
404         // If so, update the mask to reflect the inserted undef.
405         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
406         return true;
407       }
408     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
409       if (isa<ConstantInt>(EI->getOperand(1))) {
410         unsigned ExtractedIdx =
411         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
412         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
413 
414         // This must be extracting from either LHS or RHS.
415         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
416           // We can handle this if the vector we are inserting into is
417           // transitively ok.
418           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
419             // If so, update the mask to reflect the inserted value.
420             if (EI->getOperand(0) == LHS) {
421               Mask[InsertedIdx % NumElts] =
422               ConstantInt::get(Type::getInt32Ty(V->getContext()),
423                                ExtractedIdx);
424             } else {
425               assert(EI->getOperand(0) == RHS);
426               Mask[InsertedIdx % NumElts] =
427               ConstantInt::get(Type::getInt32Ty(V->getContext()),
428                                ExtractedIdx + NumLHSElts);
429             }
430             return true;
431           }
432         }
433       }
434     }
435   }
436 
437   return false;
438 }
439 
440 /// If we have insertion into a vector that is wider than the vector that we
441 /// are extracting from, try to widen the source vector to allow a single
442 /// shufflevector to replace one or more insert/extract pairs.
443 static void replaceExtractElements(InsertElementInst *InsElt,
444                                    ExtractElementInst *ExtElt,
445                                    InstCombiner &IC) {
446   VectorType *InsVecType = InsElt->getType();
447   VectorType *ExtVecType = ExtElt->getVectorOperandType();
448   unsigned NumInsElts = InsVecType->getVectorNumElements();
449   unsigned NumExtElts = ExtVecType->getVectorNumElements();
450 
451   // The inserted-to vector must be wider than the extracted-from vector.
452   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
453       NumExtElts >= NumInsElts)
454     return;
455 
456   // Create a shuffle mask to widen the extended-from vector using undefined
457   // values. The mask selects all of the values of the original vector followed
458   // by as many undefined values as needed to create a vector of the same length
459   // as the inserted-to vector.
460   SmallVector<Constant *, 16> ExtendMask;
461   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
462   for (unsigned i = 0; i < NumExtElts; ++i)
463     ExtendMask.push_back(ConstantInt::get(IntType, i));
464   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
465     ExtendMask.push_back(UndefValue::get(IntType));
466 
467   Value *ExtVecOp = ExtElt->getVectorOperand();
468   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
469   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
470                                    ? ExtVecOpInst->getParent()
471                                    : ExtElt->getParent();
472 
473   // TODO: This restriction matches the basic block check below when creating
474   // new extractelement instructions. If that limitation is removed, this one
475   // could also be removed. But for now, we just bail out to ensure that we
476   // will replace the extractelement instruction that is feeding our
477   // insertelement instruction. This allows the insertelement to then be
478   // replaced by a shufflevector. If the insertelement is not replaced, we can
479   // induce infinite looping because there's an optimization for extractelement
480   // that will delete our widening shuffle. This would trigger another attempt
481   // here to create that shuffle, and we spin forever.
482   if (InsertionBlock != InsElt->getParent())
483     return;
484 
485   // TODO: This restriction matches the check in visitInsertElementInst() and
486   // prevents an infinite loop caused by not turning the extract/insert pair
487   // into a shuffle. We really should not need either check, but we're lacking
488   // folds for shufflevectors because we're afraid to generate shuffle masks
489   // that the backend can't handle.
490   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
491     return;
492 
493   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
494                                         ConstantVector::get(ExtendMask));
495 
496   // Insert the new shuffle after the vector operand of the extract is defined
497   // (as long as it's not a PHI) or at the start of the basic block of the
498   // extract, so any subsequent extracts in the same basic block can use it.
499   // TODO: Insert before the earliest ExtractElementInst that is replaced.
500   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
501     WideVec->insertAfter(ExtVecOpInst);
502   else
503     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
504 
505   // Replace extracts from the original narrow vector with extracts from the new
506   // wide vector.
507   for (User *U : ExtVecOp->users()) {
508     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
509     if (!OldExt || OldExt->getParent() != WideVec->getParent())
510       continue;
511     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
512     NewExt->insertAfter(OldExt);
513     IC.replaceInstUsesWith(*OldExt, NewExt);
514   }
515 }
516 
517 /// We are building a shuffle to create V, which is a sequence of insertelement,
518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
519 /// not rely on the second vector source. Return a std::pair containing the
520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
521 /// parameter as required.
522 ///
523 /// Note: we intentionally don't try to fold earlier shuffles since they have
524 /// often been chosen carefully to be efficiently implementable on the target.
525 using ShuffleOps = std::pair<Value *, Value *>;
526 
527 static ShuffleOps collectShuffleElements(Value *V,
528                                          SmallVectorImpl<Constant *> &Mask,
529                                          Value *PermittedRHS,
530                                          InstCombiner &IC) {
531   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
532   unsigned NumElts = V->getType()->getVectorNumElements();
533 
534   if (isa<UndefValue>(V)) {
535     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
536     return std::make_pair(
537         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
538   }
539 
540   if (isa<ConstantAggregateZero>(V)) {
541     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
542     return std::make_pair(V, nullptr);
543   }
544 
545   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
546     // If this is an insert of an extract from some other vector, include it.
547     Value *VecOp    = IEI->getOperand(0);
548     Value *ScalarOp = IEI->getOperand(1);
549     Value *IdxOp    = IEI->getOperand(2);
550 
551     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
552       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
553         unsigned ExtractedIdx =
554           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
555         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
556 
557         // Either the extracted from or inserted into vector must be RHSVec,
558         // otherwise we'd end up with a shuffle of three inputs.
559         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
560           Value *RHS = EI->getOperand(0);
561           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
562           assert(LR.second == nullptr || LR.second == RHS);
563 
564           if (LR.first->getType() != RHS->getType()) {
565             // Although we are giving up for now, see if we can create extracts
566             // that match the inserts for another round of combining.
567             replaceExtractElements(IEI, EI, IC);
568 
569             // We tried our best, but we can't find anything compatible with RHS
570             // further up the chain. Return a trivial shuffle.
571             for (unsigned i = 0; i < NumElts; ++i)
572               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
573             return std::make_pair(V, nullptr);
574           }
575 
576           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
577           Mask[InsertedIdx % NumElts] =
578             ConstantInt::get(Type::getInt32Ty(V->getContext()),
579                              NumLHSElts+ExtractedIdx);
580           return std::make_pair(LR.first, RHS);
581         }
582 
583         if (VecOp == PermittedRHS) {
584           // We've gone as far as we can: anything on the other side of the
585           // extractelement will already have been converted into a shuffle.
586           unsigned NumLHSElts =
587               EI->getOperand(0)->getType()->getVectorNumElements();
588           for (unsigned i = 0; i != NumElts; ++i)
589             Mask.push_back(ConstantInt::get(
590                 Type::getInt32Ty(V->getContext()),
591                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
592           return std::make_pair(EI->getOperand(0), PermittedRHS);
593         }
594 
595         // If this insertelement is a chain that comes from exactly these two
596         // vectors, return the vector and the effective shuffle.
597         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
598             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
599                                          Mask))
600           return std::make_pair(EI->getOperand(0), PermittedRHS);
601       }
602     }
603   }
604 
605   // Otherwise, we can't do anything fancy. Return an identity vector.
606   for (unsigned i = 0; i != NumElts; ++i)
607     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
608   return std::make_pair(V, nullptr);
609 }
610 
611 /// Try to find redundant insertvalue instructions, like the following ones:
612 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
613 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
614 /// Here the second instruction inserts values at the same indices, as the
615 /// first one, making the first one redundant.
616 /// It should be transformed to:
617 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
618 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
619   bool IsRedundant = false;
620   ArrayRef<unsigned int> FirstIndices = I.getIndices();
621 
622   // If there is a chain of insertvalue instructions (each of them except the
623   // last one has only one use and it's another insertvalue insn from this
624   // chain), check if any of the 'children' uses the same indices as the first
625   // instruction. In this case, the first one is redundant.
626   Value *V = &I;
627   unsigned Depth = 0;
628   while (V->hasOneUse() && Depth < 10) {
629     User *U = V->user_back();
630     auto UserInsInst = dyn_cast<InsertValueInst>(U);
631     if (!UserInsInst || U->getOperand(0) != V)
632       break;
633     if (UserInsInst->getIndices() == FirstIndices) {
634       IsRedundant = true;
635       break;
636     }
637     V = UserInsInst;
638     Depth++;
639   }
640 
641   if (IsRedundant)
642     return replaceInstUsesWith(I, I.getOperand(0));
643   return nullptr;
644 }
645 
646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
647   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
648   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
649 
650   // A vector select does not change the size of the operands.
651   if (MaskSize != VecSize)
652     return false;
653 
654   // Each mask element must be undefined or choose a vector element from one of
655   // the source operands without crossing vector lanes.
656   for (int i = 0; i != MaskSize; ++i) {
657     int Elt = Shuf.getMaskValue(i);
658     if (Elt != -1 && Elt != i && Elt != i + VecSize)
659       return false;
660   }
661 
662   return true;
663 }
664 
665 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
666 // splat. That is:
667 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
668 // shufflevector(insertelt(X, %k, 0), undef, zero)
669 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
670   // We are interested in the last insert in a chain. So, if this insert
671   // has a single user, and that user is an insert, bail.
672   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
673     return nullptr;
674 
675   VectorType *VT = cast<VectorType>(InsElt.getType());
676   int NumElements = VT->getNumElements();
677 
678   // Do not try to do this for a one-element vector, since that's a nop,
679   // and will cause an inf-loop.
680   if (NumElements == 1)
681     return nullptr;
682 
683   Value *SplatVal = InsElt.getOperand(1);
684   InsertElementInst *CurrIE = &InsElt;
685   SmallVector<bool, 16> ElementPresent(NumElements, false);
686   InsertElementInst *FirstIE = nullptr;
687 
688   // Walk the chain backwards, keeping track of which indices we inserted into,
689   // until we hit something that isn't an insert of the splatted value.
690   while (CurrIE) {
691     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
692     if (!Idx || CurrIE->getOperand(1) != SplatVal)
693       return nullptr;
694 
695     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
696     // Check none of the intermediate steps have any additional uses, except
697     // for the root insertelement instruction, which can be re-used, if it
698     // inserts at position 0.
699     if (CurrIE != &InsElt &&
700         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
701       return nullptr;
702 
703     ElementPresent[Idx->getZExtValue()] = true;
704     FirstIE = CurrIE;
705     CurrIE = NextIE;
706   }
707 
708   // Make sure we've seen an insert into every element.
709   if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
710     return nullptr;
711 
712   // All right, create the insert + shuffle.
713   Instruction *InsertFirst;
714   if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
715     InsertFirst = FirstIE;
716   else
717     InsertFirst = InsertElementInst::Create(
718         UndefValue::get(VT), SplatVal,
719         ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0),
720         "", &InsElt);
721 
722   Constant *ZeroMask = ConstantAggregateZero::get(
723       VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
724 
725   return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
726 }
727 
728 /// If we have an insertelement instruction feeding into another insertelement
729 /// and the 2nd is inserting a constant into the vector, canonicalize that
730 /// constant insertion before the insertion of a variable:
731 ///
732 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
733 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
734 ///
735 /// This has the potential of eliminating the 2nd insertelement instruction
736 /// via constant folding of the scalar constant into a vector constant.
737 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
738                                      InstCombiner::BuilderTy &Builder) {
739   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
740   if (!InsElt1 || !InsElt1->hasOneUse())
741     return nullptr;
742 
743   Value *X, *Y;
744   Constant *ScalarC;
745   ConstantInt *IdxC1, *IdxC2;
746   if (match(InsElt1->getOperand(0), m_Value(X)) &&
747       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
748       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
749       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
750       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
751     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
752     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
753   }
754 
755   return nullptr;
756 }
757 
758 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
759 /// --> shufflevector X, CVec', Mask'
760 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
761   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
762   // Bail out if the parent has more than one use. In that case, we'd be
763   // replacing the insertelt with a shuffle, and that's not a clear win.
764   if (!Inst || !Inst->hasOneUse())
765     return nullptr;
766   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
767     // The shuffle must have a constant vector operand. The insertelt must have
768     // a constant scalar being inserted at a constant position in the vector.
769     Constant *ShufConstVec, *InsEltScalar;
770     uint64_t InsEltIndex;
771     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
772         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
773         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
774       return nullptr;
775 
776     // Adding an element to an arbitrary shuffle could be expensive, but a
777     // shuffle that selects elements from vectors without crossing lanes is
778     // assumed cheap.
779     // If we're just adding a constant into that shuffle, it will still be
780     // cheap.
781     if (!isShuffleEquivalentToSelect(*Shuf))
782       return nullptr;
783 
784     // From the above 'select' check, we know that the mask has the same number
785     // of elements as the vector input operands. We also know that each constant
786     // input element is used in its lane and can not be used more than once by
787     // the shuffle. Therefore, replace the constant in the shuffle's constant
788     // vector with the insertelt constant. Replace the constant in the shuffle's
789     // mask vector with the insertelt index plus the length of the vector
790     // (because the constant vector operand of a shuffle is always the 2nd
791     // operand).
792     Constant *Mask = Shuf->getMask();
793     unsigned NumElts = Mask->getType()->getVectorNumElements();
794     SmallVector<Constant *, 16> NewShufElts(NumElts);
795     SmallVector<Constant *, 16> NewMaskElts(NumElts);
796     for (unsigned I = 0; I != NumElts; ++I) {
797       if (I == InsEltIndex) {
798         NewShufElts[I] = InsEltScalar;
799         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
800         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
801       } else {
802         // Copy over the existing values.
803         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
804         NewMaskElts[I] = Mask->getAggregateElement(I);
805       }
806     }
807 
808     // Create new operands for a shuffle that includes the constant of the
809     // original insertelt. The old shuffle will be dead now.
810     return new ShuffleVectorInst(Shuf->getOperand(0),
811                                  ConstantVector::get(NewShufElts),
812                                  ConstantVector::get(NewMaskElts));
813   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
814     // Transform sequences of insertelements ops with constant data/indexes into
815     // a single shuffle op.
816     unsigned NumElts = InsElt.getType()->getNumElements();
817 
818     uint64_t InsertIdx[2];
819     Constant *Val[2];
820     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
821         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
822         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
823         !match(IEI->getOperand(1), m_Constant(Val[1])))
824       return nullptr;
825     SmallVector<Constant *, 16> Values(NumElts);
826     SmallVector<Constant *, 16> Mask(NumElts);
827     auto ValI = std::begin(Val);
828     // Generate new constant vector and mask.
829     // We have 2 values/masks from the insertelements instructions. Insert them
830     // into new value/mask vectors.
831     for (uint64_t I : InsertIdx) {
832       if (!Values[I]) {
833         assert(!Mask[I]);
834         Values[I] = *ValI;
835         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
836                                    NumElts + I);
837       }
838       ++ValI;
839     }
840     // Remaining values are filled with 'undef' values.
841     for (unsigned I = 0; I < NumElts; ++I) {
842       if (!Values[I]) {
843         assert(!Mask[I]);
844         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
845         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
846       }
847     }
848     // Create new operands for a shuffle that includes the constant of the
849     // original insertelt.
850     return new ShuffleVectorInst(IEI->getOperand(0),
851                                  ConstantVector::get(Values),
852                                  ConstantVector::get(Mask));
853   }
854   return nullptr;
855 }
856 
857 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
858   Value *VecOp    = IE.getOperand(0);
859   Value *ScalarOp = IE.getOperand(1);
860   Value *IdxOp    = IE.getOperand(2);
861 
862   if (auto *V = SimplifyInsertElementInst(
863           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
864     return replaceInstUsesWith(IE, V);
865 
866   // Inserting an undef or into an undefined place, remove this.
867   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
868     replaceInstUsesWith(IE, VecOp);
869 
870   // If the inserted element was extracted from some other vector and both
871   // indexes are constant, try to turn this into a shuffle.
872   uint64_t InsertedIdx, ExtractedIdx;
873   Value *ExtVecOp;
874   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
875       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
876                                        m_ConstantInt(ExtractedIdx)))) {
877     unsigned NumInsertVectorElts = IE.getType()->getNumElements();
878     unsigned NumExtractVectorElts = ExtVecOp->getType()->getVectorNumElements();
879     if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
880       return replaceInstUsesWith(IE, VecOp);
881 
882     if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
883       return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
884 
885     // If we are extracting a value from a vector, then inserting it right
886     // back into the same place, just use the input vector.
887     if (ExtVecOp == VecOp && ExtractedIdx == InsertedIdx)
888       return replaceInstUsesWith(IE, VecOp);
889 
890     // TODO: Looking at the user(s) to determine if this insert is a
891     // fold-to-shuffle opportunity does not match the usual instcombine
892     // constraints. We should decide if the transform is worthy based only
893     // on this instruction and its operands, but that may not work currently.
894     //
895     // Here, we are trying to avoid creating shuffles before reaching
896     // the end of a chain of extract-insert pairs. This is complicated because
897     // we do not generally form arbitrary shuffle masks in instcombine
898     // (because those may codegen poorly), but collectShuffleElements() does
899     // exactly that.
900     //
901     // The rules for determining what is an acceptable target-independent
902     // shuffle mask are fuzzy because they evolve based on the backend's
903     // capabilities and real-world impact.
904     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
905       if (!Insert.hasOneUse())
906         return true;
907       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
908       if (!InsertUser)
909         return true;
910       return false;
911     };
912 
913     // Try to form a shuffle from a chain of extract-insert ops.
914     if (isShuffleRootCandidate(IE)) {
915       SmallVector<Constant*, 16> Mask;
916       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
917 
918       // The proposed shuffle may be trivial, in which case we shouldn't
919       // perform the combine.
920       if (LR.first != &IE && LR.second != &IE) {
921         // We now have a shuffle of LHS, RHS, Mask.
922         if (LR.second == nullptr)
923           LR.second = UndefValue::get(LR.first->getType());
924         return new ShuffleVectorInst(LR.first, LR.second,
925                                      ConstantVector::get(Mask));
926       }
927     }
928   }
929 
930   unsigned VWidth = VecOp->getType()->getVectorNumElements();
931   APInt UndefElts(VWidth, 0);
932   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
933   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
934     if (V != &IE)
935       return replaceInstUsesWith(IE, V);
936     return &IE;
937   }
938 
939   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
940     return Shuf;
941 
942   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
943     return NewInsElt;
944 
945   // Turn a sequence of inserts that broadcasts a scalar into a single
946   // insert + shufflevector.
947   if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
948     return Broadcast;
949 
950   return nullptr;
951 }
952 
953 /// Return true if we can evaluate the specified expression tree if the vector
954 /// elements were shuffled in a different order.
955 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
956                                 unsigned Depth = 5) {
957   // We can always reorder the elements of a constant.
958   if (isa<Constant>(V))
959     return true;
960 
961   // We won't reorder vector arguments. No IPO here.
962   Instruction *I = dyn_cast<Instruction>(V);
963   if (!I) return false;
964 
965   // Two users may expect different orders of the elements. Don't try it.
966   if (!I->hasOneUse())
967     return false;
968 
969   if (Depth == 0) return false;
970 
971   switch (I->getOpcode()) {
972     case Instruction::Add:
973     case Instruction::FAdd:
974     case Instruction::Sub:
975     case Instruction::FSub:
976     case Instruction::Mul:
977     case Instruction::FMul:
978     case Instruction::UDiv:
979     case Instruction::SDiv:
980     case Instruction::FDiv:
981     case Instruction::URem:
982     case Instruction::SRem:
983     case Instruction::FRem:
984     case Instruction::Shl:
985     case Instruction::LShr:
986     case Instruction::AShr:
987     case Instruction::And:
988     case Instruction::Or:
989     case Instruction::Xor:
990     case Instruction::ICmp:
991     case Instruction::FCmp:
992     case Instruction::Trunc:
993     case Instruction::ZExt:
994     case Instruction::SExt:
995     case Instruction::FPToUI:
996     case Instruction::FPToSI:
997     case Instruction::UIToFP:
998     case Instruction::SIToFP:
999     case Instruction::FPTrunc:
1000     case Instruction::FPExt:
1001     case Instruction::GetElementPtr: {
1002       // Bail out if we would create longer vector ops. We could allow creating
1003       // longer vector ops, but that may result in more expensive codegen. We
1004       // would also need to limit the transform to avoid undefined behavior for
1005       // integer div/rem.
1006       Type *ITy = I->getType();
1007       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1008         return false;
1009       for (Value *Operand : I->operands()) {
1010         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1011           return false;
1012       }
1013       return true;
1014     }
1015     case Instruction::InsertElement: {
1016       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1017       if (!CI) return false;
1018       int ElementNumber = CI->getLimitedValue();
1019 
1020       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1021       // can't put an element into multiple indices.
1022       bool SeenOnce = false;
1023       for (int i = 0, e = Mask.size(); i != e; ++i) {
1024         if (Mask[i] == ElementNumber) {
1025           if (SeenOnce)
1026             return false;
1027           SeenOnce = true;
1028         }
1029       }
1030       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1031     }
1032   }
1033   return false;
1034 }
1035 
1036 /// Rebuild a new instruction just like 'I' but with the new operands given.
1037 /// In the event of type mismatch, the type of the operands is correct.
1038 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1039   // We don't want to use the IRBuilder here because we want the replacement
1040   // instructions to appear next to 'I', not the builder's insertion point.
1041   switch (I->getOpcode()) {
1042     case Instruction::Add:
1043     case Instruction::FAdd:
1044     case Instruction::Sub:
1045     case Instruction::FSub:
1046     case Instruction::Mul:
1047     case Instruction::FMul:
1048     case Instruction::UDiv:
1049     case Instruction::SDiv:
1050     case Instruction::FDiv:
1051     case Instruction::URem:
1052     case Instruction::SRem:
1053     case Instruction::FRem:
1054     case Instruction::Shl:
1055     case Instruction::LShr:
1056     case Instruction::AShr:
1057     case Instruction::And:
1058     case Instruction::Or:
1059     case Instruction::Xor: {
1060       BinaryOperator *BO = cast<BinaryOperator>(I);
1061       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1062       BinaryOperator *New =
1063           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1064                                  NewOps[0], NewOps[1], "", BO);
1065       if (isa<OverflowingBinaryOperator>(BO)) {
1066         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1067         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1068       }
1069       if (isa<PossiblyExactOperator>(BO)) {
1070         New->setIsExact(BO->isExact());
1071       }
1072       if (isa<FPMathOperator>(BO))
1073         New->copyFastMathFlags(I);
1074       return New;
1075     }
1076     case Instruction::ICmp:
1077       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1078       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1079                           NewOps[0], NewOps[1]);
1080     case Instruction::FCmp:
1081       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1082       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1083                           NewOps[0], NewOps[1]);
1084     case Instruction::Trunc:
1085     case Instruction::ZExt:
1086     case Instruction::SExt:
1087     case Instruction::FPToUI:
1088     case Instruction::FPToSI:
1089     case Instruction::UIToFP:
1090     case Instruction::SIToFP:
1091     case Instruction::FPTrunc:
1092     case Instruction::FPExt: {
1093       // It's possible that the mask has a different number of elements from
1094       // the original cast. We recompute the destination type to match the mask.
1095       Type *DestTy =
1096           VectorType::get(I->getType()->getScalarType(),
1097                           NewOps[0]->getType()->getVectorNumElements());
1098       assert(NewOps.size() == 1 && "cast with #ops != 1");
1099       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1100                               "", I);
1101     }
1102     case Instruction::GetElementPtr: {
1103       Value *Ptr = NewOps[0];
1104       ArrayRef<Value*> Idx = NewOps.slice(1);
1105       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1106           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1107       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1108       return GEP;
1109     }
1110   }
1111   llvm_unreachable("failed to rebuild vector instructions");
1112 }
1113 
1114 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1115   // Mask.size() does not need to be equal to the number of vector elements.
1116 
1117   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1118   Type *EltTy = V->getType()->getScalarType();
1119   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1120   if (isa<UndefValue>(V))
1121     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1122 
1123   if (isa<ConstantAggregateZero>(V))
1124     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1125 
1126   if (Constant *C = dyn_cast<Constant>(V)) {
1127     SmallVector<Constant *, 16> MaskValues;
1128     for (int i = 0, e = Mask.size(); i != e; ++i) {
1129       if (Mask[i] == -1)
1130         MaskValues.push_back(UndefValue::get(I32Ty));
1131       else
1132         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1133     }
1134     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1135                                           ConstantVector::get(MaskValues));
1136   }
1137 
1138   Instruction *I = cast<Instruction>(V);
1139   switch (I->getOpcode()) {
1140     case Instruction::Add:
1141     case Instruction::FAdd:
1142     case Instruction::Sub:
1143     case Instruction::FSub:
1144     case Instruction::Mul:
1145     case Instruction::FMul:
1146     case Instruction::UDiv:
1147     case Instruction::SDiv:
1148     case Instruction::FDiv:
1149     case Instruction::URem:
1150     case Instruction::SRem:
1151     case Instruction::FRem:
1152     case Instruction::Shl:
1153     case Instruction::LShr:
1154     case Instruction::AShr:
1155     case Instruction::And:
1156     case Instruction::Or:
1157     case Instruction::Xor:
1158     case Instruction::ICmp:
1159     case Instruction::FCmp:
1160     case Instruction::Trunc:
1161     case Instruction::ZExt:
1162     case Instruction::SExt:
1163     case Instruction::FPToUI:
1164     case Instruction::FPToSI:
1165     case Instruction::UIToFP:
1166     case Instruction::SIToFP:
1167     case Instruction::FPTrunc:
1168     case Instruction::FPExt:
1169     case Instruction::Select:
1170     case Instruction::GetElementPtr: {
1171       SmallVector<Value*, 8> NewOps;
1172       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1173       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1174         Value *V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1175         NewOps.push_back(V);
1176         NeedsRebuild |= (V != I->getOperand(i));
1177       }
1178       if (NeedsRebuild) {
1179         return buildNew(I, NewOps);
1180       }
1181       return I;
1182     }
1183     case Instruction::InsertElement: {
1184       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1185 
1186       // The insertelement was inserting at Element. Figure out which element
1187       // that becomes after shuffling. The answer is guaranteed to be unique
1188       // by CanEvaluateShuffled.
1189       bool Found = false;
1190       int Index = 0;
1191       for (int e = Mask.size(); Index != e; ++Index) {
1192         if (Mask[Index] == Element) {
1193           Found = true;
1194           break;
1195         }
1196       }
1197 
1198       // If element is not in Mask, no need to handle the operand 1 (element to
1199       // be inserted). Just evaluate values in operand 0 according to Mask.
1200       if (!Found)
1201         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1202 
1203       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1204       return InsertElementInst::Create(V, I->getOperand(1),
1205                                        ConstantInt::get(I32Ty, Index), "", I);
1206     }
1207   }
1208   llvm_unreachable("failed to reorder elements of vector instruction!");
1209 }
1210 
1211 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1212                                   bool &isLHSID, bool &isRHSID) {
1213   isLHSID = isRHSID = true;
1214 
1215   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1216     if (Mask[i] < 0) continue;  // Ignore undef values.
1217     // Is this an identity shuffle of the LHS value?
1218     isLHSID &= (Mask[i] == (int)i);
1219 
1220     // Is this an identity shuffle of the RHS value?
1221     isRHSID &= (Mask[i]-e == i);
1222   }
1223 }
1224 
1225 // Returns true if the shuffle is extracting a contiguous range of values from
1226 // LHS, for example:
1227 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1228 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1229 //   Shuffles to:  |EE|FF|GG|HH|
1230 //                 +--+--+--+--+
1231 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1232                                        SmallVector<int, 16> &Mask) {
1233   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1234   unsigned MaskElems = Mask.size();
1235   unsigned BegIdx = Mask.front();
1236   unsigned EndIdx = Mask.back();
1237   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1238     return false;
1239   for (unsigned I = 0; I != MaskElems; ++I)
1240     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1241       return false;
1242   return true;
1243 }
1244 
1245 /// These are the ingredients in an alternate form binary operator as described
1246 /// below.
1247 struct BinopElts {
1248   BinaryOperator::BinaryOps Opcode;
1249   Value *Op0;
1250   Value *Op1;
1251   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1252             Value *V0 = nullptr, Value *V1 = nullptr) :
1253       Opcode(Opc), Op0(V0), Op1(V1) {}
1254   operator bool() const { return Opcode != 0; }
1255 };
1256 
1257 /// Binops may be transformed into binops with different opcodes and operands.
1258 /// Reverse the usual canonicalization to enable folds with the non-canonical
1259 /// form of the binop. If a transform is possible, return the elements of the
1260 /// new binop. If not, return invalid elements.
1261 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1262   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1263   Type *Ty = BO->getType();
1264   switch (BO->getOpcode()) {
1265     case Instruction::Shl: {
1266       // shl X, C --> mul X, (1 << C)
1267       Constant *C;
1268       if (match(BO1, m_Constant(C))) {
1269         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1270         return { Instruction::Mul, BO0, ShlOne };
1271       }
1272       break;
1273     }
1274     case Instruction::Or: {
1275       // or X, C --> add X, C (when X and C have no common bits set)
1276       const APInt *C;
1277       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1278         return { Instruction::Add, BO0, BO1 };
1279       break;
1280     }
1281     default:
1282       break;
1283   }
1284   return {};
1285 }
1286 
1287 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1288   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1289 
1290   // Are we shuffling together some value and that same value after it has been
1291   // modified by a binop with a constant?
1292   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1293   Constant *C;
1294   bool Op0IsBinop;
1295   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1296     Op0IsBinop = true;
1297   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1298     Op0IsBinop = false;
1299   else
1300     return nullptr;
1301 
1302   // The identity constant for a binop leaves a variable operand unchanged. For
1303   // a vector, this is a splat of something like 0, -1, or 1.
1304   // If there's no identity constant for this binop, we're done.
1305   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1306   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1307   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1308   if (!IdC)
1309     return nullptr;
1310 
1311   // Shuffle identity constants into the lanes that return the original value.
1312   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1313   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1314   // The existing binop constant vector remains in the same operand position.
1315   Constant *Mask = Shuf.getMask();
1316   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1317                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1318 
1319   bool MightCreatePoisonOrUB =
1320       Mask->containsUndefElement() &&
1321       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1322   if (MightCreatePoisonOrUB)
1323     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1324 
1325   // shuf (bop X, C), X, M --> bop X, C'
1326   // shuf X, (bop X, C), M --> bop X, C'
1327   Value *X = Op0IsBinop ? Op1 : Op0;
1328   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1329   NewBO->copyIRFlags(BO);
1330 
1331   // An undef shuffle mask element may propagate as an undef constant element in
1332   // the new binop. That would produce poison where the original code might not.
1333   // If we already made a safe constant, then there's no danger.
1334   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1335     NewBO->dropPoisonGeneratingFlags();
1336   return NewBO;
1337 }
1338 
1339 /// Try to fold shuffles that are the equivalent of a vector select.
1340 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1341                                       InstCombiner::BuilderTy &Builder,
1342                                       const DataLayout &DL) {
1343   if (!Shuf.isSelect())
1344     return nullptr;
1345 
1346   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1347     return I;
1348 
1349   BinaryOperator *B0, *B1;
1350   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1351       !match(Shuf.getOperand(1), m_BinOp(B1)))
1352     return nullptr;
1353 
1354   Value *X, *Y;
1355   Constant *C0, *C1;
1356   bool ConstantsAreOp1;
1357   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1358       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1359     ConstantsAreOp1 = true;
1360   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1361            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1362     ConstantsAreOp1 = false;
1363   else
1364     return nullptr;
1365 
1366   // We need matching binops to fold the lanes together.
1367   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1368   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1369   bool DropNSW = false;
1370   if (ConstantsAreOp1 && Opc0 != Opc1) {
1371     // TODO: We drop "nsw" if shift is converted into multiply because it may
1372     // not be correct when the shift amount is BitWidth - 1. We could examine
1373     // each vector element to determine if it is safe to keep that flag.
1374     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1375       DropNSW = true;
1376     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1377       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1378       Opc0 = AltB0.Opcode;
1379       C0 = cast<Constant>(AltB0.Op1);
1380     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1381       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1382       Opc1 = AltB1.Opcode;
1383       C1 = cast<Constant>(AltB1.Op1);
1384     }
1385   }
1386 
1387   if (Opc0 != Opc1)
1388     return nullptr;
1389 
1390   // The opcodes must be the same. Use a new name to make that clear.
1391   BinaryOperator::BinaryOps BOpc = Opc0;
1392 
1393   // Select the constant elements needed for the single binop.
1394   Constant *Mask = Shuf.getMask();
1395   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1396 
1397   // We are moving a binop after a shuffle. When a shuffle has an undefined
1398   // mask element, the result is undefined, but it is not poison or undefined
1399   // behavior. That is not necessarily true for div/rem/shift.
1400   bool MightCreatePoisonOrUB =
1401       Mask->containsUndefElement() &&
1402       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1403   if (MightCreatePoisonOrUB)
1404     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1405 
1406   Value *V;
1407   if (X == Y) {
1408     // Remove a binop and the shuffle by rearranging the constant:
1409     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1410     // shuffle (op C0, V), (op C1, V), M --> op C', V
1411     V = X;
1412   } else {
1413     // If there are 2 different variable operands, we must create a new shuffle
1414     // (select) first, so check uses to ensure that we don't end up with more
1415     // instructions than we started with.
1416     if (!B0->hasOneUse() && !B1->hasOneUse())
1417       return nullptr;
1418 
1419     // If we use the original shuffle mask and op1 is *variable*, we would be
1420     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1421     // poison. We do not have to guard against UB when *constants* are op1
1422     // because safe constants guarantee that we do not overflow sdiv/srem (and
1423     // there's no danger for other opcodes).
1424     // TODO: To allow this case, create a new shuffle mask with no undefs.
1425     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1426       return nullptr;
1427 
1428     // Note: In general, we do not create new shuffles in InstCombine because we
1429     // do not know if a target can lower an arbitrary shuffle optimally. In this
1430     // case, the shuffle uses the existing mask, so there is no additional risk.
1431 
1432     // Select the variable vectors first, then perform the binop:
1433     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1434     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1435     V = Builder.CreateShuffleVector(X, Y, Mask);
1436   }
1437 
1438   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1439                                          BinaryOperator::Create(BOpc, NewC, V);
1440 
1441   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1442   // 1. If we changed an opcode, poison conditions might have changed.
1443   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1444   //    where the original code did not. But if we already made a safe constant,
1445   //    then there's no danger.
1446   NewBO->copyIRFlags(B0);
1447   NewBO->andIRFlags(B1);
1448   if (DropNSW)
1449     NewBO->setHasNoSignedWrap(false);
1450   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1451     NewBO->dropPoisonGeneratingFlags();
1452   return NewBO;
1453 }
1454 
1455 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1456 /// narrowing (concatenating with undef and extracting back to the original
1457 /// length). This allows replacing the wide select with a narrow select.
1458 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1459                                        InstCombiner::BuilderTy &Builder) {
1460   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1461   // of the 1st vector operand of a shuffle.
1462   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1463     return nullptr;
1464 
1465   // The vector being shuffled must be a vector select that we can eliminate.
1466   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1467   Value *Cond, *X, *Y;
1468   if (!match(Shuf.getOperand(0),
1469              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1470     return nullptr;
1471 
1472   // We need a narrow condition value. It must be extended with undef elements
1473   // and have the same number of elements as this shuffle.
1474   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1475   Value *NarrowCond;
1476   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1477                                             m_Constant()))) ||
1478       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1479       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1480     return nullptr;
1481 
1482   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1483   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1484   Value *Undef = UndefValue::get(X->getType());
1485   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1486   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1487   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1488 }
1489 
1490 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1491 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1492   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1493   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1494     return nullptr;
1495 
1496   Value *X, *Y;
1497   Constant *Mask;
1498   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1499     return nullptr;
1500 
1501   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1502   // then combining may result in worse codegen.
1503   if (!Op0->hasOneUse())
1504     return nullptr;
1505 
1506   // We are extracting a subvector from a shuffle. Remove excess elements from
1507   // the 1st shuffle mask to eliminate the extract.
1508   //
1509   // This transform is conservatively limited to identity extracts because we do
1510   // not allow arbitrary shuffle mask creation as a target-independent transform
1511   // (because we can't guarantee that will lower efficiently).
1512   //
1513   // If the extracting shuffle has an undef mask element, it transfers to the
1514   // new shuffle mask. Otherwise, copy the original mask element. Example:
1515   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1516   //   shuf X, Y, <C0, undef, C2, undef>
1517   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1518   SmallVector<Constant *, 16> NewMask(NumElts);
1519   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1520          "Identity with extract must have less elements than its inputs");
1521 
1522   for (unsigned i = 0; i != NumElts; ++i) {
1523     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1524     Constant *MaskElt = Mask->getAggregateElement(i);
1525     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1526   }
1527   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1528 }
1529 
1530 /// Try to replace a shuffle with an insertelement.
1531 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1532   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1533   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1534 
1535   // The shuffle must not change vector sizes.
1536   // TODO: This restriction could be removed if the insert has only one use
1537   //       (because the transform would require a new length-changing shuffle).
1538   int NumElts = Mask.size();
1539   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1540     return nullptr;
1541 
1542   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1543   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1544     // We need an insertelement with a constant index.
1545     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1546                                    m_ConstantInt(IndexC))))
1547       return false;
1548 
1549     // Test the shuffle mask to see if it splices the inserted scalar into the
1550     // operand 1 vector of the shuffle.
1551     int NewInsIndex = -1;
1552     for (int i = 0; i != NumElts; ++i) {
1553       // Ignore undef mask elements.
1554       if (Mask[i] == -1)
1555         continue;
1556 
1557       // The shuffle takes elements of operand 1 without lane changes.
1558       if (Mask[i] == NumElts + i)
1559         continue;
1560 
1561       // The shuffle must choose the inserted scalar exactly once.
1562       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1563         return false;
1564 
1565       // The shuffle is placing the inserted scalar into element i.
1566       NewInsIndex = i;
1567     }
1568 
1569     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1570 
1571     // Index is updated to the potentially translated insertion lane.
1572     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1573     return true;
1574   };
1575 
1576   // If the shuffle is unnecessary, insert the scalar operand directly into
1577   // operand 1 of the shuffle. Example:
1578   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1579   Value *Scalar;
1580   ConstantInt *IndexC;
1581   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1582     return InsertElementInst::Create(V1, Scalar, IndexC);
1583 
1584   // Try again after commuting shuffle. Example:
1585   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1586   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1587   std::swap(V0, V1);
1588   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1589   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1590     return InsertElementInst::Create(V1, Scalar, IndexC);
1591 
1592   return nullptr;
1593 }
1594 
1595 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1596   Value *LHS = SVI.getOperand(0);
1597   Value *RHS = SVI.getOperand(1);
1598   if (auto *V = SimplifyShuffleVectorInst(
1599           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1600     return replaceInstUsesWith(SVI, V);
1601 
1602   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1603     return I;
1604 
1605   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1606     return I;
1607 
1608   unsigned VWidth = SVI.getType()->getVectorNumElements();
1609   APInt UndefElts(VWidth, 0);
1610   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1611   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1612     if (V != &SVI)
1613       return replaceInstUsesWith(SVI, V);
1614     return &SVI;
1615   }
1616 
1617   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1618     return I;
1619 
1620   // This transform has the potential to lose undef knowledge, so it is
1621   // intentionally placed after SimplifyDemandedVectorElts().
1622   if (Instruction *I = foldShuffleWithInsert(SVI))
1623     return I;
1624 
1625   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1626   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1627   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1628   bool MadeChange = false;
1629 
1630   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1631   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1632   if (LHS == RHS || isa<UndefValue>(LHS)) {
1633     // Remap any references to RHS to use LHS.
1634     SmallVector<Constant*, 16> Elts;
1635     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1636       if (Mask[i] < 0) {
1637         Elts.push_back(UndefValue::get(Int32Ty));
1638         continue;
1639       }
1640 
1641       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1642           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1643         Mask[i] = -1;     // Turn into undef.
1644         Elts.push_back(UndefValue::get(Int32Ty));
1645       } else {
1646         Mask[i] = Mask[i] % e;  // Force to LHS.
1647         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1648       }
1649     }
1650     SVI.setOperand(0, SVI.getOperand(1));
1651     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1652     SVI.setOperand(2, ConstantVector::get(Elts));
1653     LHS = SVI.getOperand(0);
1654     RHS = SVI.getOperand(1);
1655     MadeChange = true;
1656   }
1657 
1658   if (VWidth == LHSWidth) {
1659     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1660     bool isLHSID, isRHSID;
1661     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1662 
1663     // Eliminate identity shuffles.
1664     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1665     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1666   }
1667 
1668   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1669     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1670     return replaceInstUsesWith(SVI, V);
1671   }
1672 
1673   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1674   // a non-vector type. We can instead bitcast the original vector followed by
1675   // an extract of the desired element:
1676   //
1677   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1678   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1679   //   %1 = bitcast <4 x i8> %sroa to i32
1680   // Becomes:
1681   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1682   //   %ext = extractelement <4 x i32> %bc, i32 0
1683   //
1684   // If the shuffle is extracting a contiguous range of values from the input
1685   // vector then each use which is a bitcast of the extracted size can be
1686   // replaced. This will work if the vector types are compatible, and the begin
1687   // index is aligned to a value in the casted vector type. If the begin index
1688   // isn't aligned then we can shuffle the original vector (keeping the same
1689   // vector type) before extracting.
1690   //
1691   // This code will bail out if the target type is fundamentally incompatible
1692   // with vectors of the source type.
1693   //
1694   // Example of <16 x i8>, target type i32:
1695   // Index range [4,8):         v-----------v Will work.
1696   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1697   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1698   //     <4 x i32>: |           |           |           |           |
1699   //                +-----------+-----------+-----------+-----------+
1700   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1701   // Target type i40:           ^--------------^ Won't work, bail.
1702   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1703     Value *V = LHS;
1704     unsigned MaskElems = Mask.size();
1705     VectorType *SrcTy = cast<VectorType>(V->getType());
1706     unsigned VecBitWidth = SrcTy->getBitWidth();
1707     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1708     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1709     unsigned SrcNumElems = SrcTy->getNumElements();
1710     SmallVector<BitCastInst *, 8> BCs;
1711     DenseMap<Type *, Value *> NewBCs;
1712     for (User *U : SVI.users())
1713       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1714         if (!BC->use_empty())
1715           // Only visit bitcasts that weren't previously handled.
1716           BCs.push_back(BC);
1717     for (BitCastInst *BC : BCs) {
1718       unsigned BegIdx = Mask.front();
1719       Type *TgtTy = BC->getDestTy();
1720       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1721       if (!TgtElemBitWidth)
1722         continue;
1723       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1724       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1725       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1726       if (!VecBitWidthsEqual)
1727         continue;
1728       if (!VectorType::isValidElementType(TgtTy))
1729         continue;
1730       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1731       if (!BegIsAligned) {
1732         // Shuffle the input so [0,NumElements) contains the output, and
1733         // [NumElems,SrcNumElems) is undef.
1734         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1735                                                 UndefValue::get(Int32Ty));
1736         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1737           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1738         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1739                                         ConstantVector::get(ShuffleMask),
1740                                         SVI.getName() + ".extract");
1741         BegIdx = 0;
1742       }
1743       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1744       assert(SrcElemsPerTgtElem);
1745       BegIdx /= SrcElemsPerTgtElem;
1746       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1747       auto *NewBC =
1748           BCAlreadyExists
1749               ? NewBCs[CastSrcTy]
1750               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1751       if (!BCAlreadyExists)
1752         NewBCs[CastSrcTy] = NewBC;
1753       auto *Ext = Builder.CreateExtractElement(
1754           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1755       // The shufflevector isn't being replaced: the bitcast that used it
1756       // is. InstCombine will visit the newly-created instructions.
1757       replaceInstUsesWith(*BC, Ext);
1758       MadeChange = true;
1759     }
1760   }
1761 
1762   // If the LHS is a shufflevector itself, see if we can combine it with this
1763   // one without producing an unusual shuffle.
1764   // Cases that might be simplified:
1765   // 1.
1766   // x1=shuffle(v1,v2,mask1)
1767   //  x=shuffle(x1,undef,mask)
1768   //        ==>
1769   //  x=shuffle(v1,undef,newMask)
1770   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1771   // 2.
1772   // x1=shuffle(v1,undef,mask1)
1773   //  x=shuffle(x1,x2,mask)
1774   // where v1.size() == mask1.size()
1775   //        ==>
1776   //  x=shuffle(v1,x2,newMask)
1777   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1778   // 3.
1779   // x2=shuffle(v2,undef,mask2)
1780   //  x=shuffle(x1,x2,mask)
1781   // where v2.size() == mask2.size()
1782   //        ==>
1783   //  x=shuffle(x1,v2,newMask)
1784   // newMask[i] = (mask[i] < x1.size())
1785   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1786   // 4.
1787   // x1=shuffle(v1,undef,mask1)
1788   // x2=shuffle(v2,undef,mask2)
1789   //  x=shuffle(x1,x2,mask)
1790   // where v1.size() == v2.size()
1791   //        ==>
1792   //  x=shuffle(v1,v2,newMask)
1793   // newMask[i] = (mask[i] < x1.size())
1794   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1795   //
1796   // Here we are really conservative:
1797   // we are absolutely afraid of producing a shuffle mask not in the input
1798   // program, because the code gen may not be smart enough to turn a merged
1799   // shuffle into two specific shuffles: it may produce worse code.  As such,
1800   // we only merge two shuffles if the result is either a splat or one of the
1801   // input shuffle masks.  In this case, merging the shuffles just removes
1802   // one instruction, which we know is safe.  This is good for things like
1803   // turning: (splat(splat)) -> splat, or
1804   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1805   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1806   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1807   if (LHSShuffle)
1808     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1809       LHSShuffle = nullptr;
1810   if (RHSShuffle)
1811     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1812       RHSShuffle = nullptr;
1813   if (!LHSShuffle && !RHSShuffle)
1814     return MadeChange ? &SVI : nullptr;
1815 
1816   Value* LHSOp0 = nullptr;
1817   Value* LHSOp1 = nullptr;
1818   Value* RHSOp0 = nullptr;
1819   unsigned LHSOp0Width = 0;
1820   unsigned RHSOp0Width = 0;
1821   if (LHSShuffle) {
1822     LHSOp0 = LHSShuffle->getOperand(0);
1823     LHSOp1 = LHSShuffle->getOperand(1);
1824     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1825   }
1826   if (RHSShuffle) {
1827     RHSOp0 = RHSShuffle->getOperand(0);
1828     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1829   }
1830   Value* newLHS = LHS;
1831   Value* newRHS = RHS;
1832   if (LHSShuffle) {
1833     // case 1
1834     if (isa<UndefValue>(RHS)) {
1835       newLHS = LHSOp0;
1836       newRHS = LHSOp1;
1837     }
1838     // case 2 or 4
1839     else if (LHSOp0Width == LHSWidth) {
1840       newLHS = LHSOp0;
1841     }
1842   }
1843   // case 3 or 4
1844   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1845     newRHS = RHSOp0;
1846   }
1847   // case 4
1848   if (LHSOp0 == RHSOp0) {
1849     newLHS = LHSOp0;
1850     newRHS = nullptr;
1851   }
1852 
1853   if (newLHS == LHS && newRHS == RHS)
1854     return MadeChange ? &SVI : nullptr;
1855 
1856   SmallVector<int, 16> LHSMask;
1857   SmallVector<int, 16> RHSMask;
1858   if (newLHS != LHS)
1859     LHSMask = LHSShuffle->getShuffleMask();
1860   if (RHSShuffle && newRHS != RHS)
1861     RHSMask = RHSShuffle->getShuffleMask();
1862 
1863   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1864   SmallVector<int, 16> newMask;
1865   bool isSplat = true;
1866   int SplatElt = -1;
1867   // Create a new mask for the new ShuffleVectorInst so that the new
1868   // ShuffleVectorInst is equivalent to the original one.
1869   for (unsigned i = 0; i < VWidth; ++i) {
1870     int eltMask;
1871     if (Mask[i] < 0) {
1872       // This element is an undef value.
1873       eltMask = -1;
1874     } else if (Mask[i] < (int)LHSWidth) {
1875       // This element is from left hand side vector operand.
1876       //
1877       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1878       // new mask value for the element.
1879       if (newLHS != LHS) {
1880         eltMask = LHSMask[Mask[i]];
1881         // If the value selected is an undef value, explicitly specify it
1882         // with a -1 mask value.
1883         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1884           eltMask = -1;
1885       } else
1886         eltMask = Mask[i];
1887     } else {
1888       // This element is from right hand side vector operand
1889       //
1890       // If the value selected is an undef value, explicitly specify it
1891       // with a -1 mask value. (case 1)
1892       if (isa<UndefValue>(RHS))
1893         eltMask = -1;
1894       // If RHS is going to be replaced (case 3 or 4), calculate the
1895       // new mask value for the element.
1896       else if (newRHS != RHS) {
1897         eltMask = RHSMask[Mask[i]-LHSWidth];
1898         // If the value selected is an undef value, explicitly specify it
1899         // with a -1 mask value.
1900         if (eltMask >= (int)RHSOp0Width) {
1901           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1902                  && "should have been check above");
1903           eltMask = -1;
1904         }
1905       } else
1906         eltMask = Mask[i]-LHSWidth;
1907 
1908       // If LHS's width is changed, shift the mask value accordingly.
1909       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
1910       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1911       // If newRHS == newLHS, we want to remap any references from newRHS to
1912       // newLHS so that we can properly identify splats that may occur due to
1913       // obfuscation across the two vectors.
1914       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1915         eltMask += newLHSWidth;
1916     }
1917 
1918     // Check if this could still be a splat.
1919     if (eltMask >= 0) {
1920       if (SplatElt >= 0 && SplatElt != eltMask)
1921         isSplat = false;
1922       SplatElt = eltMask;
1923     }
1924 
1925     newMask.push_back(eltMask);
1926   }
1927 
1928   // If the result mask is equal to one of the original shuffle masks,
1929   // or is a splat, do the replacement.
1930   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1931     SmallVector<Constant*, 16> Elts;
1932     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1933       if (newMask[i] < 0) {
1934         Elts.push_back(UndefValue::get(Int32Ty));
1935       } else {
1936         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1937       }
1938     }
1939     if (!newRHS)
1940       newRHS = UndefValue::get(newLHS->getType());
1941     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1942   }
1943 
1944   // If the result mask is an identity, replace uses of this instruction with
1945   // corresponding argument.
1946   bool isLHSID, isRHSID;
1947   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1948   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1949   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1950 
1951   return MadeChange ? &SVI : nullptr;
1952 }
1953