1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Return true if the value is cheaper to scalarize than it is to leave as a 26 /// vector operation. isConstant indicates whether we're extracting one known 27 /// element. If false we're extracting a variable index. 28 static bool cheapToScalarize(Value *V, bool isConstant) { 29 if (Constant *C = dyn_cast<Constant>(V)) { 30 if (isConstant) return true; 31 32 // If all elts are the same, we can extract it and use any of the values. 33 if (Constant *Op0 = C->getAggregateElement(0U)) { 34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; 35 ++i) 36 if (C->getAggregateElement(i) != Op0) 37 return false; 38 return true; 39 } 40 } 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (!I) return false; 43 44 // Insert element gets simplified to the inserted element or is deleted if 45 // this is constant idx extract element and its a constant idx insertelt. 46 if (I->getOpcode() == Instruction::InsertElement && isConstant && 47 isa<ConstantInt>(I->getOperand(2))) 48 return true; 49 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 50 return true; 51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 52 if (BO->hasOneUse() && 53 (cheapToScalarize(BO->getOperand(0), isConstant) || 54 cheapToScalarize(BO->getOperand(1), isConstant))) 55 return true; 56 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 57 if (CI->hasOneUse() && 58 (cheapToScalarize(CI->getOperand(0), isConstant) || 59 cheapToScalarize(CI->getOperand(1), isConstant))) 60 return true; 61 62 return false; 63 } 64 65 // If we have a PHI node with a vector type that is only used to feed 66 // itself and be an operand of extractelement at a constant location, 67 // try to replace the PHI of the vector type with a PHI of a scalar type. 68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 69 SmallVector<Instruction *, 2> Extracts; 70 // The users we want the PHI to have are: 71 // 1) The EI ExtractElement (we already know this) 72 // 2) Possibly more ExtractElements with the same index. 73 // 3) Another operand, which will feed back into the PHI. 74 Instruction *PHIUser = nullptr; 75 for (auto U : PN->users()) { 76 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 77 if (EI.getIndexOperand() == EU->getIndexOperand()) 78 Extracts.push_back(EU); 79 else 80 return nullptr; 81 } else if (!PHIUser) { 82 PHIUser = cast<Instruction>(U); 83 } else { 84 return nullptr; 85 } 86 } 87 88 if (!PHIUser) 89 return nullptr; 90 91 // Verify that this PHI user has one use, which is the PHI itself, 92 // and that it is a binary operation which is cheap to scalarize. 93 // otherwise return NULL. 94 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 95 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 96 return nullptr; 97 98 // Create a scalar PHI node that will replace the vector PHI node 99 // just before the current PHI node. 100 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 101 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 102 // Scalarize each PHI operand. 103 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 104 Value *PHIInVal = PN->getIncomingValue(i); 105 BasicBlock *inBB = PN->getIncomingBlock(i); 106 Value *Elt = EI.getIndexOperand(); 107 // If the operand is the PHI induction variable: 108 if (PHIInVal == PHIUser) { 109 // Scalarize the binary operation. Its first operand is the 110 // scalar PHI, and the second operand is extracted from the other 111 // vector operand. 112 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 113 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 114 Value *Op = InsertNewInstWith( 115 ExtractElementInst::Create(B0->getOperand(opId), Elt, 116 B0->getOperand(opId)->getName() + ".Elt"), 117 *B0); 118 Value *newPHIUser = InsertNewInstWith( 119 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 120 scalarPHI, Op, B0), *B0); 121 scalarPHI->addIncoming(newPHIUser, inBB); 122 } else { 123 // Scalarize PHI input: 124 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 125 // Insert the new instruction into the predecessor basic block. 126 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 127 BasicBlock::iterator InsertPos; 128 if (pos && !isa<PHINode>(pos)) { 129 InsertPos = ++pos->getIterator(); 130 } else { 131 InsertPos = inBB->getFirstInsertionPt(); 132 } 133 134 InsertNewInstWith(newEI, *InsertPos); 135 136 scalarPHI->addIncoming(newEI, inBB); 137 } 138 } 139 140 for (auto E : Extracts) 141 replaceInstUsesWith(*E, scalarPHI); 142 143 return &EI; 144 } 145 146 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 147 if (Value *V = SimplifyExtractElementInst(EI.getVectorOperand(), 148 EI.getIndexOperand(), SQ)) 149 return replaceInstUsesWith(EI, V); 150 151 // If vector val is constant with all elements the same, replace EI with 152 // that element. We handle a known element # below. 153 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) 154 if (cheapToScalarize(C, false)) 155 return replaceInstUsesWith(EI, C->getAggregateElement(0U)); 156 157 // If extracting a specified index from the vector, see if we can recursively 158 // find a previously computed scalar that was inserted into the vector. 159 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { 160 unsigned IndexVal = IdxC->getZExtValue(); 161 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); 162 163 // InstSimplify handles cases where the index is invalid. 164 assert(IndexVal < VectorWidth); 165 166 // This instruction only demands the single element from the input vector. 167 // If the input vector has a single use, simplify it based on this use 168 // property. 169 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { 170 APInt UndefElts(VectorWidth, 0); 171 APInt DemandedMask(VectorWidth, 0); 172 DemandedMask.setBit(IndexVal); 173 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, 174 UndefElts)) { 175 EI.setOperand(0, V); 176 return &EI; 177 } 178 } 179 180 // If this extractelement is directly using a bitcast from a vector of 181 // the same number of elements, see if we can find the source element from 182 // it. In this case, we will end up needing to bitcast the scalars. 183 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { 184 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) 185 if (VT->getNumElements() == VectorWidth) 186 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) 187 return new BitCastInst(Elt, EI.getType()); 188 } 189 190 // If there's a vector PHI feeding a scalar use through this extractelement 191 // instruction, try to scalarize the PHI. 192 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { 193 Instruction *scalarPHI = scalarizePHI(EI, PN); 194 if (scalarPHI) 195 return scalarPHI; 196 } 197 } 198 199 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { 200 // Push extractelement into predecessor operation if legal and 201 // profitable to do so. 202 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 203 if (I->hasOneUse() && 204 cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { 205 Value *newEI0 = 206 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), 207 EI.getName()+".lhs"); 208 Value *newEI1 = 209 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), 210 EI.getName()+".rhs"); 211 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), 212 newEI0, newEI1, BO); 213 } 214 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { 215 // Extracting the inserted element? 216 if (IE->getOperand(2) == EI.getOperand(1)) 217 return replaceInstUsesWith(EI, IE->getOperand(1)); 218 // If the inserted and extracted elements are constants, they must not 219 // be the same value, extract from the pre-inserted value instead. 220 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { 221 Worklist.AddValue(EI.getOperand(0)); 222 EI.setOperand(0, IE->getOperand(0)); 223 return &EI; 224 } 225 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 226 // If this is extracting an element from a shufflevector, figure out where 227 // it came from and extract from the appropriate input element instead. 228 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { 229 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 230 Value *Src; 231 unsigned LHSWidth = 232 SVI->getOperand(0)->getType()->getVectorNumElements(); 233 234 if (SrcIdx < 0) 235 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 236 if (SrcIdx < (int)LHSWidth) 237 Src = SVI->getOperand(0); 238 else { 239 SrcIdx -= LHSWidth; 240 Src = SVI->getOperand(1); 241 } 242 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 243 return ExtractElementInst::Create(Src, 244 ConstantInt::get(Int32Ty, 245 SrcIdx, false)); 246 } 247 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 248 // Canonicalize extractelement(cast) -> cast(extractelement). 249 // Bitcasts can change the number of vector elements, and they cost 250 // nothing. 251 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 252 Value *EE = Builder->CreateExtractElement(CI->getOperand(0), 253 EI.getIndexOperand()); 254 Worklist.AddValue(EE); 255 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 256 } 257 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 258 if (SI->hasOneUse()) { 259 // TODO: For a select on vectors, it might be useful to do this if it 260 // has multiple extractelement uses. For vector select, that seems to 261 // fight the vectorizer. 262 263 // If we are extracting an element from a vector select or a select on 264 // vectors, create a select on the scalars extracted from the vector 265 // arguments. 266 Value *TrueVal = SI->getTrueValue(); 267 Value *FalseVal = SI->getFalseValue(); 268 269 Value *Cond = SI->getCondition(); 270 if (Cond->getType()->isVectorTy()) { 271 Cond = Builder->CreateExtractElement(Cond, 272 EI.getIndexOperand(), 273 Cond->getName() + ".elt"); 274 } 275 276 Value *V1Elem 277 = Builder->CreateExtractElement(TrueVal, 278 EI.getIndexOperand(), 279 TrueVal->getName() + ".elt"); 280 281 Value *V2Elem 282 = Builder->CreateExtractElement(FalseVal, 283 EI.getIndexOperand(), 284 FalseVal->getName() + ".elt"); 285 return SelectInst::Create(Cond, 286 V1Elem, 287 V2Elem, 288 SI->getName() + ".elt"); 289 } 290 } 291 } 292 return nullptr; 293 } 294 295 /// If V is a shuffle of values that ONLY returns elements from either LHS or 296 /// RHS, return the shuffle mask and true. Otherwise, return false. 297 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 298 SmallVectorImpl<Constant*> &Mask) { 299 assert(LHS->getType() == RHS->getType() && 300 "Invalid CollectSingleShuffleElements"); 301 unsigned NumElts = V->getType()->getVectorNumElements(); 302 303 if (isa<UndefValue>(V)) { 304 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 305 return true; 306 } 307 308 if (V == LHS) { 309 for (unsigned i = 0; i != NumElts; ++i) 310 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 311 return true; 312 } 313 314 if (V == RHS) { 315 for (unsigned i = 0; i != NumElts; ++i) 316 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 317 i+NumElts)); 318 return true; 319 } 320 321 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 322 // If this is an insert of an extract from some other vector, include it. 323 Value *VecOp = IEI->getOperand(0); 324 Value *ScalarOp = IEI->getOperand(1); 325 Value *IdxOp = IEI->getOperand(2); 326 327 if (!isa<ConstantInt>(IdxOp)) 328 return false; 329 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 330 331 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 332 // We can handle this if the vector we are inserting into is 333 // transitively ok. 334 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 335 // If so, update the mask to reflect the inserted undef. 336 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 337 return true; 338 } 339 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 340 if (isa<ConstantInt>(EI->getOperand(1))) { 341 unsigned ExtractedIdx = 342 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 343 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 344 345 // This must be extracting from either LHS or RHS. 346 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 347 // We can handle this if the vector we are inserting into is 348 // transitively ok. 349 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 350 // If so, update the mask to reflect the inserted value. 351 if (EI->getOperand(0) == LHS) { 352 Mask[InsertedIdx % NumElts] = 353 ConstantInt::get(Type::getInt32Ty(V->getContext()), 354 ExtractedIdx); 355 } else { 356 assert(EI->getOperand(0) == RHS); 357 Mask[InsertedIdx % NumElts] = 358 ConstantInt::get(Type::getInt32Ty(V->getContext()), 359 ExtractedIdx + NumLHSElts); 360 } 361 return true; 362 } 363 } 364 } 365 } 366 } 367 368 return false; 369 } 370 371 /// If we have insertion into a vector that is wider than the vector that we 372 /// are extracting from, try to widen the source vector to allow a single 373 /// shufflevector to replace one or more insert/extract pairs. 374 static void replaceExtractElements(InsertElementInst *InsElt, 375 ExtractElementInst *ExtElt, 376 InstCombiner &IC) { 377 VectorType *InsVecType = InsElt->getType(); 378 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 379 unsigned NumInsElts = InsVecType->getVectorNumElements(); 380 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 381 382 // The inserted-to vector must be wider than the extracted-from vector. 383 if (InsVecType->getElementType() != ExtVecType->getElementType() || 384 NumExtElts >= NumInsElts) 385 return; 386 387 // Create a shuffle mask to widen the extended-from vector using undefined 388 // values. The mask selects all of the values of the original vector followed 389 // by as many undefined values as needed to create a vector of the same length 390 // as the inserted-to vector. 391 SmallVector<Constant *, 16> ExtendMask; 392 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 393 for (unsigned i = 0; i < NumExtElts; ++i) 394 ExtendMask.push_back(ConstantInt::get(IntType, i)); 395 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 396 ExtendMask.push_back(UndefValue::get(IntType)); 397 398 Value *ExtVecOp = ExtElt->getVectorOperand(); 399 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 400 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 401 ? ExtVecOpInst->getParent() 402 : ExtElt->getParent(); 403 404 // TODO: This restriction matches the basic block check below when creating 405 // new extractelement instructions. If that limitation is removed, this one 406 // could also be removed. But for now, we just bail out to ensure that we 407 // will replace the extractelement instruction that is feeding our 408 // insertelement instruction. This allows the insertelement to then be 409 // replaced by a shufflevector. If the insertelement is not replaced, we can 410 // induce infinite looping because there's an optimization for extractelement 411 // that will delete our widening shuffle. This would trigger another attempt 412 // here to create that shuffle, and we spin forever. 413 if (InsertionBlock != InsElt->getParent()) 414 return; 415 416 // TODO: This restriction matches the check in visitInsertElementInst() and 417 // prevents an infinite loop caused by not turning the extract/insert pair 418 // into a shuffle. We really should not need either check, but we're lacking 419 // folds for shufflevectors because we're afraid to generate shuffle masks 420 // that the backend can't handle. 421 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 422 return; 423 424 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 425 ConstantVector::get(ExtendMask)); 426 427 // Insert the new shuffle after the vector operand of the extract is defined 428 // (as long as it's not a PHI) or at the start of the basic block of the 429 // extract, so any subsequent extracts in the same basic block can use it. 430 // TODO: Insert before the earliest ExtractElementInst that is replaced. 431 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 432 WideVec->insertAfter(ExtVecOpInst); 433 else 434 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 435 436 // Replace extracts from the original narrow vector with extracts from the new 437 // wide vector. 438 for (User *U : ExtVecOp->users()) { 439 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 440 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 441 continue; 442 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 443 NewExt->insertAfter(OldExt); 444 IC.replaceInstUsesWith(*OldExt, NewExt); 445 } 446 } 447 448 /// We are building a shuffle to create V, which is a sequence of insertelement, 449 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 450 /// not rely on the second vector source. Return a std::pair containing the 451 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 452 /// parameter as required. 453 /// 454 /// Note: we intentionally don't try to fold earlier shuffles since they have 455 /// often been chosen carefully to be efficiently implementable on the target. 456 typedef std::pair<Value *, Value *> ShuffleOps; 457 458 static ShuffleOps collectShuffleElements(Value *V, 459 SmallVectorImpl<Constant *> &Mask, 460 Value *PermittedRHS, 461 InstCombiner &IC) { 462 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 463 unsigned NumElts = V->getType()->getVectorNumElements(); 464 465 if (isa<UndefValue>(V)) { 466 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 467 return std::make_pair( 468 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 469 } 470 471 if (isa<ConstantAggregateZero>(V)) { 472 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 473 return std::make_pair(V, nullptr); 474 } 475 476 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 477 // If this is an insert of an extract from some other vector, include it. 478 Value *VecOp = IEI->getOperand(0); 479 Value *ScalarOp = IEI->getOperand(1); 480 Value *IdxOp = IEI->getOperand(2); 481 482 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 483 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 484 unsigned ExtractedIdx = 485 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 486 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 487 488 // Either the extracted from or inserted into vector must be RHSVec, 489 // otherwise we'd end up with a shuffle of three inputs. 490 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 491 Value *RHS = EI->getOperand(0); 492 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 493 assert(LR.second == nullptr || LR.second == RHS); 494 495 if (LR.first->getType() != RHS->getType()) { 496 // Although we are giving up for now, see if we can create extracts 497 // that match the inserts for another round of combining. 498 replaceExtractElements(IEI, EI, IC); 499 500 // We tried our best, but we can't find anything compatible with RHS 501 // further up the chain. Return a trivial shuffle. 502 for (unsigned i = 0; i < NumElts; ++i) 503 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 504 return std::make_pair(V, nullptr); 505 } 506 507 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 508 Mask[InsertedIdx % NumElts] = 509 ConstantInt::get(Type::getInt32Ty(V->getContext()), 510 NumLHSElts+ExtractedIdx); 511 return std::make_pair(LR.first, RHS); 512 } 513 514 if (VecOp == PermittedRHS) { 515 // We've gone as far as we can: anything on the other side of the 516 // extractelement will already have been converted into a shuffle. 517 unsigned NumLHSElts = 518 EI->getOperand(0)->getType()->getVectorNumElements(); 519 for (unsigned i = 0; i != NumElts; ++i) 520 Mask.push_back(ConstantInt::get( 521 Type::getInt32Ty(V->getContext()), 522 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 523 return std::make_pair(EI->getOperand(0), PermittedRHS); 524 } 525 526 // If this insertelement is a chain that comes from exactly these two 527 // vectors, return the vector and the effective shuffle. 528 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 529 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 530 Mask)) 531 return std::make_pair(EI->getOperand(0), PermittedRHS); 532 } 533 } 534 } 535 536 // Otherwise, we can't do anything fancy. Return an identity vector. 537 for (unsigned i = 0; i != NumElts; ++i) 538 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 539 return std::make_pair(V, nullptr); 540 } 541 542 /// Try to find redundant insertvalue instructions, like the following ones: 543 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 544 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 545 /// Here the second instruction inserts values at the same indices, as the 546 /// first one, making the first one redundant. 547 /// It should be transformed to: 548 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 549 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 550 bool IsRedundant = false; 551 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 552 553 // If there is a chain of insertvalue instructions (each of them except the 554 // last one has only one use and it's another insertvalue insn from this 555 // chain), check if any of the 'children' uses the same indices as the first 556 // instruction. In this case, the first one is redundant. 557 Value *V = &I; 558 unsigned Depth = 0; 559 while (V->hasOneUse() && Depth < 10) { 560 User *U = V->user_back(); 561 auto UserInsInst = dyn_cast<InsertValueInst>(U); 562 if (!UserInsInst || U->getOperand(0) != V) 563 break; 564 if (UserInsInst->getIndices() == FirstIndices) { 565 IsRedundant = true; 566 break; 567 } 568 V = UserInsInst; 569 Depth++; 570 } 571 572 if (IsRedundant) 573 return replaceInstUsesWith(I, I.getOperand(0)); 574 return nullptr; 575 } 576 577 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 578 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); 579 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 580 581 // A vector select does not change the size of the operands. 582 if (MaskSize != VecSize) 583 return false; 584 585 // Each mask element must be undefined or choose a vector element from one of 586 // the source operands without crossing vector lanes. 587 for (int i = 0; i != MaskSize; ++i) { 588 int Elt = Shuf.getMaskValue(i); 589 if (Elt != -1 && Elt != i && Elt != i + VecSize) 590 return false; 591 } 592 593 return true; 594 } 595 596 // Turn a chain of inserts that splats a value into a canonical insert + shuffle 597 // splat. That is: 598 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 599 // shufflevector(insertelt(X, %k, 0), undef, zero) 600 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) { 601 // We are interested in the last insert in a chain. So, if this insert 602 // has a single user, and that user is an insert, bail. 603 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 604 return nullptr; 605 606 VectorType *VT = cast<VectorType>(InsElt.getType()); 607 int NumElements = VT->getNumElements(); 608 609 // Do not try to do this for a one-element vector, since that's a nop, 610 // and will cause an inf-loop. 611 if (NumElements == 1) 612 return nullptr; 613 614 Value *SplatVal = InsElt.getOperand(1); 615 InsertElementInst *CurrIE = &InsElt; 616 SmallVector<bool, 16> ElementPresent(NumElements, false); 617 618 // Walk the chain backwards, keeping track of which indices we inserted into, 619 // until we hit something that isn't an insert of the splatted value. 620 while (CurrIE) { 621 ConstantInt *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 622 if (!Idx || CurrIE->getOperand(1) != SplatVal) 623 return nullptr; 624 625 // Check none of the intermediate steps have any additional uses. 626 if ((CurrIE != &InsElt) && !CurrIE->hasOneUse()) 627 return nullptr; 628 629 ElementPresent[Idx->getZExtValue()] = true; 630 CurrIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 631 } 632 633 // Make sure we've seen an insert into every element. 634 if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; })) 635 return nullptr; 636 637 // All right, create the insert + shuffle. 638 Instruction *InsertFirst = InsertElementInst::Create( 639 UndefValue::get(VT), SplatVal, 640 ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), "", &InsElt); 641 642 Constant *ZeroMask = ConstantAggregateZero::get( 643 VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements)); 644 645 return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask); 646 } 647 648 /// If we have an insertelement instruction feeding into another insertelement 649 /// and the 2nd is inserting a constant into the vector, canonicalize that 650 /// constant insertion before the insertion of a variable: 651 /// 652 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 653 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 654 /// 655 /// This has the potential of eliminating the 2nd insertelement instruction 656 /// via constant folding of the scalar constant into a vector constant. 657 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 658 InstCombiner::BuilderTy &Builder) { 659 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 660 if (!InsElt1 || !InsElt1->hasOneUse()) 661 return nullptr; 662 663 Value *X, *Y; 664 Constant *ScalarC; 665 ConstantInt *IdxC1, *IdxC2; 666 if (match(InsElt1->getOperand(0), m_Value(X)) && 667 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 668 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 669 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 670 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 671 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 672 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 673 } 674 675 return nullptr; 676 } 677 678 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 679 /// --> shufflevector X, CVec', Mask' 680 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 681 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 682 // Bail out if the parent has more than one use. In that case, we'd be 683 // replacing the insertelt with a shuffle, and that's not a clear win. 684 if (!Inst || !Inst->hasOneUse()) 685 return nullptr; 686 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 687 // The shuffle must have a constant vector operand. The insertelt must have 688 // a constant scalar being inserted at a constant position in the vector. 689 Constant *ShufConstVec, *InsEltScalar; 690 uint64_t InsEltIndex; 691 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 692 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 693 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 694 return nullptr; 695 696 // Adding an element to an arbitrary shuffle could be expensive, but a 697 // shuffle that selects elements from vectors without crossing lanes is 698 // assumed cheap. 699 // If we're just adding a constant into that shuffle, it will still be 700 // cheap. 701 if (!isShuffleEquivalentToSelect(*Shuf)) 702 return nullptr; 703 704 // From the above 'select' check, we know that the mask has the same number 705 // of elements as the vector input operands. We also know that each constant 706 // input element is used in its lane and can not be used more than once by 707 // the shuffle. Therefore, replace the constant in the shuffle's constant 708 // vector with the insertelt constant. Replace the constant in the shuffle's 709 // mask vector with the insertelt index plus the length of the vector 710 // (because the constant vector operand of a shuffle is always the 2nd 711 // operand). 712 Constant *Mask = Shuf->getMask(); 713 unsigned NumElts = Mask->getType()->getVectorNumElements(); 714 SmallVector<Constant *, 16> NewShufElts(NumElts); 715 SmallVector<Constant *, 16> NewMaskElts(NumElts); 716 for (unsigned I = 0; I != NumElts; ++I) { 717 if (I == InsEltIndex) { 718 NewShufElts[I] = InsEltScalar; 719 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); 720 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); 721 } else { 722 // Copy over the existing values. 723 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 724 NewMaskElts[I] = Mask->getAggregateElement(I); 725 } 726 } 727 728 // Create new operands for a shuffle that includes the constant of the 729 // original insertelt. The old shuffle will be dead now. 730 return new ShuffleVectorInst(Shuf->getOperand(0), 731 ConstantVector::get(NewShufElts), 732 ConstantVector::get(NewMaskElts)); 733 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 734 // Transform sequences of insertelements ops with constant data/indexes into 735 // a single shuffle op. 736 unsigned NumElts = InsElt.getType()->getNumElements(); 737 738 uint64_t InsertIdx[2]; 739 Constant *Val[2]; 740 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 741 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 742 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 743 !match(IEI->getOperand(1), m_Constant(Val[1]))) 744 return nullptr; 745 SmallVector<Constant *, 16> Values(NumElts); 746 SmallVector<Constant *, 16> Mask(NumElts); 747 auto ValI = std::begin(Val); 748 // Generate new constant vector and mask. 749 // We have 2 values/masks from the insertelements instructions. Insert them 750 // into new value/mask vectors. 751 for (uint64_t I : InsertIdx) { 752 if (!Values[I]) { 753 assert(!Mask[I]); 754 Values[I] = *ValI; 755 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 756 NumElts + I); 757 } 758 ++ValI; 759 } 760 // Remaining values are filled with 'undef' values. 761 for (unsigned I = 0; I < NumElts; ++I) { 762 if (!Values[I]) { 763 assert(!Mask[I]); 764 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 765 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 766 } 767 } 768 // Create new operands for a shuffle that includes the constant of the 769 // original insertelt. 770 return new ShuffleVectorInst(IEI->getOperand(0), 771 ConstantVector::get(Values), 772 ConstantVector::get(Mask)); 773 } 774 return nullptr; 775 } 776 777 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 778 Value *VecOp = IE.getOperand(0); 779 Value *ScalarOp = IE.getOperand(1); 780 Value *IdxOp = IE.getOperand(2); 781 782 // Inserting an undef or into an undefined place, remove this. 783 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 784 replaceInstUsesWith(IE, VecOp); 785 786 // If the inserted element was extracted from some other vector, and if the 787 // indexes are constant, try to turn this into a shufflevector operation. 788 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 789 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 790 unsigned NumInsertVectorElts = IE.getType()->getNumElements(); 791 unsigned NumExtractVectorElts = 792 EI->getOperand(0)->getType()->getVectorNumElements(); 793 unsigned ExtractedIdx = 794 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 795 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 796 797 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. 798 return replaceInstUsesWith(IE, VecOp); 799 800 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. 801 return replaceInstUsesWith(IE, UndefValue::get(IE.getType())); 802 803 // If we are extracting a value from a vector, then inserting it right 804 // back into the same place, just use the input vector. 805 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) 806 return replaceInstUsesWith(IE, VecOp); 807 808 // If this insertelement isn't used by some other insertelement, turn it 809 // (and any insertelements it points to), into one big shuffle. 810 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { 811 SmallVector<Constant*, 16> Mask; 812 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 813 814 // The proposed shuffle may be trivial, in which case we shouldn't 815 // perform the combine. 816 if (LR.first != &IE && LR.second != &IE) { 817 // We now have a shuffle of LHS, RHS, Mask. 818 if (LR.second == nullptr) 819 LR.second = UndefValue::get(LR.first->getType()); 820 return new ShuffleVectorInst(LR.first, LR.second, 821 ConstantVector::get(Mask)); 822 } 823 } 824 } 825 } 826 827 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 828 APInt UndefElts(VWidth, 0); 829 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 830 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 831 if (V != &IE) 832 return replaceInstUsesWith(IE, V); 833 return &IE; 834 } 835 836 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 837 return Shuf; 838 839 if (Instruction *NewInsElt = hoistInsEltConst(IE, *Builder)) 840 return NewInsElt; 841 842 // Turn a sequence of inserts that broadcasts a scalar into a single 843 // insert + shufflevector. 844 if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE)) 845 return Broadcast; 846 847 return nullptr; 848 } 849 850 /// Return true if we can evaluate the specified expression tree if the vector 851 /// elements were shuffled in a different order. 852 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, 853 unsigned Depth = 5) { 854 // We can always reorder the elements of a constant. 855 if (isa<Constant>(V)) 856 return true; 857 858 // We won't reorder vector arguments. No IPO here. 859 Instruction *I = dyn_cast<Instruction>(V); 860 if (!I) return false; 861 862 // Two users may expect different orders of the elements. Don't try it. 863 if (!I->hasOneUse()) 864 return false; 865 866 if (Depth == 0) return false; 867 868 switch (I->getOpcode()) { 869 case Instruction::Add: 870 case Instruction::FAdd: 871 case Instruction::Sub: 872 case Instruction::FSub: 873 case Instruction::Mul: 874 case Instruction::FMul: 875 case Instruction::UDiv: 876 case Instruction::SDiv: 877 case Instruction::FDiv: 878 case Instruction::URem: 879 case Instruction::SRem: 880 case Instruction::FRem: 881 case Instruction::Shl: 882 case Instruction::LShr: 883 case Instruction::AShr: 884 case Instruction::And: 885 case Instruction::Or: 886 case Instruction::Xor: 887 case Instruction::ICmp: 888 case Instruction::FCmp: 889 case Instruction::Trunc: 890 case Instruction::ZExt: 891 case Instruction::SExt: 892 case Instruction::FPToUI: 893 case Instruction::FPToSI: 894 case Instruction::UIToFP: 895 case Instruction::SIToFP: 896 case Instruction::FPTrunc: 897 case Instruction::FPExt: 898 case Instruction::GetElementPtr: { 899 for (Value *Operand : I->operands()) { 900 if (!CanEvaluateShuffled(Operand, Mask, Depth-1)) 901 return false; 902 } 903 return true; 904 } 905 case Instruction::InsertElement: { 906 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 907 if (!CI) return false; 908 int ElementNumber = CI->getLimitedValue(); 909 910 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 911 // can't put an element into multiple indices. 912 bool SeenOnce = false; 913 for (int i = 0, e = Mask.size(); i != e; ++i) { 914 if (Mask[i] == ElementNumber) { 915 if (SeenOnce) 916 return false; 917 SeenOnce = true; 918 } 919 } 920 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); 921 } 922 } 923 return false; 924 } 925 926 /// Rebuild a new instruction just like 'I' but with the new operands given. 927 /// In the event of type mismatch, the type of the operands is correct. 928 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 929 // We don't want to use the IRBuilder here because we want the replacement 930 // instructions to appear next to 'I', not the builder's insertion point. 931 switch (I->getOpcode()) { 932 case Instruction::Add: 933 case Instruction::FAdd: 934 case Instruction::Sub: 935 case Instruction::FSub: 936 case Instruction::Mul: 937 case Instruction::FMul: 938 case Instruction::UDiv: 939 case Instruction::SDiv: 940 case Instruction::FDiv: 941 case Instruction::URem: 942 case Instruction::SRem: 943 case Instruction::FRem: 944 case Instruction::Shl: 945 case Instruction::LShr: 946 case Instruction::AShr: 947 case Instruction::And: 948 case Instruction::Or: 949 case Instruction::Xor: { 950 BinaryOperator *BO = cast<BinaryOperator>(I); 951 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 952 BinaryOperator *New = 953 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 954 NewOps[0], NewOps[1], "", BO); 955 if (isa<OverflowingBinaryOperator>(BO)) { 956 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 957 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 958 } 959 if (isa<PossiblyExactOperator>(BO)) { 960 New->setIsExact(BO->isExact()); 961 } 962 if (isa<FPMathOperator>(BO)) 963 New->copyFastMathFlags(I); 964 return New; 965 } 966 case Instruction::ICmp: 967 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 968 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 969 NewOps[0], NewOps[1]); 970 case Instruction::FCmp: 971 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 972 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 973 NewOps[0], NewOps[1]); 974 case Instruction::Trunc: 975 case Instruction::ZExt: 976 case Instruction::SExt: 977 case Instruction::FPToUI: 978 case Instruction::FPToSI: 979 case Instruction::UIToFP: 980 case Instruction::SIToFP: 981 case Instruction::FPTrunc: 982 case Instruction::FPExt: { 983 // It's possible that the mask has a different number of elements from 984 // the original cast. We recompute the destination type to match the mask. 985 Type *DestTy = 986 VectorType::get(I->getType()->getScalarType(), 987 NewOps[0]->getType()->getVectorNumElements()); 988 assert(NewOps.size() == 1 && "cast with #ops != 1"); 989 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 990 "", I); 991 } 992 case Instruction::GetElementPtr: { 993 Value *Ptr = NewOps[0]; 994 ArrayRef<Value*> Idx = NewOps.slice(1); 995 GetElementPtrInst *GEP = GetElementPtrInst::Create( 996 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 997 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 998 return GEP; 999 } 1000 } 1001 llvm_unreachable("failed to rebuild vector instructions"); 1002 } 1003 1004 Value * 1005 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1006 // Mask.size() does not need to be equal to the number of vector elements. 1007 1008 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1009 if (isa<UndefValue>(V)) { 1010 return UndefValue::get(VectorType::get(V->getType()->getScalarType(), 1011 Mask.size())); 1012 } 1013 if (isa<ConstantAggregateZero>(V)) { 1014 return ConstantAggregateZero::get( 1015 VectorType::get(V->getType()->getScalarType(), 1016 Mask.size())); 1017 } 1018 if (Constant *C = dyn_cast<Constant>(V)) { 1019 SmallVector<Constant *, 16> MaskValues; 1020 for (int i = 0, e = Mask.size(); i != e; ++i) { 1021 if (Mask[i] == -1) 1022 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty())); 1023 else 1024 MaskValues.push_back(Builder->getInt32(Mask[i])); 1025 } 1026 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1027 ConstantVector::get(MaskValues)); 1028 } 1029 1030 Instruction *I = cast<Instruction>(V); 1031 switch (I->getOpcode()) { 1032 case Instruction::Add: 1033 case Instruction::FAdd: 1034 case Instruction::Sub: 1035 case Instruction::FSub: 1036 case Instruction::Mul: 1037 case Instruction::FMul: 1038 case Instruction::UDiv: 1039 case Instruction::SDiv: 1040 case Instruction::FDiv: 1041 case Instruction::URem: 1042 case Instruction::SRem: 1043 case Instruction::FRem: 1044 case Instruction::Shl: 1045 case Instruction::LShr: 1046 case Instruction::AShr: 1047 case Instruction::And: 1048 case Instruction::Or: 1049 case Instruction::Xor: 1050 case Instruction::ICmp: 1051 case Instruction::FCmp: 1052 case Instruction::Trunc: 1053 case Instruction::ZExt: 1054 case Instruction::SExt: 1055 case Instruction::FPToUI: 1056 case Instruction::FPToSI: 1057 case Instruction::UIToFP: 1058 case Instruction::SIToFP: 1059 case Instruction::FPTrunc: 1060 case Instruction::FPExt: 1061 case Instruction::Select: 1062 case Instruction::GetElementPtr: { 1063 SmallVector<Value*, 8> NewOps; 1064 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1065 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1066 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); 1067 NewOps.push_back(V); 1068 NeedsRebuild |= (V != I->getOperand(i)); 1069 } 1070 if (NeedsRebuild) { 1071 return buildNew(I, NewOps); 1072 } 1073 return I; 1074 } 1075 case Instruction::InsertElement: { 1076 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1077 1078 // The insertelement was inserting at Element. Figure out which element 1079 // that becomes after shuffling. The answer is guaranteed to be unique 1080 // by CanEvaluateShuffled. 1081 bool Found = false; 1082 int Index = 0; 1083 for (int e = Mask.size(); Index != e; ++Index) { 1084 if (Mask[Index] == Element) { 1085 Found = true; 1086 break; 1087 } 1088 } 1089 1090 // If element is not in Mask, no need to handle the operand 1 (element to 1091 // be inserted). Just evaluate values in operand 0 according to Mask. 1092 if (!Found) 1093 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 1094 1095 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 1096 return InsertElementInst::Create(V, I->getOperand(1), 1097 Builder->getInt32(Index), "", I); 1098 } 1099 } 1100 llvm_unreachable("failed to reorder elements of vector instruction!"); 1101 } 1102 1103 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 1104 bool &isLHSID, bool &isRHSID) { 1105 isLHSID = isRHSID = true; 1106 1107 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 1108 if (Mask[i] < 0) continue; // Ignore undef values. 1109 // Is this an identity shuffle of the LHS value? 1110 isLHSID &= (Mask[i] == (int)i); 1111 1112 // Is this an identity shuffle of the RHS value? 1113 isRHSID &= (Mask[i]-e == i); 1114 } 1115 } 1116 1117 // Returns true if the shuffle is extracting a contiguous range of values from 1118 // LHS, for example: 1119 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1120 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1121 // Shuffles to: |EE|FF|GG|HH| 1122 // +--+--+--+--+ 1123 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1124 SmallVector<int, 16> &Mask) { 1125 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1126 unsigned MaskElems = Mask.size(); 1127 unsigned BegIdx = Mask.front(); 1128 unsigned EndIdx = Mask.back(); 1129 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1130 return false; 1131 for (unsigned I = 0; I != MaskElems; ++I) 1132 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1133 return false; 1134 return true; 1135 } 1136 1137 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1138 Value *LHS = SVI.getOperand(0); 1139 Value *RHS = SVI.getOperand(1); 1140 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 1141 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1142 1143 if (auto *V = 1144 SimplifyShuffleVectorInst(LHS, RHS, SVI.getMask(), SVI.getType(), SQ)) 1145 return replaceInstUsesWith(SVI, V); 1146 1147 bool MadeChange = false; 1148 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1149 1150 APInt UndefElts(VWidth, 0); 1151 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1152 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1153 if (V != &SVI) 1154 return replaceInstUsesWith(SVI, V); 1155 LHS = SVI.getOperand(0); 1156 RHS = SVI.getOperand(1); 1157 MadeChange = true; 1158 } 1159 1160 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1161 1162 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 1163 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 1164 if (LHS == RHS || isa<UndefValue>(LHS)) { 1165 if (isa<UndefValue>(LHS) && LHS == RHS) { 1166 // shuffle(undef,undef,mask) -> undef. 1167 Value *Result = (VWidth == LHSWidth) 1168 ? LHS : UndefValue::get(SVI.getType()); 1169 return replaceInstUsesWith(SVI, Result); 1170 } 1171 1172 // Remap any references to RHS to use LHS. 1173 SmallVector<Constant*, 16> Elts; 1174 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 1175 if (Mask[i] < 0) { 1176 Elts.push_back(UndefValue::get(Int32Ty)); 1177 continue; 1178 } 1179 1180 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 1181 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 1182 Mask[i] = -1; // Turn into undef. 1183 Elts.push_back(UndefValue::get(Int32Ty)); 1184 } else { 1185 Mask[i] = Mask[i] % e; // Force to LHS. 1186 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 1187 } 1188 } 1189 SVI.setOperand(0, SVI.getOperand(1)); 1190 SVI.setOperand(1, UndefValue::get(RHS->getType())); 1191 SVI.setOperand(2, ConstantVector::get(Elts)); 1192 LHS = SVI.getOperand(0); 1193 RHS = SVI.getOperand(1); 1194 MadeChange = true; 1195 } 1196 1197 if (VWidth == LHSWidth) { 1198 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 1199 bool isLHSID, isRHSID; 1200 recognizeIdentityMask(Mask, isLHSID, isRHSID); 1201 1202 // Eliminate identity shuffles. 1203 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 1204 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 1205 } 1206 1207 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { 1208 Value *V = EvaluateInDifferentElementOrder(LHS, Mask); 1209 return replaceInstUsesWith(SVI, V); 1210 } 1211 1212 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1213 // a non-vector type. We can instead bitcast the original vector followed by 1214 // an extract of the desired element: 1215 // 1216 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1217 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1218 // %1 = bitcast <4 x i8> %sroa to i32 1219 // Becomes: 1220 // %bc = bitcast <16 x i8> %in to <4 x i32> 1221 // %ext = extractelement <4 x i32> %bc, i32 0 1222 // 1223 // If the shuffle is extracting a contiguous range of values from the input 1224 // vector then each use which is a bitcast of the extracted size can be 1225 // replaced. This will work if the vector types are compatible, and the begin 1226 // index is aligned to a value in the casted vector type. If the begin index 1227 // isn't aligned then we can shuffle the original vector (keeping the same 1228 // vector type) before extracting. 1229 // 1230 // This code will bail out if the target type is fundamentally incompatible 1231 // with vectors of the source type. 1232 // 1233 // Example of <16 x i8>, target type i32: 1234 // Index range [4,8): v-----------v Will work. 1235 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1236 // <16 x i8>: | | | | | | | | | | | | | | | | | 1237 // <4 x i32>: | | | | | 1238 // +-----------+-----------+-----------+-----------+ 1239 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1240 // Target type i40: ^--------------^ Won't work, bail. 1241 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1242 Value *V = LHS; 1243 unsigned MaskElems = Mask.size(); 1244 VectorType *SrcTy = cast<VectorType>(V->getType()); 1245 unsigned VecBitWidth = SrcTy->getBitWidth(); 1246 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1247 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1248 unsigned SrcNumElems = SrcTy->getNumElements(); 1249 SmallVector<BitCastInst *, 8> BCs; 1250 DenseMap<Type *, Value *> NewBCs; 1251 for (User *U : SVI.users()) 1252 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1253 if (!BC->use_empty()) 1254 // Only visit bitcasts that weren't previously handled. 1255 BCs.push_back(BC); 1256 for (BitCastInst *BC : BCs) { 1257 unsigned BegIdx = Mask.front(); 1258 Type *TgtTy = BC->getDestTy(); 1259 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 1260 if (!TgtElemBitWidth) 1261 continue; 1262 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 1263 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 1264 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 1265 if (!VecBitWidthsEqual) 1266 continue; 1267 if (!VectorType::isValidElementType(TgtTy)) 1268 continue; 1269 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 1270 if (!BegIsAligned) { 1271 // Shuffle the input so [0,NumElements) contains the output, and 1272 // [NumElems,SrcNumElems) is undef. 1273 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 1274 UndefValue::get(Int32Ty)); 1275 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 1276 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 1277 V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()), 1278 ConstantVector::get(ShuffleMask), 1279 SVI.getName() + ".extract"); 1280 BegIdx = 0; 1281 } 1282 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 1283 assert(SrcElemsPerTgtElem); 1284 BegIdx /= SrcElemsPerTgtElem; 1285 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 1286 auto *NewBC = 1287 BCAlreadyExists 1288 ? NewBCs[CastSrcTy] 1289 : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 1290 if (!BCAlreadyExists) 1291 NewBCs[CastSrcTy] = NewBC; 1292 auto *Ext = Builder->CreateExtractElement( 1293 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 1294 // The shufflevector isn't being replaced: the bitcast that used it 1295 // is. InstCombine will visit the newly-created instructions. 1296 replaceInstUsesWith(*BC, Ext); 1297 MadeChange = true; 1298 } 1299 } 1300 1301 // If the LHS is a shufflevector itself, see if we can combine it with this 1302 // one without producing an unusual shuffle. 1303 // Cases that might be simplified: 1304 // 1. 1305 // x1=shuffle(v1,v2,mask1) 1306 // x=shuffle(x1,undef,mask) 1307 // ==> 1308 // x=shuffle(v1,undef,newMask) 1309 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1310 // 2. 1311 // x1=shuffle(v1,undef,mask1) 1312 // x=shuffle(x1,x2,mask) 1313 // where v1.size() == mask1.size() 1314 // ==> 1315 // x=shuffle(v1,x2,newMask) 1316 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1317 // 3. 1318 // x2=shuffle(v2,undef,mask2) 1319 // x=shuffle(x1,x2,mask) 1320 // where v2.size() == mask2.size() 1321 // ==> 1322 // x=shuffle(x1,v2,newMask) 1323 // newMask[i] = (mask[i] < x1.size()) 1324 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1325 // 4. 1326 // x1=shuffle(v1,undef,mask1) 1327 // x2=shuffle(v2,undef,mask2) 1328 // x=shuffle(x1,x2,mask) 1329 // where v1.size() == v2.size() 1330 // ==> 1331 // x=shuffle(v1,v2,newMask) 1332 // newMask[i] = (mask[i] < x1.size()) 1333 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1334 // 1335 // Here we are really conservative: 1336 // we are absolutely afraid of producing a shuffle mask not in the input 1337 // program, because the code gen may not be smart enough to turn a merged 1338 // shuffle into two specific shuffles: it may produce worse code. As such, 1339 // we only merge two shuffles if the result is either a splat or one of the 1340 // input shuffle masks. In this case, merging the shuffles just removes 1341 // one instruction, which we know is safe. This is good for things like 1342 // turning: (splat(splat)) -> splat, or 1343 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1344 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1345 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1346 if (LHSShuffle) 1347 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1348 LHSShuffle = nullptr; 1349 if (RHSShuffle) 1350 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1351 RHSShuffle = nullptr; 1352 if (!LHSShuffle && !RHSShuffle) 1353 return MadeChange ? &SVI : nullptr; 1354 1355 Value* LHSOp0 = nullptr; 1356 Value* LHSOp1 = nullptr; 1357 Value* RHSOp0 = nullptr; 1358 unsigned LHSOp0Width = 0; 1359 unsigned RHSOp0Width = 0; 1360 if (LHSShuffle) { 1361 LHSOp0 = LHSShuffle->getOperand(0); 1362 LHSOp1 = LHSShuffle->getOperand(1); 1363 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 1364 } 1365 if (RHSShuffle) { 1366 RHSOp0 = RHSShuffle->getOperand(0); 1367 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 1368 } 1369 Value* newLHS = LHS; 1370 Value* newRHS = RHS; 1371 if (LHSShuffle) { 1372 // case 1 1373 if (isa<UndefValue>(RHS)) { 1374 newLHS = LHSOp0; 1375 newRHS = LHSOp1; 1376 } 1377 // case 2 or 4 1378 else if (LHSOp0Width == LHSWidth) { 1379 newLHS = LHSOp0; 1380 } 1381 } 1382 // case 3 or 4 1383 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1384 newRHS = RHSOp0; 1385 } 1386 // case 4 1387 if (LHSOp0 == RHSOp0) { 1388 newLHS = LHSOp0; 1389 newRHS = nullptr; 1390 } 1391 1392 if (newLHS == LHS && newRHS == RHS) 1393 return MadeChange ? &SVI : nullptr; 1394 1395 SmallVector<int, 16> LHSMask; 1396 SmallVector<int, 16> RHSMask; 1397 if (newLHS != LHS) 1398 LHSMask = LHSShuffle->getShuffleMask(); 1399 if (RHSShuffle && newRHS != RHS) 1400 RHSMask = RHSShuffle->getShuffleMask(); 1401 1402 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1403 SmallVector<int, 16> newMask; 1404 bool isSplat = true; 1405 int SplatElt = -1; 1406 // Create a new mask for the new ShuffleVectorInst so that the new 1407 // ShuffleVectorInst is equivalent to the original one. 1408 for (unsigned i = 0; i < VWidth; ++i) { 1409 int eltMask; 1410 if (Mask[i] < 0) { 1411 // This element is an undef value. 1412 eltMask = -1; 1413 } else if (Mask[i] < (int)LHSWidth) { 1414 // This element is from left hand side vector operand. 1415 // 1416 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1417 // new mask value for the element. 1418 if (newLHS != LHS) { 1419 eltMask = LHSMask[Mask[i]]; 1420 // If the value selected is an undef value, explicitly specify it 1421 // with a -1 mask value. 1422 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1423 eltMask = -1; 1424 } else 1425 eltMask = Mask[i]; 1426 } else { 1427 // This element is from right hand side vector operand 1428 // 1429 // If the value selected is an undef value, explicitly specify it 1430 // with a -1 mask value. (case 1) 1431 if (isa<UndefValue>(RHS)) 1432 eltMask = -1; 1433 // If RHS is going to be replaced (case 3 or 4), calculate the 1434 // new mask value for the element. 1435 else if (newRHS != RHS) { 1436 eltMask = RHSMask[Mask[i]-LHSWidth]; 1437 // If the value selected is an undef value, explicitly specify it 1438 // with a -1 mask value. 1439 if (eltMask >= (int)RHSOp0Width) { 1440 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1441 && "should have been check above"); 1442 eltMask = -1; 1443 } 1444 } else 1445 eltMask = Mask[i]-LHSWidth; 1446 1447 // If LHS's width is changed, shift the mask value accordingly. 1448 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any 1449 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1450 // If newRHS == newLHS, we want to remap any references from newRHS to 1451 // newLHS so that we can properly identify splats that may occur due to 1452 // obfuscation across the two vectors. 1453 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1454 eltMask += newLHSWidth; 1455 } 1456 1457 // Check if this could still be a splat. 1458 if (eltMask >= 0) { 1459 if (SplatElt >= 0 && SplatElt != eltMask) 1460 isSplat = false; 1461 SplatElt = eltMask; 1462 } 1463 1464 newMask.push_back(eltMask); 1465 } 1466 1467 // If the result mask is equal to one of the original shuffle masks, 1468 // or is a splat, do the replacement. 1469 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 1470 SmallVector<Constant*, 16> Elts; 1471 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1472 if (newMask[i] < 0) { 1473 Elts.push_back(UndefValue::get(Int32Ty)); 1474 } else { 1475 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1476 } 1477 } 1478 if (!newRHS) 1479 newRHS = UndefValue::get(newLHS->getType()); 1480 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1481 } 1482 1483 // If the result mask is an identity, replace uses of this instruction with 1484 // corresponding argument. 1485 bool isLHSID, isRHSID; 1486 recognizeIdentityMask(newMask, isLHSID, isRHSID); 1487 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); 1488 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); 1489 1490 return MadeChange ? &SVI : nullptr; 1491 } 1492