1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43 
44 #define DEBUG_TYPE "instcombine"
45 #include "llvm/Transforms/Utils/InstructionWorklist.h"
46 
47 using namespace llvm;
48 using namespace PatternMatch;
49 
50 STATISTIC(NumAggregateReconstructionsSimplified,
51           "Number of aggregate reconstructions turned into reuse of the "
52           "original aggregate");
53 
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. If the extract index \p EI is a constant integer then
56 /// some operations may be cheap to scalarize.
57 ///
58 /// FIXME: It's possible to create more instructions than previously existed.
59 static bool cheapToScalarize(Value *V, Value *EI) {
60   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
61 
62   // If we can pick a scalar constant value out of a vector, that is free.
63   if (auto *C = dyn_cast<Constant>(V))
64     return CEI || C->getSplatValue();
65 
66   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
67     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
68     // Index needs to be lower than the minimum size of the vector, because
69     // for scalable vector, the vector size is known at run time.
70     return CEI->getValue().ult(EC.getKnownMinValue());
71   }
72 
73   // An insertelement to the same constant index as our extract will simplify
74   // to the scalar inserted element. An insertelement to a different constant
75   // index is irrelevant to our extract.
76   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
77     return CEI;
78 
79   if (match(V, m_OneUse(m_Load(m_Value()))))
80     return true;
81 
82   if (match(V, m_OneUse(m_UnOp())))
83     return true;
84 
85   Value *V0, *V1;
86   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
87     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
88       return true;
89 
90   CmpInst::Predicate UnusedPred;
91   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
92     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
93       return true;
94 
95   return false;
96 }
97 
98 // If we have a PHI node with a vector type that is only used to feed
99 // itself and be an operand of extractelement at a constant location,
100 // try to replace the PHI of the vector type with a PHI of a scalar type.
101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
102                                             PHINode *PN) {
103   SmallVector<Instruction *, 2> Extracts;
104   // The users we want the PHI to have are:
105   // 1) The EI ExtractElement (we already know this)
106   // 2) Possibly more ExtractElements with the same index.
107   // 3) Another operand, which will feed back into the PHI.
108   Instruction *PHIUser = nullptr;
109   for (auto U : PN->users()) {
110     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
111       if (EI.getIndexOperand() == EU->getIndexOperand())
112         Extracts.push_back(EU);
113       else
114         return nullptr;
115     } else if (!PHIUser) {
116       PHIUser = cast<Instruction>(U);
117     } else {
118       return nullptr;
119     }
120   }
121 
122   if (!PHIUser)
123     return nullptr;
124 
125   // Verify that this PHI user has one use, which is the PHI itself,
126   // and that it is a binary operation which is cheap to scalarize.
127   // otherwise return nullptr.
128   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
129       !(isa<BinaryOperator>(PHIUser)) ||
130       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
131     return nullptr;
132 
133   // Create a scalar PHI node that will replace the vector PHI node
134   // just before the current PHI node.
135   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
136       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
137   // Scalarize each PHI operand.
138   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
139     Value *PHIInVal = PN->getIncomingValue(i);
140     BasicBlock *inBB = PN->getIncomingBlock(i);
141     Value *Elt = EI.getIndexOperand();
142     // If the operand is the PHI induction variable:
143     if (PHIInVal == PHIUser) {
144       // Scalarize the binary operation. Its first operand is the
145       // scalar PHI, and the second operand is extracted from the other
146       // vector operand.
147       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
148       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
149       Value *Op = InsertNewInstWith(
150           ExtractElementInst::Create(B0->getOperand(opId), Elt,
151                                      B0->getOperand(opId)->getName() + ".Elt"),
152           *B0);
153       Value *newPHIUser = InsertNewInstWith(
154           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
155                                                 scalarPHI, Op, B0), *B0);
156       scalarPHI->addIncoming(newPHIUser, inBB);
157     } else {
158       // Scalarize PHI input:
159       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
160       // Insert the new instruction into the predecessor basic block.
161       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
162       BasicBlock::iterator InsertPos;
163       if (pos && !isa<PHINode>(pos)) {
164         InsertPos = ++pos->getIterator();
165       } else {
166         InsertPos = inBB->getFirstInsertionPt();
167       }
168 
169       InsertNewInstWith(newEI, *InsertPos);
170 
171       scalarPHI->addIncoming(newEI, inBB);
172     }
173   }
174 
175   for (auto E : Extracts)
176     replaceInstUsesWith(*E, scalarPHI);
177 
178   return &EI;
179 }
180 
181 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
182   Value *X;
183   uint64_t ExtIndexC;
184   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
185       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
186     return nullptr;
187 
188   ElementCount NumElts =
189       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
190   Type *DestTy = Ext.getType();
191   bool IsBigEndian = DL.isBigEndian();
192 
193   // If we are casting an integer to vector and extracting a portion, that is
194   // a shift-right and truncate.
195   // TODO: Allow FP dest type by casting the trunc to FP?
196   if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() &&
197       isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) {
198     assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
199            "Expected fixed vector type for bitcast from scalar integer");
200 
201     // Big endian requires adjusting the extract index since MSB is at index 0.
202     // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
203     // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
204     if (IsBigEndian)
205       ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
206     unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits();
207     if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) {
208       Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
209       return new TruncInst(Lshr, DestTy);
210     }
211   }
212 
213   if (!X->getType()->isVectorTy())
214     return nullptr;
215 
216   // If this extractelement is using a bitcast from a vector of the same number
217   // of elements, see if we can find the source element from the source vector:
218   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
219   auto *SrcTy = cast<VectorType>(X->getType());
220   ElementCount NumSrcElts = SrcTy->getElementCount();
221   if (NumSrcElts == NumElts)
222     if (Value *Elt = findScalarElement(X, ExtIndexC))
223       return new BitCastInst(Elt, DestTy);
224 
225   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
226          "Src and Dst must be the same sort of vector type");
227 
228   // If the source elements are wider than the destination, try to shift and
229   // truncate a subset of scalar bits of an insert op.
230   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
231     Value *Scalar;
232     uint64_t InsIndexC;
233     if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
234                               m_ConstantInt(InsIndexC))))
235       return nullptr;
236 
237     // The extract must be from the subset of vector elements that we inserted
238     // into. Example: if we inserted element 1 of a <2 x i64> and we are
239     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
240     // of elements 4-7 of the bitcasted vector.
241     unsigned NarrowingRatio =
242         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
243     if (ExtIndexC / NarrowingRatio != InsIndexC)
244       return nullptr;
245 
246     // We are extracting part of the original scalar. How that scalar is
247     // inserted into the vector depends on the endian-ness. Example:
248     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
249     //                                       +--+--+--+--+--+--+--+--+
250     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
251     // extelt <4 x i16> V', 3:               |                 |S2|S3|
252     //                                       +--+--+--+--+--+--+--+--+
253     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
254     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
255     // In this example, we must right-shift little-endian. Big-endian is just a
256     // truncate.
257     unsigned Chunk = ExtIndexC % NarrowingRatio;
258     if (IsBigEndian)
259       Chunk = NarrowingRatio - 1 - Chunk;
260 
261     // Bail out if this is an FP vector to FP vector sequence. That would take
262     // more instructions than we started with unless there is no shift, and it
263     // may not be handled as well in the backend.
264     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
265     bool NeedDestBitcast = DestTy->isFloatingPointTy();
266     if (NeedSrcBitcast && NeedDestBitcast)
267       return nullptr;
268 
269     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
270     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
271     unsigned ShAmt = Chunk * DestWidth;
272 
273     // TODO: This limitation is more strict than necessary. We could sum the
274     // number of new instructions and subtract the number eliminated to know if
275     // we can proceed.
276     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
277       if (NeedSrcBitcast || NeedDestBitcast)
278         return nullptr;
279 
280     if (NeedSrcBitcast) {
281       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
282       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
283     }
284 
285     if (ShAmt) {
286       // Bail out if we could end with more instructions than we started with.
287       if (!Ext.getVectorOperand()->hasOneUse())
288         return nullptr;
289       Scalar = Builder.CreateLShr(Scalar, ShAmt);
290     }
291 
292     if (NeedDestBitcast) {
293       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
294       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
295     }
296     return new TruncInst(Scalar, DestTy);
297   }
298 
299   return nullptr;
300 }
301 
302 /// Find elements of V demanded by UserInstr.
303 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
304   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
305 
306   // Conservatively assume that all elements are needed.
307   APInt UsedElts(APInt::getAllOnes(VWidth));
308 
309   switch (UserInstr->getOpcode()) {
310   case Instruction::ExtractElement: {
311     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
312     assert(EEI->getVectorOperand() == V);
313     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
314     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
315       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
316     }
317     break;
318   }
319   case Instruction::ShuffleVector: {
320     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
321     unsigned MaskNumElts =
322         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
323 
324     UsedElts = APInt(VWidth, 0);
325     for (unsigned i = 0; i < MaskNumElts; i++) {
326       unsigned MaskVal = Shuffle->getMaskValue(i);
327       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
328         continue;
329       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
330         UsedElts.setBit(MaskVal);
331       if (Shuffle->getOperand(1) == V &&
332           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
333         UsedElts.setBit(MaskVal - VWidth);
334     }
335     break;
336   }
337   default:
338     break;
339   }
340   return UsedElts;
341 }
342 
343 /// Find union of elements of V demanded by all its users.
344 /// If it is known by querying findDemandedEltsBySingleUser that
345 /// no user demands an element of V, then the corresponding bit
346 /// remains unset in the returned value.
347 static APInt findDemandedEltsByAllUsers(Value *V) {
348   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
349 
350   APInt UnionUsedElts(VWidth, 0);
351   for (const Use &U : V->uses()) {
352     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
353       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
354     } else {
355       UnionUsedElts = APInt::getAllOnes(VWidth);
356       break;
357     }
358 
359     if (UnionUsedElts.isAllOnes())
360       break;
361   }
362 
363   return UnionUsedElts;
364 }
365 
366 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
367   Value *SrcVec = EI.getVectorOperand();
368   Value *Index = EI.getIndexOperand();
369   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
370                                             SQ.getWithInstruction(&EI)))
371     return replaceInstUsesWith(EI, V);
372 
373   // If extracting a specified index from the vector, see if we can recursively
374   // find a previously computed scalar that was inserted into the vector.
375   auto *IndexC = dyn_cast<ConstantInt>(Index);
376   if (IndexC) {
377     ElementCount EC = EI.getVectorOperandType()->getElementCount();
378     unsigned NumElts = EC.getKnownMinValue();
379 
380     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
381       Intrinsic::ID IID = II->getIntrinsicID();
382       // Index needs to be lower than the minimum size of the vector, because
383       // for scalable vector, the vector size is known at run time.
384       if (IID == Intrinsic::experimental_stepvector &&
385           IndexC->getValue().ult(NumElts)) {
386         Type *Ty = EI.getType();
387         unsigned BitWidth = Ty->getIntegerBitWidth();
388         Value *Idx;
389         // Return index when its value does not exceed the allowed limit
390         // for the element type of the vector, otherwise return undefined.
391         if (IndexC->getValue().getActiveBits() <= BitWidth)
392           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
393         else
394           Idx = UndefValue::get(Ty);
395         return replaceInstUsesWith(EI, Idx);
396       }
397     }
398 
399     // InstSimplify should handle cases where the index is invalid.
400     // For fixed-length vector, it's invalid to extract out-of-range element.
401     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
402       return nullptr;
403 
404     if (Instruction *I = foldBitcastExtElt(EI))
405       return I;
406 
407     // If there's a vector PHI feeding a scalar use through this extractelement
408     // instruction, try to scalarize the PHI.
409     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
410       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
411         return ScalarPHI;
412   }
413 
414   // TODO come up with a n-ary matcher that subsumes both unary and
415   // binary matchers.
416   UnaryOperator *UO;
417   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
418     // extelt (unop X), Index --> unop (extelt X, Index)
419     Value *X = UO->getOperand(0);
420     Value *E = Builder.CreateExtractElement(X, Index);
421     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
422   }
423 
424   BinaryOperator *BO;
425   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
426     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
427     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
428     Value *E0 = Builder.CreateExtractElement(X, Index);
429     Value *E1 = Builder.CreateExtractElement(Y, Index);
430     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
431   }
432 
433   Value *X, *Y;
434   CmpInst::Predicate Pred;
435   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
436       cheapToScalarize(SrcVec, Index)) {
437     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
438     Value *E0 = Builder.CreateExtractElement(X, Index);
439     Value *E1 = Builder.CreateExtractElement(Y, Index);
440     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
441   }
442 
443   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
444     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
445       // instsimplify already handled the case where the indices are constants
446       // and equal by value, if both are constants, they must not be the same
447       // value, extract from the pre-inserted value instead.
448       if (isa<Constant>(IE->getOperand(2)) && IndexC)
449         return replaceOperand(EI, 0, IE->getOperand(0));
450     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
451       auto *VecType = cast<VectorType>(GEP->getType());
452       ElementCount EC = VecType->getElementCount();
453       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
454       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
455         // Find out why we have a vector result - these are a few examples:
456         //  1. We have a scalar pointer and a vector of indices, or
457         //  2. We have a vector of pointers and a scalar index, or
458         //  3. We have a vector of pointers and a vector of indices, etc.
459         // Here we only consider combining when there is exactly one vector
460         // operand, since the optimization is less obviously a win due to
461         // needing more than one extractelements.
462 
463         unsigned VectorOps =
464             llvm::count_if(GEP->operands(), [](const Value *V) {
465               return isa<VectorType>(V->getType());
466             });
467         if (VectorOps == 1) {
468           Value *NewPtr = GEP->getPointerOperand();
469           if (isa<VectorType>(NewPtr->getType()))
470             NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
471 
472           SmallVector<Value *> NewOps;
473           for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
474             Value *Op = GEP->getOperand(I);
475             if (isa<VectorType>(Op->getType()))
476               NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
477             else
478               NewOps.push_back(Op);
479           }
480 
481           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
482               cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr,
483               NewOps);
484           NewGEP->setIsInBounds(GEP->isInBounds());
485           return NewGEP;
486         }
487       }
488     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
489       // If this is extracting an element from a shufflevector, figure out where
490       // it came from and extract from the appropriate input element instead.
491       // Restrict the following transformation to fixed-length vector.
492       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
493         int SrcIdx =
494             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
495         Value *Src;
496         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
497                                 ->getNumElements();
498 
499         if (SrcIdx < 0)
500           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
501         if (SrcIdx < (int)LHSWidth)
502           Src = SVI->getOperand(0);
503         else {
504           SrcIdx -= LHSWidth;
505           Src = SVI->getOperand(1);
506         }
507         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
508         return ExtractElementInst::Create(
509             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
510       }
511     } else if (auto *CI = dyn_cast<CastInst>(I)) {
512       // Canonicalize extractelement(cast) -> cast(extractelement).
513       // Bitcasts can change the number of vector elements, and they cost
514       // nothing.
515       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
516         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
517         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
518       }
519     }
520   }
521 
522   // Run demanded elements after other transforms as this can drop flags on
523   // binops.  If there's two paths to the same final result, we prefer the
524   // one which doesn't force us to drop flags.
525   if (IndexC) {
526     ElementCount EC = EI.getVectorOperandType()->getElementCount();
527     unsigned NumElts = EC.getKnownMinValue();
528     // This instruction only demands the single element from the input vector.
529     // Skip for scalable type, the number of elements is unknown at
530     // compile-time.
531     if (!EC.isScalable() && NumElts != 1) {
532       // If the input vector has a single use, simplify it based on this use
533       // property.
534       if (SrcVec->hasOneUse()) {
535         APInt UndefElts(NumElts, 0);
536         APInt DemandedElts(NumElts, 0);
537         DemandedElts.setBit(IndexC->getZExtValue());
538         if (Value *V =
539                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
540           return replaceOperand(EI, 0, V);
541       } else {
542         // If the input vector has multiple uses, simplify it based on a union
543         // of all elements used.
544         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
545         if (!DemandedElts.isAllOnes()) {
546           APInt UndefElts(NumElts, 0);
547           if (Value *V = SimplifyDemandedVectorElts(
548                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
549                   true /* AllowMultipleUsers */)) {
550             if (V != SrcVec) {
551               SrcVec->replaceAllUsesWith(V);
552               return &EI;
553             }
554           }
555         }
556       }
557     }
558   }
559   return nullptr;
560 }
561 
562 /// If V is a shuffle of values that ONLY returns elements from either LHS or
563 /// RHS, return the shuffle mask and true. Otherwise, return false.
564 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
565                                          SmallVectorImpl<int> &Mask) {
566   assert(LHS->getType() == RHS->getType() &&
567          "Invalid CollectSingleShuffleElements");
568   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
569 
570   if (match(V, m_Undef())) {
571     Mask.assign(NumElts, -1);
572     return true;
573   }
574 
575   if (V == LHS) {
576     for (unsigned i = 0; i != NumElts; ++i)
577       Mask.push_back(i);
578     return true;
579   }
580 
581   if (V == RHS) {
582     for (unsigned i = 0; i != NumElts; ++i)
583       Mask.push_back(i + NumElts);
584     return true;
585   }
586 
587   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
588     // If this is an insert of an extract from some other vector, include it.
589     Value *VecOp    = IEI->getOperand(0);
590     Value *ScalarOp = IEI->getOperand(1);
591     Value *IdxOp    = IEI->getOperand(2);
592 
593     if (!isa<ConstantInt>(IdxOp))
594       return false;
595     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
596 
597     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
598       // We can handle this if the vector we are inserting into is
599       // transitively ok.
600       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
601         // If so, update the mask to reflect the inserted undef.
602         Mask[InsertedIdx] = -1;
603         return true;
604       }
605     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
606       if (isa<ConstantInt>(EI->getOperand(1))) {
607         unsigned ExtractedIdx =
608         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
609         unsigned NumLHSElts =
610             cast<FixedVectorType>(LHS->getType())->getNumElements();
611 
612         // This must be extracting from either LHS or RHS.
613         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
614           // We can handle this if the vector we are inserting into is
615           // transitively ok.
616           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
617             // If so, update the mask to reflect the inserted value.
618             if (EI->getOperand(0) == LHS) {
619               Mask[InsertedIdx % NumElts] = ExtractedIdx;
620             } else {
621               assert(EI->getOperand(0) == RHS);
622               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
623             }
624             return true;
625           }
626         }
627       }
628     }
629   }
630 
631   return false;
632 }
633 
634 /// If we have insertion into a vector that is wider than the vector that we
635 /// are extracting from, try to widen the source vector to allow a single
636 /// shufflevector to replace one or more insert/extract pairs.
637 static void replaceExtractElements(InsertElementInst *InsElt,
638                                    ExtractElementInst *ExtElt,
639                                    InstCombinerImpl &IC) {
640   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
641   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
642   unsigned NumInsElts = InsVecType->getNumElements();
643   unsigned NumExtElts = ExtVecType->getNumElements();
644 
645   // The inserted-to vector must be wider than the extracted-from vector.
646   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
647       NumExtElts >= NumInsElts)
648     return;
649 
650   // Create a shuffle mask to widen the extended-from vector using poison
651   // values. The mask selects all of the values of the original vector followed
652   // by as many poison values as needed to create a vector of the same length
653   // as the inserted-to vector.
654   SmallVector<int, 16> ExtendMask;
655   for (unsigned i = 0; i < NumExtElts; ++i)
656     ExtendMask.push_back(i);
657   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
658     ExtendMask.push_back(-1);
659 
660   Value *ExtVecOp = ExtElt->getVectorOperand();
661   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
662   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
663                                    ? ExtVecOpInst->getParent()
664                                    : ExtElt->getParent();
665 
666   // TODO: This restriction matches the basic block check below when creating
667   // new extractelement instructions. If that limitation is removed, this one
668   // could also be removed. But for now, we just bail out to ensure that we
669   // will replace the extractelement instruction that is feeding our
670   // insertelement instruction. This allows the insertelement to then be
671   // replaced by a shufflevector. If the insertelement is not replaced, we can
672   // induce infinite looping because there's an optimization for extractelement
673   // that will delete our widening shuffle. This would trigger another attempt
674   // here to create that shuffle, and we spin forever.
675   if (InsertionBlock != InsElt->getParent())
676     return;
677 
678   // TODO: This restriction matches the check in visitInsertElementInst() and
679   // prevents an infinite loop caused by not turning the extract/insert pair
680   // into a shuffle. We really should not need either check, but we're lacking
681   // folds for shufflevectors because we're afraid to generate shuffle masks
682   // that the backend can't handle.
683   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
684     return;
685 
686   auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
687 
688   // Insert the new shuffle after the vector operand of the extract is defined
689   // (as long as it's not a PHI) or at the start of the basic block of the
690   // extract, so any subsequent extracts in the same basic block can use it.
691   // TODO: Insert before the earliest ExtractElementInst that is replaced.
692   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
693     WideVec->insertAfter(ExtVecOpInst);
694   else
695     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
696 
697   // Replace extracts from the original narrow vector with extracts from the new
698   // wide vector.
699   for (User *U : ExtVecOp->users()) {
700     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
701     if (!OldExt || OldExt->getParent() != WideVec->getParent())
702       continue;
703     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
704     NewExt->insertAfter(OldExt);
705     IC.replaceInstUsesWith(*OldExt, NewExt);
706   }
707 }
708 
709 /// We are building a shuffle to create V, which is a sequence of insertelement,
710 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
711 /// not rely on the second vector source. Return a std::pair containing the
712 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
713 /// parameter as required.
714 ///
715 /// Note: we intentionally don't try to fold earlier shuffles since they have
716 /// often been chosen carefully to be efficiently implementable on the target.
717 using ShuffleOps = std::pair<Value *, Value *>;
718 
719 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
720                                          Value *PermittedRHS,
721                                          InstCombinerImpl &IC) {
722   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
723   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
724 
725   if (match(V, m_Undef())) {
726     Mask.assign(NumElts, -1);
727     return std::make_pair(
728         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
729   }
730 
731   if (isa<ConstantAggregateZero>(V)) {
732     Mask.assign(NumElts, 0);
733     return std::make_pair(V, nullptr);
734   }
735 
736   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
737     // If this is an insert of an extract from some other vector, include it.
738     Value *VecOp    = IEI->getOperand(0);
739     Value *ScalarOp = IEI->getOperand(1);
740     Value *IdxOp    = IEI->getOperand(2);
741 
742     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
743       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
744         unsigned ExtractedIdx =
745           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
746         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
747 
748         // Either the extracted from or inserted into vector must be RHSVec,
749         // otherwise we'd end up with a shuffle of three inputs.
750         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
751           Value *RHS = EI->getOperand(0);
752           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
753           assert(LR.second == nullptr || LR.second == RHS);
754 
755           if (LR.first->getType() != RHS->getType()) {
756             // Although we are giving up for now, see if we can create extracts
757             // that match the inserts for another round of combining.
758             replaceExtractElements(IEI, EI, IC);
759 
760             // We tried our best, but we can't find anything compatible with RHS
761             // further up the chain. Return a trivial shuffle.
762             for (unsigned i = 0; i < NumElts; ++i)
763               Mask[i] = i;
764             return std::make_pair(V, nullptr);
765           }
766 
767           unsigned NumLHSElts =
768               cast<FixedVectorType>(RHS->getType())->getNumElements();
769           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
770           return std::make_pair(LR.first, RHS);
771         }
772 
773         if (VecOp == PermittedRHS) {
774           // We've gone as far as we can: anything on the other side of the
775           // extractelement will already have been converted into a shuffle.
776           unsigned NumLHSElts =
777               cast<FixedVectorType>(EI->getOperand(0)->getType())
778                   ->getNumElements();
779           for (unsigned i = 0; i != NumElts; ++i)
780             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
781           return std::make_pair(EI->getOperand(0), PermittedRHS);
782         }
783 
784         // If this insertelement is a chain that comes from exactly these two
785         // vectors, return the vector and the effective shuffle.
786         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
787             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
788                                          Mask))
789           return std::make_pair(EI->getOperand(0), PermittedRHS);
790       }
791     }
792   }
793 
794   // Otherwise, we can't do anything fancy. Return an identity vector.
795   for (unsigned i = 0; i != NumElts; ++i)
796     Mask.push_back(i);
797   return std::make_pair(V, nullptr);
798 }
799 
800 /// Look for chain of insertvalue's that fully define an aggregate, and trace
801 /// back the values inserted, see if they are all were extractvalue'd from
802 /// the same source aggregate from the exact same element indexes.
803 /// If they were, just reuse the source aggregate.
804 /// This potentially deals with PHI indirections.
805 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
806     InsertValueInst &OrigIVI) {
807   Type *AggTy = OrigIVI.getType();
808   unsigned NumAggElts;
809   switch (AggTy->getTypeID()) {
810   case Type::StructTyID:
811     NumAggElts = AggTy->getStructNumElements();
812     break;
813   case Type::ArrayTyID:
814     NumAggElts = AggTy->getArrayNumElements();
815     break;
816   default:
817     llvm_unreachable("Unhandled aggregate type?");
818   }
819 
820   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
821   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
822   // FIXME: any interesting patterns to be caught with larger limit?
823   assert(NumAggElts > 0 && "Aggregate should have elements.");
824   if (NumAggElts > 2)
825     return nullptr;
826 
827   static constexpr auto NotFound = None;
828   static constexpr auto FoundMismatch = nullptr;
829 
830   // Try to find a value of each element of an aggregate.
831   // FIXME: deal with more complex, not one-dimensional, aggregate types
832   SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
833 
834   // Do we know values for each element of the aggregate?
835   auto KnowAllElts = [&AggElts]() {
836     return all_of(AggElts,
837                   [](Optional<Instruction *> Elt) { return Elt != NotFound; });
838   };
839 
840   int Depth = 0;
841 
842   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
843   // every element being overwritten twice, which should never happen.
844   static const int DepthLimit = 2 * NumAggElts;
845 
846   // Recurse up the chain of `insertvalue` aggregate operands until either we've
847   // reconstructed full initializer or can't visit any more `insertvalue`'s.
848   for (InsertValueInst *CurrIVI = &OrigIVI;
849        Depth < DepthLimit && CurrIVI && !KnowAllElts();
850        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
851                        ++Depth) {
852     auto *InsertedValue =
853         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
854     if (!InsertedValue)
855       return nullptr; // Inserted value must be produced by an instruction.
856 
857     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
858 
859     // Don't bother with more than single-level aggregates.
860     if (Indices.size() != 1)
861       return nullptr; // FIXME: deal with more complex aggregates?
862 
863     // Now, we may have already previously recorded the value for this element
864     // of an aggregate. If we did, that means the CurrIVI will later be
865     // overwritten with the already-recorded value. But if not, let's record it!
866     Optional<Instruction *> &Elt = AggElts[Indices.front()];
867     Elt = Elt.getValueOr(InsertedValue);
868 
869     // FIXME: should we handle chain-terminating undef base operand?
870   }
871 
872   // Was that sufficient to deduce the full initializer for the aggregate?
873   if (!KnowAllElts())
874     return nullptr; // Give up then.
875 
876   // We now want to find the source[s] of the aggregate elements we've found.
877   // And with "source" we mean the original aggregate[s] from which
878   // the inserted elements were extracted. This may require PHI translation.
879 
880   enum class AggregateDescription {
881     /// When analyzing the value that was inserted into an aggregate, we did
882     /// not manage to find defining `extractvalue` instruction to analyze.
883     NotFound,
884     /// When analyzing the value that was inserted into an aggregate, we did
885     /// manage to find defining `extractvalue` instruction[s], and everything
886     /// matched perfectly - aggregate type, element insertion/extraction index.
887     Found,
888     /// When analyzing the value that was inserted into an aggregate, we did
889     /// manage to find defining `extractvalue` instruction, but there was
890     /// a mismatch: either the source type from which the extraction was didn't
891     /// match the aggregate type into which the insertion was,
892     /// or the extraction/insertion channels mismatched,
893     /// or different elements had different source aggregates.
894     FoundMismatch
895   };
896   auto Describe = [](Optional<Value *> SourceAggregate) {
897     if (SourceAggregate == NotFound)
898       return AggregateDescription::NotFound;
899     if (*SourceAggregate == FoundMismatch)
900       return AggregateDescription::FoundMismatch;
901     return AggregateDescription::Found;
902   };
903 
904   // Given the value \p Elt that was being inserted into element \p EltIdx of an
905   // aggregate AggTy, see if \p Elt was originally defined by an
906   // appropriate extractvalue (same element index, same aggregate type).
907   // If found, return the source aggregate from which the extraction was.
908   // If \p PredBB is provided, does PHI translation of an \p Elt first.
909   auto FindSourceAggregate =
910       [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
911           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
912     // For now(?), only deal with, at most, a single level of PHI indirection.
913     if (UseBB && PredBB)
914       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
915     // FIXME: deal with multiple levels of PHI indirection?
916 
917     // Did we find an extraction?
918     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
919     if (!EVI)
920       return NotFound;
921 
922     Value *SourceAggregate = EVI->getAggregateOperand();
923 
924     // Is the extraction from the same type into which the insertion was?
925     if (SourceAggregate->getType() != AggTy)
926       return FoundMismatch;
927     // And the element index doesn't change between extraction and insertion?
928     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
929       return FoundMismatch;
930 
931     return SourceAggregate; // AggregateDescription::Found
932   };
933 
934   // Given elements AggElts that were constructing an aggregate OrigIVI,
935   // see if we can find appropriate source aggregate for each of the elements,
936   // and see it's the same aggregate for each element. If so, return it.
937   auto FindCommonSourceAggregate =
938       [&](Optional<BasicBlock *> UseBB,
939           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
940     Optional<Value *> SourceAggregate;
941 
942     for (auto I : enumerate(AggElts)) {
943       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
944              "We don't store nullptr in SourceAggregate!");
945       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
946                  (I.index() != 0) &&
947              "SourceAggregate should be valid after the first element,");
948 
949       // For this element, is there a plausible source aggregate?
950       // FIXME: we could special-case undef element, IFF we know that in the
951       //        source aggregate said element isn't poison.
952       Optional<Value *> SourceAggregateForElement =
953           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
954 
955       // Okay, what have we found? Does that correlate with previous findings?
956 
957       // Regardless of whether or not we have previously found source
958       // aggregate for previous elements (if any), if we didn't find one for
959       // this element, passthrough whatever we have just found.
960       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
961         return SourceAggregateForElement;
962 
963       // Okay, we have found source aggregate for this element.
964       // Let's see what we already know from previous elements, if any.
965       switch (Describe(SourceAggregate)) {
966       case AggregateDescription::NotFound:
967         // This is apparently the first element that we have examined.
968         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
969         continue; // Great, now look at next element.
970       case AggregateDescription::Found:
971         // We have previously already successfully examined other elements.
972         // Is this the same source aggregate we've found for other elements?
973         if (*SourceAggregateForElement != *SourceAggregate)
974           return FoundMismatch;
975         continue; // Still the same aggregate, look at next element.
976       case AggregateDescription::FoundMismatch:
977         llvm_unreachable("Can't happen. We would have early-exited then.");
978       };
979     }
980 
981     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
982            "Must be a valid Value");
983     return *SourceAggregate;
984   };
985 
986   Optional<Value *> SourceAggregate;
987 
988   // Can we find the source aggregate without looking at predecessors?
989   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
990   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
991     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
992       return nullptr; // Conflicting source aggregates!
993     ++NumAggregateReconstructionsSimplified;
994     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
995   }
996 
997   // Okay, apparently we need to look at predecessors.
998 
999   // We should be smart about picking the "use" basic block, which will be the
1000   // merge point for aggregate, where we'll insert the final PHI that will be
1001   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1002   // We should look in which blocks each of the AggElts is being defined,
1003   // they all should be defined in the same basic block.
1004   BasicBlock *UseBB = nullptr;
1005 
1006   for (const Optional<Instruction *> &I : AggElts) {
1007     BasicBlock *BB = (*I)->getParent();
1008     // If it's the first instruction we've encountered, record the basic block.
1009     if (!UseBB) {
1010       UseBB = BB;
1011       continue;
1012     }
1013     // Otherwise, this must be the same basic block we've seen previously.
1014     if (UseBB != BB)
1015       return nullptr;
1016   }
1017 
1018   // If *all* of the elements are basic-block-independent, meaning they are
1019   // either function arguments, or constant expressions, then if we didn't
1020   // handle them without predecessor-aware handling, we won't handle them now.
1021   if (!UseBB)
1022     return nullptr;
1023 
1024   // If we didn't manage to find source aggregate without looking at
1025   // predecessors, and there are no predecessors to look at, then we're done.
1026   if (pred_empty(UseBB))
1027     return nullptr;
1028 
1029   // Arbitrary predecessor count limit.
1030   static const int PredCountLimit = 64;
1031 
1032   // Cache the (non-uniqified!) list of predecessors in a vector,
1033   // checking the limit at the same time for efficiency.
1034   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1035   for (BasicBlock *Pred : predecessors(UseBB)) {
1036     // Don't bother if there are too many predecessors.
1037     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1038       return nullptr;
1039     Preds.emplace_back(Pred);
1040   }
1041 
1042   // For each predecessor, what is the source aggregate,
1043   // from which all the elements were originally extracted from?
1044   // Note that we want for the map to have stable iteration order!
1045   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1046   for (BasicBlock *Pred : Preds) {
1047     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1048         SourceAggregates.insert({Pred, nullptr});
1049     // Did we already evaluate this predecessor?
1050     if (!IV.second)
1051       continue;
1052 
1053     // Let's hope that when coming from predecessor Pred, all elements of the
1054     // aggregate produced by OrigIVI must have been originally extracted from
1055     // the same aggregate. Is that so? Can we find said original aggregate?
1056     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1057     if (Describe(SourceAggregate) != AggregateDescription::Found)
1058       return nullptr; // Give up.
1059     IV.first->second = *SourceAggregate;
1060   }
1061 
1062   // All good! Now we just need to thread the source aggregates here.
1063   // Note that we have to insert the new PHI here, ourselves, because we can't
1064   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1065   // Note that the same block can be a predecessor more than once,
1066   // and we need to preserve that invariant for the PHI node.
1067   BuilderTy::InsertPointGuard Guard(Builder);
1068   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1069   auto *PHI =
1070       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1071   for (BasicBlock *Pred : Preds)
1072     PHI->addIncoming(SourceAggregates[Pred], Pred);
1073 
1074   ++NumAggregateReconstructionsSimplified;
1075   return replaceInstUsesWith(OrigIVI, PHI);
1076 }
1077 
1078 /// Try to find redundant insertvalue instructions, like the following ones:
1079 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1080 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1081 /// Here the second instruction inserts values at the same indices, as the
1082 /// first one, making the first one redundant.
1083 /// It should be transformed to:
1084 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1085 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1086   bool IsRedundant = false;
1087   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1088 
1089   // If there is a chain of insertvalue instructions (each of them except the
1090   // last one has only one use and it's another insertvalue insn from this
1091   // chain), check if any of the 'children' uses the same indices as the first
1092   // instruction. In this case, the first one is redundant.
1093   Value *V = &I;
1094   unsigned Depth = 0;
1095   while (V->hasOneUse() && Depth < 10) {
1096     User *U = V->user_back();
1097     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1098     if (!UserInsInst || U->getOperand(0) != V)
1099       break;
1100     if (UserInsInst->getIndices() == FirstIndices) {
1101       IsRedundant = true;
1102       break;
1103     }
1104     V = UserInsInst;
1105     Depth++;
1106   }
1107 
1108   if (IsRedundant)
1109     return replaceInstUsesWith(I, I.getOperand(0));
1110 
1111   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1112     return NewI;
1113 
1114   return nullptr;
1115 }
1116 
1117 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1118   // Can not analyze scalable type, the number of elements is not a compile-time
1119   // constant.
1120   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1121     return false;
1122 
1123   int MaskSize = Shuf.getShuffleMask().size();
1124   int VecSize =
1125       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1126 
1127   // A vector select does not change the size of the operands.
1128   if (MaskSize != VecSize)
1129     return false;
1130 
1131   // Each mask element must be undefined or choose a vector element from one of
1132   // the source operands without crossing vector lanes.
1133   for (int i = 0; i != MaskSize; ++i) {
1134     int Elt = Shuf.getMaskValue(i);
1135     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1136       return false;
1137   }
1138 
1139   return true;
1140 }
1141 
1142 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1143 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1144 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1145 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1146   // We are interested in the last insert in a chain. So if this insert has a
1147   // single user and that user is an insert, bail.
1148   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1149     return nullptr;
1150 
1151   VectorType *VecTy = InsElt.getType();
1152   // Can not handle scalable type, the number of elements is not a compile-time
1153   // constant.
1154   if (isa<ScalableVectorType>(VecTy))
1155     return nullptr;
1156   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1157 
1158   // Do not try to do this for a one-element vector, since that's a nop,
1159   // and will cause an inf-loop.
1160   if (NumElements == 1)
1161     return nullptr;
1162 
1163   Value *SplatVal = InsElt.getOperand(1);
1164   InsertElementInst *CurrIE = &InsElt;
1165   SmallBitVector ElementPresent(NumElements, false);
1166   InsertElementInst *FirstIE = nullptr;
1167 
1168   // Walk the chain backwards, keeping track of which indices we inserted into,
1169   // until we hit something that isn't an insert of the splatted value.
1170   while (CurrIE) {
1171     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1172     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1173       return nullptr;
1174 
1175     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1176     // Check none of the intermediate steps have any additional uses, except
1177     // for the root insertelement instruction, which can be re-used, if it
1178     // inserts at position 0.
1179     if (CurrIE != &InsElt &&
1180         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1181       return nullptr;
1182 
1183     ElementPresent[Idx->getZExtValue()] = true;
1184     FirstIE = CurrIE;
1185     CurrIE = NextIE;
1186   }
1187 
1188   // If this is just a single insertelement (not a sequence), we are done.
1189   if (FirstIE == &InsElt)
1190     return nullptr;
1191 
1192   // If we are not inserting into an undef vector, make sure we've seen an
1193   // insert into every element.
1194   // TODO: If the base vector is not undef, it might be better to create a splat
1195   //       and then a select-shuffle (blend) with the base vector.
1196   if (!match(FirstIE->getOperand(0), m_Undef()))
1197     if (!ElementPresent.all())
1198       return nullptr;
1199 
1200   // Create the insert + shuffle.
1201   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1202   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1203   Constant *Zero = ConstantInt::get(Int32Ty, 0);
1204   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1205     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1206 
1207   // Splat from element 0, but replace absent elements with undef in the mask.
1208   SmallVector<int, 16> Mask(NumElements, 0);
1209   for (unsigned i = 0; i != NumElements; ++i)
1210     if (!ElementPresent[i])
1211       Mask[i] = -1;
1212 
1213   return new ShuffleVectorInst(FirstIE, Mask);
1214 }
1215 
1216 /// Try to fold an insert element into an existing splat shuffle by changing
1217 /// the shuffle's mask to include the index of this insert element.
1218 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1219   // Check if the vector operand of this insert is a canonical splat shuffle.
1220   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1221   if (!Shuf || !Shuf->isZeroEltSplat())
1222     return nullptr;
1223 
1224   // Bail out early if shuffle is scalable type. The number of elements in
1225   // shuffle mask is unknown at compile-time.
1226   if (isa<ScalableVectorType>(Shuf->getType()))
1227     return nullptr;
1228 
1229   // Check for a constant insertion index.
1230   uint64_t IdxC;
1231   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1232     return nullptr;
1233 
1234   // Check if the splat shuffle's input is the same as this insert's scalar op.
1235   Value *X = InsElt.getOperand(1);
1236   Value *Op0 = Shuf->getOperand(0);
1237   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1238     return nullptr;
1239 
1240   // Replace the shuffle mask element at the index of this insert with a zero.
1241   // For example:
1242   // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1243   //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1244   unsigned NumMaskElts =
1245       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1246   SmallVector<int, 16> NewMask(NumMaskElts);
1247   for (unsigned i = 0; i != NumMaskElts; ++i)
1248     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1249 
1250   return new ShuffleVectorInst(Op0, NewMask);
1251 }
1252 
1253 /// Try to fold an extract+insert element into an existing identity shuffle by
1254 /// changing the shuffle's mask to include the index of this insert element.
1255 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1256   // Check if the vector operand of this insert is an identity shuffle.
1257   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1258   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1259       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1260     return nullptr;
1261 
1262   // Bail out early if shuffle is scalable type. The number of elements in
1263   // shuffle mask is unknown at compile-time.
1264   if (isa<ScalableVectorType>(Shuf->getType()))
1265     return nullptr;
1266 
1267   // Check for a constant insertion index.
1268   uint64_t IdxC;
1269   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1270     return nullptr;
1271 
1272   // Check if this insert's scalar op is extracted from the identity shuffle's
1273   // input vector.
1274   Value *Scalar = InsElt.getOperand(1);
1275   Value *X = Shuf->getOperand(0);
1276   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1277     return nullptr;
1278 
1279   // Replace the shuffle mask element at the index of this extract+insert with
1280   // that same index value.
1281   // For example:
1282   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1283   unsigned NumMaskElts =
1284       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1285   SmallVector<int, 16> NewMask(NumMaskElts);
1286   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1287   for (unsigned i = 0; i != NumMaskElts; ++i) {
1288     if (i != IdxC) {
1289       // All mask elements besides the inserted element remain the same.
1290       NewMask[i] = OldMask[i];
1291     } else if (OldMask[i] == (int)IdxC) {
1292       // If the mask element was already set, there's nothing to do
1293       // (demanded elements analysis may unset it later).
1294       return nullptr;
1295     } else {
1296       assert(OldMask[i] == UndefMaskElem &&
1297              "Unexpected shuffle mask element for identity shuffle");
1298       NewMask[i] = IdxC;
1299     }
1300   }
1301 
1302   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1303 }
1304 
1305 /// If we have an insertelement instruction feeding into another insertelement
1306 /// and the 2nd is inserting a constant into the vector, canonicalize that
1307 /// constant insertion before the insertion of a variable:
1308 ///
1309 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1310 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1311 ///
1312 /// This has the potential of eliminating the 2nd insertelement instruction
1313 /// via constant folding of the scalar constant into a vector constant.
1314 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1315                                      InstCombiner::BuilderTy &Builder) {
1316   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1317   if (!InsElt1 || !InsElt1->hasOneUse())
1318     return nullptr;
1319 
1320   Value *X, *Y;
1321   Constant *ScalarC;
1322   ConstantInt *IdxC1, *IdxC2;
1323   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1324       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1325       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1326       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1327       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1328     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1329     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1330   }
1331 
1332   return nullptr;
1333 }
1334 
1335 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1336 /// --> shufflevector X, CVec', Mask'
1337 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1338   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1339   // Bail out if the parent has more than one use. In that case, we'd be
1340   // replacing the insertelt with a shuffle, and that's not a clear win.
1341   if (!Inst || !Inst->hasOneUse())
1342     return nullptr;
1343   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1344     // The shuffle must have a constant vector operand. The insertelt must have
1345     // a constant scalar being inserted at a constant position in the vector.
1346     Constant *ShufConstVec, *InsEltScalar;
1347     uint64_t InsEltIndex;
1348     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1349         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1350         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1351       return nullptr;
1352 
1353     // Adding an element to an arbitrary shuffle could be expensive, but a
1354     // shuffle that selects elements from vectors without crossing lanes is
1355     // assumed cheap.
1356     // If we're just adding a constant into that shuffle, it will still be
1357     // cheap.
1358     if (!isShuffleEquivalentToSelect(*Shuf))
1359       return nullptr;
1360 
1361     // From the above 'select' check, we know that the mask has the same number
1362     // of elements as the vector input operands. We also know that each constant
1363     // input element is used in its lane and can not be used more than once by
1364     // the shuffle. Therefore, replace the constant in the shuffle's constant
1365     // vector with the insertelt constant. Replace the constant in the shuffle's
1366     // mask vector with the insertelt index plus the length of the vector
1367     // (because the constant vector operand of a shuffle is always the 2nd
1368     // operand).
1369     ArrayRef<int> Mask = Shuf->getShuffleMask();
1370     unsigned NumElts = Mask.size();
1371     SmallVector<Constant *, 16> NewShufElts(NumElts);
1372     SmallVector<int, 16> NewMaskElts(NumElts);
1373     for (unsigned I = 0; I != NumElts; ++I) {
1374       if (I == InsEltIndex) {
1375         NewShufElts[I] = InsEltScalar;
1376         NewMaskElts[I] = InsEltIndex + NumElts;
1377       } else {
1378         // Copy over the existing values.
1379         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1380         NewMaskElts[I] = Mask[I];
1381       }
1382 
1383       // Bail if we failed to find an element.
1384       if (!NewShufElts[I])
1385         return nullptr;
1386     }
1387 
1388     // Create new operands for a shuffle that includes the constant of the
1389     // original insertelt. The old shuffle will be dead now.
1390     return new ShuffleVectorInst(Shuf->getOperand(0),
1391                                  ConstantVector::get(NewShufElts), NewMaskElts);
1392   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1393     // Transform sequences of insertelements ops with constant data/indexes into
1394     // a single shuffle op.
1395     // Can not handle scalable type, the number of elements needed to create
1396     // shuffle mask is not a compile-time constant.
1397     if (isa<ScalableVectorType>(InsElt.getType()))
1398       return nullptr;
1399     unsigned NumElts =
1400         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1401 
1402     uint64_t InsertIdx[2];
1403     Constant *Val[2];
1404     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1405         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1406         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1407         !match(IEI->getOperand(1), m_Constant(Val[1])))
1408       return nullptr;
1409     SmallVector<Constant *, 16> Values(NumElts);
1410     SmallVector<int, 16> Mask(NumElts);
1411     auto ValI = std::begin(Val);
1412     // Generate new constant vector and mask.
1413     // We have 2 values/masks from the insertelements instructions. Insert them
1414     // into new value/mask vectors.
1415     for (uint64_t I : InsertIdx) {
1416       if (!Values[I]) {
1417         Values[I] = *ValI;
1418         Mask[I] = NumElts + I;
1419       }
1420       ++ValI;
1421     }
1422     // Remaining values are filled with 'undef' values.
1423     for (unsigned I = 0; I < NumElts; ++I) {
1424       if (!Values[I]) {
1425         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1426         Mask[I] = I;
1427       }
1428     }
1429     // Create new operands for a shuffle that includes the constant of the
1430     // original insertelt.
1431     return new ShuffleVectorInst(IEI->getOperand(0),
1432                                  ConstantVector::get(Values), Mask);
1433   }
1434   return nullptr;
1435 }
1436 
1437 /// If both the base vector and the inserted element are extended from the same
1438 /// type, do the insert element in the narrow source type followed by extend.
1439 /// TODO: This can be extended to include other cast opcodes, but particularly
1440 ///       if we create a wider insertelement, make sure codegen is not harmed.
1441 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1442                                  InstCombiner::BuilderTy &Builder) {
1443   // We are creating a vector extend. If the original vector extend has another
1444   // use, that would mean we end up with 2 vector extends, so avoid that.
1445   // TODO: We could ease the use-clause to "if at least one op has one use"
1446   //       (assuming that the source types match - see next TODO comment).
1447   Value *Vec = InsElt.getOperand(0);
1448   if (!Vec->hasOneUse())
1449     return nullptr;
1450 
1451   Value *Scalar = InsElt.getOperand(1);
1452   Value *X, *Y;
1453   CastInst::CastOps CastOpcode;
1454   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1455     CastOpcode = Instruction::FPExt;
1456   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1457     CastOpcode = Instruction::SExt;
1458   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1459     CastOpcode = Instruction::ZExt;
1460   else
1461     return nullptr;
1462 
1463   // TODO: We can allow mismatched types by creating an intermediate cast.
1464   if (X->getType()->getScalarType() != Y->getType())
1465     return nullptr;
1466 
1467   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1468   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1469   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1470 }
1471 
1472 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1473   Value *VecOp    = IE.getOperand(0);
1474   Value *ScalarOp = IE.getOperand(1);
1475   Value *IdxOp    = IE.getOperand(2);
1476 
1477   if (auto *V = SimplifyInsertElementInst(
1478           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1479     return replaceInstUsesWith(IE, V);
1480 
1481   // If the scalar is bitcast and inserted into undef, do the insert in the
1482   // source type followed by bitcast.
1483   // TODO: Generalize for insert into any constant, not just undef?
1484   Value *ScalarSrc;
1485   if (match(VecOp, m_Undef()) &&
1486       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1487       (ScalarSrc->getType()->isIntegerTy() ||
1488        ScalarSrc->getType()->isFloatingPointTy())) {
1489     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1490     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1491     Type *ScalarTy = ScalarSrc->getType();
1492     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1493     UndefValue *NewUndef = UndefValue::get(VecTy);
1494     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1495     return new BitCastInst(NewInsElt, IE.getType());
1496   }
1497 
1498   // If the vector and scalar are both bitcast from the same element type, do
1499   // the insert in that source type followed by bitcast.
1500   Value *VecSrc;
1501   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1502       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1503       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1504       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1505       cast<VectorType>(VecSrc->getType())->getElementType() ==
1506           ScalarSrc->getType()) {
1507     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1508     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1509     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1510     return new BitCastInst(NewInsElt, IE.getType());
1511   }
1512 
1513   // If the inserted element was extracted from some other fixed-length vector
1514   // and both indexes are valid constants, try to turn this into a shuffle.
1515   // Can not handle scalable vector type, the number of elements needed to
1516   // create shuffle mask is not a compile-time constant.
1517   uint64_t InsertedIdx, ExtractedIdx;
1518   Value *ExtVecOp;
1519   if (isa<FixedVectorType>(IE.getType()) &&
1520       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1521       match(ScalarOp,
1522             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1523       isa<FixedVectorType>(ExtVecOp->getType()) &&
1524       ExtractedIdx <
1525           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1526     // TODO: Looking at the user(s) to determine if this insert is a
1527     // fold-to-shuffle opportunity does not match the usual instcombine
1528     // constraints. We should decide if the transform is worthy based only
1529     // on this instruction and its operands, but that may not work currently.
1530     //
1531     // Here, we are trying to avoid creating shuffles before reaching
1532     // the end of a chain of extract-insert pairs. This is complicated because
1533     // we do not generally form arbitrary shuffle masks in instcombine
1534     // (because those may codegen poorly), but collectShuffleElements() does
1535     // exactly that.
1536     //
1537     // The rules for determining what is an acceptable target-independent
1538     // shuffle mask are fuzzy because they evolve based on the backend's
1539     // capabilities and real-world impact.
1540     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1541       if (!Insert.hasOneUse())
1542         return true;
1543       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1544       if (!InsertUser)
1545         return true;
1546       return false;
1547     };
1548 
1549     // Try to form a shuffle from a chain of extract-insert ops.
1550     if (isShuffleRootCandidate(IE)) {
1551       SmallVector<int, 16> Mask;
1552       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1553 
1554       // The proposed shuffle may be trivial, in which case we shouldn't
1555       // perform the combine.
1556       if (LR.first != &IE && LR.second != &IE) {
1557         // We now have a shuffle of LHS, RHS, Mask.
1558         if (LR.second == nullptr)
1559           LR.second = UndefValue::get(LR.first->getType());
1560         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1561       }
1562     }
1563   }
1564 
1565   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1566     unsigned VWidth = VecTy->getNumElements();
1567     APInt UndefElts(VWidth, 0);
1568     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1569     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1570       if (V != &IE)
1571         return replaceInstUsesWith(IE, V);
1572       return &IE;
1573     }
1574   }
1575 
1576   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1577     return Shuf;
1578 
1579   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1580     return NewInsElt;
1581 
1582   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1583     return Broadcast;
1584 
1585   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1586     return Splat;
1587 
1588   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1589     return IdentityShuf;
1590 
1591   if (Instruction *Ext = narrowInsElt(IE, Builder))
1592     return Ext;
1593 
1594   return nullptr;
1595 }
1596 
1597 /// Return true if we can evaluate the specified expression tree if the vector
1598 /// elements were shuffled in a different order.
1599 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1600                                 unsigned Depth = 5) {
1601   // We can always reorder the elements of a constant.
1602   if (isa<Constant>(V))
1603     return true;
1604 
1605   // We won't reorder vector arguments. No IPO here.
1606   Instruction *I = dyn_cast<Instruction>(V);
1607   if (!I) return false;
1608 
1609   // Two users may expect different orders of the elements. Don't try it.
1610   if (!I->hasOneUse())
1611     return false;
1612 
1613   if (Depth == 0) return false;
1614 
1615   switch (I->getOpcode()) {
1616     case Instruction::UDiv:
1617     case Instruction::SDiv:
1618     case Instruction::URem:
1619     case Instruction::SRem:
1620       // Propagating an undefined shuffle mask element to integer div/rem is not
1621       // allowed because those opcodes can create immediate undefined behavior
1622       // from an undefined element in an operand.
1623       if (llvm::is_contained(Mask, -1))
1624         return false;
1625       LLVM_FALLTHROUGH;
1626     case Instruction::Add:
1627     case Instruction::FAdd:
1628     case Instruction::Sub:
1629     case Instruction::FSub:
1630     case Instruction::Mul:
1631     case Instruction::FMul:
1632     case Instruction::FDiv:
1633     case Instruction::FRem:
1634     case Instruction::Shl:
1635     case Instruction::LShr:
1636     case Instruction::AShr:
1637     case Instruction::And:
1638     case Instruction::Or:
1639     case Instruction::Xor:
1640     case Instruction::ICmp:
1641     case Instruction::FCmp:
1642     case Instruction::Trunc:
1643     case Instruction::ZExt:
1644     case Instruction::SExt:
1645     case Instruction::FPToUI:
1646     case Instruction::FPToSI:
1647     case Instruction::UIToFP:
1648     case Instruction::SIToFP:
1649     case Instruction::FPTrunc:
1650     case Instruction::FPExt:
1651     case Instruction::GetElementPtr: {
1652       // Bail out if we would create longer vector ops. We could allow creating
1653       // longer vector ops, but that may result in more expensive codegen.
1654       Type *ITy = I->getType();
1655       if (ITy->isVectorTy() &&
1656           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1657         return false;
1658       for (Value *Operand : I->operands()) {
1659         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1660           return false;
1661       }
1662       return true;
1663     }
1664     case Instruction::InsertElement: {
1665       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1666       if (!CI) return false;
1667       int ElementNumber = CI->getLimitedValue();
1668 
1669       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1670       // can't put an element into multiple indices.
1671       bool SeenOnce = false;
1672       for (int i = 0, e = Mask.size(); i != e; ++i) {
1673         if (Mask[i] == ElementNumber) {
1674           if (SeenOnce)
1675             return false;
1676           SeenOnce = true;
1677         }
1678       }
1679       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1680     }
1681   }
1682   return false;
1683 }
1684 
1685 /// Rebuild a new instruction just like 'I' but with the new operands given.
1686 /// In the event of type mismatch, the type of the operands is correct.
1687 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1688   // We don't want to use the IRBuilder here because we want the replacement
1689   // instructions to appear next to 'I', not the builder's insertion point.
1690   switch (I->getOpcode()) {
1691     case Instruction::Add:
1692     case Instruction::FAdd:
1693     case Instruction::Sub:
1694     case Instruction::FSub:
1695     case Instruction::Mul:
1696     case Instruction::FMul:
1697     case Instruction::UDiv:
1698     case Instruction::SDiv:
1699     case Instruction::FDiv:
1700     case Instruction::URem:
1701     case Instruction::SRem:
1702     case Instruction::FRem:
1703     case Instruction::Shl:
1704     case Instruction::LShr:
1705     case Instruction::AShr:
1706     case Instruction::And:
1707     case Instruction::Or:
1708     case Instruction::Xor: {
1709       BinaryOperator *BO = cast<BinaryOperator>(I);
1710       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1711       BinaryOperator *New =
1712           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1713                                  NewOps[0], NewOps[1], "", BO);
1714       if (isa<OverflowingBinaryOperator>(BO)) {
1715         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1716         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1717       }
1718       if (isa<PossiblyExactOperator>(BO)) {
1719         New->setIsExact(BO->isExact());
1720       }
1721       if (isa<FPMathOperator>(BO))
1722         New->copyFastMathFlags(I);
1723       return New;
1724     }
1725     case Instruction::ICmp:
1726       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1727       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1728                           NewOps[0], NewOps[1]);
1729     case Instruction::FCmp:
1730       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1731       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1732                           NewOps[0], NewOps[1]);
1733     case Instruction::Trunc:
1734     case Instruction::ZExt:
1735     case Instruction::SExt:
1736     case Instruction::FPToUI:
1737     case Instruction::FPToSI:
1738     case Instruction::UIToFP:
1739     case Instruction::SIToFP:
1740     case Instruction::FPTrunc:
1741     case Instruction::FPExt: {
1742       // It's possible that the mask has a different number of elements from
1743       // the original cast. We recompute the destination type to match the mask.
1744       Type *DestTy = VectorType::get(
1745           I->getType()->getScalarType(),
1746           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1747       assert(NewOps.size() == 1 && "cast with #ops != 1");
1748       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1749                               "", I);
1750     }
1751     case Instruction::GetElementPtr: {
1752       Value *Ptr = NewOps[0];
1753       ArrayRef<Value*> Idx = NewOps.slice(1);
1754       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1755           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1756       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1757       return GEP;
1758     }
1759   }
1760   llvm_unreachable("failed to rebuild vector instructions");
1761 }
1762 
1763 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1764   // Mask.size() does not need to be equal to the number of vector elements.
1765 
1766   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1767   Type *EltTy = V->getType()->getScalarType();
1768   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1769   if (match(V, m_Undef()))
1770     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1771 
1772   if (isa<ConstantAggregateZero>(V))
1773     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1774 
1775   if (Constant *C = dyn_cast<Constant>(V))
1776     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1777                                           Mask);
1778 
1779   Instruction *I = cast<Instruction>(V);
1780   switch (I->getOpcode()) {
1781     case Instruction::Add:
1782     case Instruction::FAdd:
1783     case Instruction::Sub:
1784     case Instruction::FSub:
1785     case Instruction::Mul:
1786     case Instruction::FMul:
1787     case Instruction::UDiv:
1788     case Instruction::SDiv:
1789     case Instruction::FDiv:
1790     case Instruction::URem:
1791     case Instruction::SRem:
1792     case Instruction::FRem:
1793     case Instruction::Shl:
1794     case Instruction::LShr:
1795     case Instruction::AShr:
1796     case Instruction::And:
1797     case Instruction::Or:
1798     case Instruction::Xor:
1799     case Instruction::ICmp:
1800     case Instruction::FCmp:
1801     case Instruction::Trunc:
1802     case Instruction::ZExt:
1803     case Instruction::SExt:
1804     case Instruction::FPToUI:
1805     case Instruction::FPToSI:
1806     case Instruction::UIToFP:
1807     case Instruction::SIToFP:
1808     case Instruction::FPTrunc:
1809     case Instruction::FPExt:
1810     case Instruction::Select:
1811     case Instruction::GetElementPtr: {
1812       SmallVector<Value*, 8> NewOps;
1813       bool NeedsRebuild =
1814           (Mask.size() !=
1815            cast<FixedVectorType>(I->getType())->getNumElements());
1816       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1817         Value *V;
1818         // Recursively call evaluateInDifferentElementOrder on vector arguments
1819         // as well. E.g. GetElementPtr may have scalar operands even if the
1820         // return value is a vector, so we need to examine the operand type.
1821         if (I->getOperand(i)->getType()->isVectorTy())
1822           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1823         else
1824           V = I->getOperand(i);
1825         NewOps.push_back(V);
1826         NeedsRebuild |= (V != I->getOperand(i));
1827       }
1828       if (NeedsRebuild) {
1829         return buildNew(I, NewOps);
1830       }
1831       return I;
1832     }
1833     case Instruction::InsertElement: {
1834       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1835 
1836       // The insertelement was inserting at Element. Figure out which element
1837       // that becomes after shuffling. The answer is guaranteed to be unique
1838       // by CanEvaluateShuffled.
1839       bool Found = false;
1840       int Index = 0;
1841       for (int e = Mask.size(); Index != e; ++Index) {
1842         if (Mask[Index] == Element) {
1843           Found = true;
1844           break;
1845         }
1846       }
1847 
1848       // If element is not in Mask, no need to handle the operand 1 (element to
1849       // be inserted). Just evaluate values in operand 0 according to Mask.
1850       if (!Found)
1851         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1852 
1853       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1854       return InsertElementInst::Create(V, I->getOperand(1),
1855                                        ConstantInt::get(I32Ty, Index), "", I);
1856     }
1857   }
1858   llvm_unreachable("failed to reorder elements of vector instruction!");
1859 }
1860 
1861 // Returns true if the shuffle is extracting a contiguous range of values from
1862 // LHS, for example:
1863 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1864 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1865 //   Shuffles to:  |EE|FF|GG|HH|
1866 //                 +--+--+--+--+
1867 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1868                                        ArrayRef<int> Mask) {
1869   unsigned LHSElems =
1870       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1871   unsigned MaskElems = Mask.size();
1872   unsigned BegIdx = Mask.front();
1873   unsigned EndIdx = Mask.back();
1874   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1875     return false;
1876   for (unsigned I = 0; I != MaskElems; ++I)
1877     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1878       return false;
1879   return true;
1880 }
1881 
1882 /// These are the ingredients in an alternate form binary operator as described
1883 /// below.
1884 struct BinopElts {
1885   BinaryOperator::BinaryOps Opcode;
1886   Value *Op0;
1887   Value *Op1;
1888   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1889             Value *V0 = nullptr, Value *V1 = nullptr) :
1890       Opcode(Opc), Op0(V0), Op1(V1) {}
1891   operator bool() const { return Opcode != 0; }
1892 };
1893 
1894 /// Binops may be transformed into binops with different opcodes and operands.
1895 /// Reverse the usual canonicalization to enable folds with the non-canonical
1896 /// form of the binop. If a transform is possible, return the elements of the
1897 /// new binop. If not, return invalid elements.
1898 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1899   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1900   Type *Ty = BO->getType();
1901   switch (BO->getOpcode()) {
1902     case Instruction::Shl: {
1903       // shl X, C --> mul X, (1 << C)
1904       Constant *C;
1905       if (match(BO1, m_Constant(C))) {
1906         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1907         return { Instruction::Mul, BO0, ShlOne };
1908       }
1909       break;
1910     }
1911     case Instruction::Or: {
1912       // or X, C --> add X, C (when X and C have no common bits set)
1913       const APInt *C;
1914       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1915         return { Instruction::Add, BO0, BO1 };
1916       break;
1917     }
1918     default:
1919       break;
1920   }
1921   return {};
1922 }
1923 
1924 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1925   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1926 
1927   // Are we shuffling together some value and that same value after it has been
1928   // modified by a binop with a constant?
1929   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1930   Constant *C;
1931   bool Op0IsBinop;
1932   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1933     Op0IsBinop = true;
1934   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1935     Op0IsBinop = false;
1936   else
1937     return nullptr;
1938 
1939   // The identity constant for a binop leaves a variable operand unchanged. For
1940   // a vector, this is a splat of something like 0, -1, or 1.
1941   // If there's no identity constant for this binop, we're done.
1942   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1943   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1944   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1945   if (!IdC)
1946     return nullptr;
1947 
1948   // Shuffle identity constants into the lanes that return the original value.
1949   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1950   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1951   // The existing binop constant vector remains in the same operand position.
1952   ArrayRef<int> Mask = Shuf.getShuffleMask();
1953   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1954                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1955 
1956   bool MightCreatePoisonOrUB =
1957       is_contained(Mask, UndefMaskElem) &&
1958       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1959   if (MightCreatePoisonOrUB)
1960     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1961 
1962   // shuf (bop X, C), X, M --> bop X, C'
1963   // shuf X, (bop X, C), M --> bop X, C'
1964   Value *X = Op0IsBinop ? Op1 : Op0;
1965   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1966   NewBO->copyIRFlags(BO);
1967 
1968   // An undef shuffle mask element may propagate as an undef constant element in
1969   // the new binop. That would produce poison where the original code might not.
1970   // If we already made a safe constant, then there's no danger.
1971   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1972     NewBO->dropPoisonGeneratingFlags();
1973   return NewBO;
1974 }
1975 
1976 /// If we have an insert of a scalar to a non-zero element of an undefined
1977 /// vector and then shuffle that value, that's the same as inserting to the zero
1978 /// element and shuffling. Splatting from the zero element is recognized as the
1979 /// canonical form of splat.
1980 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1981                                             InstCombiner::BuilderTy &Builder) {
1982   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1983   ArrayRef<int> Mask = Shuf.getShuffleMask();
1984   Value *X;
1985   uint64_t IndexC;
1986 
1987   // Match a shuffle that is a splat to a non-zero element.
1988   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
1989                                        m_ConstantInt(IndexC)))) ||
1990       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
1991     return nullptr;
1992 
1993   // Insert into element 0 of an undef vector.
1994   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1995   Constant *Zero = Builder.getInt32(0);
1996   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1997 
1998   // Splat from element 0. Any mask element that is undefined remains undefined.
1999   // For example:
2000   // shuf (inselt undef, X, 2), _, <2,2,undef>
2001   //   --> shuf (inselt undef, X, 0), poison, <0,0,undef>
2002   unsigned NumMaskElts =
2003       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2004   SmallVector<int, 16> NewMask(NumMaskElts, 0);
2005   for (unsigned i = 0; i != NumMaskElts; ++i)
2006     if (Mask[i] == UndefMaskElem)
2007       NewMask[i] = Mask[i];
2008 
2009   return new ShuffleVectorInst(NewIns, NewMask);
2010 }
2011 
2012 /// Try to fold shuffles that are the equivalent of a vector select.
2013 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
2014                                       InstCombiner::BuilderTy &Builder,
2015                                       const DataLayout &DL) {
2016   if (!Shuf.isSelect())
2017     return nullptr;
2018 
2019   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2020   // Commuting undef to operand 0 conflicts with another canonicalization.
2021   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2022   if (!match(Shuf.getOperand(1), m_Undef()) &&
2023       Shuf.getMaskValue(0) >= (int)NumElts) {
2024     // TODO: Can we assert that both operands of a shuffle-select are not undef
2025     // (otherwise, it would have been folded by instsimplify?
2026     Shuf.commute();
2027     return &Shuf;
2028   }
2029 
2030   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
2031     return I;
2032 
2033   BinaryOperator *B0, *B1;
2034   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2035       !match(Shuf.getOperand(1), m_BinOp(B1)))
2036     return nullptr;
2037 
2038   Value *X, *Y;
2039   Constant *C0, *C1;
2040   bool ConstantsAreOp1;
2041   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
2042       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
2043     ConstantsAreOp1 = true;
2044   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2045            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2046     ConstantsAreOp1 = false;
2047   else
2048     return nullptr;
2049 
2050   // We need matching binops to fold the lanes together.
2051   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2052   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2053   bool DropNSW = false;
2054   if (ConstantsAreOp1 && Opc0 != Opc1) {
2055     // TODO: We drop "nsw" if shift is converted into multiply because it may
2056     // not be correct when the shift amount is BitWidth - 1. We could examine
2057     // each vector element to determine if it is safe to keep that flag.
2058     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2059       DropNSW = true;
2060     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2061       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2062       Opc0 = AltB0.Opcode;
2063       C0 = cast<Constant>(AltB0.Op1);
2064     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2065       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2066       Opc1 = AltB1.Opcode;
2067       C1 = cast<Constant>(AltB1.Op1);
2068     }
2069   }
2070 
2071   if (Opc0 != Opc1)
2072     return nullptr;
2073 
2074   // The opcodes must be the same. Use a new name to make that clear.
2075   BinaryOperator::BinaryOps BOpc = Opc0;
2076 
2077   // Select the constant elements needed for the single binop.
2078   ArrayRef<int> Mask = Shuf.getShuffleMask();
2079   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2080 
2081   // We are moving a binop after a shuffle. When a shuffle has an undefined
2082   // mask element, the result is undefined, but it is not poison or undefined
2083   // behavior. That is not necessarily true for div/rem/shift.
2084   bool MightCreatePoisonOrUB =
2085       is_contained(Mask, UndefMaskElem) &&
2086       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2087   if (MightCreatePoisonOrUB)
2088     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2089                                                        ConstantsAreOp1);
2090 
2091   Value *V;
2092   if (X == Y) {
2093     // Remove a binop and the shuffle by rearranging the constant:
2094     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2095     // shuffle (op C0, V), (op C1, V), M --> op C', V
2096     V = X;
2097   } else {
2098     // If there are 2 different variable operands, we must create a new shuffle
2099     // (select) first, so check uses to ensure that we don't end up with more
2100     // instructions than we started with.
2101     if (!B0->hasOneUse() && !B1->hasOneUse())
2102       return nullptr;
2103 
2104     // If we use the original shuffle mask and op1 is *variable*, we would be
2105     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2106     // poison. We do not have to guard against UB when *constants* are op1
2107     // because safe constants guarantee that we do not overflow sdiv/srem (and
2108     // there's no danger for other opcodes).
2109     // TODO: To allow this case, create a new shuffle mask with no undefs.
2110     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2111       return nullptr;
2112 
2113     // Note: In general, we do not create new shuffles in InstCombine because we
2114     // do not know if a target can lower an arbitrary shuffle optimally. In this
2115     // case, the shuffle uses the existing mask, so there is no additional risk.
2116 
2117     // Select the variable vectors first, then perform the binop:
2118     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2119     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2120     V = Builder.CreateShuffleVector(X, Y, Mask);
2121   }
2122 
2123   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
2124                                          BinaryOperator::Create(BOpc, NewC, V);
2125 
2126   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2127   // 1. If we changed an opcode, poison conditions might have changed.
2128   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2129   //    where the original code did not. But if we already made a safe constant,
2130   //    then there's no danger.
2131   NewBO->copyIRFlags(B0);
2132   NewBO->andIRFlags(B1);
2133   if (DropNSW)
2134     NewBO->setHasNoSignedWrap(false);
2135   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2136     NewBO->dropPoisonGeneratingFlags();
2137   return NewBO;
2138 }
2139 
2140 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2141 /// Example (little endian):
2142 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2143 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2144                                      bool IsBigEndian) {
2145   // This must be a bitcasted shuffle of 1 vector integer operand.
2146   Type *DestType = Shuf.getType();
2147   Value *X;
2148   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2149       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2150     return nullptr;
2151 
2152   // The source type must have the same number of elements as the shuffle,
2153   // and the source element type must be larger than the shuffle element type.
2154   Type *SrcType = X->getType();
2155   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2156       cast<FixedVectorType>(SrcType)->getNumElements() !=
2157           cast<FixedVectorType>(DestType)->getNumElements() ||
2158       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2159     return nullptr;
2160 
2161   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2162          "Expected a shuffle that decreases length");
2163 
2164   // Last, check that the mask chooses the correct low bits for each narrow
2165   // element in the result.
2166   uint64_t TruncRatio =
2167       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2168   ArrayRef<int> Mask = Shuf.getShuffleMask();
2169   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2170     if (Mask[i] == UndefMaskElem)
2171       continue;
2172     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2173     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2174     if (Mask[i] != (int)LSBIndex)
2175       return nullptr;
2176   }
2177 
2178   return new TruncInst(X, DestType);
2179 }
2180 
2181 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2182 /// narrowing (concatenating with undef and extracting back to the original
2183 /// length). This allows replacing the wide select with a narrow select.
2184 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2185                                        InstCombiner::BuilderTy &Builder) {
2186   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2187   // of the 1st vector operand of a shuffle.
2188   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2189     return nullptr;
2190 
2191   // The vector being shuffled must be a vector select that we can eliminate.
2192   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2193   Value *Cond, *X, *Y;
2194   if (!match(Shuf.getOperand(0),
2195              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2196     return nullptr;
2197 
2198   // We need a narrow condition value. It must be extended with undef elements
2199   // and have the same number of elements as this shuffle.
2200   unsigned NarrowNumElts =
2201       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2202   Value *NarrowCond;
2203   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2204       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2205           NarrowNumElts ||
2206       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2207     return nullptr;
2208 
2209   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2210   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2211   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2212   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2213   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2214 }
2215 
2216 /// Try to fold an extract subvector operation.
2217 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2218   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2219   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2220     return nullptr;
2221 
2222   // Check if we are extracting all bits of an inserted scalar:
2223   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2224   Value *X;
2225   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2226       X->getType()->getPrimitiveSizeInBits() ==
2227           Shuf.getType()->getPrimitiveSizeInBits())
2228     return new BitCastInst(X, Shuf.getType());
2229 
2230   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2231   Value *Y;
2232   ArrayRef<int> Mask;
2233   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2234     return nullptr;
2235 
2236   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2237   // then combining may result in worse codegen.
2238   if (!Op0->hasOneUse())
2239     return nullptr;
2240 
2241   // We are extracting a subvector from a shuffle. Remove excess elements from
2242   // the 1st shuffle mask to eliminate the extract.
2243   //
2244   // This transform is conservatively limited to identity extracts because we do
2245   // not allow arbitrary shuffle mask creation as a target-independent transform
2246   // (because we can't guarantee that will lower efficiently).
2247   //
2248   // If the extracting shuffle has an undef mask element, it transfers to the
2249   // new shuffle mask. Otherwise, copy the original mask element. Example:
2250   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2251   //   shuf X, Y, <C0, undef, C2, undef>
2252   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2253   SmallVector<int, 16> NewMask(NumElts);
2254   assert(NumElts < Mask.size() &&
2255          "Identity with extract must have less elements than its inputs");
2256 
2257   for (unsigned i = 0; i != NumElts; ++i) {
2258     int ExtractMaskElt = Shuf.getMaskValue(i);
2259     int MaskElt = Mask[i];
2260     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2261   }
2262   return new ShuffleVectorInst(X, Y, NewMask);
2263 }
2264 
2265 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2266 /// operand with the operand of an insertelement.
2267 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2268                                           InstCombinerImpl &IC) {
2269   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2270   SmallVector<int, 16> Mask;
2271   Shuf.getShuffleMask(Mask);
2272 
2273   int NumElts = Mask.size();
2274   int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2275 
2276   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2277   // not be able to handle it there if the insertelement has >1 use.
2278   // If the shuffle has an insertelement operand but does not choose the
2279   // inserted scalar element from that value, then we can replace that shuffle
2280   // operand with the source vector of the insertelement.
2281   Value *X;
2282   uint64_t IdxC;
2283   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2284     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2285     if (!is_contained(Mask, (int)IdxC))
2286       return IC.replaceOperand(Shuf, 0, X);
2287   }
2288   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2289     // Offset the index constant by the vector width because we are checking for
2290     // accesses to the 2nd vector input of the shuffle.
2291     IdxC += InpNumElts;
2292     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2293     if (!is_contained(Mask, (int)IdxC))
2294       return IC.replaceOperand(Shuf, 1, X);
2295   }
2296   // For the rest of the transform, the shuffle must not change vector sizes.
2297   // TODO: This restriction could be removed if the insert has only one use
2298   //       (because the transform would require a new length-changing shuffle).
2299   if (NumElts != InpNumElts)
2300     return nullptr;
2301 
2302   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2303   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2304     // We need an insertelement with a constant index.
2305     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2306                                m_ConstantInt(IndexC))))
2307       return false;
2308 
2309     // Test the shuffle mask to see if it splices the inserted scalar into the
2310     // operand 1 vector of the shuffle.
2311     int NewInsIndex = -1;
2312     for (int i = 0; i != NumElts; ++i) {
2313       // Ignore undef mask elements.
2314       if (Mask[i] == -1)
2315         continue;
2316 
2317       // The shuffle takes elements of operand 1 without lane changes.
2318       if (Mask[i] == NumElts + i)
2319         continue;
2320 
2321       // The shuffle must choose the inserted scalar exactly once.
2322       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2323         return false;
2324 
2325       // The shuffle is placing the inserted scalar into element i.
2326       NewInsIndex = i;
2327     }
2328 
2329     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2330 
2331     // Index is updated to the potentially translated insertion lane.
2332     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2333     return true;
2334   };
2335 
2336   // If the shuffle is unnecessary, insert the scalar operand directly into
2337   // operand 1 of the shuffle. Example:
2338   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2339   Value *Scalar;
2340   ConstantInt *IndexC;
2341   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2342     return InsertElementInst::Create(V1, Scalar, IndexC);
2343 
2344   // Try again after commuting shuffle. Example:
2345   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2346   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2347   std::swap(V0, V1);
2348   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2349   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2350     return InsertElementInst::Create(V1, Scalar, IndexC);
2351 
2352   return nullptr;
2353 }
2354 
2355 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2356   // Match the operands as identity with padding (also known as concatenation
2357   // with undef) shuffles of the same source type. The backend is expected to
2358   // recreate these concatenations from a shuffle of narrow operands.
2359   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2360   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2361   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2362       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2363     return nullptr;
2364 
2365   // We limit this transform to power-of-2 types because we expect that the
2366   // backend can convert the simplified IR patterns to identical nodes as the
2367   // original IR.
2368   // TODO: If we can verify the same behavior for arbitrary types, the
2369   //       power-of-2 checks can be removed.
2370   Value *X = Shuffle0->getOperand(0);
2371   Value *Y = Shuffle1->getOperand(0);
2372   if (X->getType() != Y->getType() ||
2373       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2374       !isPowerOf2_32(
2375           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2376       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2377       match(X, m_Undef()) || match(Y, m_Undef()))
2378     return nullptr;
2379   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2380          match(Shuffle1->getOperand(1), m_Undef()) &&
2381          "Unexpected operand for identity shuffle");
2382 
2383   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2384   // operands directly by adjusting the shuffle mask to account for the narrower
2385   // types:
2386   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2387   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2388   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2389   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2390 
2391   ArrayRef<int> Mask = Shuf.getShuffleMask();
2392   SmallVector<int, 16> NewMask(Mask.size(), -1);
2393   for (int i = 0, e = Mask.size(); i != e; ++i) {
2394     if (Mask[i] == -1)
2395       continue;
2396 
2397     // If this shuffle is choosing an undef element from 1 of the sources, that
2398     // element is undef.
2399     if (Mask[i] < WideElts) {
2400       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2401         continue;
2402     } else {
2403       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2404         continue;
2405     }
2406 
2407     // If this shuffle is choosing from the 1st narrow op, the mask element is
2408     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2409     // element is offset down to adjust for the narrow vector widths.
2410     if (Mask[i] < WideElts) {
2411       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2412       NewMask[i] = Mask[i];
2413     } else {
2414       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2415       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2416     }
2417   }
2418   return new ShuffleVectorInst(X, Y, NewMask);
2419 }
2420 
2421 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2422   Value *LHS = SVI.getOperand(0);
2423   Value *RHS = SVI.getOperand(1);
2424   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2425   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2426                                           SVI.getType(), ShufQuery))
2427     return replaceInstUsesWith(SVI, V);
2428 
2429   // Bail out for scalable vectors
2430   if (isa<ScalableVectorType>(LHS->getType()))
2431     return nullptr;
2432 
2433   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2434   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2435 
2436   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2437   //
2438   // if X and Y are of the same (vector) type, and the element size is not
2439   // changed by the bitcasts, we can distribute the bitcasts through the
2440   // shuffle, hopefully reducing the number of instructions. We make sure that
2441   // at least one bitcast only has one use, so we don't *increase* the number of
2442   // instructions here.
2443   Value *X, *Y;
2444   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2445       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2446       X->getType()->getScalarSizeInBits() ==
2447           SVI.getType()->getScalarSizeInBits() &&
2448       (LHS->hasOneUse() || RHS->hasOneUse())) {
2449     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2450                                            SVI.getName() + ".uncasted");
2451     return new BitCastInst(V, SVI.getType());
2452   }
2453 
2454   ArrayRef<int> Mask = SVI.getShuffleMask();
2455   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2456 
2457   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2458   // simulated shuffle can simplify, then this shuffle is unnecessary:
2459   // shuf (bitcast X), undef, Mask --> bitcast X'
2460   // TODO: This could be extended to allow length-changing shuffles.
2461   //       The transform might also be obsoleted if we allowed canonicalization
2462   //       of bitcasted shuffles.
2463   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2464       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2465     // Try to create a scaled mask constant.
2466     auto *XType = cast<FixedVectorType>(X->getType());
2467     unsigned XNumElts = XType->getNumElements();
2468     SmallVector<int, 16> ScaledMask;
2469     if (XNumElts >= VWidth) {
2470       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2471       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2472     } else {
2473       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2474       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2475         ScaledMask.clear();
2476     }
2477     if (!ScaledMask.empty()) {
2478       // If the shuffled source vector simplifies, cast that value to this
2479       // shuffle's type.
2480       if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2481                                               ScaledMask, XType, ShufQuery))
2482         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2483     }
2484   }
2485 
2486   // shuffle x, x, mask --> shuffle x, undef, mask'
2487   if (LHS == RHS) {
2488     assert(!match(RHS, m_Undef()) &&
2489            "Shuffle with 2 undef ops not simplified?");
2490     return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2491   }
2492 
2493   // shuffle undef, x, mask --> shuffle x, undef, mask'
2494   if (match(LHS, m_Undef())) {
2495     SVI.commute();
2496     return &SVI;
2497   }
2498 
2499   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2500     return I;
2501 
2502   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
2503     return I;
2504 
2505   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2506     return I;
2507 
2508   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2509     return I;
2510 
2511   APInt UndefElts(VWidth, 0);
2512   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2513   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2514     if (V != &SVI)
2515       return replaceInstUsesWith(SVI, V);
2516     return &SVI;
2517   }
2518 
2519   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2520     return I;
2521 
2522   // These transforms have the potential to lose undef knowledge, so they are
2523   // intentionally placed after SimplifyDemandedVectorElts().
2524   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2525     return I;
2526   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2527     return I;
2528 
2529   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2530     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2531     return replaceInstUsesWith(SVI, V);
2532   }
2533 
2534   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2535   // a non-vector type. We can instead bitcast the original vector followed by
2536   // an extract of the desired element:
2537   //
2538   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2539   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2540   //   %1 = bitcast <4 x i8> %sroa to i32
2541   // Becomes:
2542   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2543   //   %ext = extractelement <4 x i32> %bc, i32 0
2544   //
2545   // If the shuffle is extracting a contiguous range of values from the input
2546   // vector then each use which is a bitcast of the extracted size can be
2547   // replaced. This will work if the vector types are compatible, and the begin
2548   // index is aligned to a value in the casted vector type. If the begin index
2549   // isn't aligned then we can shuffle the original vector (keeping the same
2550   // vector type) before extracting.
2551   //
2552   // This code will bail out if the target type is fundamentally incompatible
2553   // with vectors of the source type.
2554   //
2555   // Example of <16 x i8>, target type i32:
2556   // Index range [4,8):         v-----------v Will work.
2557   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2558   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2559   //     <4 x i32>: |           |           |           |           |
2560   //                +-----------+-----------+-----------+-----------+
2561   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2562   // Target type i40:           ^--------------^ Won't work, bail.
2563   bool MadeChange = false;
2564   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2565     Value *V = LHS;
2566     unsigned MaskElems = Mask.size();
2567     auto *SrcTy = cast<FixedVectorType>(V->getType());
2568     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2569     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2570     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2571     unsigned SrcNumElems = SrcTy->getNumElements();
2572     SmallVector<BitCastInst *, 8> BCs;
2573     DenseMap<Type *, Value *> NewBCs;
2574     for (User *U : SVI.users())
2575       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2576         if (!BC->use_empty())
2577           // Only visit bitcasts that weren't previously handled.
2578           BCs.push_back(BC);
2579     for (BitCastInst *BC : BCs) {
2580       unsigned BegIdx = Mask.front();
2581       Type *TgtTy = BC->getDestTy();
2582       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2583       if (!TgtElemBitWidth)
2584         continue;
2585       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2586       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2587       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2588       if (!VecBitWidthsEqual)
2589         continue;
2590       if (!VectorType::isValidElementType(TgtTy))
2591         continue;
2592       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2593       if (!BegIsAligned) {
2594         // Shuffle the input so [0,NumElements) contains the output, and
2595         // [NumElems,SrcNumElems) is undef.
2596         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2597         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2598           ShuffleMask[I] = Idx;
2599         V = Builder.CreateShuffleVector(V, ShuffleMask,
2600                                         SVI.getName() + ".extract");
2601         BegIdx = 0;
2602       }
2603       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2604       assert(SrcElemsPerTgtElem);
2605       BegIdx /= SrcElemsPerTgtElem;
2606       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2607       auto *NewBC =
2608           BCAlreadyExists
2609               ? NewBCs[CastSrcTy]
2610               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2611       if (!BCAlreadyExists)
2612         NewBCs[CastSrcTy] = NewBC;
2613       auto *Ext = Builder.CreateExtractElement(
2614           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2615       // The shufflevector isn't being replaced: the bitcast that used it
2616       // is. InstCombine will visit the newly-created instructions.
2617       replaceInstUsesWith(*BC, Ext);
2618       MadeChange = true;
2619     }
2620   }
2621 
2622   // If the LHS is a shufflevector itself, see if we can combine it with this
2623   // one without producing an unusual shuffle.
2624   // Cases that might be simplified:
2625   // 1.
2626   // x1=shuffle(v1,v2,mask1)
2627   //  x=shuffle(x1,undef,mask)
2628   //        ==>
2629   //  x=shuffle(v1,undef,newMask)
2630   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2631   // 2.
2632   // x1=shuffle(v1,undef,mask1)
2633   //  x=shuffle(x1,x2,mask)
2634   // where v1.size() == mask1.size()
2635   //        ==>
2636   //  x=shuffle(v1,x2,newMask)
2637   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2638   // 3.
2639   // x2=shuffle(v2,undef,mask2)
2640   //  x=shuffle(x1,x2,mask)
2641   // where v2.size() == mask2.size()
2642   //        ==>
2643   //  x=shuffle(x1,v2,newMask)
2644   // newMask[i] = (mask[i] < x1.size())
2645   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2646   // 4.
2647   // x1=shuffle(v1,undef,mask1)
2648   // x2=shuffle(v2,undef,mask2)
2649   //  x=shuffle(x1,x2,mask)
2650   // where v1.size() == v2.size()
2651   //        ==>
2652   //  x=shuffle(v1,v2,newMask)
2653   // newMask[i] = (mask[i] < x1.size())
2654   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2655   //
2656   // Here we are really conservative:
2657   // we are absolutely afraid of producing a shuffle mask not in the input
2658   // program, because the code gen may not be smart enough to turn a merged
2659   // shuffle into two specific shuffles: it may produce worse code.  As such,
2660   // we only merge two shuffles if the result is either a splat or one of the
2661   // input shuffle masks.  In this case, merging the shuffles just removes
2662   // one instruction, which we know is safe.  This is good for things like
2663   // turning: (splat(splat)) -> splat, or
2664   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2665   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2666   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2667   if (LHSShuffle)
2668     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2669       LHSShuffle = nullptr;
2670   if (RHSShuffle)
2671     if (!match(RHSShuffle->getOperand(1), m_Undef()))
2672       RHSShuffle = nullptr;
2673   if (!LHSShuffle && !RHSShuffle)
2674     return MadeChange ? &SVI : nullptr;
2675 
2676   Value* LHSOp0 = nullptr;
2677   Value* LHSOp1 = nullptr;
2678   Value* RHSOp0 = nullptr;
2679   unsigned LHSOp0Width = 0;
2680   unsigned RHSOp0Width = 0;
2681   if (LHSShuffle) {
2682     LHSOp0 = LHSShuffle->getOperand(0);
2683     LHSOp1 = LHSShuffle->getOperand(1);
2684     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2685   }
2686   if (RHSShuffle) {
2687     RHSOp0 = RHSShuffle->getOperand(0);
2688     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2689   }
2690   Value* newLHS = LHS;
2691   Value* newRHS = RHS;
2692   if (LHSShuffle) {
2693     // case 1
2694     if (match(RHS, m_Undef())) {
2695       newLHS = LHSOp0;
2696       newRHS = LHSOp1;
2697     }
2698     // case 2 or 4
2699     else if (LHSOp0Width == LHSWidth) {
2700       newLHS = LHSOp0;
2701     }
2702   }
2703   // case 3 or 4
2704   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2705     newRHS = RHSOp0;
2706   }
2707   // case 4
2708   if (LHSOp0 == RHSOp0) {
2709     newLHS = LHSOp0;
2710     newRHS = nullptr;
2711   }
2712 
2713   if (newLHS == LHS && newRHS == RHS)
2714     return MadeChange ? &SVI : nullptr;
2715 
2716   ArrayRef<int> LHSMask;
2717   ArrayRef<int> RHSMask;
2718   if (newLHS != LHS)
2719     LHSMask = LHSShuffle->getShuffleMask();
2720   if (RHSShuffle && newRHS != RHS)
2721     RHSMask = RHSShuffle->getShuffleMask();
2722 
2723   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2724   SmallVector<int, 16> newMask;
2725   bool isSplat = true;
2726   int SplatElt = -1;
2727   // Create a new mask for the new ShuffleVectorInst so that the new
2728   // ShuffleVectorInst is equivalent to the original one.
2729   for (unsigned i = 0; i < VWidth; ++i) {
2730     int eltMask;
2731     if (Mask[i] < 0) {
2732       // This element is an undef value.
2733       eltMask = -1;
2734     } else if (Mask[i] < (int)LHSWidth) {
2735       // This element is from left hand side vector operand.
2736       //
2737       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2738       // new mask value for the element.
2739       if (newLHS != LHS) {
2740         eltMask = LHSMask[Mask[i]];
2741         // If the value selected is an undef value, explicitly specify it
2742         // with a -1 mask value.
2743         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2744           eltMask = -1;
2745       } else
2746         eltMask = Mask[i];
2747     } else {
2748       // This element is from right hand side vector operand
2749       //
2750       // If the value selected is an undef value, explicitly specify it
2751       // with a -1 mask value. (case 1)
2752       if (match(RHS, m_Undef()))
2753         eltMask = -1;
2754       // If RHS is going to be replaced (case 3 or 4), calculate the
2755       // new mask value for the element.
2756       else if (newRHS != RHS) {
2757         eltMask = RHSMask[Mask[i]-LHSWidth];
2758         // If the value selected is an undef value, explicitly specify it
2759         // with a -1 mask value.
2760         if (eltMask >= (int)RHSOp0Width) {
2761           assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2762                  "should have been check above");
2763           eltMask = -1;
2764         }
2765       } else
2766         eltMask = Mask[i]-LHSWidth;
2767 
2768       // If LHS's width is changed, shift the mask value accordingly.
2769       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2770       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2771       // If newRHS == newLHS, we want to remap any references from newRHS to
2772       // newLHS so that we can properly identify splats that may occur due to
2773       // obfuscation across the two vectors.
2774       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2775         eltMask += newLHSWidth;
2776     }
2777 
2778     // Check if this could still be a splat.
2779     if (eltMask >= 0) {
2780       if (SplatElt >= 0 && SplatElt != eltMask)
2781         isSplat = false;
2782       SplatElt = eltMask;
2783     }
2784 
2785     newMask.push_back(eltMask);
2786   }
2787 
2788   // If the result mask is equal to one of the original shuffle masks,
2789   // or is a splat, do the replacement.
2790   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2791     if (!newRHS)
2792       newRHS = UndefValue::get(newLHS->getType());
2793     return new ShuffleVectorInst(newLHS, newRHS, newMask);
2794   }
2795 
2796   return MadeChange ? &SVI : nullptr;
2797 }
2798