1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombiner.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 #include <utility> 43 44 #define DEBUG_TYPE "instcombine" 45 #include "llvm/Transforms/Utils/InstructionWorklist.h" 46 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. If the extract index \p EI is a constant integer then 56 /// some operations may be cheap to scalarize. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, Value *EI) { 60 ConstantInt *CEI = dyn_cast<ConstantInt>(EI); 61 62 // If we can pick a scalar constant value out of a vector, that is free. 63 if (auto *C = dyn_cast<Constant>(V)) 64 return CEI || C->getSplatValue(); 65 66 if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) { 67 ElementCount EC = cast<VectorType>(V->getType())->getElementCount(); 68 // Index needs to be lower than the minimum size of the vector, because 69 // for scalable vector, the vector size is known at run time. 70 return CEI->getValue().ult(EC.getKnownMinValue()); 71 } 72 73 // An insertelement to the same constant index as our extract will simplify 74 // to the scalar inserted element. An insertelement to a different constant 75 // index is irrelevant to our extract. 76 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 77 return CEI; 78 79 if (match(V, m_OneUse(m_Load(m_Value())))) 80 return true; 81 82 if (match(V, m_OneUse(m_UnOp()))) 83 return true; 84 85 Value *V0, *V1; 86 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 87 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 88 return true; 89 90 CmpInst::Predicate UnusedPred; 91 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 92 if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI)) 93 return true; 94 95 return false; 96 } 97 98 // If we have a PHI node with a vector type that is only used to feed 99 // itself and be an operand of extractelement at a constant location, 100 // try to replace the PHI of the vector type with a PHI of a scalar type. 101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 102 PHINode *PN) { 103 SmallVector<Instruction *, 2> Extracts; 104 // The users we want the PHI to have are: 105 // 1) The EI ExtractElement (we already know this) 106 // 2) Possibly more ExtractElements with the same index. 107 // 3) Another operand, which will feed back into the PHI. 108 Instruction *PHIUser = nullptr; 109 for (auto U : PN->users()) { 110 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 111 if (EI.getIndexOperand() == EU->getIndexOperand()) 112 Extracts.push_back(EU); 113 else 114 return nullptr; 115 } else if (!PHIUser) { 116 PHIUser = cast<Instruction>(U); 117 } else { 118 return nullptr; 119 } 120 } 121 122 if (!PHIUser) 123 return nullptr; 124 125 // Verify that this PHI user has one use, which is the PHI itself, 126 // and that it is a binary operation which is cheap to scalarize. 127 // otherwise return nullptr. 128 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 129 !(isa<BinaryOperator>(PHIUser)) || 130 !cheapToScalarize(PHIUser, EI.getIndexOperand())) 131 return nullptr; 132 133 // Create a scalar PHI node that will replace the vector PHI node 134 // just before the current PHI node. 135 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 136 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 137 // Scalarize each PHI operand. 138 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 139 Value *PHIInVal = PN->getIncomingValue(i); 140 BasicBlock *inBB = PN->getIncomingBlock(i); 141 Value *Elt = EI.getIndexOperand(); 142 // If the operand is the PHI induction variable: 143 if (PHIInVal == PHIUser) { 144 // Scalarize the binary operation. Its first operand is the 145 // scalar PHI, and the second operand is extracted from the other 146 // vector operand. 147 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 148 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 149 Value *Op = InsertNewInstWith( 150 ExtractElementInst::Create(B0->getOperand(opId), Elt, 151 B0->getOperand(opId)->getName() + ".Elt"), 152 *B0); 153 Value *newPHIUser = InsertNewInstWith( 154 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 155 scalarPHI, Op, B0), *B0); 156 scalarPHI->addIncoming(newPHIUser, inBB); 157 } else { 158 // Scalarize PHI input: 159 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 160 // Insert the new instruction into the predecessor basic block. 161 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 162 BasicBlock::iterator InsertPos; 163 if (pos && !isa<PHINode>(pos)) { 164 InsertPos = ++pos->getIterator(); 165 } else { 166 InsertPos = inBB->getFirstInsertionPt(); 167 } 168 169 InsertNewInstWith(newEI, *InsertPos); 170 171 scalarPHI->addIncoming(newEI, inBB); 172 } 173 } 174 175 for (auto E : Extracts) 176 replaceInstUsesWith(*E, scalarPHI); 177 178 return &EI; 179 } 180 181 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) { 182 Value *X; 183 uint64_t ExtIndexC; 184 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 185 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 186 return nullptr; 187 188 ElementCount NumElts = 189 cast<VectorType>(Ext.getVectorOperandType())->getElementCount(); 190 Type *DestTy = Ext.getType(); 191 bool IsBigEndian = DL.isBigEndian(); 192 193 // If we are casting an integer to vector and extracting a portion, that is 194 // a shift-right and truncate. 195 // TODO: Allow FP dest type by casting the trunc to FP? 196 if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() && 197 isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) { 198 assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) && 199 "Expected fixed vector type for bitcast from scalar integer"); 200 201 // Big endian requires adjusting the extract index since MSB is at index 0. 202 // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8 203 // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8 204 if (IsBigEndian) 205 ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC; 206 unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits(); 207 if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) { 208 Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset"); 209 return new TruncInst(Lshr, DestTy); 210 } 211 } 212 213 if (!X->getType()->isVectorTy()) 214 return nullptr; 215 216 // If this extractelement is using a bitcast from a vector of the same number 217 // of elements, see if we can find the source element from the source vector: 218 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 219 auto *SrcTy = cast<VectorType>(X->getType()); 220 ElementCount NumSrcElts = SrcTy->getElementCount(); 221 if (NumSrcElts == NumElts) 222 if (Value *Elt = findScalarElement(X, ExtIndexC)) 223 return new BitCastInst(Elt, DestTy); 224 225 assert(NumSrcElts.isScalable() == NumElts.isScalable() && 226 "Src and Dst must be the same sort of vector type"); 227 228 // If the source elements are wider than the destination, try to shift and 229 // truncate a subset of scalar bits of an insert op. 230 if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) { 231 Value *Scalar; 232 uint64_t InsIndexC; 233 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 234 m_ConstantInt(InsIndexC)))) 235 return nullptr; 236 237 // The extract must be from the subset of vector elements that we inserted 238 // into. Example: if we inserted element 1 of a <2 x i64> and we are 239 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 240 // of elements 4-7 of the bitcasted vector. 241 unsigned NarrowingRatio = 242 NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue(); 243 if (ExtIndexC / NarrowingRatio != InsIndexC) 244 return nullptr; 245 246 // We are extracting part of the original scalar. How that scalar is 247 // inserted into the vector depends on the endian-ness. Example: 248 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 249 // +--+--+--+--+--+--+--+--+ 250 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 251 // extelt <4 x i16> V', 3: | |S2|S3| 252 // +--+--+--+--+--+--+--+--+ 253 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 254 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 255 // In this example, we must right-shift little-endian. Big-endian is just a 256 // truncate. 257 unsigned Chunk = ExtIndexC % NarrowingRatio; 258 if (IsBigEndian) 259 Chunk = NarrowingRatio - 1 - Chunk; 260 261 // Bail out if this is an FP vector to FP vector sequence. That would take 262 // more instructions than we started with unless there is no shift, and it 263 // may not be handled as well in the backend. 264 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 265 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 266 if (NeedSrcBitcast && NeedDestBitcast) 267 return nullptr; 268 269 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 270 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 271 unsigned ShAmt = Chunk * DestWidth; 272 273 // TODO: This limitation is more strict than necessary. We could sum the 274 // number of new instructions and subtract the number eliminated to know if 275 // we can proceed. 276 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 277 if (NeedSrcBitcast || NeedDestBitcast) 278 return nullptr; 279 280 if (NeedSrcBitcast) { 281 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 282 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 283 } 284 285 if (ShAmt) { 286 // Bail out if we could end with more instructions than we started with. 287 if (!Ext.getVectorOperand()->hasOneUse()) 288 return nullptr; 289 Scalar = Builder.CreateLShr(Scalar, ShAmt); 290 } 291 292 if (NeedDestBitcast) { 293 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 294 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 295 } 296 return new TruncInst(Scalar, DestTy); 297 } 298 299 return nullptr; 300 } 301 302 /// Find elements of V demanded by UserInstr. 303 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 304 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 305 306 // Conservatively assume that all elements are needed. 307 APInt UsedElts(APInt::getAllOnes(VWidth)); 308 309 switch (UserInstr->getOpcode()) { 310 case Instruction::ExtractElement: { 311 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 312 assert(EEI->getVectorOperand() == V); 313 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 314 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 315 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 316 } 317 break; 318 } 319 case Instruction::ShuffleVector: { 320 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 321 unsigned MaskNumElts = 322 cast<FixedVectorType>(UserInstr->getType())->getNumElements(); 323 324 UsedElts = APInt(VWidth, 0); 325 for (unsigned i = 0; i < MaskNumElts; i++) { 326 unsigned MaskVal = Shuffle->getMaskValue(i); 327 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 328 continue; 329 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 330 UsedElts.setBit(MaskVal); 331 if (Shuffle->getOperand(1) == V && 332 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 333 UsedElts.setBit(MaskVal - VWidth); 334 } 335 break; 336 } 337 default: 338 break; 339 } 340 return UsedElts; 341 } 342 343 /// Find union of elements of V demanded by all its users. 344 /// If it is known by querying findDemandedEltsBySingleUser that 345 /// no user demands an element of V, then the corresponding bit 346 /// remains unset in the returned value. 347 static APInt findDemandedEltsByAllUsers(Value *V) { 348 unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); 349 350 APInt UnionUsedElts(VWidth, 0); 351 for (const Use &U : V->uses()) { 352 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 353 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 354 } else { 355 UnionUsedElts = APInt::getAllOnes(VWidth); 356 break; 357 } 358 359 if (UnionUsedElts.isAllOnes()) 360 break; 361 } 362 363 return UnionUsedElts; 364 } 365 366 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 367 Value *SrcVec = EI.getVectorOperand(); 368 Value *Index = EI.getIndexOperand(); 369 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 370 SQ.getWithInstruction(&EI))) 371 return replaceInstUsesWith(EI, V); 372 373 // If extracting a specified index from the vector, see if we can recursively 374 // find a previously computed scalar that was inserted into the vector. 375 auto *IndexC = dyn_cast<ConstantInt>(Index); 376 if (IndexC) { 377 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 378 unsigned NumElts = EC.getKnownMinValue(); 379 380 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) { 381 Intrinsic::ID IID = II->getIntrinsicID(); 382 // Index needs to be lower than the minimum size of the vector, because 383 // for scalable vector, the vector size is known at run time. 384 if (IID == Intrinsic::experimental_stepvector && 385 IndexC->getValue().ult(NumElts)) { 386 Type *Ty = EI.getType(); 387 unsigned BitWidth = Ty->getIntegerBitWidth(); 388 Value *Idx; 389 // Return index when its value does not exceed the allowed limit 390 // for the element type of the vector, otherwise return undefined. 391 if (IndexC->getValue().getActiveBits() <= BitWidth) 392 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth)); 393 else 394 Idx = UndefValue::get(Ty); 395 return replaceInstUsesWith(EI, Idx); 396 } 397 } 398 399 // InstSimplify should handle cases where the index is invalid. 400 // For fixed-length vector, it's invalid to extract out-of-range element. 401 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 402 return nullptr; 403 404 // This instruction only demands the single element from the input vector. 405 // Skip for scalable type, the number of elements is unknown at 406 // compile-time. 407 if (!EC.isScalable() && NumElts != 1) { 408 // If the input vector has a single use, simplify it based on this use 409 // property. 410 if (SrcVec->hasOneUse()) { 411 APInt UndefElts(NumElts, 0); 412 APInt DemandedElts(NumElts, 0); 413 DemandedElts.setBit(IndexC->getZExtValue()); 414 if (Value *V = 415 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 416 return replaceOperand(EI, 0, V); 417 } else { 418 // If the input vector has multiple uses, simplify it based on a union 419 // of all elements used. 420 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 421 if (!DemandedElts.isAllOnes()) { 422 APInt UndefElts(NumElts, 0); 423 if (Value *V = SimplifyDemandedVectorElts( 424 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 425 true /* AllowMultipleUsers */)) { 426 if (V != SrcVec) { 427 SrcVec->replaceAllUsesWith(V); 428 return &EI; 429 } 430 } 431 } 432 } 433 } 434 435 if (Instruction *I = foldBitcastExtElt(EI)) 436 return I; 437 438 // If there's a vector PHI feeding a scalar use through this extractelement 439 // instruction, try to scalarize the PHI. 440 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 441 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 442 return ScalarPHI; 443 } 444 445 // TODO come up with a n-ary matcher that subsumes both unary and 446 // binary matchers. 447 UnaryOperator *UO; 448 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) { 449 // extelt (unop X), Index --> unop (extelt X, Index) 450 Value *X = UO->getOperand(0); 451 Value *E = Builder.CreateExtractElement(X, Index); 452 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 453 } 454 455 BinaryOperator *BO; 456 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) { 457 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 458 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 459 Value *E0 = Builder.CreateExtractElement(X, Index); 460 Value *E1 = Builder.CreateExtractElement(Y, Index); 461 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 462 } 463 464 Value *X, *Y; 465 CmpInst::Predicate Pred; 466 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 467 cheapToScalarize(SrcVec, Index)) { 468 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 469 Value *E0 = Builder.CreateExtractElement(X, Index); 470 Value *E1 = Builder.CreateExtractElement(Y, Index); 471 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 472 } 473 474 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 475 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 476 // instsimplify already handled the case where the indices are constants 477 // and equal by value, if both are constants, they must not be the same 478 // value, extract from the pre-inserted value instead. 479 if (isa<Constant>(IE->getOperand(2)) && IndexC) 480 return replaceOperand(EI, 0, IE->getOperand(0)); 481 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 482 auto *VecType = cast<VectorType>(GEP->getType()); 483 ElementCount EC = VecType->getElementCount(); 484 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0; 485 if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) { 486 // Find out why we have a vector result - these are a few examples: 487 // 1. We have a scalar pointer and a vector of indices, or 488 // 2. We have a vector of pointers and a scalar index, or 489 // 3. We have a vector of pointers and a vector of indices, etc. 490 // Here we only consider combining when there is exactly one vector 491 // operand, since the optimization is less obviously a win due to 492 // needing more than one extractelements. 493 494 unsigned VectorOps = 495 llvm::count_if(GEP->operands(), [](const Value *V) { 496 return isa<VectorType>(V->getType()); 497 }); 498 if (VectorOps == 1) { 499 Value *NewPtr = GEP->getPointerOperand(); 500 if (isa<VectorType>(NewPtr->getType())) 501 NewPtr = Builder.CreateExtractElement(NewPtr, IndexC); 502 503 SmallVector<Value *> NewOps; 504 for (unsigned I = 1; I != GEP->getNumOperands(); ++I) { 505 Value *Op = GEP->getOperand(I); 506 if (isa<VectorType>(Op->getType())) 507 NewOps.push_back(Builder.CreateExtractElement(Op, IndexC)); 508 else 509 NewOps.push_back(Op); 510 } 511 512 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 513 cast<PointerType>(NewPtr->getType())->getElementType(), NewPtr, 514 NewOps); 515 NewGEP->setIsInBounds(GEP->isInBounds()); 516 return NewGEP; 517 } 518 } 519 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 520 // If this is extracting an element from a shufflevector, figure out where 521 // it came from and extract from the appropriate input element instead. 522 // Restrict the following transformation to fixed-length vector. 523 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 524 int SrcIdx = 525 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 526 Value *Src; 527 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 528 ->getNumElements(); 529 530 if (SrcIdx < 0) 531 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 532 if (SrcIdx < (int)LHSWidth) 533 Src = SVI->getOperand(0); 534 else { 535 SrcIdx -= LHSWidth; 536 Src = SVI->getOperand(1); 537 } 538 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 539 return ExtractElementInst::Create( 540 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 541 } 542 } else if (auto *CI = dyn_cast<CastInst>(I)) { 543 // Canonicalize extractelement(cast) -> cast(extractelement). 544 // Bitcasts can change the number of vector elements, and they cost 545 // nothing. 546 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 547 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 548 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 549 } 550 } 551 } 552 return nullptr; 553 } 554 555 /// If V is a shuffle of values that ONLY returns elements from either LHS or 556 /// RHS, return the shuffle mask and true. Otherwise, return false. 557 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 558 SmallVectorImpl<int> &Mask) { 559 assert(LHS->getType() == RHS->getType() && 560 "Invalid CollectSingleShuffleElements"); 561 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 562 563 if (match(V, m_Undef())) { 564 Mask.assign(NumElts, -1); 565 return true; 566 } 567 568 if (V == LHS) { 569 for (unsigned i = 0; i != NumElts; ++i) 570 Mask.push_back(i); 571 return true; 572 } 573 574 if (V == RHS) { 575 for (unsigned i = 0; i != NumElts; ++i) 576 Mask.push_back(i + NumElts); 577 return true; 578 } 579 580 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 581 // If this is an insert of an extract from some other vector, include it. 582 Value *VecOp = IEI->getOperand(0); 583 Value *ScalarOp = IEI->getOperand(1); 584 Value *IdxOp = IEI->getOperand(2); 585 586 if (!isa<ConstantInt>(IdxOp)) 587 return false; 588 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 589 590 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 591 // We can handle this if the vector we are inserting into is 592 // transitively ok. 593 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 594 // If so, update the mask to reflect the inserted undef. 595 Mask[InsertedIdx] = -1; 596 return true; 597 } 598 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 599 if (isa<ConstantInt>(EI->getOperand(1))) { 600 unsigned ExtractedIdx = 601 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 602 unsigned NumLHSElts = 603 cast<FixedVectorType>(LHS->getType())->getNumElements(); 604 605 // This must be extracting from either LHS or RHS. 606 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 607 // We can handle this if the vector we are inserting into is 608 // transitively ok. 609 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 610 // If so, update the mask to reflect the inserted value. 611 if (EI->getOperand(0) == LHS) { 612 Mask[InsertedIdx % NumElts] = ExtractedIdx; 613 } else { 614 assert(EI->getOperand(0) == RHS); 615 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 616 } 617 return true; 618 } 619 } 620 } 621 } 622 } 623 624 return false; 625 } 626 627 /// If we have insertion into a vector that is wider than the vector that we 628 /// are extracting from, try to widen the source vector to allow a single 629 /// shufflevector to replace one or more insert/extract pairs. 630 static void replaceExtractElements(InsertElementInst *InsElt, 631 ExtractElementInst *ExtElt, 632 InstCombinerImpl &IC) { 633 auto *InsVecType = cast<FixedVectorType>(InsElt->getType()); 634 auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType()); 635 unsigned NumInsElts = InsVecType->getNumElements(); 636 unsigned NumExtElts = ExtVecType->getNumElements(); 637 638 // The inserted-to vector must be wider than the extracted-from vector. 639 if (InsVecType->getElementType() != ExtVecType->getElementType() || 640 NumExtElts >= NumInsElts) 641 return; 642 643 // Create a shuffle mask to widen the extended-from vector using poison 644 // values. The mask selects all of the values of the original vector followed 645 // by as many poison values as needed to create a vector of the same length 646 // as the inserted-to vector. 647 SmallVector<int, 16> ExtendMask; 648 for (unsigned i = 0; i < NumExtElts; ++i) 649 ExtendMask.push_back(i); 650 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 651 ExtendMask.push_back(-1); 652 653 Value *ExtVecOp = ExtElt->getVectorOperand(); 654 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 655 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 656 ? ExtVecOpInst->getParent() 657 : ExtElt->getParent(); 658 659 // TODO: This restriction matches the basic block check below when creating 660 // new extractelement instructions. If that limitation is removed, this one 661 // could also be removed. But for now, we just bail out to ensure that we 662 // will replace the extractelement instruction that is feeding our 663 // insertelement instruction. This allows the insertelement to then be 664 // replaced by a shufflevector. If the insertelement is not replaced, we can 665 // induce infinite looping because there's an optimization for extractelement 666 // that will delete our widening shuffle. This would trigger another attempt 667 // here to create that shuffle, and we spin forever. 668 if (InsertionBlock != InsElt->getParent()) 669 return; 670 671 // TODO: This restriction matches the check in visitInsertElementInst() and 672 // prevents an infinite loop caused by not turning the extract/insert pair 673 // into a shuffle. We really should not need either check, but we're lacking 674 // folds for shufflevectors because we're afraid to generate shuffle masks 675 // that the backend can't handle. 676 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 677 return; 678 679 auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask); 680 681 // Insert the new shuffle after the vector operand of the extract is defined 682 // (as long as it's not a PHI) or at the start of the basic block of the 683 // extract, so any subsequent extracts in the same basic block can use it. 684 // TODO: Insert before the earliest ExtractElementInst that is replaced. 685 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 686 WideVec->insertAfter(ExtVecOpInst); 687 else 688 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 689 690 // Replace extracts from the original narrow vector with extracts from the new 691 // wide vector. 692 for (User *U : ExtVecOp->users()) { 693 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 694 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 695 continue; 696 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 697 NewExt->insertAfter(OldExt); 698 IC.replaceInstUsesWith(*OldExt, NewExt); 699 } 700 } 701 702 /// We are building a shuffle to create V, which is a sequence of insertelement, 703 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 704 /// not rely on the second vector source. Return a std::pair containing the 705 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 706 /// parameter as required. 707 /// 708 /// Note: we intentionally don't try to fold earlier shuffles since they have 709 /// often been chosen carefully to be efficiently implementable on the target. 710 using ShuffleOps = std::pair<Value *, Value *>; 711 712 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 713 Value *PermittedRHS, 714 InstCombinerImpl &IC) { 715 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 716 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 717 718 if (match(V, m_Undef())) { 719 Mask.assign(NumElts, -1); 720 return std::make_pair( 721 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 722 } 723 724 if (isa<ConstantAggregateZero>(V)) { 725 Mask.assign(NumElts, 0); 726 return std::make_pair(V, nullptr); 727 } 728 729 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 730 // If this is an insert of an extract from some other vector, include it. 731 Value *VecOp = IEI->getOperand(0); 732 Value *ScalarOp = IEI->getOperand(1); 733 Value *IdxOp = IEI->getOperand(2); 734 735 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 736 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 737 unsigned ExtractedIdx = 738 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 739 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 740 741 // Either the extracted from or inserted into vector must be RHSVec, 742 // otherwise we'd end up with a shuffle of three inputs. 743 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 744 Value *RHS = EI->getOperand(0); 745 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 746 assert(LR.second == nullptr || LR.second == RHS); 747 748 if (LR.first->getType() != RHS->getType()) { 749 // Although we are giving up for now, see if we can create extracts 750 // that match the inserts for another round of combining. 751 replaceExtractElements(IEI, EI, IC); 752 753 // We tried our best, but we can't find anything compatible with RHS 754 // further up the chain. Return a trivial shuffle. 755 for (unsigned i = 0; i < NumElts; ++i) 756 Mask[i] = i; 757 return std::make_pair(V, nullptr); 758 } 759 760 unsigned NumLHSElts = 761 cast<FixedVectorType>(RHS->getType())->getNumElements(); 762 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 763 return std::make_pair(LR.first, RHS); 764 } 765 766 if (VecOp == PermittedRHS) { 767 // We've gone as far as we can: anything on the other side of the 768 // extractelement will already have been converted into a shuffle. 769 unsigned NumLHSElts = 770 cast<FixedVectorType>(EI->getOperand(0)->getType()) 771 ->getNumElements(); 772 for (unsigned i = 0; i != NumElts; ++i) 773 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 774 return std::make_pair(EI->getOperand(0), PermittedRHS); 775 } 776 777 // If this insertelement is a chain that comes from exactly these two 778 // vectors, return the vector and the effective shuffle. 779 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 780 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 781 Mask)) 782 return std::make_pair(EI->getOperand(0), PermittedRHS); 783 } 784 } 785 } 786 787 // Otherwise, we can't do anything fancy. Return an identity vector. 788 for (unsigned i = 0; i != NumElts; ++i) 789 Mask.push_back(i); 790 return std::make_pair(V, nullptr); 791 } 792 793 /// Look for chain of insertvalue's that fully define an aggregate, and trace 794 /// back the values inserted, see if they are all were extractvalue'd from 795 /// the same source aggregate from the exact same element indexes. 796 /// If they were, just reuse the source aggregate. 797 /// This potentially deals with PHI indirections. 798 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 799 InsertValueInst &OrigIVI) { 800 Type *AggTy = OrigIVI.getType(); 801 unsigned NumAggElts; 802 switch (AggTy->getTypeID()) { 803 case Type::StructTyID: 804 NumAggElts = AggTy->getStructNumElements(); 805 break; 806 case Type::ArrayTyID: 807 NumAggElts = AggTy->getArrayNumElements(); 808 break; 809 default: 810 llvm_unreachable("Unhandled aggregate type?"); 811 } 812 813 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 814 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 815 // FIXME: any interesting patterns to be caught with larger limit? 816 assert(NumAggElts > 0 && "Aggregate should have elements."); 817 if (NumAggElts > 2) 818 return nullptr; 819 820 static constexpr auto NotFound = None; 821 static constexpr auto FoundMismatch = nullptr; 822 823 // Try to find a value of each element of an aggregate. 824 // FIXME: deal with more complex, not one-dimensional, aggregate types 825 SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound); 826 827 // Do we know values for each element of the aggregate? 828 auto KnowAllElts = [&AggElts]() { 829 return all_of(AggElts, 830 [](Optional<Instruction *> Elt) { return Elt != NotFound; }); 831 }; 832 833 int Depth = 0; 834 835 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 836 // every element being overwritten twice, which should never happen. 837 static const int DepthLimit = 2 * NumAggElts; 838 839 // Recurse up the chain of `insertvalue` aggregate operands until either we've 840 // reconstructed full initializer or can't visit any more `insertvalue`'s. 841 for (InsertValueInst *CurrIVI = &OrigIVI; 842 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 843 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 844 ++Depth) { 845 auto *InsertedValue = 846 dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand()); 847 if (!InsertedValue) 848 return nullptr; // Inserted value must be produced by an instruction. 849 850 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 851 852 // Don't bother with more than single-level aggregates. 853 if (Indices.size() != 1) 854 return nullptr; // FIXME: deal with more complex aggregates? 855 856 // Now, we may have already previously recorded the value for this element 857 // of an aggregate. If we did, that means the CurrIVI will later be 858 // overwritten with the already-recorded value. But if not, let's record it! 859 Optional<Instruction *> &Elt = AggElts[Indices.front()]; 860 Elt = Elt.getValueOr(InsertedValue); 861 862 // FIXME: should we handle chain-terminating undef base operand? 863 } 864 865 // Was that sufficient to deduce the full initializer for the aggregate? 866 if (!KnowAllElts()) 867 return nullptr; // Give up then. 868 869 // We now want to find the source[s] of the aggregate elements we've found. 870 // And with "source" we mean the original aggregate[s] from which 871 // the inserted elements were extracted. This may require PHI translation. 872 873 enum class AggregateDescription { 874 /// When analyzing the value that was inserted into an aggregate, we did 875 /// not manage to find defining `extractvalue` instruction to analyze. 876 NotFound, 877 /// When analyzing the value that was inserted into an aggregate, we did 878 /// manage to find defining `extractvalue` instruction[s], and everything 879 /// matched perfectly - aggregate type, element insertion/extraction index. 880 Found, 881 /// When analyzing the value that was inserted into an aggregate, we did 882 /// manage to find defining `extractvalue` instruction, but there was 883 /// a mismatch: either the source type from which the extraction was didn't 884 /// match the aggregate type into which the insertion was, 885 /// or the extraction/insertion channels mismatched, 886 /// or different elements had different source aggregates. 887 FoundMismatch 888 }; 889 auto Describe = [](Optional<Value *> SourceAggregate) { 890 if (SourceAggregate == NotFound) 891 return AggregateDescription::NotFound; 892 if (*SourceAggregate == FoundMismatch) 893 return AggregateDescription::FoundMismatch; 894 return AggregateDescription::Found; 895 }; 896 897 // Given the value \p Elt that was being inserted into element \p EltIdx of an 898 // aggregate AggTy, see if \p Elt was originally defined by an 899 // appropriate extractvalue (same element index, same aggregate type). 900 // If found, return the source aggregate from which the extraction was. 901 // If \p PredBB is provided, does PHI translation of an \p Elt first. 902 auto FindSourceAggregate = 903 [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 904 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 905 // For now(?), only deal with, at most, a single level of PHI indirection. 906 if (UseBB && PredBB) 907 Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB)); 908 // FIXME: deal with multiple levels of PHI indirection? 909 910 // Did we find an extraction? 911 auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt); 912 if (!EVI) 913 return NotFound; 914 915 Value *SourceAggregate = EVI->getAggregateOperand(); 916 917 // Is the extraction from the same type into which the insertion was? 918 if (SourceAggregate->getType() != AggTy) 919 return FoundMismatch; 920 // And the element index doesn't change between extraction and insertion? 921 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 922 return FoundMismatch; 923 924 return SourceAggregate; // AggregateDescription::Found 925 }; 926 927 // Given elements AggElts that were constructing an aggregate OrigIVI, 928 // see if we can find appropriate source aggregate for each of the elements, 929 // and see it's the same aggregate for each element. If so, return it. 930 auto FindCommonSourceAggregate = 931 [&](Optional<BasicBlock *> UseBB, 932 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 933 Optional<Value *> SourceAggregate; 934 935 for (auto I : enumerate(AggElts)) { 936 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 937 "We don't store nullptr in SourceAggregate!"); 938 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 939 (I.index() != 0) && 940 "SourceAggregate should be valid after the first element,"); 941 942 // For this element, is there a plausible source aggregate? 943 // FIXME: we could special-case undef element, IFF we know that in the 944 // source aggregate said element isn't poison. 945 Optional<Value *> SourceAggregateForElement = 946 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 947 948 // Okay, what have we found? Does that correlate with previous findings? 949 950 // Regardless of whether or not we have previously found source 951 // aggregate for previous elements (if any), if we didn't find one for 952 // this element, passthrough whatever we have just found. 953 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 954 return SourceAggregateForElement; 955 956 // Okay, we have found source aggregate for this element. 957 // Let's see what we already know from previous elements, if any. 958 switch (Describe(SourceAggregate)) { 959 case AggregateDescription::NotFound: 960 // This is apparently the first element that we have examined. 961 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 962 continue; // Great, now look at next element. 963 case AggregateDescription::Found: 964 // We have previously already successfully examined other elements. 965 // Is this the same source aggregate we've found for other elements? 966 if (*SourceAggregateForElement != *SourceAggregate) 967 return FoundMismatch; 968 continue; // Still the same aggregate, look at next element. 969 case AggregateDescription::FoundMismatch: 970 llvm_unreachable("Can't happen. We would have early-exited then."); 971 }; 972 } 973 974 assert(Describe(SourceAggregate) == AggregateDescription::Found && 975 "Must be a valid Value"); 976 return *SourceAggregate; 977 }; 978 979 Optional<Value *> SourceAggregate; 980 981 // Can we find the source aggregate without looking at predecessors? 982 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 983 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 984 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 985 return nullptr; // Conflicting source aggregates! 986 ++NumAggregateReconstructionsSimplified; 987 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 988 } 989 990 // Okay, apparently we need to look at predecessors. 991 992 // We should be smart about picking the "use" basic block, which will be the 993 // merge point for aggregate, where we'll insert the final PHI that will be 994 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 995 // We should look in which blocks each of the AggElts is being defined, 996 // they all should be defined in the same basic block. 997 BasicBlock *UseBB = nullptr; 998 999 for (const Optional<Instruction *> &I : AggElts) { 1000 BasicBlock *BB = (*I)->getParent(); 1001 // If it's the first instruction we've encountered, record the basic block. 1002 if (!UseBB) { 1003 UseBB = BB; 1004 continue; 1005 } 1006 // Otherwise, this must be the same basic block we've seen previously. 1007 if (UseBB != BB) 1008 return nullptr; 1009 } 1010 1011 // If *all* of the elements are basic-block-independent, meaning they are 1012 // either function arguments, or constant expressions, then if we didn't 1013 // handle them without predecessor-aware handling, we won't handle them now. 1014 if (!UseBB) 1015 return nullptr; 1016 1017 // If we didn't manage to find source aggregate without looking at 1018 // predecessors, and there are no predecessors to look at, then we're done. 1019 if (pred_empty(UseBB)) 1020 return nullptr; 1021 1022 // Arbitrary predecessor count limit. 1023 static const int PredCountLimit = 64; 1024 1025 // Cache the (non-uniqified!) list of predecessors in a vector, 1026 // checking the limit at the same time for efficiency. 1027 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 1028 for (BasicBlock *Pred : predecessors(UseBB)) { 1029 // Don't bother if there are too many predecessors. 1030 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 1031 return nullptr; 1032 Preds.emplace_back(Pred); 1033 } 1034 1035 // For each predecessor, what is the source aggregate, 1036 // from which all the elements were originally extracted from? 1037 // Note that we want for the map to have stable iteration order! 1038 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 1039 for (BasicBlock *Pred : Preds) { 1040 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 1041 SourceAggregates.insert({Pred, nullptr}); 1042 // Did we already evaluate this predecessor? 1043 if (!IV.second) 1044 continue; 1045 1046 // Let's hope that when coming from predecessor Pred, all elements of the 1047 // aggregate produced by OrigIVI must have been originally extracted from 1048 // the same aggregate. Is that so? Can we find said original aggregate? 1049 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 1050 if (Describe(SourceAggregate) != AggregateDescription::Found) 1051 return nullptr; // Give up. 1052 IV.first->second = *SourceAggregate; 1053 } 1054 1055 // All good! Now we just need to thread the source aggregates here. 1056 // Note that we have to insert the new PHI here, ourselves, because we can't 1057 // rely on InstCombinerImpl::run() inserting it into the right basic block. 1058 // Note that the same block can be a predecessor more than once, 1059 // and we need to preserve that invariant for the PHI node. 1060 BuilderTy::InsertPointGuard Guard(Builder); 1061 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 1062 auto *PHI = 1063 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 1064 for (BasicBlock *Pred : Preds) 1065 PHI->addIncoming(SourceAggregates[Pred], Pred); 1066 1067 ++NumAggregateReconstructionsSimplified; 1068 return replaceInstUsesWith(OrigIVI, PHI); 1069 } 1070 1071 /// Try to find redundant insertvalue instructions, like the following ones: 1072 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 1073 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 1074 /// Here the second instruction inserts values at the same indices, as the 1075 /// first one, making the first one redundant. 1076 /// It should be transformed to: 1077 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 1078 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 1079 bool IsRedundant = false; 1080 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 1081 1082 // If there is a chain of insertvalue instructions (each of them except the 1083 // last one has only one use and it's another insertvalue insn from this 1084 // chain), check if any of the 'children' uses the same indices as the first 1085 // instruction. In this case, the first one is redundant. 1086 Value *V = &I; 1087 unsigned Depth = 0; 1088 while (V->hasOneUse() && Depth < 10) { 1089 User *U = V->user_back(); 1090 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1091 if (!UserInsInst || U->getOperand(0) != V) 1092 break; 1093 if (UserInsInst->getIndices() == FirstIndices) { 1094 IsRedundant = true; 1095 break; 1096 } 1097 V = UserInsInst; 1098 Depth++; 1099 } 1100 1101 if (IsRedundant) 1102 return replaceInstUsesWith(I, I.getOperand(0)); 1103 1104 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1105 return NewI; 1106 1107 return nullptr; 1108 } 1109 1110 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1111 // Can not analyze scalable type, the number of elements is not a compile-time 1112 // constant. 1113 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1114 return false; 1115 1116 int MaskSize = Shuf.getShuffleMask().size(); 1117 int VecSize = 1118 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1119 1120 // A vector select does not change the size of the operands. 1121 if (MaskSize != VecSize) 1122 return false; 1123 1124 // Each mask element must be undefined or choose a vector element from one of 1125 // the source operands without crossing vector lanes. 1126 for (int i = 0; i != MaskSize; ++i) { 1127 int Elt = Shuf.getMaskValue(i); 1128 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1129 return false; 1130 } 1131 1132 return true; 1133 } 1134 1135 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1136 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1137 /// shufflevector(insertelt(X, %k, 0), poison, zero) 1138 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1139 // We are interested in the last insert in a chain. So if this insert has a 1140 // single user and that user is an insert, bail. 1141 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1142 return nullptr; 1143 1144 VectorType *VecTy = InsElt.getType(); 1145 // Can not handle scalable type, the number of elements is not a compile-time 1146 // constant. 1147 if (isa<ScalableVectorType>(VecTy)) 1148 return nullptr; 1149 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1150 1151 // Do not try to do this for a one-element vector, since that's a nop, 1152 // and will cause an inf-loop. 1153 if (NumElements == 1) 1154 return nullptr; 1155 1156 Value *SplatVal = InsElt.getOperand(1); 1157 InsertElementInst *CurrIE = &InsElt; 1158 SmallBitVector ElementPresent(NumElements, false); 1159 InsertElementInst *FirstIE = nullptr; 1160 1161 // Walk the chain backwards, keeping track of which indices we inserted into, 1162 // until we hit something that isn't an insert of the splatted value. 1163 while (CurrIE) { 1164 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1165 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1166 return nullptr; 1167 1168 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1169 // Check none of the intermediate steps have any additional uses, except 1170 // for the root insertelement instruction, which can be re-used, if it 1171 // inserts at position 0. 1172 if (CurrIE != &InsElt && 1173 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1174 return nullptr; 1175 1176 ElementPresent[Idx->getZExtValue()] = true; 1177 FirstIE = CurrIE; 1178 CurrIE = NextIE; 1179 } 1180 1181 // If this is just a single insertelement (not a sequence), we are done. 1182 if (FirstIE == &InsElt) 1183 return nullptr; 1184 1185 // If we are not inserting into an undef vector, make sure we've seen an 1186 // insert into every element. 1187 // TODO: If the base vector is not undef, it might be better to create a splat 1188 // and then a select-shuffle (blend) with the base vector. 1189 if (!match(FirstIE->getOperand(0), m_Undef())) 1190 if (!ElementPresent.all()) 1191 return nullptr; 1192 1193 // Create the insert + shuffle. 1194 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1195 PoisonValue *PoisonVec = PoisonValue::get(VecTy); 1196 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1197 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1198 FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt); 1199 1200 // Splat from element 0, but replace absent elements with undef in the mask. 1201 SmallVector<int, 16> Mask(NumElements, 0); 1202 for (unsigned i = 0; i != NumElements; ++i) 1203 if (!ElementPresent[i]) 1204 Mask[i] = -1; 1205 1206 return new ShuffleVectorInst(FirstIE, Mask); 1207 } 1208 1209 /// Try to fold an insert element into an existing splat shuffle by changing 1210 /// the shuffle's mask to include the index of this insert element. 1211 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1212 // Check if the vector operand of this insert is a canonical splat shuffle. 1213 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1214 if (!Shuf || !Shuf->isZeroEltSplat()) 1215 return nullptr; 1216 1217 // Bail out early if shuffle is scalable type. The number of elements in 1218 // shuffle mask is unknown at compile-time. 1219 if (isa<ScalableVectorType>(Shuf->getType())) 1220 return nullptr; 1221 1222 // Check for a constant insertion index. 1223 uint64_t IdxC; 1224 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1225 return nullptr; 1226 1227 // Check if the splat shuffle's input is the same as this insert's scalar op. 1228 Value *X = InsElt.getOperand(1); 1229 Value *Op0 = Shuf->getOperand(0); 1230 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1231 return nullptr; 1232 1233 // Replace the shuffle mask element at the index of this insert with a zero. 1234 // For example: 1235 // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1 1236 // --> shuf (inselt undef, X, 0), poison, <0,0,0,undef> 1237 unsigned NumMaskElts = 1238 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1239 SmallVector<int, 16> NewMask(NumMaskElts); 1240 for (unsigned i = 0; i != NumMaskElts; ++i) 1241 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1242 1243 return new ShuffleVectorInst(Op0, NewMask); 1244 } 1245 1246 /// Try to fold an extract+insert element into an existing identity shuffle by 1247 /// changing the shuffle's mask to include the index of this insert element. 1248 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1249 // Check if the vector operand of this insert is an identity shuffle. 1250 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1251 if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) || 1252 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1253 return nullptr; 1254 1255 // Bail out early if shuffle is scalable type. The number of elements in 1256 // shuffle mask is unknown at compile-time. 1257 if (isa<ScalableVectorType>(Shuf->getType())) 1258 return nullptr; 1259 1260 // Check for a constant insertion index. 1261 uint64_t IdxC; 1262 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1263 return nullptr; 1264 1265 // Check if this insert's scalar op is extracted from the identity shuffle's 1266 // input vector. 1267 Value *Scalar = InsElt.getOperand(1); 1268 Value *X = Shuf->getOperand(0); 1269 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1270 return nullptr; 1271 1272 // Replace the shuffle mask element at the index of this extract+insert with 1273 // that same index value. 1274 // For example: 1275 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1276 unsigned NumMaskElts = 1277 cast<FixedVectorType>(Shuf->getType())->getNumElements(); 1278 SmallVector<int, 16> NewMask(NumMaskElts); 1279 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1280 for (unsigned i = 0; i != NumMaskElts; ++i) { 1281 if (i != IdxC) { 1282 // All mask elements besides the inserted element remain the same. 1283 NewMask[i] = OldMask[i]; 1284 } else if (OldMask[i] == (int)IdxC) { 1285 // If the mask element was already set, there's nothing to do 1286 // (demanded elements analysis may unset it later). 1287 return nullptr; 1288 } else { 1289 assert(OldMask[i] == UndefMaskElem && 1290 "Unexpected shuffle mask element for identity shuffle"); 1291 NewMask[i] = IdxC; 1292 } 1293 } 1294 1295 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1296 } 1297 1298 /// If we have an insertelement instruction feeding into another insertelement 1299 /// and the 2nd is inserting a constant into the vector, canonicalize that 1300 /// constant insertion before the insertion of a variable: 1301 /// 1302 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1303 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1304 /// 1305 /// This has the potential of eliminating the 2nd insertelement instruction 1306 /// via constant folding of the scalar constant into a vector constant. 1307 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1308 InstCombiner::BuilderTy &Builder) { 1309 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1310 if (!InsElt1 || !InsElt1->hasOneUse()) 1311 return nullptr; 1312 1313 Value *X, *Y; 1314 Constant *ScalarC; 1315 ConstantInt *IdxC1, *IdxC2; 1316 if (match(InsElt1->getOperand(0), m_Value(X)) && 1317 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1318 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1319 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1320 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1321 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1322 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1323 } 1324 1325 return nullptr; 1326 } 1327 1328 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1329 /// --> shufflevector X, CVec', Mask' 1330 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1331 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1332 // Bail out if the parent has more than one use. In that case, we'd be 1333 // replacing the insertelt with a shuffle, and that's not a clear win. 1334 if (!Inst || !Inst->hasOneUse()) 1335 return nullptr; 1336 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1337 // The shuffle must have a constant vector operand. The insertelt must have 1338 // a constant scalar being inserted at a constant position in the vector. 1339 Constant *ShufConstVec, *InsEltScalar; 1340 uint64_t InsEltIndex; 1341 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1342 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1343 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1344 return nullptr; 1345 1346 // Adding an element to an arbitrary shuffle could be expensive, but a 1347 // shuffle that selects elements from vectors without crossing lanes is 1348 // assumed cheap. 1349 // If we're just adding a constant into that shuffle, it will still be 1350 // cheap. 1351 if (!isShuffleEquivalentToSelect(*Shuf)) 1352 return nullptr; 1353 1354 // From the above 'select' check, we know that the mask has the same number 1355 // of elements as the vector input operands. We also know that each constant 1356 // input element is used in its lane and can not be used more than once by 1357 // the shuffle. Therefore, replace the constant in the shuffle's constant 1358 // vector with the insertelt constant. Replace the constant in the shuffle's 1359 // mask vector with the insertelt index plus the length of the vector 1360 // (because the constant vector operand of a shuffle is always the 2nd 1361 // operand). 1362 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1363 unsigned NumElts = Mask.size(); 1364 SmallVector<Constant *, 16> NewShufElts(NumElts); 1365 SmallVector<int, 16> NewMaskElts(NumElts); 1366 for (unsigned I = 0; I != NumElts; ++I) { 1367 if (I == InsEltIndex) { 1368 NewShufElts[I] = InsEltScalar; 1369 NewMaskElts[I] = InsEltIndex + NumElts; 1370 } else { 1371 // Copy over the existing values. 1372 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1373 NewMaskElts[I] = Mask[I]; 1374 } 1375 1376 // Bail if we failed to find an element. 1377 if (!NewShufElts[I]) 1378 return nullptr; 1379 } 1380 1381 // Create new operands for a shuffle that includes the constant of the 1382 // original insertelt. The old shuffle will be dead now. 1383 return new ShuffleVectorInst(Shuf->getOperand(0), 1384 ConstantVector::get(NewShufElts), NewMaskElts); 1385 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1386 // Transform sequences of insertelements ops with constant data/indexes into 1387 // a single shuffle op. 1388 // Can not handle scalable type, the number of elements needed to create 1389 // shuffle mask is not a compile-time constant. 1390 if (isa<ScalableVectorType>(InsElt.getType())) 1391 return nullptr; 1392 unsigned NumElts = 1393 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1394 1395 uint64_t InsertIdx[2]; 1396 Constant *Val[2]; 1397 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1398 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1399 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1400 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1401 return nullptr; 1402 SmallVector<Constant *, 16> Values(NumElts); 1403 SmallVector<int, 16> Mask(NumElts); 1404 auto ValI = std::begin(Val); 1405 // Generate new constant vector and mask. 1406 // We have 2 values/masks from the insertelements instructions. Insert them 1407 // into new value/mask vectors. 1408 for (uint64_t I : InsertIdx) { 1409 if (!Values[I]) { 1410 Values[I] = *ValI; 1411 Mask[I] = NumElts + I; 1412 } 1413 ++ValI; 1414 } 1415 // Remaining values are filled with 'undef' values. 1416 for (unsigned I = 0; I < NumElts; ++I) { 1417 if (!Values[I]) { 1418 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1419 Mask[I] = I; 1420 } 1421 } 1422 // Create new operands for a shuffle that includes the constant of the 1423 // original insertelt. 1424 return new ShuffleVectorInst(IEI->getOperand(0), 1425 ConstantVector::get(Values), Mask); 1426 } 1427 return nullptr; 1428 } 1429 1430 /// If both the base vector and the inserted element are extended from the same 1431 /// type, do the insert element in the narrow source type followed by extend. 1432 /// TODO: This can be extended to include other cast opcodes, but particularly 1433 /// if we create a wider insertelement, make sure codegen is not harmed. 1434 static Instruction *narrowInsElt(InsertElementInst &InsElt, 1435 InstCombiner::BuilderTy &Builder) { 1436 // We are creating a vector extend. If the original vector extend has another 1437 // use, that would mean we end up with 2 vector extends, so avoid that. 1438 // TODO: We could ease the use-clause to "if at least one op has one use" 1439 // (assuming that the source types match - see next TODO comment). 1440 Value *Vec = InsElt.getOperand(0); 1441 if (!Vec->hasOneUse()) 1442 return nullptr; 1443 1444 Value *Scalar = InsElt.getOperand(1); 1445 Value *X, *Y; 1446 CastInst::CastOps CastOpcode; 1447 if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y)))) 1448 CastOpcode = Instruction::FPExt; 1449 else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y)))) 1450 CastOpcode = Instruction::SExt; 1451 else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y)))) 1452 CastOpcode = Instruction::ZExt; 1453 else 1454 return nullptr; 1455 1456 // TODO: We can allow mismatched types by creating an intermediate cast. 1457 if (X->getType()->getScalarType() != Y->getType()) 1458 return nullptr; 1459 1460 // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index) 1461 Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2)); 1462 return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType()); 1463 } 1464 1465 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1466 Value *VecOp = IE.getOperand(0); 1467 Value *ScalarOp = IE.getOperand(1); 1468 Value *IdxOp = IE.getOperand(2); 1469 1470 if (auto *V = SimplifyInsertElementInst( 1471 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1472 return replaceInstUsesWith(IE, V); 1473 1474 // If the scalar is bitcast and inserted into undef, do the insert in the 1475 // source type followed by bitcast. 1476 // TODO: Generalize for insert into any constant, not just undef? 1477 Value *ScalarSrc; 1478 if (match(VecOp, m_Undef()) && 1479 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1480 (ScalarSrc->getType()->isIntegerTy() || 1481 ScalarSrc->getType()->isFloatingPointTy())) { 1482 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1483 // bitcast (inselt undef, ScalarSrc, IdxOp) 1484 Type *ScalarTy = ScalarSrc->getType(); 1485 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1486 UndefValue *NewUndef = UndefValue::get(VecTy); 1487 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1488 return new BitCastInst(NewInsElt, IE.getType()); 1489 } 1490 1491 // If the vector and scalar are both bitcast from the same element type, do 1492 // the insert in that source type followed by bitcast. 1493 Value *VecSrc; 1494 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1495 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1496 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1497 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1498 cast<VectorType>(VecSrc->getType())->getElementType() == 1499 ScalarSrc->getType()) { 1500 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1501 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1502 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1503 return new BitCastInst(NewInsElt, IE.getType()); 1504 } 1505 1506 // If the inserted element was extracted from some other fixed-length vector 1507 // and both indexes are valid constants, try to turn this into a shuffle. 1508 // Can not handle scalable vector type, the number of elements needed to 1509 // create shuffle mask is not a compile-time constant. 1510 uint64_t InsertedIdx, ExtractedIdx; 1511 Value *ExtVecOp; 1512 if (isa<FixedVectorType>(IE.getType()) && 1513 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1514 match(ScalarOp, 1515 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1516 isa<FixedVectorType>(ExtVecOp->getType()) && 1517 ExtractedIdx < 1518 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1519 // TODO: Looking at the user(s) to determine if this insert is a 1520 // fold-to-shuffle opportunity does not match the usual instcombine 1521 // constraints. We should decide if the transform is worthy based only 1522 // on this instruction and its operands, but that may not work currently. 1523 // 1524 // Here, we are trying to avoid creating shuffles before reaching 1525 // the end of a chain of extract-insert pairs. This is complicated because 1526 // we do not generally form arbitrary shuffle masks in instcombine 1527 // (because those may codegen poorly), but collectShuffleElements() does 1528 // exactly that. 1529 // 1530 // The rules for determining what is an acceptable target-independent 1531 // shuffle mask are fuzzy because they evolve based on the backend's 1532 // capabilities and real-world impact. 1533 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1534 if (!Insert.hasOneUse()) 1535 return true; 1536 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1537 if (!InsertUser) 1538 return true; 1539 return false; 1540 }; 1541 1542 // Try to form a shuffle from a chain of extract-insert ops. 1543 if (isShuffleRootCandidate(IE)) { 1544 SmallVector<int, 16> Mask; 1545 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1546 1547 // The proposed shuffle may be trivial, in which case we shouldn't 1548 // perform the combine. 1549 if (LR.first != &IE && LR.second != &IE) { 1550 // We now have a shuffle of LHS, RHS, Mask. 1551 if (LR.second == nullptr) 1552 LR.second = UndefValue::get(LR.first->getType()); 1553 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1554 } 1555 } 1556 } 1557 1558 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1559 unsigned VWidth = VecTy->getNumElements(); 1560 APInt UndefElts(VWidth, 0); 1561 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1562 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1563 if (V != &IE) 1564 return replaceInstUsesWith(IE, V); 1565 return &IE; 1566 } 1567 } 1568 1569 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1570 return Shuf; 1571 1572 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1573 return NewInsElt; 1574 1575 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1576 return Broadcast; 1577 1578 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1579 return Splat; 1580 1581 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1582 return IdentityShuf; 1583 1584 if (Instruction *Ext = narrowInsElt(IE, Builder)) 1585 return Ext; 1586 1587 return nullptr; 1588 } 1589 1590 /// Return true if we can evaluate the specified expression tree if the vector 1591 /// elements were shuffled in a different order. 1592 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1593 unsigned Depth = 5) { 1594 // We can always reorder the elements of a constant. 1595 if (isa<Constant>(V)) 1596 return true; 1597 1598 // We won't reorder vector arguments. No IPO here. 1599 Instruction *I = dyn_cast<Instruction>(V); 1600 if (!I) return false; 1601 1602 // Two users may expect different orders of the elements. Don't try it. 1603 if (!I->hasOneUse()) 1604 return false; 1605 1606 if (Depth == 0) return false; 1607 1608 switch (I->getOpcode()) { 1609 case Instruction::UDiv: 1610 case Instruction::SDiv: 1611 case Instruction::URem: 1612 case Instruction::SRem: 1613 // Propagating an undefined shuffle mask element to integer div/rem is not 1614 // allowed because those opcodes can create immediate undefined behavior 1615 // from an undefined element in an operand. 1616 if (llvm::is_contained(Mask, -1)) 1617 return false; 1618 LLVM_FALLTHROUGH; 1619 case Instruction::Add: 1620 case Instruction::FAdd: 1621 case Instruction::Sub: 1622 case Instruction::FSub: 1623 case Instruction::Mul: 1624 case Instruction::FMul: 1625 case Instruction::FDiv: 1626 case Instruction::FRem: 1627 case Instruction::Shl: 1628 case Instruction::LShr: 1629 case Instruction::AShr: 1630 case Instruction::And: 1631 case Instruction::Or: 1632 case Instruction::Xor: 1633 case Instruction::ICmp: 1634 case Instruction::FCmp: 1635 case Instruction::Trunc: 1636 case Instruction::ZExt: 1637 case Instruction::SExt: 1638 case Instruction::FPToUI: 1639 case Instruction::FPToSI: 1640 case Instruction::UIToFP: 1641 case Instruction::SIToFP: 1642 case Instruction::FPTrunc: 1643 case Instruction::FPExt: 1644 case Instruction::GetElementPtr: { 1645 // Bail out if we would create longer vector ops. We could allow creating 1646 // longer vector ops, but that may result in more expensive codegen. 1647 Type *ITy = I->getType(); 1648 if (ITy->isVectorTy() && 1649 Mask.size() > cast<FixedVectorType>(ITy)->getNumElements()) 1650 return false; 1651 for (Value *Operand : I->operands()) { 1652 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1653 return false; 1654 } 1655 return true; 1656 } 1657 case Instruction::InsertElement: { 1658 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1659 if (!CI) return false; 1660 int ElementNumber = CI->getLimitedValue(); 1661 1662 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1663 // can't put an element into multiple indices. 1664 bool SeenOnce = false; 1665 for (int i = 0, e = Mask.size(); i != e; ++i) { 1666 if (Mask[i] == ElementNumber) { 1667 if (SeenOnce) 1668 return false; 1669 SeenOnce = true; 1670 } 1671 } 1672 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1673 } 1674 } 1675 return false; 1676 } 1677 1678 /// Rebuild a new instruction just like 'I' but with the new operands given. 1679 /// In the event of type mismatch, the type of the operands is correct. 1680 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1681 // We don't want to use the IRBuilder here because we want the replacement 1682 // instructions to appear next to 'I', not the builder's insertion point. 1683 switch (I->getOpcode()) { 1684 case Instruction::Add: 1685 case Instruction::FAdd: 1686 case Instruction::Sub: 1687 case Instruction::FSub: 1688 case Instruction::Mul: 1689 case Instruction::FMul: 1690 case Instruction::UDiv: 1691 case Instruction::SDiv: 1692 case Instruction::FDiv: 1693 case Instruction::URem: 1694 case Instruction::SRem: 1695 case Instruction::FRem: 1696 case Instruction::Shl: 1697 case Instruction::LShr: 1698 case Instruction::AShr: 1699 case Instruction::And: 1700 case Instruction::Or: 1701 case Instruction::Xor: { 1702 BinaryOperator *BO = cast<BinaryOperator>(I); 1703 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1704 BinaryOperator *New = 1705 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1706 NewOps[0], NewOps[1], "", BO); 1707 if (isa<OverflowingBinaryOperator>(BO)) { 1708 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1709 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1710 } 1711 if (isa<PossiblyExactOperator>(BO)) { 1712 New->setIsExact(BO->isExact()); 1713 } 1714 if (isa<FPMathOperator>(BO)) 1715 New->copyFastMathFlags(I); 1716 return New; 1717 } 1718 case Instruction::ICmp: 1719 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1720 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1721 NewOps[0], NewOps[1]); 1722 case Instruction::FCmp: 1723 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1724 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1725 NewOps[0], NewOps[1]); 1726 case Instruction::Trunc: 1727 case Instruction::ZExt: 1728 case Instruction::SExt: 1729 case Instruction::FPToUI: 1730 case Instruction::FPToSI: 1731 case Instruction::UIToFP: 1732 case Instruction::SIToFP: 1733 case Instruction::FPTrunc: 1734 case Instruction::FPExt: { 1735 // It's possible that the mask has a different number of elements from 1736 // the original cast. We recompute the destination type to match the mask. 1737 Type *DestTy = VectorType::get( 1738 I->getType()->getScalarType(), 1739 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1740 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1741 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1742 "", I); 1743 } 1744 case Instruction::GetElementPtr: { 1745 Value *Ptr = NewOps[0]; 1746 ArrayRef<Value*> Idx = NewOps.slice(1); 1747 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1748 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1749 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1750 return GEP; 1751 } 1752 } 1753 llvm_unreachable("failed to rebuild vector instructions"); 1754 } 1755 1756 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1757 // Mask.size() does not need to be equal to the number of vector elements. 1758 1759 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1760 Type *EltTy = V->getType()->getScalarType(); 1761 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1762 if (match(V, m_Undef())) 1763 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1764 1765 if (isa<ConstantAggregateZero>(V)) 1766 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1767 1768 if (Constant *C = dyn_cast<Constant>(V)) 1769 return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()), 1770 Mask); 1771 1772 Instruction *I = cast<Instruction>(V); 1773 switch (I->getOpcode()) { 1774 case Instruction::Add: 1775 case Instruction::FAdd: 1776 case Instruction::Sub: 1777 case Instruction::FSub: 1778 case Instruction::Mul: 1779 case Instruction::FMul: 1780 case Instruction::UDiv: 1781 case Instruction::SDiv: 1782 case Instruction::FDiv: 1783 case Instruction::URem: 1784 case Instruction::SRem: 1785 case Instruction::FRem: 1786 case Instruction::Shl: 1787 case Instruction::LShr: 1788 case Instruction::AShr: 1789 case Instruction::And: 1790 case Instruction::Or: 1791 case Instruction::Xor: 1792 case Instruction::ICmp: 1793 case Instruction::FCmp: 1794 case Instruction::Trunc: 1795 case Instruction::ZExt: 1796 case Instruction::SExt: 1797 case Instruction::FPToUI: 1798 case Instruction::FPToSI: 1799 case Instruction::UIToFP: 1800 case Instruction::SIToFP: 1801 case Instruction::FPTrunc: 1802 case Instruction::FPExt: 1803 case Instruction::Select: 1804 case Instruction::GetElementPtr: { 1805 SmallVector<Value*, 8> NewOps; 1806 bool NeedsRebuild = 1807 (Mask.size() != 1808 cast<FixedVectorType>(I->getType())->getNumElements()); 1809 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1810 Value *V; 1811 // Recursively call evaluateInDifferentElementOrder on vector arguments 1812 // as well. E.g. GetElementPtr may have scalar operands even if the 1813 // return value is a vector, so we need to examine the operand type. 1814 if (I->getOperand(i)->getType()->isVectorTy()) 1815 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1816 else 1817 V = I->getOperand(i); 1818 NewOps.push_back(V); 1819 NeedsRebuild |= (V != I->getOperand(i)); 1820 } 1821 if (NeedsRebuild) { 1822 return buildNew(I, NewOps); 1823 } 1824 return I; 1825 } 1826 case Instruction::InsertElement: { 1827 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1828 1829 // The insertelement was inserting at Element. Figure out which element 1830 // that becomes after shuffling. The answer is guaranteed to be unique 1831 // by CanEvaluateShuffled. 1832 bool Found = false; 1833 int Index = 0; 1834 for (int e = Mask.size(); Index != e; ++Index) { 1835 if (Mask[Index] == Element) { 1836 Found = true; 1837 break; 1838 } 1839 } 1840 1841 // If element is not in Mask, no need to handle the operand 1 (element to 1842 // be inserted). Just evaluate values in operand 0 according to Mask. 1843 if (!Found) 1844 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1845 1846 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1847 return InsertElementInst::Create(V, I->getOperand(1), 1848 ConstantInt::get(I32Ty, Index), "", I); 1849 } 1850 } 1851 llvm_unreachable("failed to reorder elements of vector instruction!"); 1852 } 1853 1854 // Returns true if the shuffle is extracting a contiguous range of values from 1855 // LHS, for example: 1856 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1857 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1858 // Shuffles to: |EE|FF|GG|HH| 1859 // +--+--+--+--+ 1860 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1861 ArrayRef<int> Mask) { 1862 unsigned LHSElems = 1863 cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1864 unsigned MaskElems = Mask.size(); 1865 unsigned BegIdx = Mask.front(); 1866 unsigned EndIdx = Mask.back(); 1867 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1868 return false; 1869 for (unsigned I = 0; I != MaskElems; ++I) 1870 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1871 return false; 1872 return true; 1873 } 1874 1875 /// These are the ingredients in an alternate form binary operator as described 1876 /// below. 1877 struct BinopElts { 1878 BinaryOperator::BinaryOps Opcode; 1879 Value *Op0; 1880 Value *Op1; 1881 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1882 Value *V0 = nullptr, Value *V1 = nullptr) : 1883 Opcode(Opc), Op0(V0), Op1(V1) {} 1884 operator bool() const { return Opcode != 0; } 1885 }; 1886 1887 /// Binops may be transformed into binops with different opcodes and operands. 1888 /// Reverse the usual canonicalization to enable folds with the non-canonical 1889 /// form of the binop. If a transform is possible, return the elements of the 1890 /// new binop. If not, return invalid elements. 1891 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1892 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1893 Type *Ty = BO->getType(); 1894 switch (BO->getOpcode()) { 1895 case Instruction::Shl: { 1896 // shl X, C --> mul X, (1 << C) 1897 Constant *C; 1898 if (match(BO1, m_Constant(C))) { 1899 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1900 return { Instruction::Mul, BO0, ShlOne }; 1901 } 1902 break; 1903 } 1904 case Instruction::Or: { 1905 // or X, C --> add X, C (when X and C have no common bits set) 1906 const APInt *C; 1907 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1908 return { Instruction::Add, BO0, BO1 }; 1909 break; 1910 } 1911 default: 1912 break; 1913 } 1914 return {}; 1915 } 1916 1917 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1918 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1919 1920 // Are we shuffling together some value and that same value after it has been 1921 // modified by a binop with a constant? 1922 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1923 Constant *C; 1924 bool Op0IsBinop; 1925 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1926 Op0IsBinop = true; 1927 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1928 Op0IsBinop = false; 1929 else 1930 return nullptr; 1931 1932 // The identity constant for a binop leaves a variable operand unchanged. For 1933 // a vector, this is a splat of something like 0, -1, or 1. 1934 // If there's no identity constant for this binop, we're done. 1935 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1936 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1937 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1938 if (!IdC) 1939 return nullptr; 1940 1941 // Shuffle identity constants into the lanes that return the original value. 1942 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1943 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1944 // The existing binop constant vector remains in the same operand position. 1945 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1946 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1947 ConstantExpr::getShuffleVector(IdC, C, Mask); 1948 1949 bool MightCreatePoisonOrUB = 1950 is_contained(Mask, UndefMaskElem) && 1951 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1952 if (MightCreatePoisonOrUB) 1953 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1954 1955 // shuf (bop X, C), X, M --> bop X, C' 1956 // shuf X, (bop X, C), M --> bop X, C' 1957 Value *X = Op0IsBinop ? Op1 : Op0; 1958 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1959 NewBO->copyIRFlags(BO); 1960 1961 // An undef shuffle mask element may propagate as an undef constant element in 1962 // the new binop. That would produce poison where the original code might not. 1963 // If we already made a safe constant, then there's no danger. 1964 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1965 NewBO->dropPoisonGeneratingFlags(); 1966 return NewBO; 1967 } 1968 1969 /// If we have an insert of a scalar to a non-zero element of an undefined 1970 /// vector and then shuffle that value, that's the same as inserting to the zero 1971 /// element and shuffling. Splatting from the zero element is recognized as the 1972 /// canonical form of splat. 1973 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1974 InstCombiner::BuilderTy &Builder) { 1975 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1976 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1977 Value *X; 1978 uint64_t IndexC; 1979 1980 // Match a shuffle that is a splat to a non-zero element. 1981 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1982 m_ConstantInt(IndexC)))) || 1983 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1984 return nullptr; 1985 1986 // Insert into element 0 of an undef vector. 1987 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1988 Constant *Zero = Builder.getInt32(0); 1989 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1990 1991 // Splat from element 0. Any mask element that is undefined remains undefined. 1992 // For example: 1993 // shuf (inselt undef, X, 2), _, <2,2,undef> 1994 // --> shuf (inselt undef, X, 0), poison, <0,0,undef> 1995 unsigned NumMaskElts = 1996 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 1997 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1998 for (unsigned i = 0; i != NumMaskElts; ++i) 1999 if (Mask[i] == UndefMaskElem) 2000 NewMask[i] = Mask[i]; 2001 2002 return new ShuffleVectorInst(NewIns, NewMask); 2003 } 2004 2005 /// Try to fold shuffles that are the equivalent of a vector select. 2006 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 2007 InstCombiner::BuilderTy &Builder, 2008 const DataLayout &DL) { 2009 if (!Shuf.isSelect()) 2010 return nullptr; 2011 2012 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 2013 // Commuting undef to operand 0 conflicts with another canonicalization. 2014 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2015 if (!match(Shuf.getOperand(1), m_Undef()) && 2016 Shuf.getMaskValue(0) >= (int)NumElts) { 2017 // TODO: Can we assert that both operands of a shuffle-select are not undef 2018 // (otherwise, it would have been folded by instsimplify? 2019 Shuf.commute(); 2020 return &Shuf; 2021 } 2022 2023 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 2024 return I; 2025 2026 BinaryOperator *B0, *B1; 2027 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 2028 !match(Shuf.getOperand(1), m_BinOp(B1))) 2029 return nullptr; 2030 2031 Value *X, *Y; 2032 Constant *C0, *C1; 2033 bool ConstantsAreOp1; 2034 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 2035 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 2036 ConstantsAreOp1 = true; 2037 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 2038 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 2039 ConstantsAreOp1 = false; 2040 else 2041 return nullptr; 2042 2043 // We need matching binops to fold the lanes together. 2044 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 2045 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 2046 bool DropNSW = false; 2047 if (ConstantsAreOp1 && Opc0 != Opc1) { 2048 // TODO: We drop "nsw" if shift is converted into multiply because it may 2049 // not be correct when the shift amount is BitWidth - 1. We could examine 2050 // each vector element to determine if it is safe to keep that flag. 2051 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 2052 DropNSW = true; 2053 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 2054 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 2055 Opc0 = AltB0.Opcode; 2056 C0 = cast<Constant>(AltB0.Op1); 2057 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 2058 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 2059 Opc1 = AltB1.Opcode; 2060 C1 = cast<Constant>(AltB1.Op1); 2061 } 2062 } 2063 2064 if (Opc0 != Opc1) 2065 return nullptr; 2066 2067 // The opcodes must be the same. Use a new name to make that clear. 2068 BinaryOperator::BinaryOps BOpc = Opc0; 2069 2070 // Select the constant elements needed for the single binop. 2071 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2072 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 2073 2074 // We are moving a binop after a shuffle. When a shuffle has an undefined 2075 // mask element, the result is undefined, but it is not poison or undefined 2076 // behavior. That is not necessarily true for div/rem/shift. 2077 bool MightCreatePoisonOrUB = 2078 is_contained(Mask, UndefMaskElem) && 2079 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 2080 if (MightCreatePoisonOrUB) 2081 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 2082 ConstantsAreOp1); 2083 2084 Value *V; 2085 if (X == Y) { 2086 // Remove a binop and the shuffle by rearranging the constant: 2087 // shuffle (op V, C0), (op V, C1), M --> op V, C' 2088 // shuffle (op C0, V), (op C1, V), M --> op C', V 2089 V = X; 2090 } else { 2091 // If there are 2 different variable operands, we must create a new shuffle 2092 // (select) first, so check uses to ensure that we don't end up with more 2093 // instructions than we started with. 2094 if (!B0->hasOneUse() && !B1->hasOneUse()) 2095 return nullptr; 2096 2097 // If we use the original shuffle mask and op1 is *variable*, we would be 2098 // putting an undef into operand 1 of div/rem/shift. This is either UB or 2099 // poison. We do not have to guard against UB when *constants* are op1 2100 // because safe constants guarantee that we do not overflow sdiv/srem (and 2101 // there's no danger for other opcodes). 2102 // TODO: To allow this case, create a new shuffle mask with no undefs. 2103 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 2104 return nullptr; 2105 2106 // Note: In general, we do not create new shuffles in InstCombine because we 2107 // do not know if a target can lower an arbitrary shuffle optimally. In this 2108 // case, the shuffle uses the existing mask, so there is no additional risk. 2109 2110 // Select the variable vectors first, then perform the binop: 2111 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 2112 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 2113 V = Builder.CreateShuffleVector(X, Y, Mask); 2114 } 2115 2116 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 2117 BinaryOperator::Create(BOpc, NewC, V); 2118 2119 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 2120 // 1. If we changed an opcode, poison conditions might have changed. 2121 // 2. If the shuffle had undef mask elements, the new binop might have undefs 2122 // where the original code did not. But if we already made a safe constant, 2123 // then there's no danger. 2124 NewBO->copyIRFlags(B0); 2125 NewBO->andIRFlags(B1); 2126 if (DropNSW) 2127 NewBO->setHasNoSignedWrap(false); 2128 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 2129 NewBO->dropPoisonGeneratingFlags(); 2130 return NewBO; 2131 } 2132 2133 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 2134 /// Example (little endian): 2135 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2136 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2137 bool IsBigEndian) { 2138 // This must be a bitcasted shuffle of 1 vector integer operand. 2139 Type *DestType = Shuf.getType(); 2140 Value *X; 2141 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2142 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2143 return nullptr; 2144 2145 // The source type must have the same number of elements as the shuffle, 2146 // and the source element type must be larger than the shuffle element type. 2147 Type *SrcType = X->getType(); 2148 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2149 cast<FixedVectorType>(SrcType)->getNumElements() != 2150 cast<FixedVectorType>(DestType)->getNumElements() || 2151 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2152 return nullptr; 2153 2154 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2155 "Expected a shuffle that decreases length"); 2156 2157 // Last, check that the mask chooses the correct low bits for each narrow 2158 // element in the result. 2159 uint64_t TruncRatio = 2160 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2161 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2162 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2163 if (Mask[i] == UndefMaskElem) 2164 continue; 2165 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2166 assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits"); 2167 if (Mask[i] != (int)LSBIndex) 2168 return nullptr; 2169 } 2170 2171 return new TruncInst(X, DestType); 2172 } 2173 2174 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2175 /// narrowing (concatenating with undef and extracting back to the original 2176 /// length). This allows replacing the wide select with a narrow select. 2177 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2178 InstCombiner::BuilderTy &Builder) { 2179 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2180 // of the 1st vector operand of a shuffle. 2181 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2182 return nullptr; 2183 2184 // The vector being shuffled must be a vector select that we can eliminate. 2185 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2186 Value *Cond, *X, *Y; 2187 if (!match(Shuf.getOperand(0), 2188 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2189 return nullptr; 2190 2191 // We need a narrow condition value. It must be extended with undef elements 2192 // and have the same number of elements as this shuffle. 2193 unsigned NarrowNumElts = 2194 cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2195 Value *NarrowCond; 2196 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2197 cast<FixedVectorType>(NarrowCond->getType())->getNumElements() != 2198 NarrowNumElts || 2199 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2200 return nullptr; 2201 2202 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2203 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2204 Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask()); 2205 Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask()); 2206 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2207 } 2208 2209 /// Try to fold an extract subvector operation. 2210 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2211 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2212 if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef())) 2213 return nullptr; 2214 2215 // Check if we are extracting all bits of an inserted scalar: 2216 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type 2217 Value *X; 2218 if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) && 2219 X->getType()->getPrimitiveSizeInBits() == 2220 Shuf.getType()->getPrimitiveSizeInBits()) 2221 return new BitCastInst(X, Shuf.getType()); 2222 2223 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2224 Value *Y; 2225 ArrayRef<int> Mask; 2226 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2227 return nullptr; 2228 2229 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2230 // then combining may result in worse codegen. 2231 if (!Op0->hasOneUse()) 2232 return nullptr; 2233 2234 // We are extracting a subvector from a shuffle. Remove excess elements from 2235 // the 1st shuffle mask to eliminate the extract. 2236 // 2237 // This transform is conservatively limited to identity extracts because we do 2238 // not allow arbitrary shuffle mask creation as a target-independent transform 2239 // (because we can't guarantee that will lower efficiently). 2240 // 2241 // If the extracting shuffle has an undef mask element, it transfers to the 2242 // new shuffle mask. Otherwise, copy the original mask element. Example: 2243 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2244 // shuf X, Y, <C0, undef, C2, undef> 2245 unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements(); 2246 SmallVector<int, 16> NewMask(NumElts); 2247 assert(NumElts < Mask.size() && 2248 "Identity with extract must have less elements than its inputs"); 2249 2250 for (unsigned i = 0; i != NumElts; ++i) { 2251 int ExtractMaskElt = Shuf.getMaskValue(i); 2252 int MaskElt = Mask[i]; 2253 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2254 } 2255 return new ShuffleVectorInst(X, Y, NewMask); 2256 } 2257 2258 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2259 /// operand with the operand of an insertelement. 2260 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2261 InstCombinerImpl &IC) { 2262 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2263 SmallVector<int, 16> Mask; 2264 Shuf.getShuffleMask(Mask); 2265 2266 int NumElts = Mask.size(); 2267 int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements(); 2268 2269 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2270 // not be able to handle it there if the insertelement has >1 use. 2271 // If the shuffle has an insertelement operand but does not choose the 2272 // inserted scalar element from that value, then we can replace that shuffle 2273 // operand with the source vector of the insertelement. 2274 Value *X; 2275 uint64_t IdxC; 2276 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2277 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2278 if (!is_contained(Mask, (int)IdxC)) 2279 return IC.replaceOperand(Shuf, 0, X); 2280 } 2281 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2282 // Offset the index constant by the vector width because we are checking for 2283 // accesses to the 2nd vector input of the shuffle. 2284 IdxC += InpNumElts; 2285 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2286 if (!is_contained(Mask, (int)IdxC)) 2287 return IC.replaceOperand(Shuf, 1, X); 2288 } 2289 // For the rest of the transform, the shuffle must not change vector sizes. 2290 // TODO: This restriction could be removed if the insert has only one use 2291 // (because the transform would require a new length-changing shuffle). 2292 if (NumElts != InpNumElts) 2293 return nullptr; 2294 2295 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2296 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2297 // We need an insertelement with a constant index. 2298 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2299 m_ConstantInt(IndexC)))) 2300 return false; 2301 2302 // Test the shuffle mask to see if it splices the inserted scalar into the 2303 // operand 1 vector of the shuffle. 2304 int NewInsIndex = -1; 2305 for (int i = 0; i != NumElts; ++i) { 2306 // Ignore undef mask elements. 2307 if (Mask[i] == -1) 2308 continue; 2309 2310 // The shuffle takes elements of operand 1 without lane changes. 2311 if (Mask[i] == NumElts + i) 2312 continue; 2313 2314 // The shuffle must choose the inserted scalar exactly once. 2315 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2316 return false; 2317 2318 // The shuffle is placing the inserted scalar into element i. 2319 NewInsIndex = i; 2320 } 2321 2322 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2323 2324 // Index is updated to the potentially translated insertion lane. 2325 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2326 return true; 2327 }; 2328 2329 // If the shuffle is unnecessary, insert the scalar operand directly into 2330 // operand 1 of the shuffle. Example: 2331 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2332 Value *Scalar; 2333 ConstantInt *IndexC; 2334 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2335 return InsertElementInst::Create(V1, Scalar, IndexC); 2336 2337 // Try again after commuting shuffle. Example: 2338 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2339 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2340 std::swap(V0, V1); 2341 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2342 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2343 return InsertElementInst::Create(V1, Scalar, IndexC); 2344 2345 return nullptr; 2346 } 2347 2348 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2349 // Match the operands as identity with padding (also known as concatenation 2350 // with undef) shuffles of the same source type. The backend is expected to 2351 // recreate these concatenations from a shuffle of narrow operands. 2352 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2353 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2354 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2355 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2356 return nullptr; 2357 2358 // We limit this transform to power-of-2 types because we expect that the 2359 // backend can convert the simplified IR patterns to identical nodes as the 2360 // original IR. 2361 // TODO: If we can verify the same behavior for arbitrary types, the 2362 // power-of-2 checks can be removed. 2363 Value *X = Shuffle0->getOperand(0); 2364 Value *Y = Shuffle1->getOperand(0); 2365 if (X->getType() != Y->getType() || 2366 !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) || 2367 !isPowerOf2_32( 2368 cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) || 2369 !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) || 2370 match(X, m_Undef()) || match(Y, m_Undef())) 2371 return nullptr; 2372 assert(match(Shuffle0->getOperand(1), m_Undef()) && 2373 match(Shuffle1->getOperand(1), m_Undef()) && 2374 "Unexpected operand for identity shuffle"); 2375 2376 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2377 // operands directly by adjusting the shuffle mask to account for the narrower 2378 // types: 2379 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2380 int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements(); 2381 int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements(); 2382 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2383 2384 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2385 SmallVector<int, 16> NewMask(Mask.size(), -1); 2386 for (int i = 0, e = Mask.size(); i != e; ++i) { 2387 if (Mask[i] == -1) 2388 continue; 2389 2390 // If this shuffle is choosing an undef element from 1 of the sources, that 2391 // element is undef. 2392 if (Mask[i] < WideElts) { 2393 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2394 continue; 2395 } else { 2396 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2397 continue; 2398 } 2399 2400 // If this shuffle is choosing from the 1st narrow op, the mask element is 2401 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2402 // element is offset down to adjust for the narrow vector widths. 2403 if (Mask[i] < WideElts) { 2404 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2405 NewMask[i] = Mask[i]; 2406 } else { 2407 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2408 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2409 } 2410 } 2411 return new ShuffleVectorInst(X, Y, NewMask); 2412 } 2413 2414 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2415 Value *LHS = SVI.getOperand(0); 2416 Value *RHS = SVI.getOperand(1); 2417 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2418 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2419 SVI.getType(), ShufQuery)) 2420 return replaceInstUsesWith(SVI, V); 2421 2422 // Bail out for scalable vectors 2423 if (isa<ScalableVectorType>(LHS->getType())) 2424 return nullptr; 2425 2426 unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements(); 2427 unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements(); 2428 2429 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask) 2430 // 2431 // if X and Y are of the same (vector) type, and the element size is not 2432 // changed by the bitcasts, we can distribute the bitcasts through the 2433 // shuffle, hopefully reducing the number of instructions. We make sure that 2434 // at least one bitcast only has one use, so we don't *increase* the number of 2435 // instructions here. 2436 Value *X, *Y; 2437 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) && 2438 X->getType()->isVectorTy() && X->getType() == Y->getType() && 2439 X->getType()->getScalarSizeInBits() == 2440 SVI.getType()->getScalarSizeInBits() && 2441 (LHS->hasOneUse() || RHS->hasOneUse())) { 2442 Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(), 2443 SVI.getName() + ".uncasted"); 2444 return new BitCastInst(V, SVI.getType()); 2445 } 2446 2447 ArrayRef<int> Mask = SVI.getShuffleMask(); 2448 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2449 2450 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2451 // simulated shuffle can simplify, then this shuffle is unnecessary: 2452 // shuf (bitcast X), undef, Mask --> bitcast X' 2453 // TODO: This could be extended to allow length-changing shuffles. 2454 // The transform might also be obsoleted if we allowed canonicalization 2455 // of bitcasted shuffles. 2456 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2457 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2458 // Try to create a scaled mask constant. 2459 auto *XType = cast<FixedVectorType>(X->getType()); 2460 unsigned XNumElts = XType->getNumElements(); 2461 SmallVector<int, 16> ScaledMask; 2462 if (XNumElts >= VWidth) { 2463 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2464 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2465 } else { 2466 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2467 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2468 ScaledMask.clear(); 2469 } 2470 if (!ScaledMask.empty()) { 2471 // If the shuffled source vector simplifies, cast that value to this 2472 // shuffle's type. 2473 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2474 ScaledMask, XType, ShufQuery)) 2475 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2476 } 2477 } 2478 2479 // shuffle x, x, mask --> shuffle x, undef, mask' 2480 if (LHS == RHS) { 2481 assert(!match(RHS, m_Undef()) && 2482 "Shuffle with 2 undef ops not simplified?"); 2483 return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth)); 2484 } 2485 2486 // shuffle undef, x, mask --> shuffle x, undef, mask' 2487 if (match(LHS, m_Undef())) { 2488 SVI.commute(); 2489 return &SVI; 2490 } 2491 2492 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2493 return I; 2494 2495 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2496 return I; 2497 2498 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2499 return I; 2500 2501 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2502 return I; 2503 2504 APInt UndefElts(VWidth, 0); 2505 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2506 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2507 if (V != &SVI) 2508 return replaceInstUsesWith(SVI, V); 2509 return &SVI; 2510 } 2511 2512 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2513 return I; 2514 2515 // These transforms have the potential to lose undef knowledge, so they are 2516 // intentionally placed after SimplifyDemandedVectorElts(). 2517 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2518 return I; 2519 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2520 return I; 2521 2522 if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) { 2523 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2524 return replaceInstUsesWith(SVI, V); 2525 } 2526 2527 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2528 // a non-vector type. We can instead bitcast the original vector followed by 2529 // an extract of the desired element: 2530 // 2531 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2532 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2533 // %1 = bitcast <4 x i8> %sroa to i32 2534 // Becomes: 2535 // %bc = bitcast <16 x i8> %in to <4 x i32> 2536 // %ext = extractelement <4 x i32> %bc, i32 0 2537 // 2538 // If the shuffle is extracting a contiguous range of values from the input 2539 // vector then each use which is a bitcast of the extracted size can be 2540 // replaced. This will work if the vector types are compatible, and the begin 2541 // index is aligned to a value in the casted vector type. If the begin index 2542 // isn't aligned then we can shuffle the original vector (keeping the same 2543 // vector type) before extracting. 2544 // 2545 // This code will bail out if the target type is fundamentally incompatible 2546 // with vectors of the source type. 2547 // 2548 // Example of <16 x i8>, target type i32: 2549 // Index range [4,8): v-----------v Will work. 2550 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2551 // <16 x i8>: | | | | | | | | | | | | | | | | | 2552 // <4 x i32>: | | | | | 2553 // +-----------+-----------+-----------+-----------+ 2554 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2555 // Target type i40: ^--------------^ Won't work, bail. 2556 bool MadeChange = false; 2557 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2558 Value *V = LHS; 2559 unsigned MaskElems = Mask.size(); 2560 auto *SrcTy = cast<FixedVectorType>(V->getType()); 2561 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2562 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2563 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2564 unsigned SrcNumElems = SrcTy->getNumElements(); 2565 SmallVector<BitCastInst *, 8> BCs; 2566 DenseMap<Type *, Value *> NewBCs; 2567 for (User *U : SVI.users()) 2568 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2569 if (!BC->use_empty()) 2570 // Only visit bitcasts that weren't previously handled. 2571 BCs.push_back(BC); 2572 for (BitCastInst *BC : BCs) { 2573 unsigned BegIdx = Mask.front(); 2574 Type *TgtTy = BC->getDestTy(); 2575 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2576 if (!TgtElemBitWidth) 2577 continue; 2578 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2579 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2580 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2581 if (!VecBitWidthsEqual) 2582 continue; 2583 if (!VectorType::isValidElementType(TgtTy)) 2584 continue; 2585 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2586 if (!BegIsAligned) { 2587 // Shuffle the input so [0,NumElements) contains the output, and 2588 // [NumElems,SrcNumElems) is undef. 2589 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2590 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2591 ShuffleMask[I] = Idx; 2592 V = Builder.CreateShuffleVector(V, ShuffleMask, 2593 SVI.getName() + ".extract"); 2594 BegIdx = 0; 2595 } 2596 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2597 assert(SrcElemsPerTgtElem); 2598 BegIdx /= SrcElemsPerTgtElem; 2599 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2600 auto *NewBC = 2601 BCAlreadyExists 2602 ? NewBCs[CastSrcTy] 2603 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2604 if (!BCAlreadyExists) 2605 NewBCs[CastSrcTy] = NewBC; 2606 auto *Ext = Builder.CreateExtractElement( 2607 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2608 // The shufflevector isn't being replaced: the bitcast that used it 2609 // is. InstCombine will visit the newly-created instructions. 2610 replaceInstUsesWith(*BC, Ext); 2611 MadeChange = true; 2612 } 2613 } 2614 2615 // If the LHS is a shufflevector itself, see if we can combine it with this 2616 // one without producing an unusual shuffle. 2617 // Cases that might be simplified: 2618 // 1. 2619 // x1=shuffle(v1,v2,mask1) 2620 // x=shuffle(x1,undef,mask) 2621 // ==> 2622 // x=shuffle(v1,undef,newMask) 2623 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2624 // 2. 2625 // x1=shuffle(v1,undef,mask1) 2626 // x=shuffle(x1,x2,mask) 2627 // where v1.size() == mask1.size() 2628 // ==> 2629 // x=shuffle(v1,x2,newMask) 2630 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2631 // 3. 2632 // x2=shuffle(v2,undef,mask2) 2633 // x=shuffle(x1,x2,mask) 2634 // where v2.size() == mask2.size() 2635 // ==> 2636 // x=shuffle(x1,v2,newMask) 2637 // newMask[i] = (mask[i] < x1.size()) 2638 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2639 // 4. 2640 // x1=shuffle(v1,undef,mask1) 2641 // x2=shuffle(v2,undef,mask2) 2642 // x=shuffle(x1,x2,mask) 2643 // where v1.size() == v2.size() 2644 // ==> 2645 // x=shuffle(v1,v2,newMask) 2646 // newMask[i] = (mask[i] < x1.size()) 2647 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2648 // 2649 // Here we are really conservative: 2650 // we are absolutely afraid of producing a shuffle mask not in the input 2651 // program, because the code gen may not be smart enough to turn a merged 2652 // shuffle into two specific shuffles: it may produce worse code. As such, 2653 // we only merge two shuffles if the result is either a splat or one of the 2654 // input shuffle masks. In this case, merging the shuffles just removes 2655 // one instruction, which we know is safe. This is good for things like 2656 // turning: (splat(splat)) -> splat, or 2657 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2658 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2659 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2660 if (LHSShuffle) 2661 if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef())) 2662 LHSShuffle = nullptr; 2663 if (RHSShuffle) 2664 if (!match(RHSShuffle->getOperand(1), m_Undef())) 2665 RHSShuffle = nullptr; 2666 if (!LHSShuffle && !RHSShuffle) 2667 return MadeChange ? &SVI : nullptr; 2668 2669 Value* LHSOp0 = nullptr; 2670 Value* LHSOp1 = nullptr; 2671 Value* RHSOp0 = nullptr; 2672 unsigned LHSOp0Width = 0; 2673 unsigned RHSOp0Width = 0; 2674 if (LHSShuffle) { 2675 LHSOp0 = LHSShuffle->getOperand(0); 2676 LHSOp1 = LHSShuffle->getOperand(1); 2677 LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements(); 2678 } 2679 if (RHSShuffle) { 2680 RHSOp0 = RHSShuffle->getOperand(0); 2681 RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements(); 2682 } 2683 Value* newLHS = LHS; 2684 Value* newRHS = RHS; 2685 if (LHSShuffle) { 2686 // case 1 2687 if (match(RHS, m_Undef())) { 2688 newLHS = LHSOp0; 2689 newRHS = LHSOp1; 2690 } 2691 // case 2 or 4 2692 else if (LHSOp0Width == LHSWidth) { 2693 newLHS = LHSOp0; 2694 } 2695 } 2696 // case 3 or 4 2697 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2698 newRHS = RHSOp0; 2699 } 2700 // case 4 2701 if (LHSOp0 == RHSOp0) { 2702 newLHS = LHSOp0; 2703 newRHS = nullptr; 2704 } 2705 2706 if (newLHS == LHS && newRHS == RHS) 2707 return MadeChange ? &SVI : nullptr; 2708 2709 ArrayRef<int> LHSMask; 2710 ArrayRef<int> RHSMask; 2711 if (newLHS != LHS) 2712 LHSMask = LHSShuffle->getShuffleMask(); 2713 if (RHSShuffle && newRHS != RHS) 2714 RHSMask = RHSShuffle->getShuffleMask(); 2715 2716 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2717 SmallVector<int, 16> newMask; 2718 bool isSplat = true; 2719 int SplatElt = -1; 2720 // Create a new mask for the new ShuffleVectorInst so that the new 2721 // ShuffleVectorInst is equivalent to the original one. 2722 for (unsigned i = 0; i < VWidth; ++i) { 2723 int eltMask; 2724 if (Mask[i] < 0) { 2725 // This element is an undef value. 2726 eltMask = -1; 2727 } else if (Mask[i] < (int)LHSWidth) { 2728 // This element is from left hand side vector operand. 2729 // 2730 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2731 // new mask value for the element. 2732 if (newLHS != LHS) { 2733 eltMask = LHSMask[Mask[i]]; 2734 // If the value selected is an undef value, explicitly specify it 2735 // with a -1 mask value. 2736 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2737 eltMask = -1; 2738 } else 2739 eltMask = Mask[i]; 2740 } else { 2741 // This element is from right hand side vector operand 2742 // 2743 // If the value selected is an undef value, explicitly specify it 2744 // with a -1 mask value. (case 1) 2745 if (match(RHS, m_Undef())) 2746 eltMask = -1; 2747 // If RHS is going to be replaced (case 3 or 4), calculate the 2748 // new mask value for the element. 2749 else if (newRHS != RHS) { 2750 eltMask = RHSMask[Mask[i]-LHSWidth]; 2751 // If the value selected is an undef value, explicitly specify it 2752 // with a -1 mask value. 2753 if (eltMask >= (int)RHSOp0Width) { 2754 assert(match(RHSShuffle->getOperand(1), m_Undef()) && 2755 "should have been check above"); 2756 eltMask = -1; 2757 } 2758 } else 2759 eltMask = Mask[i]-LHSWidth; 2760 2761 // If LHS's width is changed, shift the mask value accordingly. 2762 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2763 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2764 // If newRHS == newLHS, we want to remap any references from newRHS to 2765 // newLHS so that we can properly identify splats that may occur due to 2766 // obfuscation across the two vectors. 2767 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2768 eltMask += newLHSWidth; 2769 } 2770 2771 // Check if this could still be a splat. 2772 if (eltMask >= 0) { 2773 if (SplatElt >= 0 && SplatElt != eltMask) 2774 isSplat = false; 2775 SplatElt = eltMask; 2776 } 2777 2778 newMask.push_back(eltMask); 2779 } 2780 2781 // If the result mask is equal to one of the original shuffle masks, 2782 // or is a splat, do the replacement. 2783 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2784 if (!newRHS) 2785 newRHS = UndefValue::get(newLHS->getType()); 2786 return new ShuffleVectorInst(newLHS, newRHS, newMask); 2787 } 2788 2789 return MadeChange ? &SVI : nullptr; 2790 } 2791