1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements instcombine for ExtractElement, InsertElement and 11 // ShuffleVector. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Return true if the value is cheaper to scalarize than it is to leave as a 26 /// vector operation. isConstant indicates whether we're extracting one known 27 /// element. If false we're extracting a variable index. 28 static bool cheapToScalarize(Value *V, bool isConstant) { 29 if (Constant *C = dyn_cast<Constant>(V)) { 30 if (isConstant) return true; 31 32 // If all elts are the same, we can extract it and use any of the values. 33 if (Constant *Op0 = C->getAggregateElement(0U)) { 34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; 35 ++i) 36 if (C->getAggregateElement(i) != Op0) 37 return false; 38 return true; 39 } 40 } 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (!I) return false; 43 44 // Insert element gets simplified to the inserted element or is deleted if 45 // this is constant idx extract element and its a constant idx insertelt. 46 if (I->getOpcode() == Instruction::InsertElement && isConstant && 47 isa<ConstantInt>(I->getOperand(2))) 48 return true; 49 if (I->getOpcode() == Instruction::Load && I->hasOneUse()) 50 return true; 51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) 52 if (BO->hasOneUse() && 53 (cheapToScalarize(BO->getOperand(0), isConstant) || 54 cheapToScalarize(BO->getOperand(1), isConstant))) 55 return true; 56 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 57 if (CI->hasOneUse() && 58 (cheapToScalarize(CI->getOperand(0), isConstant) || 59 cheapToScalarize(CI->getOperand(1), isConstant))) 60 return true; 61 62 return false; 63 } 64 65 // If we have a PHI node with a vector type that has only 2 uses: feed 66 // itself and be an operand of extractelement at a constant location, 67 // try to replace the PHI of the vector type with a PHI of a scalar type. 68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 69 // Verify that the PHI node has exactly 2 uses. Otherwise return NULL. 70 if (!PN->hasNUses(2)) 71 return nullptr; 72 73 // If so, it's known at this point that one operand is PHI and the other is 74 // an extractelement node. Find the PHI user that is not the extractelement 75 // node. 76 auto iu = PN->user_begin(); 77 Instruction *PHIUser = dyn_cast<Instruction>(*iu); 78 if (PHIUser == cast<Instruction>(&EI)) 79 PHIUser = cast<Instruction>(*(++iu)); 80 81 // Verify that this PHI user has one use, which is the PHI itself, 82 // and that it is a binary operation which is cheap to scalarize. 83 // otherwise return NULL. 84 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 85 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 86 return nullptr; 87 88 // Create a scalar PHI node that will replace the vector PHI node 89 // just before the current PHI node. 90 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 91 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 92 // Scalarize each PHI operand. 93 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 94 Value *PHIInVal = PN->getIncomingValue(i); 95 BasicBlock *inBB = PN->getIncomingBlock(i); 96 Value *Elt = EI.getIndexOperand(); 97 // If the operand is the PHI induction variable: 98 if (PHIInVal == PHIUser) { 99 // Scalarize the binary operation. Its first operand is the 100 // scalar PHI, and the second operand is extracted from the other 101 // vector operand. 102 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 103 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 104 Value *Op = InsertNewInstWith( 105 ExtractElementInst::Create(B0->getOperand(opId), Elt, 106 B0->getOperand(opId)->getName() + ".Elt"), 107 *B0); 108 Value *newPHIUser = InsertNewInstWith( 109 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 110 scalarPHI, Op, B0), *B0); 111 scalarPHI->addIncoming(newPHIUser, inBB); 112 } else { 113 // Scalarize PHI input: 114 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 115 // Insert the new instruction into the predecessor basic block. 116 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 117 BasicBlock::iterator InsertPos; 118 if (pos && !isa<PHINode>(pos)) { 119 InsertPos = ++pos->getIterator(); 120 } else { 121 InsertPos = inBB->getFirstInsertionPt(); 122 } 123 124 InsertNewInstWith(newEI, *InsertPos); 125 126 scalarPHI->addIncoming(newEI, inBB); 127 } 128 } 129 return replaceInstUsesWith(EI, scalarPHI); 130 } 131 132 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 133 if (Value *V = SimplifyExtractElementInst( 134 EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC)) 135 return replaceInstUsesWith(EI, V); 136 137 // If vector val is constant with all elements the same, replace EI with 138 // that element. We handle a known element # below. 139 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0))) 140 if (cheapToScalarize(C, false)) 141 return replaceInstUsesWith(EI, C->getAggregateElement(0U)); 142 143 // If extracting a specified index from the vector, see if we can recursively 144 // find a previously computed scalar that was inserted into the vector. 145 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) { 146 unsigned IndexVal = IdxC->getZExtValue(); 147 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); 148 149 // InstSimplify handles cases where the index is invalid. 150 assert(IndexVal < VectorWidth); 151 152 // This instruction only demands the single element from the input vector. 153 // If the input vector has a single use, simplify it based on this use 154 // property. 155 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { 156 APInt UndefElts(VectorWidth, 0); 157 APInt DemandedMask(VectorWidth, 0); 158 DemandedMask.setBit(IndexVal); 159 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, 160 UndefElts)) { 161 EI.setOperand(0, V); 162 return &EI; 163 } 164 } 165 166 // If this extractelement is directly using a bitcast from a vector of 167 // the same number of elements, see if we can find the source element from 168 // it. In this case, we will end up needing to bitcast the scalars. 169 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) { 170 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType())) 171 if (VT->getNumElements() == VectorWidth) 172 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal)) 173 return new BitCastInst(Elt, EI.getType()); 174 } 175 176 // If there's a vector PHI feeding a scalar use through this extractelement 177 // instruction, try to scalarize the PHI. 178 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) { 179 Instruction *scalarPHI = scalarizePHI(EI, PN); 180 if (scalarPHI) 181 return scalarPHI; 182 } 183 } 184 185 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) { 186 // Push extractelement into predecessor operation if legal and 187 // profitable to do so. 188 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 189 if (I->hasOneUse() && 190 cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) { 191 Value *newEI0 = 192 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), 193 EI.getName()+".lhs"); 194 Value *newEI1 = 195 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), 196 EI.getName()+".rhs"); 197 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), 198 newEI0, newEI1, BO); 199 } 200 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) { 201 // Extracting the inserted element? 202 if (IE->getOperand(2) == EI.getOperand(1)) 203 return replaceInstUsesWith(EI, IE->getOperand(1)); 204 // If the inserted and extracted elements are constants, they must not 205 // be the same value, extract from the pre-inserted value instead. 206 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) { 207 Worklist.AddValue(EI.getOperand(0)); 208 EI.setOperand(0, IE->getOperand(0)); 209 return &EI; 210 } 211 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 212 // If this is extracting an element from a shufflevector, figure out where 213 // it came from and extract from the appropriate input element instead. 214 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) { 215 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 216 Value *Src; 217 unsigned LHSWidth = 218 SVI->getOperand(0)->getType()->getVectorNumElements(); 219 220 if (SrcIdx < 0) 221 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 222 if (SrcIdx < (int)LHSWidth) 223 Src = SVI->getOperand(0); 224 else { 225 SrcIdx -= LHSWidth; 226 Src = SVI->getOperand(1); 227 } 228 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 229 return ExtractElementInst::Create(Src, 230 ConstantInt::get(Int32Ty, 231 SrcIdx, false)); 232 } 233 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 234 // Canonicalize extractelement(cast) -> cast(extractelement). 235 // Bitcasts can change the number of vector elements, and they cost 236 // nothing. 237 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 238 Value *EE = Builder->CreateExtractElement(CI->getOperand(0), 239 EI.getIndexOperand()); 240 Worklist.AddValue(EE); 241 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 242 } 243 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 244 if (SI->hasOneUse()) { 245 // TODO: For a select on vectors, it might be useful to do this if it 246 // has multiple extractelement uses. For vector select, that seems to 247 // fight the vectorizer. 248 249 // If we are extracting an element from a vector select or a select on 250 // vectors, create a select on the scalars extracted from the vector 251 // arguments. 252 Value *TrueVal = SI->getTrueValue(); 253 Value *FalseVal = SI->getFalseValue(); 254 255 Value *Cond = SI->getCondition(); 256 if (Cond->getType()->isVectorTy()) { 257 Cond = Builder->CreateExtractElement(Cond, 258 EI.getIndexOperand(), 259 Cond->getName() + ".elt"); 260 } 261 262 Value *V1Elem 263 = Builder->CreateExtractElement(TrueVal, 264 EI.getIndexOperand(), 265 TrueVal->getName() + ".elt"); 266 267 Value *V2Elem 268 = Builder->CreateExtractElement(FalseVal, 269 EI.getIndexOperand(), 270 FalseVal->getName() + ".elt"); 271 return SelectInst::Create(Cond, 272 V1Elem, 273 V2Elem, 274 SI->getName() + ".elt"); 275 } 276 } 277 } 278 return nullptr; 279 } 280 281 /// If V is a shuffle of values that ONLY returns elements from either LHS or 282 /// RHS, return the shuffle mask and true. Otherwise, return false. 283 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 284 SmallVectorImpl<Constant*> &Mask) { 285 assert(LHS->getType() == RHS->getType() && 286 "Invalid CollectSingleShuffleElements"); 287 unsigned NumElts = V->getType()->getVectorNumElements(); 288 289 if (isa<UndefValue>(V)) { 290 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 291 return true; 292 } 293 294 if (V == LHS) { 295 for (unsigned i = 0; i != NumElts; ++i) 296 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 297 return true; 298 } 299 300 if (V == RHS) { 301 for (unsigned i = 0; i != NumElts; ++i) 302 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 303 i+NumElts)); 304 return true; 305 } 306 307 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 308 // If this is an insert of an extract from some other vector, include it. 309 Value *VecOp = IEI->getOperand(0); 310 Value *ScalarOp = IEI->getOperand(1); 311 Value *IdxOp = IEI->getOperand(2); 312 313 if (!isa<ConstantInt>(IdxOp)) 314 return false; 315 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 316 317 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 318 // We can handle this if the vector we are inserting into is 319 // transitively ok. 320 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 321 // If so, update the mask to reflect the inserted undef. 322 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 323 return true; 324 } 325 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 326 if (isa<ConstantInt>(EI->getOperand(1))) { 327 unsigned ExtractedIdx = 328 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 329 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 330 331 // This must be extracting from either LHS or RHS. 332 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 333 // We can handle this if the vector we are inserting into is 334 // transitively ok. 335 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 336 // If so, update the mask to reflect the inserted value. 337 if (EI->getOperand(0) == LHS) { 338 Mask[InsertedIdx % NumElts] = 339 ConstantInt::get(Type::getInt32Ty(V->getContext()), 340 ExtractedIdx); 341 } else { 342 assert(EI->getOperand(0) == RHS); 343 Mask[InsertedIdx % NumElts] = 344 ConstantInt::get(Type::getInt32Ty(V->getContext()), 345 ExtractedIdx + NumLHSElts); 346 } 347 return true; 348 } 349 } 350 } 351 } 352 } 353 354 return false; 355 } 356 357 /// If we have insertion into a vector that is wider than the vector that we 358 /// are extracting from, try to widen the source vector to allow a single 359 /// shufflevector to replace one or more insert/extract pairs. 360 static void replaceExtractElements(InsertElementInst *InsElt, 361 ExtractElementInst *ExtElt, 362 InstCombiner &IC) { 363 VectorType *InsVecType = InsElt->getType(); 364 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 365 unsigned NumInsElts = InsVecType->getVectorNumElements(); 366 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 367 368 // The inserted-to vector must be wider than the extracted-from vector. 369 if (InsVecType->getElementType() != ExtVecType->getElementType() || 370 NumExtElts >= NumInsElts) 371 return; 372 373 // Create a shuffle mask to widen the extended-from vector using undefined 374 // values. The mask selects all of the values of the original vector followed 375 // by as many undefined values as needed to create a vector of the same length 376 // as the inserted-to vector. 377 SmallVector<Constant *, 16> ExtendMask; 378 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 379 for (unsigned i = 0; i < NumExtElts; ++i) 380 ExtendMask.push_back(ConstantInt::get(IntType, i)); 381 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 382 ExtendMask.push_back(UndefValue::get(IntType)); 383 384 Value *ExtVecOp = ExtElt->getVectorOperand(); 385 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 386 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 387 ? ExtVecOpInst->getParent() 388 : ExtElt->getParent(); 389 390 // TODO: This restriction matches the basic block check below when creating 391 // new extractelement instructions. If that limitation is removed, this one 392 // could also be removed. But for now, we just bail out to ensure that we 393 // will replace the extractelement instruction that is feeding our 394 // insertelement instruction. This allows the insertelement to then be 395 // replaced by a shufflevector. If the insertelement is not replaced, we can 396 // induce infinite looping because there's an optimization for extractelement 397 // that will delete our widening shuffle. This would trigger another attempt 398 // here to create that shuffle, and we spin forever. 399 if (InsertionBlock != InsElt->getParent()) 400 return; 401 402 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 403 ConstantVector::get(ExtendMask)); 404 405 // Insert the new shuffle after the vector operand of the extract is defined 406 // (as long as it's not a PHI) or at the start of the basic block of the 407 // extract, so any subsequent extracts in the same basic block can use it. 408 // TODO: Insert before the earliest ExtractElementInst that is replaced. 409 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 410 WideVec->insertAfter(ExtVecOpInst); 411 else 412 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 413 414 // Replace extracts from the original narrow vector with extracts from the new 415 // wide vector. 416 for (User *U : ExtVecOp->users()) { 417 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 418 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 419 continue; 420 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 421 NewExt->insertAfter(WideVec); 422 IC.replaceInstUsesWith(*OldExt, NewExt); 423 } 424 } 425 426 /// We are building a shuffle to create V, which is a sequence of insertelement, 427 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 428 /// not rely on the second vector source. Return a std::pair containing the 429 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 430 /// parameter as required. 431 /// 432 /// Note: we intentionally don't try to fold earlier shuffles since they have 433 /// often been chosen carefully to be efficiently implementable on the target. 434 typedef std::pair<Value *, Value *> ShuffleOps; 435 436 static ShuffleOps collectShuffleElements(Value *V, 437 SmallVectorImpl<Constant *> &Mask, 438 Value *PermittedRHS, 439 InstCombiner &IC) { 440 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 441 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 442 443 if (isa<UndefValue>(V)) { 444 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 445 return std::make_pair( 446 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 447 } 448 449 if (isa<ConstantAggregateZero>(V)) { 450 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 451 return std::make_pair(V, nullptr); 452 } 453 454 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 455 // If this is an insert of an extract from some other vector, include it. 456 Value *VecOp = IEI->getOperand(0); 457 Value *ScalarOp = IEI->getOperand(1); 458 Value *IdxOp = IEI->getOperand(2); 459 460 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 461 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 462 unsigned ExtractedIdx = 463 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 464 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 465 466 // Either the extracted from or inserted into vector must be RHSVec, 467 // otherwise we'd end up with a shuffle of three inputs. 468 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 469 Value *RHS = EI->getOperand(0); 470 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 471 assert(LR.second == nullptr || LR.second == RHS); 472 473 if (LR.first->getType() != RHS->getType()) { 474 // Although we are giving up for now, see if we can create extracts 475 // that match the inserts for another round of combining. 476 replaceExtractElements(IEI, EI, IC); 477 478 // We tried our best, but we can't find anything compatible with RHS 479 // further up the chain. Return a trivial shuffle. 480 for (unsigned i = 0; i < NumElts; ++i) 481 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 482 return std::make_pair(V, nullptr); 483 } 484 485 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 486 Mask[InsertedIdx % NumElts] = 487 ConstantInt::get(Type::getInt32Ty(V->getContext()), 488 NumLHSElts+ExtractedIdx); 489 return std::make_pair(LR.first, RHS); 490 } 491 492 if (VecOp == PermittedRHS) { 493 // We've gone as far as we can: anything on the other side of the 494 // extractelement will already have been converted into a shuffle. 495 unsigned NumLHSElts = 496 EI->getOperand(0)->getType()->getVectorNumElements(); 497 for (unsigned i = 0; i != NumElts; ++i) 498 Mask.push_back(ConstantInt::get( 499 Type::getInt32Ty(V->getContext()), 500 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 501 return std::make_pair(EI->getOperand(0), PermittedRHS); 502 } 503 504 // If this insertelement is a chain that comes from exactly these two 505 // vectors, return the vector and the effective shuffle. 506 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 507 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 508 Mask)) 509 return std::make_pair(EI->getOperand(0), PermittedRHS); 510 } 511 } 512 } 513 514 // Otherwise, we can't do anything fancy. Return an identity vector. 515 for (unsigned i = 0; i != NumElts; ++i) 516 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 517 return std::make_pair(V, nullptr); 518 } 519 520 /// Try to find redundant insertvalue instructions, like the following ones: 521 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 522 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 523 /// Here the second instruction inserts values at the same indices, as the 524 /// first one, making the first one redundant. 525 /// It should be transformed to: 526 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 527 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 528 bool IsRedundant = false; 529 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 530 531 // If there is a chain of insertvalue instructions (each of them except the 532 // last one has only one use and it's another insertvalue insn from this 533 // chain), check if any of the 'children' uses the same indices as the first 534 // instruction. In this case, the first one is redundant. 535 Value *V = &I; 536 unsigned Depth = 0; 537 while (V->hasOneUse() && Depth < 10) { 538 User *U = V->user_back(); 539 auto UserInsInst = dyn_cast<InsertValueInst>(U); 540 if (!UserInsInst || U->getOperand(0) != V) 541 break; 542 if (UserInsInst->getIndices() == FirstIndices) { 543 IsRedundant = true; 544 break; 545 } 546 V = UserInsInst; 547 Depth++; 548 } 549 550 if (IsRedundant) 551 return replaceInstUsesWith(I, I.getOperand(0)); 552 return nullptr; 553 } 554 555 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 556 Value *VecOp = IE.getOperand(0); 557 Value *ScalarOp = IE.getOperand(1); 558 Value *IdxOp = IE.getOperand(2); 559 560 // Inserting an undef or into an undefined place, remove this. 561 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp)) 562 replaceInstUsesWith(IE, VecOp); 563 564 // If the inserted element was extracted from some other vector, and if the 565 // indexes are constant, try to turn this into a shufflevector operation. 566 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 567 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 568 unsigned NumInsertVectorElts = IE.getType()->getNumElements(); 569 unsigned NumExtractVectorElts = 570 EI->getOperand(0)->getType()->getVectorNumElements(); 571 unsigned ExtractedIdx = 572 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 573 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 574 575 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract. 576 return replaceInstUsesWith(IE, VecOp); 577 578 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert. 579 return replaceInstUsesWith(IE, UndefValue::get(IE.getType())); 580 581 // If we are extracting a value from a vector, then inserting it right 582 // back into the same place, just use the input vector. 583 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) 584 return replaceInstUsesWith(IE, VecOp); 585 586 // If this insertelement isn't used by some other insertelement, turn it 587 // (and any insertelements it points to), into one big shuffle. 588 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) { 589 SmallVector<Constant*, 16> Mask; 590 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 591 592 // The proposed shuffle may be trivial, in which case we shouldn't 593 // perform the combine. 594 if (LR.first != &IE && LR.second != &IE) { 595 // We now have a shuffle of LHS, RHS, Mask. 596 if (LR.second == nullptr) 597 LR.second = UndefValue::get(LR.first->getType()); 598 return new ShuffleVectorInst(LR.first, LR.second, 599 ConstantVector::get(Mask)); 600 } 601 } 602 } 603 } 604 605 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements(); 606 APInt UndefElts(VWidth, 0); 607 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 608 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 609 if (V != &IE) 610 return replaceInstUsesWith(IE, V); 611 return &IE; 612 } 613 614 return nullptr; 615 } 616 617 /// Return true if we can evaluate the specified expression tree if the vector 618 /// elements were shuffled in a different order. 619 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask, 620 unsigned Depth = 5) { 621 // We can always reorder the elements of a constant. 622 if (isa<Constant>(V)) 623 return true; 624 625 // We won't reorder vector arguments. No IPO here. 626 Instruction *I = dyn_cast<Instruction>(V); 627 if (!I) return false; 628 629 // Two users may expect different orders of the elements. Don't try it. 630 if (!I->hasOneUse()) 631 return false; 632 633 if (Depth == 0) return false; 634 635 switch (I->getOpcode()) { 636 case Instruction::Add: 637 case Instruction::FAdd: 638 case Instruction::Sub: 639 case Instruction::FSub: 640 case Instruction::Mul: 641 case Instruction::FMul: 642 case Instruction::UDiv: 643 case Instruction::SDiv: 644 case Instruction::FDiv: 645 case Instruction::URem: 646 case Instruction::SRem: 647 case Instruction::FRem: 648 case Instruction::Shl: 649 case Instruction::LShr: 650 case Instruction::AShr: 651 case Instruction::And: 652 case Instruction::Or: 653 case Instruction::Xor: 654 case Instruction::ICmp: 655 case Instruction::FCmp: 656 case Instruction::Trunc: 657 case Instruction::ZExt: 658 case Instruction::SExt: 659 case Instruction::FPToUI: 660 case Instruction::FPToSI: 661 case Instruction::UIToFP: 662 case Instruction::SIToFP: 663 case Instruction::FPTrunc: 664 case Instruction::FPExt: 665 case Instruction::GetElementPtr: { 666 for (Value *Operand : I->operands()) { 667 if (!CanEvaluateShuffled(Operand, Mask, Depth-1)) 668 return false; 669 } 670 return true; 671 } 672 case Instruction::InsertElement: { 673 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 674 if (!CI) return false; 675 int ElementNumber = CI->getLimitedValue(); 676 677 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 678 // can't put an element into multiple indices. 679 bool SeenOnce = false; 680 for (int i = 0, e = Mask.size(); i != e; ++i) { 681 if (Mask[i] == ElementNumber) { 682 if (SeenOnce) 683 return false; 684 SeenOnce = true; 685 } 686 } 687 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1); 688 } 689 } 690 return false; 691 } 692 693 /// Rebuild a new instruction just like 'I' but with the new operands given. 694 /// In the event of type mismatch, the type of the operands is correct. 695 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 696 // We don't want to use the IRBuilder here because we want the replacement 697 // instructions to appear next to 'I', not the builder's insertion point. 698 switch (I->getOpcode()) { 699 case Instruction::Add: 700 case Instruction::FAdd: 701 case Instruction::Sub: 702 case Instruction::FSub: 703 case Instruction::Mul: 704 case Instruction::FMul: 705 case Instruction::UDiv: 706 case Instruction::SDiv: 707 case Instruction::FDiv: 708 case Instruction::URem: 709 case Instruction::SRem: 710 case Instruction::FRem: 711 case Instruction::Shl: 712 case Instruction::LShr: 713 case Instruction::AShr: 714 case Instruction::And: 715 case Instruction::Or: 716 case Instruction::Xor: { 717 BinaryOperator *BO = cast<BinaryOperator>(I); 718 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 719 BinaryOperator *New = 720 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 721 NewOps[0], NewOps[1], "", BO); 722 if (isa<OverflowingBinaryOperator>(BO)) { 723 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 724 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 725 } 726 if (isa<PossiblyExactOperator>(BO)) { 727 New->setIsExact(BO->isExact()); 728 } 729 if (isa<FPMathOperator>(BO)) 730 New->copyFastMathFlags(I); 731 return New; 732 } 733 case Instruction::ICmp: 734 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 735 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 736 NewOps[0], NewOps[1]); 737 case Instruction::FCmp: 738 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 739 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 740 NewOps[0], NewOps[1]); 741 case Instruction::Trunc: 742 case Instruction::ZExt: 743 case Instruction::SExt: 744 case Instruction::FPToUI: 745 case Instruction::FPToSI: 746 case Instruction::UIToFP: 747 case Instruction::SIToFP: 748 case Instruction::FPTrunc: 749 case Instruction::FPExt: { 750 // It's possible that the mask has a different number of elements from 751 // the original cast. We recompute the destination type to match the mask. 752 Type *DestTy = 753 VectorType::get(I->getType()->getScalarType(), 754 NewOps[0]->getType()->getVectorNumElements()); 755 assert(NewOps.size() == 1 && "cast with #ops != 1"); 756 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 757 "", I); 758 } 759 case Instruction::GetElementPtr: { 760 Value *Ptr = NewOps[0]; 761 ArrayRef<Value*> Idx = NewOps.slice(1); 762 GetElementPtrInst *GEP = GetElementPtrInst::Create( 763 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 764 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 765 return GEP; 766 } 767 } 768 llvm_unreachable("failed to rebuild vector instructions"); 769 } 770 771 Value * 772 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 773 // Mask.size() does not need to be equal to the number of vector elements. 774 775 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 776 if (isa<UndefValue>(V)) { 777 return UndefValue::get(VectorType::get(V->getType()->getScalarType(), 778 Mask.size())); 779 } 780 if (isa<ConstantAggregateZero>(V)) { 781 return ConstantAggregateZero::get( 782 VectorType::get(V->getType()->getScalarType(), 783 Mask.size())); 784 } 785 if (Constant *C = dyn_cast<Constant>(V)) { 786 SmallVector<Constant *, 16> MaskValues; 787 for (int i = 0, e = Mask.size(); i != e; ++i) { 788 if (Mask[i] == -1) 789 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty())); 790 else 791 MaskValues.push_back(Builder->getInt32(Mask[i])); 792 } 793 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 794 ConstantVector::get(MaskValues)); 795 } 796 797 Instruction *I = cast<Instruction>(V); 798 switch (I->getOpcode()) { 799 case Instruction::Add: 800 case Instruction::FAdd: 801 case Instruction::Sub: 802 case Instruction::FSub: 803 case Instruction::Mul: 804 case Instruction::FMul: 805 case Instruction::UDiv: 806 case Instruction::SDiv: 807 case Instruction::FDiv: 808 case Instruction::URem: 809 case Instruction::SRem: 810 case Instruction::FRem: 811 case Instruction::Shl: 812 case Instruction::LShr: 813 case Instruction::AShr: 814 case Instruction::And: 815 case Instruction::Or: 816 case Instruction::Xor: 817 case Instruction::ICmp: 818 case Instruction::FCmp: 819 case Instruction::Trunc: 820 case Instruction::ZExt: 821 case Instruction::SExt: 822 case Instruction::FPToUI: 823 case Instruction::FPToSI: 824 case Instruction::UIToFP: 825 case Instruction::SIToFP: 826 case Instruction::FPTrunc: 827 case Instruction::FPExt: 828 case Instruction::Select: 829 case Instruction::GetElementPtr: { 830 SmallVector<Value*, 8> NewOps; 831 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 832 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 833 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask); 834 NewOps.push_back(V); 835 NeedsRebuild |= (V != I->getOperand(i)); 836 } 837 if (NeedsRebuild) { 838 return buildNew(I, NewOps); 839 } 840 return I; 841 } 842 case Instruction::InsertElement: { 843 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 844 845 // The insertelement was inserting at Element. Figure out which element 846 // that becomes after shuffling. The answer is guaranteed to be unique 847 // by CanEvaluateShuffled. 848 bool Found = false; 849 int Index = 0; 850 for (int e = Mask.size(); Index != e; ++Index) { 851 if (Mask[Index] == Element) { 852 Found = true; 853 break; 854 } 855 } 856 857 // If element is not in Mask, no need to handle the operand 1 (element to 858 // be inserted). Just evaluate values in operand 0 according to Mask. 859 if (!Found) 860 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 861 862 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask); 863 return InsertElementInst::Create(V, I->getOperand(1), 864 Builder->getInt32(Index), "", I); 865 } 866 } 867 llvm_unreachable("failed to reorder elements of vector instruction!"); 868 } 869 870 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, 871 bool &isLHSID, bool &isRHSID) { 872 isLHSID = isRHSID = true; 873 874 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 875 if (Mask[i] < 0) continue; // Ignore undef values. 876 // Is this an identity shuffle of the LHS value? 877 isLHSID &= (Mask[i] == (int)i); 878 879 // Is this an identity shuffle of the RHS value? 880 isRHSID &= (Mask[i]-e == i); 881 } 882 } 883 884 // Returns true if the shuffle is extracting a contiguous range of values from 885 // LHS, for example: 886 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 887 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 888 // Shuffles to: |EE|FF|GG|HH| 889 // +--+--+--+--+ 890 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 891 SmallVector<int, 16> &Mask) { 892 unsigned LHSElems = 893 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 894 unsigned MaskElems = Mask.size(); 895 unsigned BegIdx = Mask.front(); 896 unsigned EndIdx = Mask.back(); 897 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 898 return false; 899 for (unsigned I = 0; I != MaskElems; ++I) 900 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 901 return false; 902 return true; 903 } 904 905 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 906 Value *LHS = SVI.getOperand(0); 907 Value *RHS = SVI.getOperand(1); 908 SmallVector<int, 16> Mask = SVI.getShuffleMask(); 909 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 910 911 bool MadeChange = false; 912 913 // Undefined shuffle mask -> undefined value. 914 if (isa<UndefValue>(SVI.getOperand(2))) 915 return replaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); 916 917 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements(); 918 919 APInt UndefElts(VWidth, 0); 920 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 921 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 922 if (V != &SVI) 923 return replaceInstUsesWith(SVI, V); 924 LHS = SVI.getOperand(0); 925 RHS = SVI.getOperand(1); 926 MadeChange = true; 927 } 928 929 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 930 931 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') 932 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). 933 if (LHS == RHS || isa<UndefValue>(LHS)) { 934 if (isa<UndefValue>(LHS) && LHS == RHS) { 935 // shuffle(undef,undef,mask) -> undef. 936 Value *Result = (VWidth == LHSWidth) 937 ? LHS : UndefValue::get(SVI.getType()); 938 return replaceInstUsesWith(SVI, Result); 939 } 940 941 // Remap any references to RHS to use LHS. 942 SmallVector<Constant*, 16> Elts; 943 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { 944 if (Mask[i] < 0) { 945 Elts.push_back(UndefValue::get(Int32Ty)); 946 continue; 947 } 948 949 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || 950 (Mask[i] < (int)e && isa<UndefValue>(LHS))) { 951 Mask[i] = -1; // Turn into undef. 952 Elts.push_back(UndefValue::get(Int32Ty)); 953 } else { 954 Mask[i] = Mask[i] % e; // Force to LHS. 955 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); 956 } 957 } 958 SVI.setOperand(0, SVI.getOperand(1)); 959 SVI.setOperand(1, UndefValue::get(RHS->getType())); 960 SVI.setOperand(2, ConstantVector::get(Elts)); 961 LHS = SVI.getOperand(0); 962 RHS = SVI.getOperand(1); 963 MadeChange = true; 964 } 965 966 if (VWidth == LHSWidth) { 967 // Analyze the shuffle, are the LHS or RHS and identity shuffles? 968 bool isLHSID, isRHSID; 969 recognizeIdentityMask(Mask, isLHSID, isRHSID); 970 971 // Eliminate identity shuffles. 972 if (isLHSID) return replaceInstUsesWith(SVI, LHS); 973 if (isRHSID) return replaceInstUsesWith(SVI, RHS); 974 } 975 976 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) { 977 Value *V = EvaluateInDifferentElementOrder(LHS, Mask); 978 return replaceInstUsesWith(SVI, V); 979 } 980 981 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 982 // a non-vector type. We can instead bitcast the original vector followed by 983 // an extract of the desired element: 984 // 985 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 986 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 987 // %1 = bitcast <4 x i8> %sroa to i32 988 // Becomes: 989 // %bc = bitcast <16 x i8> %in to <4 x i32> 990 // %ext = extractelement <4 x i32> %bc, i32 0 991 // 992 // If the shuffle is extracting a contiguous range of values from the input 993 // vector then each use which is a bitcast of the extracted size can be 994 // replaced. This will work if the vector types are compatible, and the begin 995 // index is aligned to a value in the casted vector type. If the begin index 996 // isn't aligned then we can shuffle the original vector (keeping the same 997 // vector type) before extracting. 998 // 999 // This code will bail out if the target type is fundamentally incompatible 1000 // with vectors of the source type. 1001 // 1002 // Example of <16 x i8>, target type i32: 1003 // Index range [4,8): v-----------v Will work. 1004 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1005 // <16 x i8>: | | | | | | | | | | | | | | | | | 1006 // <4 x i32>: | | | | | 1007 // +-----------+-----------+-----------+-----------+ 1008 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1009 // Target type i40: ^--------------^ Won't work, bail. 1010 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1011 Value *V = LHS; 1012 unsigned MaskElems = Mask.size(); 1013 unsigned BegIdx = Mask.front(); 1014 VectorType *SrcTy = cast<VectorType>(V->getType()); 1015 unsigned VecBitWidth = SrcTy->getBitWidth(); 1016 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1017 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1018 unsigned SrcNumElems = SrcTy->getNumElements(); 1019 SmallVector<BitCastInst *, 8> BCs; 1020 DenseMap<Type *, Value *> NewBCs; 1021 for (User *U : SVI.users()) 1022 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1023 if (!BC->use_empty()) 1024 // Only visit bitcasts that weren't previously handled. 1025 BCs.push_back(BC); 1026 for (BitCastInst *BC : BCs) { 1027 Type *TgtTy = BC->getDestTy(); 1028 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 1029 if (!TgtElemBitWidth) 1030 continue; 1031 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 1032 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 1033 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 1034 if (!VecBitWidthsEqual) 1035 continue; 1036 if (!VectorType::isValidElementType(TgtTy)) 1037 continue; 1038 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 1039 if (!BegIsAligned) { 1040 // Shuffle the input so [0,NumElements) contains the output, and 1041 // [NumElems,SrcNumElems) is undef. 1042 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 1043 UndefValue::get(Int32Ty)); 1044 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 1045 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 1046 V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()), 1047 ConstantVector::get(ShuffleMask), 1048 SVI.getName() + ".extract"); 1049 BegIdx = 0; 1050 } 1051 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 1052 assert(SrcElemsPerTgtElem); 1053 BegIdx /= SrcElemsPerTgtElem; 1054 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 1055 auto *NewBC = 1056 BCAlreadyExists 1057 ? NewBCs[CastSrcTy] 1058 : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 1059 if (!BCAlreadyExists) 1060 NewBCs[CastSrcTy] = NewBC; 1061 auto *Ext = Builder->CreateExtractElement( 1062 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 1063 // The shufflevector isn't being replaced: the bitcast that used it 1064 // is. InstCombine will visit the newly-created instructions. 1065 replaceInstUsesWith(*BC, Ext); 1066 MadeChange = true; 1067 } 1068 } 1069 1070 // If the LHS is a shufflevector itself, see if we can combine it with this 1071 // one without producing an unusual shuffle. 1072 // Cases that might be simplified: 1073 // 1. 1074 // x1=shuffle(v1,v2,mask1) 1075 // x=shuffle(x1,undef,mask) 1076 // ==> 1077 // x=shuffle(v1,undef,newMask) 1078 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 1079 // 2. 1080 // x1=shuffle(v1,undef,mask1) 1081 // x=shuffle(x1,x2,mask) 1082 // where v1.size() == mask1.size() 1083 // ==> 1084 // x=shuffle(v1,x2,newMask) 1085 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 1086 // 3. 1087 // x2=shuffle(v2,undef,mask2) 1088 // x=shuffle(x1,x2,mask) 1089 // where v2.size() == mask2.size() 1090 // ==> 1091 // x=shuffle(x1,v2,newMask) 1092 // newMask[i] = (mask[i] < x1.size()) 1093 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 1094 // 4. 1095 // x1=shuffle(v1,undef,mask1) 1096 // x2=shuffle(v2,undef,mask2) 1097 // x=shuffle(x1,x2,mask) 1098 // where v1.size() == v2.size() 1099 // ==> 1100 // x=shuffle(v1,v2,newMask) 1101 // newMask[i] = (mask[i] < x1.size()) 1102 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 1103 // 1104 // Here we are really conservative: 1105 // we are absolutely afraid of producing a shuffle mask not in the input 1106 // program, because the code gen may not be smart enough to turn a merged 1107 // shuffle into two specific shuffles: it may produce worse code. As such, 1108 // we only merge two shuffles if the result is either a splat or one of the 1109 // input shuffle masks. In this case, merging the shuffles just removes 1110 // one instruction, which we know is safe. This is good for things like 1111 // turning: (splat(splat)) -> splat, or 1112 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 1113 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 1114 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 1115 if (LHSShuffle) 1116 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 1117 LHSShuffle = nullptr; 1118 if (RHSShuffle) 1119 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 1120 RHSShuffle = nullptr; 1121 if (!LHSShuffle && !RHSShuffle) 1122 return MadeChange ? &SVI : nullptr; 1123 1124 Value* LHSOp0 = nullptr; 1125 Value* LHSOp1 = nullptr; 1126 Value* RHSOp0 = nullptr; 1127 unsigned LHSOp0Width = 0; 1128 unsigned RHSOp0Width = 0; 1129 if (LHSShuffle) { 1130 LHSOp0 = LHSShuffle->getOperand(0); 1131 LHSOp1 = LHSShuffle->getOperand(1); 1132 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 1133 } 1134 if (RHSShuffle) { 1135 RHSOp0 = RHSShuffle->getOperand(0); 1136 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 1137 } 1138 Value* newLHS = LHS; 1139 Value* newRHS = RHS; 1140 if (LHSShuffle) { 1141 // case 1 1142 if (isa<UndefValue>(RHS)) { 1143 newLHS = LHSOp0; 1144 newRHS = LHSOp1; 1145 } 1146 // case 2 or 4 1147 else if (LHSOp0Width == LHSWidth) { 1148 newLHS = LHSOp0; 1149 } 1150 } 1151 // case 3 or 4 1152 if (RHSShuffle && RHSOp0Width == LHSWidth) { 1153 newRHS = RHSOp0; 1154 } 1155 // case 4 1156 if (LHSOp0 == RHSOp0) { 1157 newLHS = LHSOp0; 1158 newRHS = nullptr; 1159 } 1160 1161 if (newLHS == LHS && newRHS == RHS) 1162 return MadeChange ? &SVI : nullptr; 1163 1164 SmallVector<int, 16> LHSMask; 1165 SmallVector<int, 16> RHSMask; 1166 if (newLHS != LHS) 1167 LHSMask = LHSShuffle->getShuffleMask(); 1168 if (RHSShuffle && newRHS != RHS) 1169 RHSMask = RHSShuffle->getShuffleMask(); 1170 1171 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 1172 SmallVector<int, 16> newMask; 1173 bool isSplat = true; 1174 int SplatElt = -1; 1175 // Create a new mask for the new ShuffleVectorInst so that the new 1176 // ShuffleVectorInst is equivalent to the original one. 1177 for (unsigned i = 0; i < VWidth; ++i) { 1178 int eltMask; 1179 if (Mask[i] < 0) { 1180 // This element is an undef value. 1181 eltMask = -1; 1182 } else if (Mask[i] < (int)LHSWidth) { 1183 // This element is from left hand side vector operand. 1184 // 1185 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 1186 // new mask value for the element. 1187 if (newLHS != LHS) { 1188 eltMask = LHSMask[Mask[i]]; 1189 // If the value selected is an undef value, explicitly specify it 1190 // with a -1 mask value. 1191 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 1192 eltMask = -1; 1193 } else 1194 eltMask = Mask[i]; 1195 } else { 1196 // This element is from right hand side vector operand 1197 // 1198 // If the value selected is an undef value, explicitly specify it 1199 // with a -1 mask value. (case 1) 1200 if (isa<UndefValue>(RHS)) 1201 eltMask = -1; 1202 // If RHS is going to be replaced (case 3 or 4), calculate the 1203 // new mask value for the element. 1204 else if (newRHS != RHS) { 1205 eltMask = RHSMask[Mask[i]-LHSWidth]; 1206 // If the value selected is an undef value, explicitly specify it 1207 // with a -1 mask value. 1208 if (eltMask >= (int)RHSOp0Width) { 1209 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 1210 && "should have been check above"); 1211 eltMask = -1; 1212 } 1213 } else 1214 eltMask = Mask[i]-LHSWidth; 1215 1216 // If LHS's width is changed, shift the mask value accordingly. 1217 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any 1218 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 1219 // If newRHS == newLHS, we want to remap any references from newRHS to 1220 // newLHS so that we can properly identify splats that may occur due to 1221 // obfuscation across the two vectors. 1222 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 1223 eltMask += newLHSWidth; 1224 } 1225 1226 // Check if this could still be a splat. 1227 if (eltMask >= 0) { 1228 if (SplatElt >= 0 && SplatElt != eltMask) 1229 isSplat = false; 1230 SplatElt = eltMask; 1231 } 1232 1233 newMask.push_back(eltMask); 1234 } 1235 1236 // If the result mask is equal to one of the original shuffle masks, 1237 // or is a splat, do the replacement. 1238 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 1239 SmallVector<Constant*, 16> Elts; 1240 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 1241 if (newMask[i] < 0) { 1242 Elts.push_back(UndefValue::get(Int32Ty)); 1243 } else { 1244 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 1245 } 1246 } 1247 if (!newRHS) 1248 newRHS = UndefValue::get(newLHS->getType()); 1249 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 1250 } 1251 1252 // If the result mask is an identity, replace uses of this instruction with 1253 // corresponding argument. 1254 bool isLHSID, isRHSID; 1255 recognizeIdentityMask(newMask, isLHSID, isRHSID); 1256 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); 1257 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); 1258 1259 return MadeChange ? &SVI : nullptr; 1260 } 1261