1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 39 #include "llvm/Transforms/InstCombine/InstCombiner.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 STATISTIC(NumAggregateReconstructionsSimplified, 51 "Number of aggregate reconstructions turned into reuse of the " 52 "original aggregate"); 53 54 /// Return true if the value is cheaper to scalarize than it is to leave as a 55 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 56 /// one known element from a vector constant. 57 /// 58 /// FIXME: It's possible to create more instructions than previously existed. 59 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 60 // If we can pick a scalar constant value out of a vector, that is free. 61 if (auto *C = dyn_cast<Constant>(V)) 62 return IsConstantExtractIndex || C->getSplatValue(); 63 64 // An insertelement to the same constant index as our extract will simplify 65 // to the scalar inserted element. An insertelement to a different constant 66 // index is irrelevant to our extract. 67 if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))) 68 return IsConstantExtractIndex; 69 70 if (match(V, m_OneUse(m_Load(m_Value())))) 71 return true; 72 73 if (match(V, m_OneUse(m_UnOp()))) 74 return true; 75 76 Value *V0, *V1; 77 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 78 if (cheapToScalarize(V0, IsConstantExtractIndex) || 79 cheapToScalarize(V1, IsConstantExtractIndex)) 80 return true; 81 82 CmpInst::Predicate UnusedPred; 83 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 84 if (cheapToScalarize(V0, IsConstantExtractIndex) || 85 cheapToScalarize(V1, IsConstantExtractIndex)) 86 return true; 87 88 return false; 89 } 90 91 // If we have a PHI node with a vector type that is only used to feed 92 // itself and be an operand of extractelement at a constant location, 93 // try to replace the PHI of the vector type with a PHI of a scalar type. 94 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI, 95 PHINode *PN) { 96 SmallVector<Instruction *, 2> Extracts; 97 // The users we want the PHI to have are: 98 // 1) The EI ExtractElement (we already know this) 99 // 2) Possibly more ExtractElements with the same index. 100 // 3) Another operand, which will feed back into the PHI. 101 Instruction *PHIUser = nullptr; 102 for (auto U : PN->users()) { 103 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 104 if (EI.getIndexOperand() == EU->getIndexOperand()) 105 Extracts.push_back(EU); 106 else 107 return nullptr; 108 } else if (!PHIUser) { 109 PHIUser = cast<Instruction>(U); 110 } else { 111 return nullptr; 112 } 113 } 114 115 if (!PHIUser) 116 return nullptr; 117 118 // Verify that this PHI user has one use, which is the PHI itself, 119 // and that it is a binary operation which is cheap to scalarize. 120 // otherwise return nullptr. 121 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 122 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 123 return nullptr; 124 125 // Create a scalar PHI node that will replace the vector PHI node 126 // just before the current PHI node. 127 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 128 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 129 // Scalarize each PHI operand. 130 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 131 Value *PHIInVal = PN->getIncomingValue(i); 132 BasicBlock *inBB = PN->getIncomingBlock(i); 133 Value *Elt = EI.getIndexOperand(); 134 // If the operand is the PHI induction variable: 135 if (PHIInVal == PHIUser) { 136 // Scalarize the binary operation. Its first operand is the 137 // scalar PHI, and the second operand is extracted from the other 138 // vector operand. 139 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 140 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 141 Value *Op = InsertNewInstWith( 142 ExtractElementInst::Create(B0->getOperand(opId), Elt, 143 B0->getOperand(opId)->getName() + ".Elt"), 144 *B0); 145 Value *newPHIUser = InsertNewInstWith( 146 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 147 scalarPHI, Op, B0), *B0); 148 scalarPHI->addIncoming(newPHIUser, inBB); 149 } else { 150 // Scalarize PHI input: 151 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 152 // Insert the new instruction into the predecessor basic block. 153 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 154 BasicBlock::iterator InsertPos; 155 if (pos && !isa<PHINode>(pos)) { 156 InsertPos = ++pos->getIterator(); 157 } else { 158 InsertPos = inBB->getFirstInsertionPt(); 159 } 160 161 InsertNewInstWith(newEI, *InsertPos); 162 163 scalarPHI->addIncoming(newEI, inBB); 164 } 165 } 166 167 for (auto E : Extracts) 168 replaceInstUsesWith(*E, scalarPHI); 169 170 return &EI; 171 } 172 173 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 174 InstCombiner::BuilderTy &Builder, 175 bool IsBigEndian) { 176 Value *X; 177 uint64_t ExtIndexC; 178 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 179 !X->getType()->isVectorTy() || 180 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 181 return nullptr; 182 183 // If this extractelement is using a bitcast from a vector of the same number 184 // of elements, see if we can find the source element from the source vector: 185 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 186 auto *SrcTy = cast<VectorType>(X->getType()); 187 Type *DestTy = Ext.getType(); 188 unsigned NumSrcElts = SrcTy->getNumElements(); 189 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 190 if (NumSrcElts == NumElts) 191 if (Value *Elt = findScalarElement(X, ExtIndexC)) 192 return new BitCastInst(Elt, DestTy); 193 194 // If the source elements are wider than the destination, try to shift and 195 // truncate a subset of scalar bits of an insert op. 196 if (NumSrcElts < NumElts) { 197 Value *Scalar; 198 uint64_t InsIndexC; 199 if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar), 200 m_ConstantInt(InsIndexC)))) 201 return nullptr; 202 203 // The extract must be from the subset of vector elements that we inserted 204 // into. Example: if we inserted element 1 of a <2 x i64> and we are 205 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 206 // of elements 4-7 of the bitcasted vector. 207 unsigned NarrowingRatio = NumElts / NumSrcElts; 208 if (ExtIndexC / NarrowingRatio != InsIndexC) 209 return nullptr; 210 211 // We are extracting part of the original scalar. How that scalar is 212 // inserted into the vector depends on the endian-ness. Example: 213 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 214 // +--+--+--+--+--+--+--+--+ 215 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 216 // extelt <4 x i16> V', 3: | |S2|S3| 217 // +--+--+--+--+--+--+--+--+ 218 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 219 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 220 // In this example, we must right-shift little-endian. Big-endian is just a 221 // truncate. 222 unsigned Chunk = ExtIndexC % NarrowingRatio; 223 if (IsBigEndian) 224 Chunk = NarrowingRatio - 1 - Chunk; 225 226 // Bail out if this is an FP vector to FP vector sequence. That would take 227 // more instructions than we started with unless there is no shift, and it 228 // may not be handled as well in the backend. 229 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 230 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 231 if (NeedSrcBitcast && NeedDestBitcast) 232 return nullptr; 233 234 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 235 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 236 unsigned ShAmt = Chunk * DestWidth; 237 238 // TODO: This limitation is more strict than necessary. We could sum the 239 // number of new instructions and subtract the number eliminated to know if 240 // we can proceed. 241 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 242 if (NeedSrcBitcast || NeedDestBitcast) 243 return nullptr; 244 245 if (NeedSrcBitcast) { 246 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 247 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 248 } 249 250 if (ShAmt) { 251 // Bail out if we could end with more instructions than we started with. 252 if (!Ext.getVectorOperand()->hasOneUse()) 253 return nullptr; 254 Scalar = Builder.CreateLShr(Scalar, ShAmt); 255 } 256 257 if (NeedDestBitcast) { 258 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 259 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 260 } 261 return new TruncInst(Scalar, DestTy); 262 } 263 264 return nullptr; 265 } 266 267 /// Find elements of V demanded by UserInstr. 268 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 269 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 270 271 // Conservatively assume that all elements are needed. 272 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 273 274 switch (UserInstr->getOpcode()) { 275 case Instruction::ExtractElement: { 276 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 277 assert(EEI->getVectorOperand() == V); 278 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 279 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 280 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 281 } 282 break; 283 } 284 case Instruction::ShuffleVector: { 285 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 286 unsigned MaskNumElts = 287 cast<VectorType>(UserInstr->getType())->getNumElements(); 288 289 UsedElts = APInt(VWidth, 0); 290 for (unsigned i = 0; i < MaskNumElts; i++) { 291 unsigned MaskVal = Shuffle->getMaskValue(i); 292 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 293 continue; 294 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 295 UsedElts.setBit(MaskVal); 296 if (Shuffle->getOperand(1) == V && 297 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 298 UsedElts.setBit(MaskVal - VWidth); 299 } 300 break; 301 } 302 default: 303 break; 304 } 305 return UsedElts; 306 } 307 308 /// Find union of elements of V demanded by all its users. 309 /// If it is known by querying findDemandedEltsBySingleUser that 310 /// no user demands an element of V, then the corresponding bit 311 /// remains unset in the returned value. 312 static APInt findDemandedEltsByAllUsers(Value *V) { 313 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 314 315 APInt UnionUsedElts(VWidth, 0); 316 for (const Use &U : V->uses()) { 317 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 318 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 319 } else { 320 UnionUsedElts = APInt::getAllOnesValue(VWidth); 321 break; 322 } 323 324 if (UnionUsedElts.isAllOnesValue()) 325 break; 326 } 327 328 return UnionUsedElts; 329 } 330 331 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) { 332 Value *SrcVec = EI.getVectorOperand(); 333 Value *Index = EI.getIndexOperand(); 334 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 335 SQ.getWithInstruction(&EI))) 336 return replaceInstUsesWith(EI, V); 337 338 // If extracting a specified index from the vector, see if we can recursively 339 // find a previously computed scalar that was inserted into the vector. 340 auto *IndexC = dyn_cast<ConstantInt>(Index); 341 if (IndexC) { 342 ElementCount EC = EI.getVectorOperandType()->getElementCount(); 343 unsigned NumElts = EC.getKnownMinValue(); 344 345 // InstSimplify should handle cases where the index is invalid. 346 // For fixed-length vector, it's invalid to extract out-of-range element. 347 if (!EC.isScalable() && IndexC->getValue().uge(NumElts)) 348 return nullptr; 349 350 // This instruction only demands the single element from the input vector. 351 // Skip for scalable type, the number of elements is unknown at 352 // compile-time. 353 if (!EC.isScalable() && NumElts != 1) { 354 // If the input vector has a single use, simplify it based on this use 355 // property. 356 if (SrcVec->hasOneUse()) { 357 APInt UndefElts(NumElts, 0); 358 APInt DemandedElts(NumElts, 0); 359 DemandedElts.setBit(IndexC->getZExtValue()); 360 if (Value *V = 361 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 362 return replaceOperand(EI, 0, V); 363 } else { 364 // If the input vector has multiple uses, simplify it based on a union 365 // of all elements used. 366 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 367 if (!DemandedElts.isAllOnesValue()) { 368 APInt UndefElts(NumElts, 0); 369 if (Value *V = SimplifyDemandedVectorElts( 370 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 371 true /* AllowMultipleUsers */)) { 372 if (V != SrcVec) { 373 SrcVec->replaceAllUsesWith(V); 374 return &EI; 375 } 376 } 377 } 378 } 379 } 380 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 381 return I; 382 383 // If there's a vector PHI feeding a scalar use through this extractelement 384 // instruction, try to scalarize the PHI. 385 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 386 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 387 return ScalarPHI; 388 } 389 390 // TODO come up with a n-ary matcher that subsumes both unary and 391 // binary matchers. 392 UnaryOperator *UO; 393 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 394 // extelt (unop X), Index --> unop (extelt X, Index) 395 Value *X = UO->getOperand(0); 396 Value *E = Builder.CreateExtractElement(X, Index); 397 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 398 } 399 400 BinaryOperator *BO; 401 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 402 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 403 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 404 Value *E0 = Builder.CreateExtractElement(X, Index); 405 Value *E1 = Builder.CreateExtractElement(Y, Index); 406 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 407 } 408 409 Value *X, *Y; 410 CmpInst::Predicate Pred; 411 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 412 cheapToScalarize(SrcVec, IndexC)) { 413 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 414 Value *E0 = Builder.CreateExtractElement(X, Index); 415 Value *E1 = Builder.CreateExtractElement(Y, Index); 416 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 417 } 418 419 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 420 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 421 // Extracting the inserted element? 422 if (IE->getOperand(2) == Index) 423 return replaceInstUsesWith(EI, IE->getOperand(1)); 424 // If the inserted and extracted elements are constants, they must not 425 // be the same value, extract from the pre-inserted value instead. 426 if (isa<Constant>(IE->getOperand(2)) && IndexC) 427 return replaceOperand(EI, 0, IE->getOperand(0)); 428 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 429 // If this is extracting an element from a shufflevector, figure out where 430 // it came from and extract from the appropriate input element instead. 431 // Restrict the following transformation to fixed-length vector. 432 if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) { 433 int SrcIdx = 434 SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue()); 435 Value *Src; 436 unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType()) 437 ->getNumElements(); 438 439 if (SrcIdx < 0) 440 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 441 if (SrcIdx < (int)LHSWidth) 442 Src = SVI->getOperand(0); 443 else { 444 SrcIdx -= LHSWidth; 445 Src = SVI->getOperand(1); 446 } 447 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 448 return ExtractElementInst::Create( 449 Src, ConstantInt::get(Int32Ty, SrcIdx, false)); 450 } 451 } else if (auto *CI = dyn_cast<CastInst>(I)) { 452 // Canonicalize extractelement(cast) -> cast(extractelement). 453 // Bitcasts can change the number of vector elements, and they cost 454 // nothing. 455 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 456 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 457 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 458 } 459 } 460 } 461 return nullptr; 462 } 463 464 /// If V is a shuffle of values that ONLY returns elements from either LHS or 465 /// RHS, return the shuffle mask and true. Otherwise, return false. 466 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 467 SmallVectorImpl<int> &Mask) { 468 assert(LHS->getType() == RHS->getType() && 469 "Invalid CollectSingleShuffleElements"); 470 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 471 472 if (isa<UndefValue>(V)) { 473 Mask.assign(NumElts, -1); 474 return true; 475 } 476 477 if (V == LHS) { 478 for (unsigned i = 0; i != NumElts; ++i) 479 Mask.push_back(i); 480 return true; 481 } 482 483 if (V == RHS) { 484 for (unsigned i = 0; i != NumElts; ++i) 485 Mask.push_back(i + NumElts); 486 return true; 487 } 488 489 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 490 // If this is an insert of an extract from some other vector, include it. 491 Value *VecOp = IEI->getOperand(0); 492 Value *ScalarOp = IEI->getOperand(1); 493 Value *IdxOp = IEI->getOperand(2); 494 495 if (!isa<ConstantInt>(IdxOp)) 496 return false; 497 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 498 499 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 500 // We can handle this if the vector we are inserting into is 501 // transitively ok. 502 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 503 // If so, update the mask to reflect the inserted undef. 504 Mask[InsertedIdx] = -1; 505 return true; 506 } 507 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 508 if (isa<ConstantInt>(EI->getOperand(1))) { 509 unsigned ExtractedIdx = 510 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 511 unsigned NumLHSElts = 512 cast<VectorType>(LHS->getType())->getNumElements(); 513 514 // This must be extracting from either LHS or RHS. 515 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 516 // We can handle this if the vector we are inserting into is 517 // transitively ok. 518 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 519 // If so, update the mask to reflect the inserted value. 520 if (EI->getOperand(0) == LHS) { 521 Mask[InsertedIdx % NumElts] = ExtractedIdx; 522 } else { 523 assert(EI->getOperand(0) == RHS); 524 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts; 525 } 526 return true; 527 } 528 } 529 } 530 } 531 } 532 533 return false; 534 } 535 536 /// If we have insertion into a vector that is wider than the vector that we 537 /// are extracting from, try to widen the source vector to allow a single 538 /// shufflevector to replace one or more insert/extract pairs. 539 static void replaceExtractElements(InsertElementInst *InsElt, 540 ExtractElementInst *ExtElt, 541 InstCombinerImpl &IC) { 542 VectorType *InsVecType = InsElt->getType(); 543 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 544 unsigned NumInsElts = InsVecType->getNumElements(); 545 unsigned NumExtElts = ExtVecType->getNumElements(); 546 547 // The inserted-to vector must be wider than the extracted-from vector. 548 if (InsVecType->getElementType() != ExtVecType->getElementType() || 549 NumExtElts >= NumInsElts) 550 return; 551 552 // Create a shuffle mask to widen the extended-from vector using undefined 553 // values. The mask selects all of the values of the original vector followed 554 // by as many undefined values as needed to create a vector of the same length 555 // as the inserted-to vector. 556 SmallVector<int, 16> ExtendMask; 557 for (unsigned i = 0; i < NumExtElts; ++i) 558 ExtendMask.push_back(i); 559 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 560 ExtendMask.push_back(-1); 561 562 Value *ExtVecOp = ExtElt->getVectorOperand(); 563 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 564 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 565 ? ExtVecOpInst->getParent() 566 : ExtElt->getParent(); 567 568 // TODO: This restriction matches the basic block check below when creating 569 // new extractelement instructions. If that limitation is removed, this one 570 // could also be removed. But for now, we just bail out to ensure that we 571 // will replace the extractelement instruction that is feeding our 572 // insertelement instruction. This allows the insertelement to then be 573 // replaced by a shufflevector. If the insertelement is not replaced, we can 574 // induce infinite looping because there's an optimization for extractelement 575 // that will delete our widening shuffle. This would trigger another attempt 576 // here to create that shuffle, and we spin forever. 577 if (InsertionBlock != InsElt->getParent()) 578 return; 579 580 // TODO: This restriction matches the check in visitInsertElementInst() and 581 // prevents an infinite loop caused by not turning the extract/insert pair 582 // into a shuffle. We really should not need either check, but we're lacking 583 // folds for shufflevectors because we're afraid to generate shuffle masks 584 // that the backend can't handle. 585 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 586 return; 587 588 auto *WideVec = 589 new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), ExtendMask); 590 591 // Insert the new shuffle after the vector operand of the extract is defined 592 // (as long as it's not a PHI) or at the start of the basic block of the 593 // extract, so any subsequent extracts in the same basic block can use it. 594 // TODO: Insert before the earliest ExtractElementInst that is replaced. 595 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 596 WideVec->insertAfter(ExtVecOpInst); 597 else 598 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 599 600 // Replace extracts from the original narrow vector with extracts from the new 601 // wide vector. 602 for (User *U : ExtVecOp->users()) { 603 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 604 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 605 continue; 606 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 607 NewExt->insertAfter(OldExt); 608 IC.replaceInstUsesWith(*OldExt, NewExt); 609 } 610 } 611 612 /// We are building a shuffle to create V, which is a sequence of insertelement, 613 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 614 /// not rely on the second vector source. Return a std::pair containing the 615 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 616 /// parameter as required. 617 /// 618 /// Note: we intentionally don't try to fold earlier shuffles since they have 619 /// often been chosen carefully to be efficiently implementable on the target. 620 using ShuffleOps = std::pair<Value *, Value *>; 621 622 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask, 623 Value *PermittedRHS, 624 InstCombinerImpl &IC) { 625 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 626 unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements(); 627 628 if (isa<UndefValue>(V)) { 629 Mask.assign(NumElts, -1); 630 return std::make_pair( 631 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 632 } 633 634 if (isa<ConstantAggregateZero>(V)) { 635 Mask.assign(NumElts, 0); 636 return std::make_pair(V, nullptr); 637 } 638 639 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 640 // If this is an insert of an extract from some other vector, include it. 641 Value *VecOp = IEI->getOperand(0); 642 Value *ScalarOp = IEI->getOperand(1); 643 Value *IdxOp = IEI->getOperand(2); 644 645 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 646 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 647 unsigned ExtractedIdx = 648 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 649 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 650 651 // Either the extracted from or inserted into vector must be RHSVec, 652 // otherwise we'd end up with a shuffle of three inputs. 653 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 654 Value *RHS = EI->getOperand(0); 655 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 656 assert(LR.second == nullptr || LR.second == RHS); 657 658 if (LR.first->getType() != RHS->getType()) { 659 // Although we are giving up for now, see if we can create extracts 660 // that match the inserts for another round of combining. 661 replaceExtractElements(IEI, EI, IC); 662 663 // We tried our best, but we can't find anything compatible with RHS 664 // further up the chain. Return a trivial shuffle. 665 for (unsigned i = 0; i < NumElts; ++i) 666 Mask[i] = i; 667 return std::make_pair(V, nullptr); 668 } 669 670 unsigned NumLHSElts = 671 cast<VectorType>(RHS->getType())->getNumElements(); 672 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx; 673 return std::make_pair(LR.first, RHS); 674 } 675 676 if (VecOp == PermittedRHS) { 677 // We've gone as far as we can: anything on the other side of the 678 // extractelement will already have been converted into a shuffle. 679 unsigned NumLHSElts = 680 cast<VectorType>(EI->getOperand(0)->getType())->getNumElements(); 681 for (unsigned i = 0; i != NumElts; ++i) 682 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i); 683 return std::make_pair(EI->getOperand(0), PermittedRHS); 684 } 685 686 // If this insertelement is a chain that comes from exactly these two 687 // vectors, return the vector and the effective shuffle. 688 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 689 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 690 Mask)) 691 return std::make_pair(EI->getOperand(0), PermittedRHS); 692 } 693 } 694 } 695 696 // Otherwise, we can't do anything fancy. Return an identity vector. 697 for (unsigned i = 0; i != NumElts; ++i) 698 Mask.push_back(i); 699 return std::make_pair(V, nullptr); 700 } 701 702 /// Look for chain of insertvalue's that fully define an aggregate, and trace 703 /// back the values inserted, see if they are all were extractvalue'd from 704 /// the same source aggregate from the exact same element indexes. 705 /// If they were, just reuse the source aggregate. 706 /// This potentially deals with PHI indirections. 707 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse( 708 InsertValueInst &OrigIVI) { 709 Type *AggTy = OrigIVI.getType(); 710 unsigned NumAggElts; 711 switch (AggTy->getTypeID()) { 712 case Type::StructTyID: 713 NumAggElts = AggTy->getStructNumElements(); 714 break; 715 case Type::ArrayTyID: 716 NumAggElts = AggTy->getArrayNumElements(); 717 break; 718 default: 719 llvm_unreachable("Unhandled aggregate type?"); 720 } 721 722 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able 723 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}), 724 // FIXME: any interesting patterns to be caught with larger limit? 725 assert(NumAggElts > 0 && "Aggregate should have elements."); 726 if (NumAggElts > 2) 727 return nullptr; 728 729 static constexpr auto NotFound = None; 730 static constexpr auto FoundMismatch = nullptr; 731 732 // Try to find a value of each element of an aggregate. 733 // FIXME: deal with more complex, not one-dimensional, aggregate types 734 SmallVector<Optional<Value *>, 2> AggElts(NumAggElts, NotFound); 735 736 // Do we know values for each element of the aggregate? 737 auto KnowAllElts = [&AggElts]() { 738 return all_of(AggElts, 739 [](Optional<Value *> Elt) { return Elt != NotFound; }); 740 }; 741 742 int Depth = 0; 743 744 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with 745 // every element being overwritten twice, which should never happen. 746 static const int DepthLimit = 2 * NumAggElts; 747 748 // Recurse up the chain of `insertvalue` aggregate operands until either we've 749 // reconstructed full initializer or can't visit any more `insertvalue`'s. 750 for (InsertValueInst *CurrIVI = &OrigIVI; 751 Depth < DepthLimit && CurrIVI && !KnowAllElts(); 752 CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()), 753 ++Depth) { 754 Value *InsertedValue = CurrIVI->getInsertedValueOperand(); 755 ArrayRef<unsigned int> Indices = CurrIVI->getIndices(); 756 757 // Don't bother with more than single-level aggregates. 758 if (Indices.size() != 1) 759 return nullptr; // FIXME: deal with more complex aggregates? 760 761 // Now, we may have already previously recorded the value for this element 762 // of an aggregate. If we did, that means the CurrIVI will later be 763 // overwritten with the already-recorded value. But if not, let's record it! 764 Optional<Value *> &Elt = AggElts[Indices.front()]; 765 Elt = Elt.getValueOr(InsertedValue); 766 767 // FIXME: should we handle chain-terminating undef base operand? 768 } 769 770 // Was that sufficient to deduce the full initializer for the aggregate? 771 if (!KnowAllElts()) 772 return nullptr; // Give up then. 773 774 // We now want to find the source[s] of the aggregate elements we've found. 775 // And with "source" we mean the original aggregate[s] from which 776 // the inserted elements were extracted. This may require PHI translation. 777 778 enum class AggregateDescription { 779 /// When analyzing the value that was inserted into an aggregate, we did 780 /// not manage to find defining `extractvalue` instruction to analyze. 781 NotFound, 782 /// When analyzing the value that was inserted into an aggregate, we did 783 /// manage to find defining `extractvalue` instruction[s], and everything 784 /// matched perfectly - aggregate type, element insertion/extraction index. 785 Found, 786 /// When analyzing the value that was inserted into an aggregate, we did 787 /// manage to find defining `extractvalue` instruction, but there was 788 /// a mismatch: either the source type from which the extraction was didn't 789 /// match the aggregate type into which the insertion was, 790 /// or the extraction/insertion channels mismatched, 791 /// or different elements had different source aggregates. 792 FoundMismatch 793 }; 794 auto Describe = [](Optional<Value *> SourceAggregate) { 795 if (SourceAggregate == NotFound) 796 return AggregateDescription::NotFound; 797 if (*SourceAggregate == FoundMismatch) 798 return AggregateDescription::FoundMismatch; 799 return AggregateDescription::Found; 800 }; 801 802 // Given the value \p Elt that was being inserted into element \p EltIdx of an 803 // aggregate AggTy, see if \p Elt was originally defined by an 804 // appropriate extractvalue (same element index, same aggregate type). 805 // If found, return the source aggregate from which the extraction was. 806 // If \p PredBB is provided, does PHI translation of an \p Elt first. 807 auto FindSourceAggregate = 808 [&](Value *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB, 809 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 810 // For now(?), only deal with, at most, a single level of PHI indirection. 811 if (UseBB && PredBB) 812 Elt = Elt->DoPHITranslation(*UseBB, *PredBB); 813 // FIXME: deal with multiple levels of PHI indirection? 814 815 // Did we find an extraction? 816 auto *EVI = dyn_cast<ExtractValueInst>(Elt); 817 if (!EVI) 818 return NotFound; 819 820 Value *SourceAggregate = EVI->getAggregateOperand(); 821 822 // Is the extraction from the same type into which the insertion was? 823 if (SourceAggregate->getType() != AggTy) 824 return FoundMismatch; 825 // And the element index doesn't change between extraction and insertion? 826 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front()) 827 return FoundMismatch; 828 829 return SourceAggregate; // AggregateDescription::Found 830 }; 831 832 // Given elements AggElts that were constructing an aggregate OrigIVI, 833 // see if we can find appropriate source aggregate for each of the elements, 834 // and see it's the same aggregate for each element. If so, return it. 835 auto FindCommonSourceAggregate = 836 [&](Optional<BasicBlock *> UseBB, 837 Optional<BasicBlock *> PredBB) -> Optional<Value *> { 838 Optional<Value *> SourceAggregate; 839 840 for (auto I : enumerate(AggElts)) { 841 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch && 842 "We don't store nullptr in SourceAggregate!"); 843 assert((Describe(SourceAggregate) == AggregateDescription::Found) == 844 (I.index() != 0) && 845 "SourceAggregate should be valid after the the first element,"); 846 847 // For this element, is there a plausible source aggregate? 848 // FIXME: we could special-case undef element, IFF we know that in the 849 // source aggregate said element isn't poison. 850 Optional<Value *> SourceAggregateForElement = 851 FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB); 852 853 // Okay, what have we found? Does that correlate with previous findings? 854 855 // Regardless of whether or not we have previously found source 856 // aggregate for previous elements (if any), if we didn't find one for 857 // this element, passthrough whatever we have just found. 858 if (Describe(SourceAggregateForElement) != AggregateDescription::Found) 859 return SourceAggregateForElement; 860 861 // Okay, we have found source aggregate for this element. 862 // Let's see what we already know from previous elements, if any. 863 switch (Describe(SourceAggregate)) { 864 case AggregateDescription::NotFound: 865 // This is apparently the first element that we have examined. 866 SourceAggregate = SourceAggregateForElement; // Record the aggregate! 867 continue; // Great, now look at next element. 868 case AggregateDescription::Found: 869 // We have previously already successfully examined other elements. 870 // Is this the same source aggregate we've found for other elements? 871 if (*SourceAggregateForElement != *SourceAggregate) 872 return FoundMismatch; 873 continue; // Still the same aggregate, look at next element. 874 case AggregateDescription::FoundMismatch: 875 llvm_unreachable("Can't happen. We would have early-exited then."); 876 }; 877 } 878 879 assert(Describe(SourceAggregate) == AggregateDescription::Found && 880 "Must be a valid Value"); 881 return *SourceAggregate; 882 }; 883 884 Optional<Value *> SourceAggregate; 885 886 // Can we find the source aggregate without looking at predecessors? 887 SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None); 888 if (Describe(SourceAggregate) != AggregateDescription::NotFound) { 889 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch) 890 return nullptr; // Conflicting source aggregates! 891 ++NumAggregateReconstructionsSimplified; 892 return replaceInstUsesWith(OrigIVI, *SourceAggregate); 893 } 894 895 // Okay, apparently we need to look at predecessors. 896 897 // We should be smart about picking the "use" basic block, which will be the 898 // merge point for aggregate, where we'll insert the final PHI that will be 899 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice. 900 // We should look in which blocks each of the AggElts is being defined, 901 // they all should be defined in the same basic block. 902 BasicBlock *UseBB = nullptr; 903 904 for (const Optional<Value *> &Elt : AggElts) { 905 // If this element's value was not defined by an instruction, ignore it. 906 auto *I = dyn_cast<Instruction>(*Elt); 907 if (!I) 908 continue; 909 // Otherwise, in which basic block is this instruction located? 910 BasicBlock *BB = I->getParent(); 911 // If it's the first instruction we've encountered, record the basic block. 912 if (!UseBB) { 913 UseBB = BB; 914 continue; 915 } 916 // Otherwise, this must be the same basic block we've seen previously. 917 if (UseBB != BB) 918 return nullptr; 919 } 920 921 // If *all* of the elements are basic-block-independent, meaning they are 922 // either function arguments, or constant expressions, then if we didn't 923 // handle them without predecessor-aware handling, we won't handle them now. 924 if (!UseBB) 925 return nullptr; 926 927 // If we didn't manage to find source aggregate without looking at 928 // predecessors, and there are no predecessors to look at, then we're done. 929 if (pred_empty(UseBB)) 930 return nullptr; 931 932 // Arbitrary predecessor count limit. 933 static const int PredCountLimit = 64; 934 935 // Cache the (non-uniqified!) list of predecessors in a vector, 936 // checking the limit at the same time for efficiency. 937 SmallVector<BasicBlock *, 4> Preds; // May have duplicates! 938 for (BasicBlock *Pred : predecessors(UseBB)) { 939 // Don't bother if there are too many predecessors. 940 if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once? 941 return nullptr; 942 Preds.emplace_back(Pred); 943 } 944 945 // For each predecessor, what is the source aggregate, 946 // from which all the elements were originally extracted from? 947 // Note that we want for the map to have stable iteration order! 948 SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates; 949 for (BasicBlock *Pred : Preds) { 950 std::pair<decltype(SourceAggregates)::iterator, bool> IV = 951 SourceAggregates.insert({Pred, nullptr}); 952 // Did we already evaluate this predecessor? 953 if (!IV.second) 954 continue; 955 956 // Let's hope that when coming from predecessor Pred, all elements of the 957 // aggregate produced by OrigIVI must have been originally extracted from 958 // the same aggregate. Is that so? Can we find said original aggregate? 959 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred); 960 if (Describe(SourceAggregate) != AggregateDescription::Found) 961 return nullptr; // Give up. 962 IV.first->second = *SourceAggregate; 963 } 964 965 // All good! Now we just need to thread the source aggregates here. 966 // Note that we have to insert the new PHI here, ourselves, because we can't 967 // rely on InstCombinerImpl::run() inserting it into the right basic block. 968 // Note that the same block can be a predecessor more than once, 969 // and we need to preserve that invariant for the PHI node. 970 BuilderTy::InsertPointGuard Guard(Builder); 971 Builder.SetInsertPoint(UseBB->getFirstNonPHI()); 972 auto *PHI = 973 Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged"); 974 for (BasicBlock *Pred : Preds) 975 PHI->addIncoming(SourceAggregates[Pred], Pred); 976 977 ++NumAggregateReconstructionsSimplified; 978 return replaceInstUsesWith(OrigIVI, PHI); 979 } 980 981 /// Try to find redundant insertvalue instructions, like the following ones: 982 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 983 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 984 /// Here the second instruction inserts values at the same indices, as the 985 /// first one, making the first one redundant. 986 /// It should be transformed to: 987 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 988 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) { 989 bool IsRedundant = false; 990 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 991 992 // If there is a chain of insertvalue instructions (each of them except the 993 // last one has only one use and it's another insertvalue insn from this 994 // chain), check if any of the 'children' uses the same indices as the first 995 // instruction. In this case, the first one is redundant. 996 Value *V = &I; 997 unsigned Depth = 0; 998 while (V->hasOneUse() && Depth < 10) { 999 User *U = V->user_back(); 1000 auto UserInsInst = dyn_cast<InsertValueInst>(U); 1001 if (!UserInsInst || U->getOperand(0) != V) 1002 break; 1003 if (UserInsInst->getIndices() == FirstIndices) { 1004 IsRedundant = true; 1005 break; 1006 } 1007 V = UserInsInst; 1008 Depth++; 1009 } 1010 1011 if (IsRedundant) 1012 return replaceInstUsesWith(I, I.getOperand(0)); 1013 1014 if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I)) 1015 return NewI; 1016 1017 return nullptr; 1018 } 1019 1020 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 1021 // Can not analyze scalable type, the number of elements is not a compile-time 1022 // constant. 1023 if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType())) 1024 return false; 1025 1026 int MaskSize = Shuf.getShuffleMask().size(); 1027 int VecSize = 1028 cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements(); 1029 1030 // A vector select does not change the size of the operands. 1031 if (MaskSize != VecSize) 1032 return false; 1033 1034 // Each mask element must be undefined or choose a vector element from one of 1035 // the source operands without crossing vector lanes. 1036 for (int i = 0; i != MaskSize; ++i) { 1037 int Elt = Shuf.getMaskValue(i); 1038 if (Elt != -1 && Elt != i && Elt != i + VecSize) 1039 return false; 1040 } 1041 1042 return true; 1043 } 1044 1045 /// Turn a chain of inserts that splats a value into an insert + shuffle: 1046 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 1047 /// shufflevector(insertelt(X, %k, 0), undef, zero) 1048 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 1049 // We are interested in the last insert in a chain. So if this insert has a 1050 // single user and that user is an insert, bail. 1051 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 1052 return nullptr; 1053 1054 VectorType *VecTy = InsElt.getType(); 1055 // Can not handle scalable type, the number of elements is not a compile-time 1056 // constant. 1057 if (isa<ScalableVectorType>(VecTy)) 1058 return nullptr; 1059 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1060 1061 // Do not try to do this for a one-element vector, since that's a nop, 1062 // and will cause an inf-loop. 1063 if (NumElements == 1) 1064 return nullptr; 1065 1066 Value *SplatVal = InsElt.getOperand(1); 1067 InsertElementInst *CurrIE = &InsElt; 1068 SmallBitVector ElementPresent(NumElements, false); 1069 InsertElementInst *FirstIE = nullptr; 1070 1071 // Walk the chain backwards, keeping track of which indices we inserted into, 1072 // until we hit something that isn't an insert of the splatted value. 1073 while (CurrIE) { 1074 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 1075 if (!Idx || CurrIE->getOperand(1) != SplatVal) 1076 return nullptr; 1077 1078 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 1079 // Check none of the intermediate steps have any additional uses, except 1080 // for the root insertelement instruction, which can be re-used, if it 1081 // inserts at position 0. 1082 if (CurrIE != &InsElt && 1083 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 1084 return nullptr; 1085 1086 ElementPresent[Idx->getZExtValue()] = true; 1087 FirstIE = CurrIE; 1088 CurrIE = NextIE; 1089 } 1090 1091 // If this is just a single insertelement (not a sequence), we are done. 1092 if (FirstIE == &InsElt) 1093 return nullptr; 1094 1095 // If we are not inserting into an undef vector, make sure we've seen an 1096 // insert into every element. 1097 // TODO: If the base vector is not undef, it might be better to create a splat 1098 // and then a select-shuffle (blend) with the base vector. 1099 if (!isa<UndefValue>(FirstIE->getOperand(0))) 1100 if (!ElementPresent.all()) 1101 return nullptr; 1102 1103 // Create the insert + shuffle. 1104 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 1105 UndefValue *UndefVec = UndefValue::get(VecTy); 1106 Constant *Zero = ConstantInt::get(Int32Ty, 0); 1107 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 1108 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 1109 1110 // Splat from element 0, but replace absent elements with undef in the mask. 1111 SmallVector<int, 16> Mask(NumElements, 0); 1112 for (unsigned i = 0; i != NumElements; ++i) 1113 if (!ElementPresent[i]) 1114 Mask[i] = -1; 1115 1116 return new ShuffleVectorInst(FirstIE, UndefVec, Mask); 1117 } 1118 1119 /// Try to fold an insert element into an existing splat shuffle by changing 1120 /// the shuffle's mask to include the index of this insert element. 1121 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 1122 // Check if the vector operand of this insert is a canonical splat shuffle. 1123 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1124 if (!Shuf || !Shuf->isZeroEltSplat()) 1125 return nullptr; 1126 1127 // Bail out early if shuffle is scalable type. The number of elements in 1128 // shuffle mask is unknown at compile-time. 1129 if (isa<ScalableVectorType>(Shuf->getType())) 1130 return nullptr; 1131 1132 // Check for a constant insertion index. 1133 uint64_t IdxC; 1134 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1135 return nullptr; 1136 1137 // Check if the splat shuffle's input is the same as this insert's scalar op. 1138 Value *X = InsElt.getOperand(1); 1139 Value *Op0 = Shuf->getOperand(0); 1140 if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt()))) 1141 return nullptr; 1142 1143 // Replace the shuffle mask element at the index of this insert with a zero. 1144 // For example: 1145 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 1146 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 1147 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 1148 SmallVector<int, 16> NewMask(NumMaskElts); 1149 for (unsigned i = 0; i != NumMaskElts; ++i) 1150 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 1151 1152 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 1153 } 1154 1155 /// Try to fold an extract+insert element into an existing identity shuffle by 1156 /// changing the shuffle's mask to include the index of this insert element. 1157 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 1158 // Check if the vector operand of this insert is an identity shuffle. 1159 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 1160 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 1161 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 1162 return nullptr; 1163 1164 // Bail out early if shuffle is scalable type. The number of elements in 1165 // shuffle mask is unknown at compile-time. 1166 if (isa<ScalableVectorType>(Shuf->getType())) 1167 return nullptr; 1168 1169 // Check for a constant insertion index. 1170 uint64_t IdxC; 1171 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 1172 return nullptr; 1173 1174 // Check if this insert's scalar op is extracted from the identity shuffle's 1175 // input vector. 1176 Value *Scalar = InsElt.getOperand(1); 1177 Value *X = Shuf->getOperand(0); 1178 if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC)))) 1179 return nullptr; 1180 1181 // Replace the shuffle mask element at the index of this extract+insert with 1182 // that same index value. 1183 // For example: 1184 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 1185 unsigned NumMaskElts = Shuf->getType()->getNumElements(); 1186 SmallVector<int, 16> NewMask(NumMaskElts); 1187 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 1188 for (unsigned i = 0; i != NumMaskElts; ++i) { 1189 if (i != IdxC) { 1190 // All mask elements besides the inserted element remain the same. 1191 NewMask[i] = OldMask[i]; 1192 } else if (OldMask[i] == (int)IdxC) { 1193 // If the mask element was already set, there's nothing to do 1194 // (demanded elements analysis may unset it later). 1195 return nullptr; 1196 } else { 1197 assert(OldMask[i] == UndefMaskElem && 1198 "Unexpected shuffle mask element for identity shuffle"); 1199 NewMask[i] = IdxC; 1200 } 1201 } 1202 1203 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 1204 } 1205 1206 /// If we have an insertelement instruction feeding into another insertelement 1207 /// and the 2nd is inserting a constant into the vector, canonicalize that 1208 /// constant insertion before the insertion of a variable: 1209 /// 1210 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 1211 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 1212 /// 1213 /// This has the potential of eliminating the 2nd insertelement instruction 1214 /// via constant folding of the scalar constant into a vector constant. 1215 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 1216 InstCombiner::BuilderTy &Builder) { 1217 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 1218 if (!InsElt1 || !InsElt1->hasOneUse()) 1219 return nullptr; 1220 1221 Value *X, *Y; 1222 Constant *ScalarC; 1223 ConstantInt *IdxC1, *IdxC2; 1224 if (match(InsElt1->getOperand(0), m_Value(X)) && 1225 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 1226 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 1227 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 1228 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 1229 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 1230 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 1231 } 1232 1233 return nullptr; 1234 } 1235 1236 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 1237 /// --> shufflevector X, CVec', Mask' 1238 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 1239 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 1240 // Bail out if the parent has more than one use. In that case, we'd be 1241 // replacing the insertelt with a shuffle, and that's not a clear win. 1242 if (!Inst || !Inst->hasOneUse()) 1243 return nullptr; 1244 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 1245 // The shuffle must have a constant vector operand. The insertelt must have 1246 // a constant scalar being inserted at a constant position in the vector. 1247 Constant *ShufConstVec, *InsEltScalar; 1248 uint64_t InsEltIndex; 1249 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 1250 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 1251 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 1252 return nullptr; 1253 1254 // Adding an element to an arbitrary shuffle could be expensive, but a 1255 // shuffle that selects elements from vectors without crossing lanes is 1256 // assumed cheap. 1257 // If we're just adding a constant into that shuffle, it will still be 1258 // cheap. 1259 if (!isShuffleEquivalentToSelect(*Shuf)) 1260 return nullptr; 1261 1262 // From the above 'select' check, we know that the mask has the same number 1263 // of elements as the vector input operands. We also know that each constant 1264 // input element is used in its lane and can not be used more than once by 1265 // the shuffle. Therefore, replace the constant in the shuffle's constant 1266 // vector with the insertelt constant. Replace the constant in the shuffle's 1267 // mask vector with the insertelt index plus the length of the vector 1268 // (because the constant vector operand of a shuffle is always the 2nd 1269 // operand). 1270 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1271 unsigned NumElts = Mask.size(); 1272 SmallVector<Constant *, 16> NewShufElts(NumElts); 1273 SmallVector<int, 16> NewMaskElts(NumElts); 1274 for (unsigned I = 0; I != NumElts; ++I) { 1275 if (I == InsEltIndex) { 1276 NewShufElts[I] = InsEltScalar; 1277 NewMaskElts[I] = InsEltIndex + NumElts; 1278 } else { 1279 // Copy over the existing values. 1280 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 1281 NewMaskElts[I] = Mask[I]; 1282 } 1283 } 1284 1285 // Create new operands for a shuffle that includes the constant of the 1286 // original insertelt. The old shuffle will be dead now. 1287 return new ShuffleVectorInst(Shuf->getOperand(0), 1288 ConstantVector::get(NewShufElts), NewMaskElts); 1289 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 1290 // Transform sequences of insertelements ops with constant data/indexes into 1291 // a single shuffle op. 1292 // Can not handle scalable type, the number of elements needed to create 1293 // shuffle mask is not a compile-time constant. 1294 if (isa<ScalableVectorType>(InsElt.getType())) 1295 return nullptr; 1296 unsigned NumElts = 1297 cast<FixedVectorType>(InsElt.getType())->getNumElements(); 1298 1299 uint64_t InsertIdx[2]; 1300 Constant *Val[2]; 1301 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 1302 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 1303 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 1304 !match(IEI->getOperand(1), m_Constant(Val[1]))) 1305 return nullptr; 1306 SmallVector<Constant *, 16> Values(NumElts); 1307 SmallVector<int, 16> Mask(NumElts); 1308 auto ValI = std::begin(Val); 1309 // Generate new constant vector and mask. 1310 // We have 2 values/masks from the insertelements instructions. Insert them 1311 // into new value/mask vectors. 1312 for (uint64_t I : InsertIdx) { 1313 if (!Values[I]) { 1314 Values[I] = *ValI; 1315 Mask[I] = NumElts + I; 1316 } 1317 ++ValI; 1318 } 1319 // Remaining values are filled with 'undef' values. 1320 for (unsigned I = 0; I < NumElts; ++I) { 1321 if (!Values[I]) { 1322 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1323 Mask[I] = I; 1324 } 1325 } 1326 // Create new operands for a shuffle that includes the constant of the 1327 // original insertelt. 1328 return new ShuffleVectorInst(IEI->getOperand(0), 1329 ConstantVector::get(Values), Mask); 1330 } 1331 return nullptr; 1332 } 1333 1334 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) { 1335 Value *VecOp = IE.getOperand(0); 1336 Value *ScalarOp = IE.getOperand(1); 1337 Value *IdxOp = IE.getOperand(2); 1338 1339 if (auto *V = SimplifyInsertElementInst( 1340 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1341 return replaceInstUsesWith(IE, V); 1342 1343 // If the scalar is bitcast and inserted into undef, do the insert in the 1344 // source type followed by bitcast. 1345 // TODO: Generalize for insert into any constant, not just undef? 1346 Value *ScalarSrc; 1347 if (match(VecOp, m_Undef()) && 1348 match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) && 1349 (ScalarSrc->getType()->isIntegerTy() || 1350 ScalarSrc->getType()->isFloatingPointTy())) { 1351 // inselt undef, (bitcast ScalarSrc), IdxOp --> 1352 // bitcast (inselt undef, ScalarSrc, IdxOp) 1353 Type *ScalarTy = ScalarSrc->getType(); 1354 Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount()); 1355 UndefValue *NewUndef = UndefValue::get(VecTy); 1356 Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp); 1357 return new BitCastInst(NewInsElt, IE.getType()); 1358 } 1359 1360 // If the vector and scalar are both bitcast from the same element type, do 1361 // the insert in that source type followed by bitcast. 1362 Value *VecSrc; 1363 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1364 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1365 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1366 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1367 cast<VectorType>(VecSrc->getType())->getElementType() == 1368 ScalarSrc->getType()) { 1369 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1370 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1371 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1372 return new BitCastInst(NewInsElt, IE.getType()); 1373 } 1374 1375 // If the inserted element was extracted from some other fixed-length vector 1376 // and both indexes are valid constants, try to turn this into a shuffle. 1377 // Can not handle scalable vector type, the number of elements needed to 1378 // create shuffle mask is not a compile-time constant. 1379 uint64_t InsertedIdx, ExtractedIdx; 1380 Value *ExtVecOp; 1381 if (isa<FixedVectorType>(IE.getType()) && 1382 match(IdxOp, m_ConstantInt(InsertedIdx)) && 1383 match(ScalarOp, 1384 m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) && 1385 isa<FixedVectorType>(ExtVecOp->getType()) && 1386 ExtractedIdx < 1387 cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) { 1388 // TODO: Looking at the user(s) to determine if this insert is a 1389 // fold-to-shuffle opportunity does not match the usual instcombine 1390 // constraints. We should decide if the transform is worthy based only 1391 // on this instruction and its operands, but that may not work currently. 1392 // 1393 // Here, we are trying to avoid creating shuffles before reaching 1394 // the end of a chain of extract-insert pairs. This is complicated because 1395 // we do not generally form arbitrary shuffle masks in instcombine 1396 // (because those may codegen poorly), but collectShuffleElements() does 1397 // exactly that. 1398 // 1399 // The rules for determining what is an acceptable target-independent 1400 // shuffle mask are fuzzy because they evolve based on the backend's 1401 // capabilities and real-world impact. 1402 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1403 if (!Insert.hasOneUse()) 1404 return true; 1405 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1406 if (!InsertUser) 1407 return true; 1408 return false; 1409 }; 1410 1411 // Try to form a shuffle from a chain of extract-insert ops. 1412 if (isShuffleRootCandidate(IE)) { 1413 SmallVector<int, 16> Mask; 1414 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1415 1416 // The proposed shuffle may be trivial, in which case we shouldn't 1417 // perform the combine. 1418 if (LR.first != &IE && LR.second != &IE) { 1419 // We now have a shuffle of LHS, RHS, Mask. 1420 if (LR.second == nullptr) 1421 LR.second = UndefValue::get(LR.first->getType()); 1422 return new ShuffleVectorInst(LR.first, LR.second, Mask); 1423 } 1424 } 1425 } 1426 1427 if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) { 1428 unsigned VWidth = VecTy->getNumElements(); 1429 APInt UndefElts(VWidth, 0); 1430 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1431 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1432 if (V != &IE) 1433 return replaceInstUsesWith(IE, V); 1434 return &IE; 1435 } 1436 } 1437 1438 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1439 return Shuf; 1440 1441 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1442 return NewInsElt; 1443 1444 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1445 return Broadcast; 1446 1447 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1448 return Splat; 1449 1450 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1451 return IdentityShuf; 1452 1453 return nullptr; 1454 } 1455 1456 /// Return true if we can evaluate the specified expression tree if the vector 1457 /// elements were shuffled in a different order. 1458 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1459 unsigned Depth = 5) { 1460 // We can always reorder the elements of a constant. 1461 if (isa<Constant>(V)) 1462 return true; 1463 1464 // We won't reorder vector arguments. No IPO here. 1465 Instruction *I = dyn_cast<Instruction>(V); 1466 if (!I) return false; 1467 1468 // Two users may expect different orders of the elements. Don't try it. 1469 if (!I->hasOneUse()) 1470 return false; 1471 1472 if (Depth == 0) return false; 1473 1474 switch (I->getOpcode()) { 1475 case Instruction::UDiv: 1476 case Instruction::SDiv: 1477 case Instruction::URem: 1478 case Instruction::SRem: 1479 // Propagating an undefined shuffle mask element to integer div/rem is not 1480 // allowed because those opcodes can create immediate undefined behavior 1481 // from an undefined element in an operand. 1482 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1483 return false; 1484 LLVM_FALLTHROUGH; 1485 case Instruction::Add: 1486 case Instruction::FAdd: 1487 case Instruction::Sub: 1488 case Instruction::FSub: 1489 case Instruction::Mul: 1490 case Instruction::FMul: 1491 case Instruction::FDiv: 1492 case Instruction::FRem: 1493 case Instruction::Shl: 1494 case Instruction::LShr: 1495 case Instruction::AShr: 1496 case Instruction::And: 1497 case Instruction::Or: 1498 case Instruction::Xor: 1499 case Instruction::ICmp: 1500 case Instruction::FCmp: 1501 case Instruction::Trunc: 1502 case Instruction::ZExt: 1503 case Instruction::SExt: 1504 case Instruction::FPToUI: 1505 case Instruction::FPToSI: 1506 case Instruction::UIToFP: 1507 case Instruction::SIToFP: 1508 case Instruction::FPTrunc: 1509 case Instruction::FPExt: 1510 case Instruction::GetElementPtr: { 1511 // Bail out if we would create longer vector ops. We could allow creating 1512 // longer vector ops, but that may result in more expensive codegen. 1513 Type *ITy = I->getType(); 1514 if (ITy->isVectorTy() && 1515 Mask.size() > cast<VectorType>(ITy)->getNumElements()) 1516 return false; 1517 for (Value *Operand : I->operands()) { 1518 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1519 return false; 1520 } 1521 return true; 1522 } 1523 case Instruction::InsertElement: { 1524 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1525 if (!CI) return false; 1526 int ElementNumber = CI->getLimitedValue(); 1527 1528 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1529 // can't put an element into multiple indices. 1530 bool SeenOnce = false; 1531 for (int i = 0, e = Mask.size(); i != e; ++i) { 1532 if (Mask[i] == ElementNumber) { 1533 if (SeenOnce) 1534 return false; 1535 SeenOnce = true; 1536 } 1537 } 1538 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1539 } 1540 } 1541 return false; 1542 } 1543 1544 /// Rebuild a new instruction just like 'I' but with the new operands given. 1545 /// In the event of type mismatch, the type of the operands is correct. 1546 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1547 // We don't want to use the IRBuilder here because we want the replacement 1548 // instructions to appear next to 'I', not the builder's insertion point. 1549 switch (I->getOpcode()) { 1550 case Instruction::Add: 1551 case Instruction::FAdd: 1552 case Instruction::Sub: 1553 case Instruction::FSub: 1554 case Instruction::Mul: 1555 case Instruction::FMul: 1556 case Instruction::UDiv: 1557 case Instruction::SDiv: 1558 case Instruction::FDiv: 1559 case Instruction::URem: 1560 case Instruction::SRem: 1561 case Instruction::FRem: 1562 case Instruction::Shl: 1563 case Instruction::LShr: 1564 case Instruction::AShr: 1565 case Instruction::And: 1566 case Instruction::Or: 1567 case Instruction::Xor: { 1568 BinaryOperator *BO = cast<BinaryOperator>(I); 1569 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1570 BinaryOperator *New = 1571 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1572 NewOps[0], NewOps[1], "", BO); 1573 if (isa<OverflowingBinaryOperator>(BO)) { 1574 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1575 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1576 } 1577 if (isa<PossiblyExactOperator>(BO)) { 1578 New->setIsExact(BO->isExact()); 1579 } 1580 if (isa<FPMathOperator>(BO)) 1581 New->copyFastMathFlags(I); 1582 return New; 1583 } 1584 case Instruction::ICmp: 1585 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1586 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1587 NewOps[0], NewOps[1]); 1588 case Instruction::FCmp: 1589 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1590 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1591 NewOps[0], NewOps[1]); 1592 case Instruction::Trunc: 1593 case Instruction::ZExt: 1594 case Instruction::SExt: 1595 case Instruction::FPToUI: 1596 case Instruction::FPToSI: 1597 case Instruction::UIToFP: 1598 case Instruction::SIToFP: 1599 case Instruction::FPTrunc: 1600 case Instruction::FPExt: { 1601 // It's possible that the mask has a different number of elements from 1602 // the original cast. We recompute the destination type to match the mask. 1603 Type *DestTy = VectorType::get( 1604 I->getType()->getScalarType(), 1605 cast<VectorType>(NewOps[0]->getType())->getElementCount()); 1606 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1607 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1608 "", I); 1609 } 1610 case Instruction::GetElementPtr: { 1611 Value *Ptr = NewOps[0]; 1612 ArrayRef<Value*> Idx = NewOps.slice(1); 1613 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1614 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1615 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1616 return GEP; 1617 } 1618 } 1619 llvm_unreachable("failed to rebuild vector instructions"); 1620 } 1621 1622 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1623 // Mask.size() does not need to be equal to the number of vector elements. 1624 1625 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1626 Type *EltTy = V->getType()->getScalarType(); 1627 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1628 if (isa<UndefValue>(V)) 1629 return UndefValue::get(FixedVectorType::get(EltTy, Mask.size())); 1630 1631 if (isa<ConstantAggregateZero>(V)) 1632 return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size())); 1633 1634 if (Constant *C = dyn_cast<Constant>(V)) 1635 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1636 Mask); 1637 1638 Instruction *I = cast<Instruction>(V); 1639 switch (I->getOpcode()) { 1640 case Instruction::Add: 1641 case Instruction::FAdd: 1642 case Instruction::Sub: 1643 case Instruction::FSub: 1644 case Instruction::Mul: 1645 case Instruction::FMul: 1646 case Instruction::UDiv: 1647 case Instruction::SDiv: 1648 case Instruction::FDiv: 1649 case Instruction::URem: 1650 case Instruction::SRem: 1651 case Instruction::FRem: 1652 case Instruction::Shl: 1653 case Instruction::LShr: 1654 case Instruction::AShr: 1655 case Instruction::And: 1656 case Instruction::Or: 1657 case Instruction::Xor: 1658 case Instruction::ICmp: 1659 case Instruction::FCmp: 1660 case Instruction::Trunc: 1661 case Instruction::ZExt: 1662 case Instruction::SExt: 1663 case Instruction::FPToUI: 1664 case Instruction::FPToSI: 1665 case Instruction::UIToFP: 1666 case Instruction::SIToFP: 1667 case Instruction::FPTrunc: 1668 case Instruction::FPExt: 1669 case Instruction::Select: 1670 case Instruction::GetElementPtr: { 1671 SmallVector<Value*, 8> NewOps; 1672 bool NeedsRebuild = 1673 (Mask.size() != cast<VectorType>(I->getType())->getNumElements()); 1674 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1675 Value *V; 1676 // Recursively call evaluateInDifferentElementOrder on vector arguments 1677 // as well. E.g. GetElementPtr may have scalar operands even if the 1678 // return value is a vector, so we need to examine the operand type. 1679 if (I->getOperand(i)->getType()->isVectorTy()) 1680 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1681 else 1682 V = I->getOperand(i); 1683 NewOps.push_back(V); 1684 NeedsRebuild |= (V != I->getOperand(i)); 1685 } 1686 if (NeedsRebuild) { 1687 return buildNew(I, NewOps); 1688 } 1689 return I; 1690 } 1691 case Instruction::InsertElement: { 1692 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1693 1694 // The insertelement was inserting at Element. Figure out which element 1695 // that becomes after shuffling. The answer is guaranteed to be unique 1696 // by CanEvaluateShuffled. 1697 bool Found = false; 1698 int Index = 0; 1699 for (int e = Mask.size(); Index != e; ++Index) { 1700 if (Mask[Index] == Element) { 1701 Found = true; 1702 break; 1703 } 1704 } 1705 1706 // If element is not in Mask, no need to handle the operand 1 (element to 1707 // be inserted). Just evaluate values in operand 0 according to Mask. 1708 if (!Found) 1709 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1710 1711 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1712 return InsertElementInst::Create(V, I->getOperand(1), 1713 ConstantInt::get(I32Ty, Index), "", I); 1714 } 1715 } 1716 llvm_unreachable("failed to reorder elements of vector instruction!"); 1717 } 1718 1719 // Returns true if the shuffle is extracting a contiguous range of values from 1720 // LHS, for example: 1721 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1722 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1723 // Shuffles to: |EE|FF|GG|HH| 1724 // +--+--+--+--+ 1725 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1726 ArrayRef<int> Mask) { 1727 unsigned LHSElems = 1728 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements(); 1729 unsigned MaskElems = Mask.size(); 1730 unsigned BegIdx = Mask.front(); 1731 unsigned EndIdx = Mask.back(); 1732 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1733 return false; 1734 for (unsigned I = 0; I != MaskElems; ++I) 1735 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1736 return false; 1737 return true; 1738 } 1739 1740 /// These are the ingredients in an alternate form binary operator as described 1741 /// below. 1742 struct BinopElts { 1743 BinaryOperator::BinaryOps Opcode; 1744 Value *Op0; 1745 Value *Op1; 1746 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1747 Value *V0 = nullptr, Value *V1 = nullptr) : 1748 Opcode(Opc), Op0(V0), Op1(V1) {} 1749 operator bool() const { return Opcode != 0; } 1750 }; 1751 1752 /// Binops may be transformed into binops with different opcodes and operands. 1753 /// Reverse the usual canonicalization to enable folds with the non-canonical 1754 /// form of the binop. If a transform is possible, return the elements of the 1755 /// new binop. If not, return invalid elements. 1756 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1757 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1758 Type *Ty = BO->getType(); 1759 switch (BO->getOpcode()) { 1760 case Instruction::Shl: { 1761 // shl X, C --> mul X, (1 << C) 1762 Constant *C; 1763 if (match(BO1, m_Constant(C))) { 1764 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1765 return { Instruction::Mul, BO0, ShlOne }; 1766 } 1767 break; 1768 } 1769 case Instruction::Or: { 1770 // or X, C --> add X, C (when X and C have no common bits set) 1771 const APInt *C; 1772 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1773 return { Instruction::Add, BO0, BO1 }; 1774 break; 1775 } 1776 default: 1777 break; 1778 } 1779 return {}; 1780 } 1781 1782 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1783 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1784 1785 // Are we shuffling together some value and that same value after it has been 1786 // modified by a binop with a constant? 1787 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1788 Constant *C; 1789 bool Op0IsBinop; 1790 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1791 Op0IsBinop = true; 1792 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1793 Op0IsBinop = false; 1794 else 1795 return nullptr; 1796 1797 // The identity constant for a binop leaves a variable operand unchanged. For 1798 // a vector, this is a splat of something like 0, -1, or 1. 1799 // If there's no identity constant for this binop, we're done. 1800 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1801 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1802 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1803 if (!IdC) 1804 return nullptr; 1805 1806 // Shuffle identity constants into the lanes that return the original value. 1807 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1808 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1809 // The existing binop constant vector remains in the same operand position. 1810 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1811 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1812 ConstantExpr::getShuffleVector(IdC, C, Mask); 1813 1814 bool MightCreatePoisonOrUB = 1815 is_contained(Mask, UndefMaskElem) && 1816 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1817 if (MightCreatePoisonOrUB) 1818 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true); 1819 1820 // shuf (bop X, C), X, M --> bop X, C' 1821 // shuf X, (bop X, C), M --> bop X, C' 1822 Value *X = Op0IsBinop ? Op1 : Op0; 1823 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1824 NewBO->copyIRFlags(BO); 1825 1826 // An undef shuffle mask element may propagate as an undef constant element in 1827 // the new binop. That would produce poison where the original code might not. 1828 // If we already made a safe constant, then there's no danger. 1829 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1830 NewBO->dropPoisonGeneratingFlags(); 1831 return NewBO; 1832 } 1833 1834 /// If we have an insert of a scalar to a non-zero element of an undefined 1835 /// vector and then shuffle that value, that's the same as inserting to the zero 1836 /// element and shuffling. Splatting from the zero element is recognized as the 1837 /// canonical form of splat. 1838 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1839 InstCombiner::BuilderTy &Builder) { 1840 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1841 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1842 Value *X; 1843 uint64_t IndexC; 1844 1845 // Match a shuffle that is a splat to a non-zero element. 1846 if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X), 1847 m_ConstantInt(IndexC)))) || 1848 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1849 return nullptr; 1850 1851 // Insert into element 0 of an undef vector. 1852 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1853 Constant *Zero = Builder.getInt32(0); 1854 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1855 1856 // Splat from element 0. Any mask element that is undefined remains undefined. 1857 // For example: 1858 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1859 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1860 unsigned NumMaskElts = Shuf.getType()->getNumElements(); 1861 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1862 for (unsigned i = 0; i != NumMaskElts; ++i) 1863 if (Mask[i] == UndefMaskElem) 1864 NewMask[i] = Mask[i]; 1865 1866 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1867 } 1868 1869 /// Try to fold shuffles that are the equivalent of a vector select. 1870 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1871 InstCombiner::BuilderTy &Builder, 1872 const DataLayout &DL) { 1873 if (!Shuf.isSelect()) 1874 return nullptr; 1875 1876 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1877 // Commuting undef to operand 0 conflicts with another canonicalization. 1878 unsigned NumElts = Shuf.getType()->getNumElements(); 1879 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1880 Shuf.getMaskValue(0) >= (int)NumElts) { 1881 // TODO: Can we assert that both operands of a shuffle-select are not undef 1882 // (otherwise, it would have been folded by instsimplify? 1883 Shuf.commute(); 1884 return &Shuf; 1885 } 1886 1887 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1888 return I; 1889 1890 BinaryOperator *B0, *B1; 1891 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1892 !match(Shuf.getOperand(1), m_BinOp(B1))) 1893 return nullptr; 1894 1895 Value *X, *Y; 1896 Constant *C0, *C1; 1897 bool ConstantsAreOp1; 1898 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1899 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1900 ConstantsAreOp1 = true; 1901 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1902 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1903 ConstantsAreOp1 = false; 1904 else 1905 return nullptr; 1906 1907 // We need matching binops to fold the lanes together. 1908 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1909 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1910 bool DropNSW = false; 1911 if (ConstantsAreOp1 && Opc0 != Opc1) { 1912 // TODO: We drop "nsw" if shift is converted into multiply because it may 1913 // not be correct when the shift amount is BitWidth - 1. We could examine 1914 // each vector element to determine if it is safe to keep that flag. 1915 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1916 DropNSW = true; 1917 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1918 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1919 Opc0 = AltB0.Opcode; 1920 C0 = cast<Constant>(AltB0.Op1); 1921 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1922 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1923 Opc1 = AltB1.Opcode; 1924 C1 = cast<Constant>(AltB1.Op1); 1925 } 1926 } 1927 1928 if (Opc0 != Opc1) 1929 return nullptr; 1930 1931 // The opcodes must be the same. Use a new name to make that clear. 1932 BinaryOperator::BinaryOps BOpc = Opc0; 1933 1934 // Select the constant elements needed for the single binop. 1935 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1936 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1937 1938 // We are moving a binop after a shuffle. When a shuffle has an undefined 1939 // mask element, the result is undefined, but it is not poison or undefined 1940 // behavior. That is not necessarily true for div/rem/shift. 1941 bool MightCreatePoisonOrUB = 1942 is_contained(Mask, UndefMaskElem) && 1943 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1944 if (MightCreatePoisonOrUB) 1945 NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC, 1946 ConstantsAreOp1); 1947 1948 Value *V; 1949 if (X == Y) { 1950 // Remove a binop and the shuffle by rearranging the constant: 1951 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1952 // shuffle (op C0, V), (op C1, V), M --> op C', V 1953 V = X; 1954 } else { 1955 // If there are 2 different variable operands, we must create a new shuffle 1956 // (select) first, so check uses to ensure that we don't end up with more 1957 // instructions than we started with. 1958 if (!B0->hasOneUse() && !B1->hasOneUse()) 1959 return nullptr; 1960 1961 // If we use the original shuffle mask and op1 is *variable*, we would be 1962 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1963 // poison. We do not have to guard against UB when *constants* are op1 1964 // because safe constants guarantee that we do not overflow sdiv/srem (and 1965 // there's no danger for other opcodes). 1966 // TODO: To allow this case, create a new shuffle mask with no undefs. 1967 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1968 return nullptr; 1969 1970 // Note: In general, we do not create new shuffles in InstCombine because we 1971 // do not know if a target can lower an arbitrary shuffle optimally. In this 1972 // case, the shuffle uses the existing mask, so there is no additional risk. 1973 1974 // Select the variable vectors first, then perform the binop: 1975 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1976 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1977 V = Builder.CreateShuffleVector(X, Y, Mask); 1978 } 1979 1980 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1981 BinaryOperator::Create(BOpc, NewC, V); 1982 1983 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1984 // 1. If we changed an opcode, poison conditions might have changed. 1985 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1986 // where the original code did not. But if we already made a safe constant, 1987 // then there's no danger. 1988 NewBO->copyIRFlags(B0); 1989 NewBO->andIRFlags(B1); 1990 if (DropNSW) 1991 NewBO->setHasNoSignedWrap(false); 1992 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1993 NewBO->dropPoisonGeneratingFlags(); 1994 return NewBO; 1995 } 1996 1997 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate. 1998 /// Example (little endian): 1999 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8> 2000 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf, 2001 bool IsBigEndian) { 2002 // This must be a bitcasted shuffle of 1 vector integer operand. 2003 Type *DestType = Shuf.getType(); 2004 Value *X; 2005 if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) || 2006 !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy()) 2007 return nullptr; 2008 2009 // The source type must have the same number of elements as the shuffle, 2010 // and the source element type must be larger than the shuffle element type. 2011 Type *SrcType = X->getType(); 2012 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() || 2013 cast<VectorType>(SrcType)->getNumElements() != 2014 cast<VectorType>(DestType)->getNumElements() || 2015 SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0) 2016 return nullptr; 2017 2018 assert(Shuf.changesLength() && !Shuf.increasesLength() && 2019 "Expected a shuffle that decreases length"); 2020 2021 // Last, check that the mask chooses the correct low bits for each narrow 2022 // element in the result. 2023 uint64_t TruncRatio = 2024 SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits(); 2025 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2026 for (unsigned i = 0, e = Mask.size(); i != e; ++i) { 2027 if (Mask[i] == UndefMaskElem) 2028 continue; 2029 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio; 2030 assert(LSBIndex <= std::numeric_limits<int32_t>::max() && 2031 "Overflowed 32-bits"); 2032 if (Mask[i] != (int)LSBIndex) 2033 return nullptr; 2034 } 2035 2036 return new TruncInst(X, DestType); 2037 } 2038 2039 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 2040 /// narrowing (concatenating with undef and extracting back to the original 2041 /// length). This allows replacing the wide select with a narrow select. 2042 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 2043 InstCombiner::BuilderTy &Builder) { 2044 // This must be a narrowing identity shuffle. It extracts the 1st N elements 2045 // of the 1st vector operand of a shuffle. 2046 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 2047 return nullptr; 2048 2049 // The vector being shuffled must be a vector select that we can eliminate. 2050 // TODO: The one-use requirement could be eased if X and/or Y are constants. 2051 Value *Cond, *X, *Y; 2052 if (!match(Shuf.getOperand(0), 2053 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 2054 return nullptr; 2055 2056 // We need a narrow condition value. It must be extended with undef elements 2057 // and have the same number of elements as this shuffle. 2058 unsigned NarrowNumElts = Shuf.getType()->getNumElements(); 2059 Value *NarrowCond; 2060 if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) || 2061 cast<VectorType>(NarrowCond->getType())->getNumElements() != 2062 NarrowNumElts || 2063 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 2064 return nullptr; 2065 2066 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 2067 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 2068 Value *Undef = UndefValue::get(X->getType()); 2069 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 2070 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 2071 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 2072 } 2073 2074 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 2075 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 2076 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 2077 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 2078 return nullptr; 2079 2080 Value *X, *Y; 2081 ArrayRef<int> Mask; 2082 if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) 2083 return nullptr; 2084 2085 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 2086 // then combining may result in worse codegen. 2087 if (!Op0->hasOneUse()) 2088 return nullptr; 2089 2090 // We are extracting a subvector from a shuffle. Remove excess elements from 2091 // the 1st shuffle mask to eliminate the extract. 2092 // 2093 // This transform is conservatively limited to identity extracts because we do 2094 // not allow arbitrary shuffle mask creation as a target-independent transform 2095 // (because we can't guarantee that will lower efficiently). 2096 // 2097 // If the extracting shuffle has an undef mask element, it transfers to the 2098 // new shuffle mask. Otherwise, copy the original mask element. Example: 2099 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 2100 // shuf X, Y, <C0, undef, C2, undef> 2101 unsigned NumElts = Shuf.getType()->getNumElements(); 2102 SmallVector<int, 16> NewMask(NumElts); 2103 assert(NumElts < Mask.size() && 2104 "Identity with extract must have less elements than its inputs"); 2105 2106 for (unsigned i = 0; i != NumElts; ++i) { 2107 int ExtractMaskElt = Shuf.getMaskValue(i); 2108 int MaskElt = Mask[i]; 2109 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 2110 } 2111 return new ShuffleVectorInst(X, Y, NewMask); 2112 } 2113 2114 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 2115 /// operand with the operand of an insertelement. 2116 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 2117 InstCombinerImpl &IC) { 2118 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 2119 SmallVector<int, 16> Mask; 2120 Shuf.getShuffleMask(Mask); 2121 2122 // The shuffle must not change vector sizes. 2123 // TODO: This restriction could be removed if the insert has only one use 2124 // (because the transform would require a new length-changing shuffle). 2125 int NumElts = Mask.size(); 2126 if (NumElts != (int)(cast<VectorType>(V0->getType())->getNumElements())) 2127 return nullptr; 2128 2129 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 2130 // not be able to handle it there if the insertelement has >1 use. 2131 // If the shuffle has an insertelement operand but does not choose the 2132 // inserted scalar element from that value, then we can replace that shuffle 2133 // operand with the source vector of the insertelement. 2134 Value *X; 2135 uint64_t IdxC; 2136 if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2137 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 2138 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 2139 return IC.replaceOperand(Shuf, 0, X); 2140 } 2141 if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 2142 // Offset the index constant by the vector width because we are checking for 2143 // accesses to the 2nd vector input of the shuffle. 2144 IdxC += NumElts; 2145 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 2146 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 2147 return IC.replaceOperand(Shuf, 1, X); 2148 } 2149 2150 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 2151 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 2152 // We need an insertelement with a constant index. 2153 if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar), 2154 m_ConstantInt(IndexC)))) 2155 return false; 2156 2157 // Test the shuffle mask to see if it splices the inserted scalar into the 2158 // operand 1 vector of the shuffle. 2159 int NewInsIndex = -1; 2160 for (int i = 0; i != NumElts; ++i) { 2161 // Ignore undef mask elements. 2162 if (Mask[i] == -1) 2163 continue; 2164 2165 // The shuffle takes elements of operand 1 without lane changes. 2166 if (Mask[i] == NumElts + i) 2167 continue; 2168 2169 // The shuffle must choose the inserted scalar exactly once. 2170 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 2171 return false; 2172 2173 // The shuffle is placing the inserted scalar into element i. 2174 NewInsIndex = i; 2175 } 2176 2177 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 2178 2179 // Index is updated to the potentially translated insertion lane. 2180 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 2181 return true; 2182 }; 2183 2184 // If the shuffle is unnecessary, insert the scalar operand directly into 2185 // operand 1 of the shuffle. Example: 2186 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 2187 Value *Scalar; 2188 ConstantInt *IndexC; 2189 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2190 return InsertElementInst::Create(V1, Scalar, IndexC); 2191 2192 // Try again after commuting shuffle. Example: 2193 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 2194 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 2195 std::swap(V0, V1); 2196 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 2197 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 2198 return InsertElementInst::Create(V1, Scalar, IndexC); 2199 2200 return nullptr; 2201 } 2202 2203 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 2204 // Match the operands as identity with padding (also known as concatenation 2205 // with undef) shuffles of the same source type. The backend is expected to 2206 // recreate these concatenations from a shuffle of narrow operands. 2207 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 2208 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 2209 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 2210 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 2211 return nullptr; 2212 2213 // We limit this transform to power-of-2 types because we expect that the 2214 // backend can convert the simplified IR patterns to identical nodes as the 2215 // original IR. 2216 // TODO: If we can verify the same behavior for arbitrary types, the 2217 // power-of-2 checks can be removed. 2218 Value *X = Shuffle0->getOperand(0); 2219 Value *Y = Shuffle1->getOperand(0); 2220 if (X->getType() != Y->getType() || 2221 !isPowerOf2_32(Shuf.getType()->getNumElements()) || 2222 !isPowerOf2_32(Shuffle0->getType()->getNumElements()) || 2223 !isPowerOf2_32(cast<VectorType>(X->getType())->getNumElements()) || 2224 isa<UndefValue>(X) || isa<UndefValue>(Y)) 2225 return nullptr; 2226 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 2227 isa<UndefValue>(Shuffle1->getOperand(1)) && 2228 "Unexpected operand for identity shuffle"); 2229 2230 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 2231 // operands directly by adjusting the shuffle mask to account for the narrower 2232 // types: 2233 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 2234 int NarrowElts = cast<VectorType>(X->getType())->getNumElements(); 2235 int WideElts = Shuffle0->getType()->getNumElements(); 2236 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 2237 2238 ArrayRef<int> Mask = Shuf.getShuffleMask(); 2239 SmallVector<int, 16> NewMask(Mask.size(), -1); 2240 for (int i = 0, e = Mask.size(); i != e; ++i) { 2241 if (Mask[i] == -1) 2242 continue; 2243 2244 // If this shuffle is choosing an undef element from 1 of the sources, that 2245 // element is undef. 2246 if (Mask[i] < WideElts) { 2247 if (Shuffle0->getMaskValue(Mask[i]) == -1) 2248 continue; 2249 } else { 2250 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 2251 continue; 2252 } 2253 2254 // If this shuffle is choosing from the 1st narrow op, the mask element is 2255 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 2256 // element is offset down to adjust for the narrow vector widths. 2257 if (Mask[i] < WideElts) { 2258 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 2259 NewMask[i] = Mask[i]; 2260 } else { 2261 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 2262 NewMask[i] = Mask[i] - (WideElts - NarrowElts); 2263 } 2264 } 2265 return new ShuffleVectorInst(X, Y, NewMask); 2266 } 2267 2268 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 2269 Value *LHS = SVI.getOperand(0); 2270 Value *RHS = SVI.getOperand(1); 2271 SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI); 2272 if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 2273 SVI.getType(), ShufQuery)) 2274 return replaceInstUsesWith(SVI, V); 2275 2276 // shuffle x, x, mask --> shuffle x, undef, mask' 2277 unsigned VWidth = SVI.getType()->getNumElements(); 2278 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements(); 2279 ArrayRef<int> Mask = SVI.getShuffleMask(); 2280 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 2281 2282 // Peek through a bitcasted shuffle operand by scaling the mask. If the 2283 // simulated shuffle can simplify, then this shuffle is unnecessary: 2284 // shuf (bitcast X), undef, Mask --> bitcast X' 2285 // TODO: This could be extended to allow length-changing shuffles. 2286 // The transform might also be obsoleted if we allowed canonicalization 2287 // of bitcasted shuffles. 2288 Value *X; 2289 if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) && 2290 X->getType()->isVectorTy() && VWidth == LHSWidth) { 2291 // Try to create a scaled mask constant. 2292 auto *XType = cast<VectorType>(X->getType()); 2293 unsigned XNumElts = XType->getNumElements(); 2294 SmallVector<int, 16> ScaledMask; 2295 if (XNumElts >= VWidth) { 2296 assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast"); 2297 narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask); 2298 } else { 2299 assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast"); 2300 if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask)) 2301 ScaledMask.clear(); 2302 } 2303 if (!ScaledMask.empty()) { 2304 // If the shuffled source vector simplifies, cast that value to this 2305 // shuffle's type. 2306 if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType), 2307 ScaledMask, XType, ShufQuery)) 2308 return BitCastInst::Create(Instruction::BitCast, V, SVI.getType()); 2309 } 2310 } 2311 2312 if (LHS == RHS) { 2313 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 2314 // Remap any references to RHS to use LHS. 2315 SmallVector<int, 16> Elts; 2316 for (unsigned i = 0; i != VWidth; ++i) { 2317 // Propagate undef elements or force mask to LHS. 2318 if (Mask[i] < 0) 2319 Elts.push_back(UndefMaskElem); 2320 else 2321 Elts.push_back(Mask[i] % LHSWidth); 2322 } 2323 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 2324 } 2325 2326 // shuffle undef, x, mask --> shuffle x, undef, mask' 2327 if (isa<UndefValue>(LHS)) { 2328 SVI.commute(); 2329 return &SVI; 2330 } 2331 2332 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 2333 return I; 2334 2335 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 2336 return I; 2337 2338 if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian())) 2339 return I; 2340 2341 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 2342 return I; 2343 2344 APInt UndefElts(VWidth, 0); 2345 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2346 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 2347 if (V != &SVI) 2348 return replaceInstUsesWith(SVI, V); 2349 return &SVI; 2350 } 2351 2352 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 2353 return I; 2354 2355 // These transforms have the potential to lose undef knowledge, so they are 2356 // intentionally placed after SimplifyDemandedVectorElts(). 2357 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 2358 return I; 2359 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 2360 return I; 2361 2362 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 2363 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 2364 return replaceInstUsesWith(SVI, V); 2365 } 2366 2367 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 2368 // a non-vector type. We can instead bitcast the original vector followed by 2369 // an extract of the desired element: 2370 // 2371 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 2372 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 2373 // %1 = bitcast <4 x i8> %sroa to i32 2374 // Becomes: 2375 // %bc = bitcast <16 x i8> %in to <4 x i32> 2376 // %ext = extractelement <4 x i32> %bc, i32 0 2377 // 2378 // If the shuffle is extracting a contiguous range of values from the input 2379 // vector then each use which is a bitcast of the extracted size can be 2380 // replaced. This will work if the vector types are compatible, and the begin 2381 // index is aligned to a value in the casted vector type. If the begin index 2382 // isn't aligned then we can shuffle the original vector (keeping the same 2383 // vector type) before extracting. 2384 // 2385 // This code will bail out if the target type is fundamentally incompatible 2386 // with vectors of the source type. 2387 // 2388 // Example of <16 x i8>, target type i32: 2389 // Index range [4,8): v-----------v Will work. 2390 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 2391 // <16 x i8>: | | | | | | | | | | | | | | | | | 2392 // <4 x i32>: | | | | | 2393 // +-----------+-----------+-----------+-----------+ 2394 // Index range [6,10): ^-----------^ Needs an extra shuffle. 2395 // Target type i40: ^--------------^ Won't work, bail. 2396 bool MadeChange = false; 2397 if (isShuffleExtractingFromLHS(SVI, Mask)) { 2398 Value *V = LHS; 2399 unsigned MaskElems = Mask.size(); 2400 VectorType *SrcTy = cast<VectorType>(V->getType()); 2401 unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize(); 2402 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 2403 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 2404 unsigned SrcNumElems = SrcTy->getNumElements(); 2405 SmallVector<BitCastInst *, 8> BCs; 2406 DenseMap<Type *, Value *> NewBCs; 2407 for (User *U : SVI.users()) 2408 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 2409 if (!BC->use_empty()) 2410 // Only visit bitcasts that weren't previously handled. 2411 BCs.push_back(BC); 2412 for (BitCastInst *BC : BCs) { 2413 unsigned BegIdx = Mask.front(); 2414 Type *TgtTy = BC->getDestTy(); 2415 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2416 if (!TgtElemBitWidth) 2417 continue; 2418 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2419 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2420 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2421 if (!VecBitWidthsEqual) 2422 continue; 2423 if (!VectorType::isValidElementType(TgtTy)) 2424 continue; 2425 auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems); 2426 if (!BegIsAligned) { 2427 // Shuffle the input so [0,NumElements) contains the output, and 2428 // [NumElems,SrcNumElems) is undef. 2429 SmallVector<int, 16> ShuffleMask(SrcNumElems, -1); 2430 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2431 ShuffleMask[I] = Idx; 2432 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2433 ShuffleMask, 2434 SVI.getName() + ".extract"); 2435 BegIdx = 0; 2436 } 2437 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2438 assert(SrcElemsPerTgtElem); 2439 BegIdx /= SrcElemsPerTgtElem; 2440 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2441 auto *NewBC = 2442 BCAlreadyExists 2443 ? NewBCs[CastSrcTy] 2444 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2445 if (!BCAlreadyExists) 2446 NewBCs[CastSrcTy] = NewBC; 2447 auto *Ext = Builder.CreateExtractElement( 2448 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2449 // The shufflevector isn't being replaced: the bitcast that used it 2450 // is. InstCombine will visit the newly-created instructions. 2451 replaceInstUsesWith(*BC, Ext); 2452 MadeChange = true; 2453 } 2454 } 2455 2456 // If the LHS is a shufflevector itself, see if we can combine it with this 2457 // one without producing an unusual shuffle. 2458 // Cases that might be simplified: 2459 // 1. 2460 // x1=shuffle(v1,v2,mask1) 2461 // x=shuffle(x1,undef,mask) 2462 // ==> 2463 // x=shuffle(v1,undef,newMask) 2464 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2465 // 2. 2466 // x1=shuffle(v1,undef,mask1) 2467 // x=shuffle(x1,x2,mask) 2468 // where v1.size() == mask1.size() 2469 // ==> 2470 // x=shuffle(v1,x2,newMask) 2471 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2472 // 3. 2473 // x2=shuffle(v2,undef,mask2) 2474 // x=shuffle(x1,x2,mask) 2475 // where v2.size() == mask2.size() 2476 // ==> 2477 // x=shuffle(x1,v2,newMask) 2478 // newMask[i] = (mask[i] < x1.size()) 2479 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2480 // 4. 2481 // x1=shuffle(v1,undef,mask1) 2482 // x2=shuffle(v2,undef,mask2) 2483 // x=shuffle(x1,x2,mask) 2484 // where v1.size() == v2.size() 2485 // ==> 2486 // x=shuffle(v1,v2,newMask) 2487 // newMask[i] = (mask[i] < x1.size()) 2488 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2489 // 2490 // Here we are really conservative: 2491 // we are absolutely afraid of producing a shuffle mask not in the input 2492 // program, because the code gen may not be smart enough to turn a merged 2493 // shuffle into two specific shuffles: it may produce worse code. As such, 2494 // we only merge two shuffles if the result is either a splat or one of the 2495 // input shuffle masks. In this case, merging the shuffles just removes 2496 // one instruction, which we know is safe. This is good for things like 2497 // turning: (splat(splat)) -> splat, or 2498 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2499 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2500 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2501 if (LHSShuffle) 2502 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2503 LHSShuffle = nullptr; 2504 if (RHSShuffle) 2505 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2506 RHSShuffle = nullptr; 2507 if (!LHSShuffle && !RHSShuffle) 2508 return MadeChange ? &SVI : nullptr; 2509 2510 Value* LHSOp0 = nullptr; 2511 Value* LHSOp1 = nullptr; 2512 Value* RHSOp0 = nullptr; 2513 unsigned LHSOp0Width = 0; 2514 unsigned RHSOp0Width = 0; 2515 if (LHSShuffle) { 2516 LHSOp0 = LHSShuffle->getOperand(0); 2517 LHSOp1 = LHSShuffle->getOperand(1); 2518 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements(); 2519 } 2520 if (RHSShuffle) { 2521 RHSOp0 = RHSShuffle->getOperand(0); 2522 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements(); 2523 } 2524 Value* newLHS = LHS; 2525 Value* newRHS = RHS; 2526 if (LHSShuffle) { 2527 // case 1 2528 if (isa<UndefValue>(RHS)) { 2529 newLHS = LHSOp0; 2530 newRHS = LHSOp1; 2531 } 2532 // case 2 or 4 2533 else if (LHSOp0Width == LHSWidth) { 2534 newLHS = LHSOp0; 2535 } 2536 } 2537 // case 3 or 4 2538 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2539 newRHS = RHSOp0; 2540 } 2541 // case 4 2542 if (LHSOp0 == RHSOp0) { 2543 newLHS = LHSOp0; 2544 newRHS = nullptr; 2545 } 2546 2547 if (newLHS == LHS && newRHS == RHS) 2548 return MadeChange ? &SVI : nullptr; 2549 2550 ArrayRef<int> LHSMask; 2551 ArrayRef<int> RHSMask; 2552 if (newLHS != LHS) 2553 LHSMask = LHSShuffle->getShuffleMask(); 2554 if (RHSShuffle && newRHS != RHS) 2555 RHSMask = RHSShuffle->getShuffleMask(); 2556 2557 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2558 SmallVector<int, 16> newMask; 2559 bool isSplat = true; 2560 int SplatElt = -1; 2561 // Create a new mask for the new ShuffleVectorInst so that the new 2562 // ShuffleVectorInst is equivalent to the original one. 2563 for (unsigned i = 0; i < VWidth; ++i) { 2564 int eltMask; 2565 if (Mask[i] < 0) { 2566 // This element is an undef value. 2567 eltMask = -1; 2568 } else if (Mask[i] < (int)LHSWidth) { 2569 // This element is from left hand side vector operand. 2570 // 2571 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2572 // new mask value for the element. 2573 if (newLHS != LHS) { 2574 eltMask = LHSMask[Mask[i]]; 2575 // If the value selected is an undef value, explicitly specify it 2576 // with a -1 mask value. 2577 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2578 eltMask = -1; 2579 } else 2580 eltMask = Mask[i]; 2581 } else { 2582 // This element is from right hand side vector operand 2583 // 2584 // If the value selected is an undef value, explicitly specify it 2585 // with a -1 mask value. (case 1) 2586 if (isa<UndefValue>(RHS)) 2587 eltMask = -1; 2588 // If RHS is going to be replaced (case 3 or 4), calculate the 2589 // new mask value for the element. 2590 else if (newRHS != RHS) { 2591 eltMask = RHSMask[Mask[i]-LHSWidth]; 2592 // If the value selected is an undef value, explicitly specify it 2593 // with a -1 mask value. 2594 if (eltMask >= (int)RHSOp0Width) { 2595 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2596 && "should have been check above"); 2597 eltMask = -1; 2598 } 2599 } else 2600 eltMask = Mask[i]-LHSWidth; 2601 2602 // If LHS's width is changed, shift the mask value accordingly. 2603 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2604 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2605 // If newRHS == newLHS, we want to remap any references from newRHS to 2606 // newLHS so that we can properly identify splats that may occur due to 2607 // obfuscation across the two vectors. 2608 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2609 eltMask += newLHSWidth; 2610 } 2611 2612 // Check if this could still be a splat. 2613 if (eltMask >= 0) { 2614 if (SplatElt >= 0 && SplatElt != eltMask) 2615 isSplat = false; 2616 SplatElt = eltMask; 2617 } 2618 2619 newMask.push_back(eltMask); 2620 } 2621 2622 // If the result mask is equal to one of the original shuffle masks, 2623 // or is a splat, do the replacement. 2624 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2625 SmallVector<Constant*, 16> Elts; 2626 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2627 if (newMask[i] < 0) { 2628 Elts.push_back(UndefValue::get(Int32Ty)); 2629 } else { 2630 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2631 } 2632 } 2633 if (!newRHS) 2634 newRHS = UndefValue::get(newLHS->getType()); 2635 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2636 } 2637 2638 return MadeChange ? &SVI : nullptr; 2639 } 2640