1 //===- InstCombineVectorOps.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements instcombine for ExtractElement, InsertElement and 10 // ShuffleVector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/User.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <iterator> 40 #include <utility> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "instcombine" 46 47 /// Return true if the value is cheaper to scalarize than it is to leave as a 48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting 49 /// one known element from a vector constant. 50 /// 51 /// FIXME: It's possible to create more instructions than previously existed. 52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { 53 // If we can pick a scalar constant value out of a vector, that is free. 54 if (auto *C = dyn_cast<Constant>(V)) 55 return IsConstantExtractIndex || C->getSplatValue(); 56 57 // An insertelement to the same constant index as our extract will simplify 58 // to the scalar inserted element. An insertelement to a different constant 59 // index is irrelevant to our extract. 60 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) 61 return IsConstantExtractIndex; 62 63 if (match(V, m_OneUse(m_Load(m_Value())))) 64 return true; 65 66 if (match(V, m_OneUse(m_UnOp()))) 67 return true; 68 69 Value *V0, *V1; 70 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) 71 if (cheapToScalarize(V0, IsConstantExtractIndex) || 72 cheapToScalarize(V1, IsConstantExtractIndex)) 73 return true; 74 75 CmpInst::Predicate UnusedPred; 76 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) 77 if (cheapToScalarize(V0, IsConstantExtractIndex) || 78 cheapToScalarize(V1, IsConstantExtractIndex)) 79 return true; 80 81 return false; 82 } 83 84 // If we have a PHI node with a vector type that is only used to feed 85 // itself and be an operand of extractelement at a constant location, 86 // try to replace the PHI of the vector type with a PHI of a scalar type. 87 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { 88 SmallVector<Instruction *, 2> Extracts; 89 // The users we want the PHI to have are: 90 // 1) The EI ExtractElement (we already know this) 91 // 2) Possibly more ExtractElements with the same index. 92 // 3) Another operand, which will feed back into the PHI. 93 Instruction *PHIUser = nullptr; 94 for (auto U : PN->users()) { 95 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { 96 if (EI.getIndexOperand() == EU->getIndexOperand()) 97 Extracts.push_back(EU); 98 else 99 return nullptr; 100 } else if (!PHIUser) { 101 PHIUser = cast<Instruction>(U); 102 } else { 103 return nullptr; 104 } 105 } 106 107 if (!PHIUser) 108 return nullptr; 109 110 // Verify that this PHI user has one use, which is the PHI itself, 111 // and that it is a binary operation which is cheap to scalarize. 112 // otherwise return nullptr. 113 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || 114 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) 115 return nullptr; 116 117 // Create a scalar PHI node that will replace the vector PHI node 118 // just before the current PHI node. 119 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( 120 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); 121 // Scalarize each PHI operand. 122 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 123 Value *PHIInVal = PN->getIncomingValue(i); 124 BasicBlock *inBB = PN->getIncomingBlock(i); 125 Value *Elt = EI.getIndexOperand(); 126 // If the operand is the PHI induction variable: 127 if (PHIInVal == PHIUser) { 128 // Scalarize the binary operation. Its first operand is the 129 // scalar PHI, and the second operand is extracted from the other 130 // vector operand. 131 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); 132 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; 133 Value *Op = InsertNewInstWith( 134 ExtractElementInst::Create(B0->getOperand(opId), Elt, 135 B0->getOperand(opId)->getName() + ".Elt"), 136 *B0); 137 Value *newPHIUser = InsertNewInstWith( 138 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), 139 scalarPHI, Op, B0), *B0); 140 scalarPHI->addIncoming(newPHIUser, inBB); 141 } else { 142 // Scalarize PHI input: 143 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); 144 // Insert the new instruction into the predecessor basic block. 145 Instruction *pos = dyn_cast<Instruction>(PHIInVal); 146 BasicBlock::iterator InsertPos; 147 if (pos && !isa<PHINode>(pos)) { 148 InsertPos = ++pos->getIterator(); 149 } else { 150 InsertPos = inBB->getFirstInsertionPt(); 151 } 152 153 InsertNewInstWith(newEI, *InsertPos); 154 155 scalarPHI->addIncoming(newEI, inBB); 156 } 157 } 158 159 for (auto E : Extracts) 160 replaceInstUsesWith(*E, scalarPHI); 161 162 return &EI; 163 } 164 165 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, 166 InstCombiner::BuilderTy &Builder, 167 bool IsBigEndian) { 168 Value *X; 169 uint64_t ExtIndexC; 170 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || 171 !X->getType()->isVectorTy() || 172 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) 173 return nullptr; 174 175 // If this extractelement is using a bitcast from a vector of the same number 176 // of elements, see if we can find the source element from the source vector: 177 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] 178 Type *SrcTy = X->getType(); 179 Type *DestTy = Ext.getType(); 180 unsigned NumSrcElts = SrcTy->getVectorNumElements(); 181 unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); 182 if (NumSrcElts == NumElts) 183 if (Value *Elt = findScalarElement(X, ExtIndexC)) 184 return new BitCastInst(Elt, DestTy); 185 186 // If the source elements are wider than the destination, try to shift and 187 // truncate a subset of scalar bits of an insert op. 188 if (NumSrcElts < NumElts) { 189 Value *Scalar; 190 uint64_t InsIndexC; 191 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), 192 m_ConstantInt(InsIndexC)))) 193 return nullptr; 194 195 // The extract must be from the subset of vector elements that we inserted 196 // into. Example: if we inserted element 1 of a <2 x i64> and we are 197 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 198 // of elements 4-7 of the bitcasted vector. 199 unsigned NarrowingRatio = NumElts / NumSrcElts; 200 if (ExtIndexC / NarrowingRatio != InsIndexC) 201 return nullptr; 202 203 // We are extracting part of the original scalar. How that scalar is 204 // inserted into the vector depends on the endian-ness. Example: 205 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 206 // +--+--+--+--+--+--+--+--+ 207 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| 208 // extelt <4 x i16> V', 3: | |S2|S3| 209 // +--+--+--+--+--+--+--+--+ 210 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. 211 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. 212 // In this example, we must right-shift little-endian. Big-endian is just a 213 // truncate. 214 unsigned Chunk = ExtIndexC % NarrowingRatio; 215 if (IsBigEndian) 216 Chunk = NarrowingRatio - 1 - Chunk; 217 218 // Bail out if this is an FP vector to FP vector sequence. That would take 219 // more instructions than we started with unless there is no shift, and it 220 // may not be handled as well in the backend. 221 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); 222 bool NeedDestBitcast = DestTy->isFloatingPointTy(); 223 if (NeedSrcBitcast && NeedDestBitcast) 224 return nullptr; 225 226 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 227 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 228 unsigned ShAmt = Chunk * DestWidth; 229 230 // TODO: This limitation is more strict than necessary. We could sum the 231 // number of new instructions and subtract the number eliminated to know if 232 // we can proceed. 233 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) 234 if (NeedSrcBitcast || NeedDestBitcast) 235 return nullptr; 236 237 if (NeedSrcBitcast) { 238 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); 239 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); 240 } 241 242 if (ShAmt) { 243 // Bail out if we could end with more instructions than we started with. 244 if (!Ext.getVectorOperand()->hasOneUse()) 245 return nullptr; 246 Scalar = Builder.CreateLShr(Scalar, ShAmt); 247 } 248 249 if (NeedDestBitcast) { 250 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); 251 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); 252 } 253 return new TruncInst(Scalar, DestTy); 254 } 255 256 return nullptr; 257 } 258 259 /// Find elements of V demanded by UserInstr. 260 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { 261 unsigned VWidth = V->getType()->getVectorNumElements(); 262 263 // Conservatively assume that all elements are needed. 264 APInt UsedElts(APInt::getAllOnesValue(VWidth)); 265 266 switch (UserInstr->getOpcode()) { 267 case Instruction::ExtractElement: { 268 ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); 269 assert(EEI->getVectorOperand() == V); 270 ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); 271 if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { 272 UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); 273 } 274 break; 275 } 276 case Instruction::ShuffleVector: { 277 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); 278 unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements(); 279 280 UsedElts = APInt(VWidth, 0); 281 for (unsigned i = 0; i < MaskNumElts; i++) { 282 unsigned MaskVal = Shuffle->getMaskValue(i); 283 if (MaskVal == -1u || MaskVal >= 2 * VWidth) 284 continue; 285 if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) 286 UsedElts.setBit(MaskVal); 287 if (Shuffle->getOperand(1) == V && 288 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) 289 UsedElts.setBit(MaskVal - VWidth); 290 } 291 break; 292 } 293 default: 294 break; 295 } 296 return UsedElts; 297 } 298 299 /// Find union of elements of V demanded by all its users. 300 /// If it is known by querying findDemandedEltsBySingleUser that 301 /// no user demands an element of V, then the corresponding bit 302 /// remains unset in the returned value. 303 static APInt findDemandedEltsByAllUsers(Value *V) { 304 unsigned VWidth = V->getType()->getVectorNumElements(); 305 306 APInt UnionUsedElts(VWidth, 0); 307 for (const Use &U : V->uses()) { 308 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { 309 UnionUsedElts |= findDemandedEltsBySingleUser(V, I); 310 } else { 311 UnionUsedElts = APInt::getAllOnesValue(VWidth); 312 break; 313 } 314 315 if (UnionUsedElts.isAllOnesValue()) 316 break; 317 } 318 319 return UnionUsedElts; 320 } 321 322 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { 323 Value *SrcVec = EI.getVectorOperand(); 324 Value *Index = EI.getIndexOperand(); 325 if (Value *V = SimplifyExtractElementInst(SrcVec, Index, 326 SQ.getWithInstruction(&EI))) 327 return replaceInstUsesWith(EI, V); 328 329 // If extracting a specified index from the vector, see if we can recursively 330 // find a previously computed scalar that was inserted into the vector. 331 auto *IndexC = dyn_cast<ConstantInt>(Index); 332 if (IndexC) { 333 unsigned NumElts = EI.getVectorOperandType()->getNumElements(); 334 335 // InstSimplify should handle cases where the index is invalid. 336 if (!IndexC->getValue().ule(NumElts)) 337 return nullptr; 338 339 // This instruction only demands the single element from the input vector. 340 if (NumElts != 1) { 341 // If the input vector has a single use, simplify it based on this use 342 // property. 343 if (SrcVec->hasOneUse()) { 344 APInt UndefElts(NumElts, 0); 345 APInt DemandedElts(NumElts, 0); 346 DemandedElts.setBit(IndexC->getZExtValue()); 347 if (Value *V = 348 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) 349 return replaceOperand(EI, 0, V); 350 } else { 351 // If the input vector has multiple uses, simplify it based on a union 352 // of all elements used. 353 APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); 354 if (!DemandedElts.isAllOnesValue()) { 355 APInt UndefElts(NumElts, 0); 356 if (Value *V = SimplifyDemandedVectorElts( 357 SrcVec, DemandedElts, UndefElts, 0 /* Depth */, 358 true /* AllowMultipleUsers */)) { 359 if (V != SrcVec) { 360 SrcVec->replaceAllUsesWith(V); 361 return &EI; 362 } 363 } 364 } 365 } 366 } 367 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) 368 return I; 369 370 // If there's a vector PHI feeding a scalar use through this extractelement 371 // instruction, try to scalarize the PHI. 372 if (auto *Phi = dyn_cast<PHINode>(SrcVec)) 373 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) 374 return ScalarPHI; 375 } 376 377 // TODO come up with a n-ary matcher that subsumes both unary and 378 // binary matchers. 379 UnaryOperator *UO; 380 if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, IndexC)) { 381 // extelt (unop X), Index --> unop (extelt X, Index) 382 Value *X = UO->getOperand(0); 383 Value *E = Builder.CreateExtractElement(X, Index); 384 return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO); 385 } 386 387 BinaryOperator *BO; 388 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { 389 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) 390 Value *X = BO->getOperand(0), *Y = BO->getOperand(1); 391 Value *E0 = Builder.CreateExtractElement(X, Index); 392 Value *E1 = Builder.CreateExtractElement(Y, Index); 393 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); 394 } 395 396 Value *X, *Y; 397 CmpInst::Predicate Pred; 398 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && 399 cheapToScalarize(SrcVec, IndexC)) { 400 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) 401 Value *E0 = Builder.CreateExtractElement(X, Index); 402 Value *E1 = Builder.CreateExtractElement(Y, Index); 403 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); 404 } 405 406 if (auto *I = dyn_cast<Instruction>(SrcVec)) { 407 if (auto *IE = dyn_cast<InsertElementInst>(I)) { 408 // Extracting the inserted element? 409 if (IE->getOperand(2) == Index) 410 return replaceInstUsesWith(EI, IE->getOperand(1)); 411 // If the inserted and extracted elements are constants, they must not 412 // be the same value, extract from the pre-inserted value instead. 413 if (isa<Constant>(IE->getOperand(2)) && IndexC) 414 return replaceOperand(EI, 0, IE->getOperand(0)); 415 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 416 // If this is extracting an element from a shufflevector, figure out where 417 // it came from and extract from the appropriate input element instead. 418 if (auto *Elt = dyn_cast<ConstantInt>(Index)) { 419 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); 420 Value *Src; 421 unsigned LHSWidth = 422 SVI->getOperand(0)->getType()->getVectorNumElements(); 423 424 if (SrcIdx < 0) 425 return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); 426 if (SrcIdx < (int)LHSWidth) 427 Src = SVI->getOperand(0); 428 else { 429 SrcIdx -= LHSWidth; 430 Src = SVI->getOperand(1); 431 } 432 Type *Int32Ty = Type::getInt32Ty(EI.getContext()); 433 return ExtractElementInst::Create(Src, 434 ConstantInt::get(Int32Ty, 435 SrcIdx, false)); 436 } 437 } else if (auto *CI = dyn_cast<CastInst>(I)) { 438 // Canonicalize extractelement(cast) -> cast(extractelement). 439 // Bitcasts can change the number of vector elements, and they cost 440 // nothing. 441 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { 442 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); 443 return CastInst::Create(CI->getOpcode(), EE, EI.getType()); 444 } 445 } 446 } 447 return nullptr; 448 } 449 450 /// If V is a shuffle of values that ONLY returns elements from either LHS or 451 /// RHS, return the shuffle mask and true. Otherwise, return false. 452 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, 453 SmallVectorImpl<Constant*> &Mask) { 454 assert(LHS->getType() == RHS->getType() && 455 "Invalid CollectSingleShuffleElements"); 456 unsigned NumElts = V->getType()->getVectorNumElements(); 457 458 if (isa<UndefValue>(V)) { 459 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 460 return true; 461 } 462 463 if (V == LHS) { 464 for (unsigned i = 0; i != NumElts; ++i) 465 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 466 return true; 467 } 468 469 if (V == RHS) { 470 for (unsigned i = 0; i != NumElts; ++i) 471 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), 472 i+NumElts)); 473 return true; 474 } 475 476 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 477 // If this is an insert of an extract from some other vector, include it. 478 Value *VecOp = IEI->getOperand(0); 479 Value *ScalarOp = IEI->getOperand(1); 480 Value *IdxOp = IEI->getOperand(2); 481 482 if (!isa<ConstantInt>(IdxOp)) 483 return false; 484 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 485 486 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. 487 // We can handle this if the vector we are inserting into is 488 // transitively ok. 489 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 490 // If so, update the mask to reflect the inserted undef. 491 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); 492 return true; 493 } 494 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ 495 if (isa<ConstantInt>(EI->getOperand(1))) { 496 unsigned ExtractedIdx = 497 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 498 unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); 499 500 // This must be extracting from either LHS or RHS. 501 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { 502 // We can handle this if the vector we are inserting into is 503 // transitively ok. 504 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { 505 // If so, update the mask to reflect the inserted value. 506 if (EI->getOperand(0) == LHS) { 507 Mask[InsertedIdx % NumElts] = 508 ConstantInt::get(Type::getInt32Ty(V->getContext()), 509 ExtractedIdx); 510 } else { 511 assert(EI->getOperand(0) == RHS); 512 Mask[InsertedIdx % NumElts] = 513 ConstantInt::get(Type::getInt32Ty(V->getContext()), 514 ExtractedIdx + NumLHSElts); 515 } 516 return true; 517 } 518 } 519 } 520 } 521 } 522 523 return false; 524 } 525 526 /// If we have insertion into a vector that is wider than the vector that we 527 /// are extracting from, try to widen the source vector to allow a single 528 /// shufflevector to replace one or more insert/extract pairs. 529 static void replaceExtractElements(InsertElementInst *InsElt, 530 ExtractElementInst *ExtElt, 531 InstCombiner &IC) { 532 VectorType *InsVecType = InsElt->getType(); 533 VectorType *ExtVecType = ExtElt->getVectorOperandType(); 534 unsigned NumInsElts = InsVecType->getVectorNumElements(); 535 unsigned NumExtElts = ExtVecType->getVectorNumElements(); 536 537 // The inserted-to vector must be wider than the extracted-from vector. 538 if (InsVecType->getElementType() != ExtVecType->getElementType() || 539 NumExtElts >= NumInsElts) 540 return; 541 542 // Create a shuffle mask to widen the extended-from vector using undefined 543 // values. The mask selects all of the values of the original vector followed 544 // by as many undefined values as needed to create a vector of the same length 545 // as the inserted-to vector. 546 SmallVector<Constant *, 16> ExtendMask; 547 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); 548 for (unsigned i = 0; i < NumExtElts; ++i) 549 ExtendMask.push_back(ConstantInt::get(IntType, i)); 550 for (unsigned i = NumExtElts; i < NumInsElts; ++i) 551 ExtendMask.push_back(UndefValue::get(IntType)); 552 553 Value *ExtVecOp = ExtElt->getVectorOperand(); 554 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); 555 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 556 ? ExtVecOpInst->getParent() 557 : ExtElt->getParent(); 558 559 // TODO: This restriction matches the basic block check below when creating 560 // new extractelement instructions. If that limitation is removed, this one 561 // could also be removed. But for now, we just bail out to ensure that we 562 // will replace the extractelement instruction that is feeding our 563 // insertelement instruction. This allows the insertelement to then be 564 // replaced by a shufflevector. If the insertelement is not replaced, we can 565 // induce infinite looping because there's an optimization for extractelement 566 // that will delete our widening shuffle. This would trigger another attempt 567 // here to create that shuffle, and we spin forever. 568 if (InsertionBlock != InsElt->getParent()) 569 return; 570 571 // TODO: This restriction matches the check in visitInsertElementInst() and 572 // prevents an infinite loop caused by not turning the extract/insert pair 573 // into a shuffle. We really should not need either check, but we're lacking 574 // folds for shufflevectors because we're afraid to generate shuffle masks 575 // that the backend can't handle. 576 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) 577 return; 578 579 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), 580 ConstantVector::get(ExtendMask)); 581 582 // Insert the new shuffle after the vector operand of the extract is defined 583 // (as long as it's not a PHI) or at the start of the basic block of the 584 // extract, so any subsequent extracts in the same basic block can use it. 585 // TODO: Insert before the earliest ExtractElementInst that is replaced. 586 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) 587 WideVec->insertAfter(ExtVecOpInst); 588 else 589 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); 590 591 // Replace extracts from the original narrow vector with extracts from the new 592 // wide vector. 593 for (User *U : ExtVecOp->users()) { 594 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); 595 if (!OldExt || OldExt->getParent() != WideVec->getParent()) 596 continue; 597 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); 598 NewExt->insertAfter(OldExt); 599 IC.replaceInstUsesWith(*OldExt, NewExt); 600 } 601 } 602 603 /// We are building a shuffle to create V, which is a sequence of insertelement, 604 /// extractelement pairs. If PermittedRHS is set, then we must either use it or 605 /// not rely on the second vector source. Return a std::pair containing the 606 /// left and right vectors of the proposed shuffle (or 0), and set the Mask 607 /// parameter as required. 608 /// 609 /// Note: we intentionally don't try to fold earlier shuffles since they have 610 /// often been chosen carefully to be efficiently implementable on the target. 611 using ShuffleOps = std::pair<Value *, Value *>; 612 613 static ShuffleOps collectShuffleElements(Value *V, 614 SmallVectorImpl<Constant *> &Mask, 615 Value *PermittedRHS, 616 InstCombiner &IC) { 617 assert(V->getType()->isVectorTy() && "Invalid shuffle!"); 618 unsigned NumElts = V->getType()->getVectorNumElements(); 619 620 if (isa<UndefValue>(V)) { 621 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); 622 return std::make_pair( 623 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); 624 } 625 626 if (isa<ConstantAggregateZero>(V)) { 627 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); 628 return std::make_pair(V, nullptr); 629 } 630 631 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { 632 // If this is an insert of an extract from some other vector, include it. 633 Value *VecOp = IEI->getOperand(0); 634 Value *ScalarOp = IEI->getOperand(1); 635 Value *IdxOp = IEI->getOperand(2); 636 637 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { 638 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { 639 unsigned ExtractedIdx = 640 cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); 641 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); 642 643 // Either the extracted from or inserted into vector must be RHSVec, 644 // otherwise we'd end up with a shuffle of three inputs. 645 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { 646 Value *RHS = EI->getOperand(0); 647 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); 648 assert(LR.second == nullptr || LR.second == RHS); 649 650 if (LR.first->getType() != RHS->getType()) { 651 // Although we are giving up for now, see if we can create extracts 652 // that match the inserts for another round of combining. 653 replaceExtractElements(IEI, EI, IC); 654 655 // We tried our best, but we can't find anything compatible with RHS 656 // further up the chain. Return a trivial shuffle. 657 for (unsigned i = 0; i < NumElts; ++i) 658 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); 659 return std::make_pair(V, nullptr); 660 } 661 662 unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); 663 Mask[InsertedIdx % NumElts] = 664 ConstantInt::get(Type::getInt32Ty(V->getContext()), 665 NumLHSElts+ExtractedIdx); 666 return std::make_pair(LR.first, RHS); 667 } 668 669 if (VecOp == PermittedRHS) { 670 // We've gone as far as we can: anything on the other side of the 671 // extractelement will already have been converted into a shuffle. 672 unsigned NumLHSElts = 673 EI->getOperand(0)->getType()->getVectorNumElements(); 674 for (unsigned i = 0; i != NumElts; ++i) 675 Mask.push_back(ConstantInt::get( 676 Type::getInt32Ty(V->getContext()), 677 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); 678 return std::make_pair(EI->getOperand(0), PermittedRHS); 679 } 680 681 // If this insertelement is a chain that comes from exactly these two 682 // vectors, return the vector and the effective shuffle. 683 if (EI->getOperand(0)->getType() == PermittedRHS->getType() && 684 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, 685 Mask)) 686 return std::make_pair(EI->getOperand(0), PermittedRHS); 687 } 688 } 689 } 690 691 // Otherwise, we can't do anything fancy. Return an identity vector. 692 for (unsigned i = 0; i != NumElts; ++i) 693 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); 694 return std::make_pair(V, nullptr); 695 } 696 697 /// Try to find redundant insertvalue instructions, like the following ones: 698 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 699 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 700 /// Here the second instruction inserts values at the same indices, as the 701 /// first one, making the first one redundant. 702 /// It should be transformed to: 703 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 704 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { 705 bool IsRedundant = false; 706 ArrayRef<unsigned int> FirstIndices = I.getIndices(); 707 708 // If there is a chain of insertvalue instructions (each of them except the 709 // last one has only one use and it's another insertvalue insn from this 710 // chain), check if any of the 'children' uses the same indices as the first 711 // instruction. In this case, the first one is redundant. 712 Value *V = &I; 713 unsigned Depth = 0; 714 while (V->hasOneUse() && Depth < 10) { 715 User *U = V->user_back(); 716 auto UserInsInst = dyn_cast<InsertValueInst>(U); 717 if (!UserInsInst || U->getOperand(0) != V) 718 break; 719 if (UserInsInst->getIndices() == FirstIndices) { 720 IsRedundant = true; 721 break; 722 } 723 V = UserInsInst; 724 Depth++; 725 } 726 727 if (IsRedundant) 728 return replaceInstUsesWith(I, I.getOperand(0)); 729 return nullptr; 730 } 731 732 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { 733 int MaskSize = Shuf.getShuffleMask().size(); 734 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); 735 736 // A vector select does not change the size of the operands. 737 if (MaskSize != VecSize) 738 return false; 739 740 // Each mask element must be undefined or choose a vector element from one of 741 // the source operands without crossing vector lanes. 742 for (int i = 0; i != MaskSize; ++i) { 743 int Elt = Shuf.getMaskValue(i); 744 if (Elt != -1 && Elt != i && Elt != i + VecSize) 745 return false; 746 } 747 748 return true; 749 } 750 751 /// Turn a chain of inserts that splats a value into an insert + shuffle: 752 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> 753 /// shufflevector(insertelt(X, %k, 0), undef, zero) 754 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { 755 // We are interested in the last insert in a chain. So if this insert has a 756 // single user and that user is an insert, bail. 757 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) 758 return nullptr; 759 760 auto *VecTy = cast<VectorType>(InsElt.getType()); 761 unsigned NumElements = VecTy->getNumElements(); 762 763 // Do not try to do this for a one-element vector, since that's a nop, 764 // and will cause an inf-loop. 765 if (NumElements == 1) 766 return nullptr; 767 768 Value *SplatVal = InsElt.getOperand(1); 769 InsertElementInst *CurrIE = &InsElt; 770 SmallVector<bool, 16> ElementPresent(NumElements, false); 771 InsertElementInst *FirstIE = nullptr; 772 773 // Walk the chain backwards, keeping track of which indices we inserted into, 774 // until we hit something that isn't an insert of the splatted value. 775 while (CurrIE) { 776 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); 777 if (!Idx || CurrIE->getOperand(1) != SplatVal) 778 return nullptr; 779 780 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); 781 // Check none of the intermediate steps have any additional uses, except 782 // for the root insertelement instruction, which can be re-used, if it 783 // inserts at position 0. 784 if (CurrIE != &InsElt && 785 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) 786 return nullptr; 787 788 ElementPresent[Idx->getZExtValue()] = true; 789 FirstIE = CurrIE; 790 CurrIE = NextIE; 791 } 792 793 // If this is just a single insertelement (not a sequence), we are done. 794 if (FirstIE == &InsElt) 795 return nullptr; 796 797 // If we are not inserting into an undef vector, make sure we've seen an 798 // insert into every element. 799 // TODO: If the base vector is not undef, it might be better to create a splat 800 // and then a select-shuffle (blend) with the base vector. 801 if (!isa<UndefValue>(FirstIE->getOperand(0))) 802 if (any_of(ElementPresent, [](bool Present) { return !Present; })) 803 return nullptr; 804 805 // Create the insert + shuffle. 806 Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); 807 UndefValue *UndefVec = UndefValue::get(VecTy); 808 Constant *Zero = ConstantInt::get(Int32Ty, 0); 809 if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) 810 FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); 811 812 // Splat from element 0, but replace absent elements with undef in the mask. 813 SmallVector<Constant *, 16> Mask(NumElements, Zero); 814 for (unsigned i = 0; i != NumElements; ++i) 815 if (!ElementPresent[i]) 816 Mask[i] = UndefValue::get(Int32Ty); 817 818 return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); 819 } 820 821 /// Try to fold an insert element into an existing splat shuffle by changing 822 /// the shuffle's mask to include the index of this insert element. 823 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { 824 // Check if the vector operand of this insert is a canonical splat shuffle. 825 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 826 if (!Shuf || !Shuf->isZeroEltSplat()) 827 return nullptr; 828 829 // Check for a constant insertion index. 830 uint64_t IdxC; 831 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 832 return nullptr; 833 834 // Check if the splat shuffle's input is the same as this insert's scalar op. 835 Value *X = InsElt.getOperand(1); 836 Value *Op0 = Shuf->getOperand(0); 837 if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) 838 return nullptr; 839 840 // Replace the shuffle mask element at the index of this insert with a zero. 841 // For example: 842 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 843 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> 844 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); 845 SmallVector<int, 16> NewMask(NumMaskElts); 846 for (unsigned i = 0; i != NumMaskElts; ++i) 847 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i); 848 849 return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); 850 } 851 852 /// Try to fold an extract+insert element into an existing identity shuffle by 853 /// changing the shuffle's mask to include the index of this insert element. 854 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { 855 // Check if the vector operand of this insert is an identity shuffle. 856 auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); 857 if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || 858 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) 859 return nullptr; 860 861 // Check for a constant insertion index. 862 uint64_t IdxC; 863 if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) 864 return nullptr; 865 866 // Check if this insert's scalar op is extracted from the identity shuffle's 867 // input vector. 868 Value *Scalar = InsElt.getOperand(1); 869 Value *X = Shuf->getOperand(0); 870 if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) 871 return nullptr; 872 873 // Replace the shuffle mask element at the index of this extract+insert with 874 // that same index value. 875 // For example: 876 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' 877 unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); 878 SmallVector<int, 16> NewMask(NumMaskElts); 879 ArrayRef<int> OldMask = Shuf->getShuffleMask(); 880 for (unsigned i = 0; i != NumMaskElts; ++i) { 881 if (i != IdxC) { 882 // All mask elements besides the inserted element remain the same. 883 NewMask[i] = OldMask[i]; 884 } else if (OldMask[i] == (int)IdxC) { 885 // If the mask element was already set, there's nothing to do 886 // (demanded elements analysis may unset it later). 887 return nullptr; 888 } else { 889 assert(OldMask[i] == UndefMaskElem && 890 "Unexpected shuffle mask element for identity shuffle"); 891 NewMask[i] = IdxC; 892 } 893 } 894 895 return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); 896 } 897 898 /// If we have an insertelement instruction feeding into another insertelement 899 /// and the 2nd is inserting a constant into the vector, canonicalize that 900 /// constant insertion before the insertion of a variable: 901 /// 902 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> 903 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 904 /// 905 /// This has the potential of eliminating the 2nd insertelement instruction 906 /// via constant folding of the scalar constant into a vector constant. 907 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, 908 InstCombiner::BuilderTy &Builder) { 909 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); 910 if (!InsElt1 || !InsElt1->hasOneUse()) 911 return nullptr; 912 913 Value *X, *Y; 914 Constant *ScalarC; 915 ConstantInt *IdxC1, *IdxC2; 916 if (match(InsElt1->getOperand(0), m_Value(X)) && 917 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && 918 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && 919 match(InsElt2.getOperand(1), m_Constant(ScalarC)) && 920 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { 921 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); 922 return InsertElementInst::Create(NewInsElt1, Y, IdxC1); 923 } 924 925 return nullptr; 926 } 927 928 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex 929 /// --> shufflevector X, CVec', Mask' 930 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { 931 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); 932 // Bail out if the parent has more than one use. In that case, we'd be 933 // replacing the insertelt with a shuffle, and that's not a clear win. 934 if (!Inst || !Inst->hasOneUse()) 935 return nullptr; 936 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { 937 // The shuffle must have a constant vector operand. The insertelt must have 938 // a constant scalar being inserted at a constant position in the vector. 939 Constant *ShufConstVec, *InsEltScalar; 940 uint64_t InsEltIndex; 941 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || 942 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || 943 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) 944 return nullptr; 945 946 // Adding an element to an arbitrary shuffle could be expensive, but a 947 // shuffle that selects elements from vectors without crossing lanes is 948 // assumed cheap. 949 // If we're just adding a constant into that shuffle, it will still be 950 // cheap. 951 if (!isShuffleEquivalentToSelect(*Shuf)) 952 return nullptr; 953 954 // From the above 'select' check, we know that the mask has the same number 955 // of elements as the vector input operands. We also know that each constant 956 // input element is used in its lane and can not be used more than once by 957 // the shuffle. Therefore, replace the constant in the shuffle's constant 958 // vector with the insertelt constant. Replace the constant in the shuffle's 959 // mask vector with the insertelt index plus the length of the vector 960 // (because the constant vector operand of a shuffle is always the 2nd 961 // operand). 962 ArrayRef<int> Mask = Shuf->getShuffleMask(); 963 unsigned NumElts = Mask.size(); 964 SmallVector<Constant *, 16> NewShufElts(NumElts); 965 SmallVector<int, 16> NewMaskElts(NumElts); 966 for (unsigned I = 0; I != NumElts; ++I) { 967 if (I == InsEltIndex) { 968 NewShufElts[I] = InsEltScalar; 969 NewMaskElts[I] = InsEltIndex + NumElts; 970 } else { 971 // Copy over the existing values. 972 NewShufElts[I] = ShufConstVec->getAggregateElement(I); 973 NewMaskElts[I] = Mask[I]; 974 } 975 } 976 977 // Create new operands for a shuffle that includes the constant of the 978 // original insertelt. The old shuffle will be dead now. 979 return new ShuffleVectorInst(Shuf->getOperand(0), 980 ConstantVector::get(NewShufElts), NewMaskElts); 981 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { 982 // Transform sequences of insertelements ops with constant data/indexes into 983 // a single shuffle op. 984 unsigned NumElts = InsElt.getType()->getNumElements(); 985 986 uint64_t InsertIdx[2]; 987 Constant *Val[2]; 988 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || 989 !match(InsElt.getOperand(1), m_Constant(Val[0])) || 990 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || 991 !match(IEI->getOperand(1), m_Constant(Val[1]))) 992 return nullptr; 993 SmallVector<Constant *, 16> Values(NumElts); 994 SmallVector<Constant *, 16> Mask(NumElts); 995 auto ValI = std::begin(Val); 996 // Generate new constant vector and mask. 997 // We have 2 values/masks from the insertelements instructions. Insert them 998 // into new value/mask vectors. 999 for (uint64_t I : InsertIdx) { 1000 if (!Values[I]) { 1001 assert(!Mask[I]); 1002 Values[I] = *ValI; 1003 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 1004 NumElts + I); 1005 } 1006 ++ValI; 1007 } 1008 // Remaining values are filled with 'undef' values. 1009 for (unsigned I = 0; I < NumElts; ++I) { 1010 if (!Values[I]) { 1011 assert(!Mask[I]); 1012 Values[I] = UndefValue::get(InsElt.getType()->getElementType()); 1013 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); 1014 } 1015 } 1016 // Create new operands for a shuffle that includes the constant of the 1017 // original insertelt. 1018 return new ShuffleVectorInst(IEI->getOperand(0), 1019 ConstantVector::get(Values), 1020 ConstantVector::get(Mask)); 1021 } 1022 return nullptr; 1023 } 1024 1025 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { 1026 Value *VecOp = IE.getOperand(0); 1027 Value *ScalarOp = IE.getOperand(1); 1028 Value *IdxOp = IE.getOperand(2); 1029 1030 if (auto *V = SimplifyInsertElementInst( 1031 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) 1032 return replaceInstUsesWith(IE, V); 1033 1034 // If the vector and scalar are both bitcast from the same element type, do 1035 // the insert in that source type followed by bitcast. 1036 Value *VecSrc, *ScalarSrc; 1037 if (match(VecOp, m_BitCast(m_Value(VecSrc))) && 1038 match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && 1039 (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && 1040 VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && 1041 VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) { 1042 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> 1043 // bitcast (inselt VecSrc, ScalarSrc, IdxOp) 1044 Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); 1045 return new BitCastInst(NewInsElt, IE.getType()); 1046 } 1047 1048 // If the inserted element was extracted from some other vector and both 1049 // indexes are valid constants, try to turn this into a shuffle. 1050 uint64_t InsertedIdx, ExtractedIdx; 1051 Value *ExtVecOp; 1052 if (match(IdxOp, m_ConstantInt(InsertedIdx)) && 1053 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), 1054 m_ConstantInt(ExtractedIdx))) && 1055 ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) { 1056 // TODO: Looking at the user(s) to determine if this insert is a 1057 // fold-to-shuffle opportunity does not match the usual instcombine 1058 // constraints. We should decide if the transform is worthy based only 1059 // on this instruction and its operands, but that may not work currently. 1060 // 1061 // Here, we are trying to avoid creating shuffles before reaching 1062 // the end of a chain of extract-insert pairs. This is complicated because 1063 // we do not generally form arbitrary shuffle masks in instcombine 1064 // (because those may codegen poorly), but collectShuffleElements() does 1065 // exactly that. 1066 // 1067 // The rules for determining what is an acceptable target-independent 1068 // shuffle mask are fuzzy because they evolve based on the backend's 1069 // capabilities and real-world impact. 1070 auto isShuffleRootCandidate = [](InsertElementInst &Insert) { 1071 if (!Insert.hasOneUse()) 1072 return true; 1073 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); 1074 if (!InsertUser) 1075 return true; 1076 return false; 1077 }; 1078 1079 // Try to form a shuffle from a chain of extract-insert ops. 1080 if (isShuffleRootCandidate(IE)) { 1081 SmallVector<Constant*, 16> Mask; 1082 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); 1083 1084 // The proposed shuffle may be trivial, in which case we shouldn't 1085 // perform the combine. 1086 if (LR.first != &IE && LR.second != &IE) { 1087 // We now have a shuffle of LHS, RHS, Mask. 1088 if (LR.second == nullptr) 1089 LR.second = UndefValue::get(LR.first->getType()); 1090 return new ShuffleVectorInst(LR.first, LR.second, 1091 ConstantVector::get(Mask)); 1092 } 1093 } 1094 } 1095 1096 unsigned VWidth = VecOp->getType()->getVectorNumElements(); 1097 APInt UndefElts(VWidth, 0); 1098 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1099 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { 1100 if (V != &IE) 1101 return replaceInstUsesWith(IE, V); 1102 return &IE; 1103 } 1104 1105 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) 1106 return Shuf; 1107 1108 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) 1109 return NewInsElt; 1110 1111 if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) 1112 return Broadcast; 1113 1114 if (Instruction *Splat = foldInsEltIntoSplat(IE)) 1115 return Splat; 1116 1117 if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) 1118 return IdentityShuf; 1119 1120 return nullptr; 1121 } 1122 1123 /// Return true if we can evaluate the specified expression tree if the vector 1124 /// elements were shuffled in a different order. 1125 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, 1126 unsigned Depth = 5) { 1127 // We can always reorder the elements of a constant. 1128 if (isa<Constant>(V)) 1129 return true; 1130 1131 // We won't reorder vector arguments. No IPO here. 1132 Instruction *I = dyn_cast<Instruction>(V); 1133 if (!I) return false; 1134 1135 // Two users may expect different orders of the elements. Don't try it. 1136 if (!I->hasOneUse()) 1137 return false; 1138 1139 if (Depth == 0) return false; 1140 1141 switch (I->getOpcode()) { 1142 case Instruction::UDiv: 1143 case Instruction::SDiv: 1144 case Instruction::URem: 1145 case Instruction::SRem: 1146 // Propagating an undefined shuffle mask element to integer div/rem is not 1147 // allowed because those opcodes can create immediate undefined behavior 1148 // from an undefined element in an operand. 1149 if (llvm::any_of(Mask, [](int M){ return M == -1; })) 1150 return false; 1151 LLVM_FALLTHROUGH; 1152 case Instruction::Add: 1153 case Instruction::FAdd: 1154 case Instruction::Sub: 1155 case Instruction::FSub: 1156 case Instruction::Mul: 1157 case Instruction::FMul: 1158 case Instruction::FDiv: 1159 case Instruction::FRem: 1160 case Instruction::Shl: 1161 case Instruction::LShr: 1162 case Instruction::AShr: 1163 case Instruction::And: 1164 case Instruction::Or: 1165 case Instruction::Xor: 1166 case Instruction::ICmp: 1167 case Instruction::FCmp: 1168 case Instruction::Trunc: 1169 case Instruction::ZExt: 1170 case Instruction::SExt: 1171 case Instruction::FPToUI: 1172 case Instruction::FPToSI: 1173 case Instruction::UIToFP: 1174 case Instruction::SIToFP: 1175 case Instruction::FPTrunc: 1176 case Instruction::FPExt: 1177 case Instruction::GetElementPtr: { 1178 // Bail out if we would create longer vector ops. We could allow creating 1179 // longer vector ops, but that may result in more expensive codegen. 1180 Type *ITy = I->getType(); 1181 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) 1182 return false; 1183 for (Value *Operand : I->operands()) { 1184 if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) 1185 return false; 1186 } 1187 return true; 1188 } 1189 case Instruction::InsertElement: { 1190 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); 1191 if (!CI) return false; 1192 int ElementNumber = CI->getLimitedValue(); 1193 1194 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' 1195 // can't put an element into multiple indices. 1196 bool SeenOnce = false; 1197 for (int i = 0, e = Mask.size(); i != e; ++i) { 1198 if (Mask[i] == ElementNumber) { 1199 if (SeenOnce) 1200 return false; 1201 SeenOnce = true; 1202 } 1203 } 1204 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); 1205 } 1206 } 1207 return false; 1208 } 1209 1210 /// Rebuild a new instruction just like 'I' but with the new operands given. 1211 /// In the event of type mismatch, the type of the operands is correct. 1212 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { 1213 // We don't want to use the IRBuilder here because we want the replacement 1214 // instructions to appear next to 'I', not the builder's insertion point. 1215 switch (I->getOpcode()) { 1216 case Instruction::Add: 1217 case Instruction::FAdd: 1218 case Instruction::Sub: 1219 case Instruction::FSub: 1220 case Instruction::Mul: 1221 case Instruction::FMul: 1222 case Instruction::UDiv: 1223 case Instruction::SDiv: 1224 case Instruction::FDiv: 1225 case Instruction::URem: 1226 case Instruction::SRem: 1227 case Instruction::FRem: 1228 case Instruction::Shl: 1229 case Instruction::LShr: 1230 case Instruction::AShr: 1231 case Instruction::And: 1232 case Instruction::Or: 1233 case Instruction::Xor: { 1234 BinaryOperator *BO = cast<BinaryOperator>(I); 1235 assert(NewOps.size() == 2 && "binary operator with #ops != 2"); 1236 BinaryOperator *New = 1237 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), 1238 NewOps[0], NewOps[1], "", BO); 1239 if (isa<OverflowingBinaryOperator>(BO)) { 1240 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); 1241 New->setHasNoSignedWrap(BO->hasNoSignedWrap()); 1242 } 1243 if (isa<PossiblyExactOperator>(BO)) { 1244 New->setIsExact(BO->isExact()); 1245 } 1246 if (isa<FPMathOperator>(BO)) 1247 New->copyFastMathFlags(I); 1248 return New; 1249 } 1250 case Instruction::ICmp: 1251 assert(NewOps.size() == 2 && "icmp with #ops != 2"); 1252 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), 1253 NewOps[0], NewOps[1]); 1254 case Instruction::FCmp: 1255 assert(NewOps.size() == 2 && "fcmp with #ops != 2"); 1256 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), 1257 NewOps[0], NewOps[1]); 1258 case Instruction::Trunc: 1259 case Instruction::ZExt: 1260 case Instruction::SExt: 1261 case Instruction::FPToUI: 1262 case Instruction::FPToSI: 1263 case Instruction::UIToFP: 1264 case Instruction::SIToFP: 1265 case Instruction::FPTrunc: 1266 case Instruction::FPExt: { 1267 // It's possible that the mask has a different number of elements from 1268 // the original cast. We recompute the destination type to match the mask. 1269 Type *DestTy = 1270 VectorType::get(I->getType()->getScalarType(), 1271 NewOps[0]->getType()->getVectorNumElements()); 1272 assert(NewOps.size() == 1 && "cast with #ops != 1"); 1273 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, 1274 "", I); 1275 } 1276 case Instruction::GetElementPtr: { 1277 Value *Ptr = NewOps[0]; 1278 ArrayRef<Value*> Idx = NewOps.slice(1); 1279 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1280 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); 1281 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); 1282 return GEP; 1283 } 1284 } 1285 llvm_unreachable("failed to rebuild vector instructions"); 1286 } 1287 1288 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { 1289 // Mask.size() does not need to be equal to the number of vector elements. 1290 1291 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); 1292 Type *EltTy = V->getType()->getScalarType(); 1293 Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); 1294 if (isa<UndefValue>(V)) 1295 return UndefValue::get(VectorType::get(EltTy, Mask.size())); 1296 1297 if (isa<ConstantAggregateZero>(V)) 1298 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); 1299 1300 if (Constant *C = dyn_cast<Constant>(V)) 1301 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), 1302 Mask); 1303 1304 Instruction *I = cast<Instruction>(V); 1305 switch (I->getOpcode()) { 1306 case Instruction::Add: 1307 case Instruction::FAdd: 1308 case Instruction::Sub: 1309 case Instruction::FSub: 1310 case Instruction::Mul: 1311 case Instruction::FMul: 1312 case Instruction::UDiv: 1313 case Instruction::SDiv: 1314 case Instruction::FDiv: 1315 case Instruction::URem: 1316 case Instruction::SRem: 1317 case Instruction::FRem: 1318 case Instruction::Shl: 1319 case Instruction::LShr: 1320 case Instruction::AShr: 1321 case Instruction::And: 1322 case Instruction::Or: 1323 case Instruction::Xor: 1324 case Instruction::ICmp: 1325 case Instruction::FCmp: 1326 case Instruction::Trunc: 1327 case Instruction::ZExt: 1328 case Instruction::SExt: 1329 case Instruction::FPToUI: 1330 case Instruction::FPToSI: 1331 case Instruction::UIToFP: 1332 case Instruction::SIToFP: 1333 case Instruction::FPTrunc: 1334 case Instruction::FPExt: 1335 case Instruction::Select: 1336 case Instruction::GetElementPtr: { 1337 SmallVector<Value*, 8> NewOps; 1338 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); 1339 for (int i = 0, e = I->getNumOperands(); i != e; ++i) { 1340 Value *V; 1341 // Recursively call evaluateInDifferentElementOrder on vector arguments 1342 // as well. E.g. GetElementPtr may have scalar operands even if the 1343 // return value is a vector, so we need to examine the operand type. 1344 if (I->getOperand(i)->getType()->isVectorTy()) 1345 V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); 1346 else 1347 V = I->getOperand(i); 1348 NewOps.push_back(V); 1349 NeedsRebuild |= (V != I->getOperand(i)); 1350 } 1351 if (NeedsRebuild) { 1352 return buildNew(I, NewOps); 1353 } 1354 return I; 1355 } 1356 case Instruction::InsertElement: { 1357 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); 1358 1359 // The insertelement was inserting at Element. Figure out which element 1360 // that becomes after shuffling. The answer is guaranteed to be unique 1361 // by CanEvaluateShuffled. 1362 bool Found = false; 1363 int Index = 0; 1364 for (int e = Mask.size(); Index != e; ++Index) { 1365 if (Mask[Index] == Element) { 1366 Found = true; 1367 break; 1368 } 1369 } 1370 1371 // If element is not in Mask, no need to handle the operand 1 (element to 1372 // be inserted). Just evaluate values in operand 0 according to Mask. 1373 if (!Found) 1374 return evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1375 1376 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); 1377 return InsertElementInst::Create(V, I->getOperand(1), 1378 ConstantInt::get(I32Ty, Index), "", I); 1379 } 1380 } 1381 llvm_unreachable("failed to reorder elements of vector instruction!"); 1382 } 1383 1384 // Returns true if the shuffle is extracting a contiguous range of values from 1385 // LHS, for example: 1386 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1387 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| 1388 // Shuffles to: |EE|FF|GG|HH| 1389 // +--+--+--+--+ 1390 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, 1391 ArrayRef<int> Mask) { 1392 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); 1393 unsigned MaskElems = Mask.size(); 1394 unsigned BegIdx = Mask.front(); 1395 unsigned EndIdx = Mask.back(); 1396 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) 1397 return false; 1398 for (unsigned I = 0; I != MaskElems; ++I) 1399 if (static_cast<unsigned>(Mask[I]) != BegIdx + I) 1400 return false; 1401 return true; 1402 } 1403 1404 /// These are the ingredients in an alternate form binary operator as described 1405 /// below. 1406 struct BinopElts { 1407 BinaryOperator::BinaryOps Opcode; 1408 Value *Op0; 1409 Value *Op1; 1410 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, 1411 Value *V0 = nullptr, Value *V1 = nullptr) : 1412 Opcode(Opc), Op0(V0), Op1(V1) {} 1413 operator bool() const { return Opcode != 0; } 1414 }; 1415 1416 /// Binops may be transformed into binops with different opcodes and operands. 1417 /// Reverse the usual canonicalization to enable folds with the non-canonical 1418 /// form of the binop. If a transform is possible, return the elements of the 1419 /// new binop. If not, return invalid elements. 1420 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { 1421 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); 1422 Type *Ty = BO->getType(); 1423 switch (BO->getOpcode()) { 1424 case Instruction::Shl: { 1425 // shl X, C --> mul X, (1 << C) 1426 Constant *C; 1427 if (match(BO1, m_Constant(C))) { 1428 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); 1429 return { Instruction::Mul, BO0, ShlOne }; 1430 } 1431 break; 1432 } 1433 case Instruction::Or: { 1434 // or X, C --> add X, C (when X and C have no common bits set) 1435 const APInt *C; 1436 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) 1437 return { Instruction::Add, BO0, BO1 }; 1438 break; 1439 } 1440 default: 1441 break; 1442 } 1443 return {}; 1444 } 1445 1446 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { 1447 assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); 1448 1449 // Are we shuffling together some value and that same value after it has been 1450 // modified by a binop with a constant? 1451 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1452 Constant *C; 1453 bool Op0IsBinop; 1454 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) 1455 Op0IsBinop = true; 1456 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) 1457 Op0IsBinop = false; 1458 else 1459 return nullptr; 1460 1461 // The identity constant for a binop leaves a variable operand unchanged. For 1462 // a vector, this is a splat of something like 0, -1, or 1. 1463 // If there's no identity constant for this binop, we're done. 1464 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); 1465 BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); 1466 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); 1467 if (!IdC) 1468 return nullptr; 1469 1470 // Shuffle identity constants into the lanes that return the original value. 1471 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} 1472 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} 1473 // The existing binop constant vector remains in the same operand position. 1474 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1475 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : 1476 ConstantExpr::getShuffleVector(IdC, C, Mask); 1477 1478 bool MightCreatePoisonOrUB = 1479 is_contained(Mask, UndefMaskElem) && 1480 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); 1481 if (MightCreatePoisonOrUB) 1482 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); 1483 1484 // shuf (bop X, C), X, M --> bop X, C' 1485 // shuf X, (bop X, C), M --> bop X, C' 1486 Value *X = Op0IsBinop ? Op1 : Op0; 1487 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); 1488 NewBO->copyIRFlags(BO); 1489 1490 // An undef shuffle mask element may propagate as an undef constant element in 1491 // the new binop. That would produce poison where the original code might not. 1492 // If we already made a safe constant, then there's no danger. 1493 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1494 NewBO->dropPoisonGeneratingFlags(); 1495 return NewBO; 1496 } 1497 1498 /// If we have an insert of a scalar to a non-zero element of an undefined 1499 /// vector and then shuffle that value, that's the same as inserting to the zero 1500 /// element and shuffling. Splatting from the zero element is recognized as the 1501 /// canonical form of splat. 1502 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, 1503 InstCombiner::BuilderTy &Builder) { 1504 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1505 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1506 Value *X; 1507 uint64_t IndexC; 1508 1509 // Match a shuffle that is a splat to a non-zero element. 1510 if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), 1511 m_ConstantInt(IndexC)))) || 1512 !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0) 1513 return nullptr; 1514 1515 // Insert into element 0 of an undef vector. 1516 UndefValue *UndefVec = UndefValue::get(Shuf.getType()); 1517 Constant *Zero = Builder.getInt32(0); 1518 Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); 1519 1520 // Splat from element 0. Any mask element that is undefined remains undefined. 1521 // For example: 1522 // shuf (inselt undef, X, 2), undef, <2,2,undef> 1523 // --> shuf (inselt undef, X, 0), undef, <0,0,undef> 1524 unsigned NumMaskElts = Shuf.getType()->getVectorNumElements(); 1525 SmallVector<int, 16> NewMask(NumMaskElts, 0); 1526 for (unsigned i = 0; i != NumMaskElts; ++i) 1527 if (Mask[i] == UndefMaskElem) 1528 NewMask[i] = Mask[i]; 1529 1530 return new ShuffleVectorInst(NewIns, UndefVec, NewMask); 1531 } 1532 1533 /// Try to fold shuffles that are the equivalent of a vector select. 1534 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, 1535 InstCombiner::BuilderTy &Builder, 1536 const DataLayout &DL) { 1537 if (!Shuf.isSelect()) 1538 return nullptr; 1539 1540 // Canonicalize to choose from operand 0 first unless operand 1 is undefined. 1541 // Commuting undef to operand 0 conflicts with another canonicalization. 1542 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1543 if (!isa<UndefValue>(Shuf.getOperand(1)) && 1544 Shuf.getMaskValue(0) >= (int)NumElts) { 1545 // TODO: Can we assert that both operands of a shuffle-select are not undef 1546 // (otherwise, it would have been folded by instsimplify? 1547 Shuf.commute(); 1548 return &Shuf; 1549 } 1550 1551 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) 1552 return I; 1553 1554 BinaryOperator *B0, *B1; 1555 if (!match(Shuf.getOperand(0), m_BinOp(B0)) || 1556 !match(Shuf.getOperand(1), m_BinOp(B1))) 1557 return nullptr; 1558 1559 Value *X, *Y; 1560 Constant *C0, *C1; 1561 bool ConstantsAreOp1; 1562 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && 1563 match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) 1564 ConstantsAreOp1 = true; 1565 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && 1566 match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) 1567 ConstantsAreOp1 = false; 1568 else 1569 return nullptr; 1570 1571 // We need matching binops to fold the lanes together. 1572 BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); 1573 BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); 1574 bool DropNSW = false; 1575 if (ConstantsAreOp1 && Opc0 != Opc1) { 1576 // TODO: We drop "nsw" if shift is converted into multiply because it may 1577 // not be correct when the shift amount is BitWidth - 1. We could examine 1578 // each vector element to determine if it is safe to keep that flag. 1579 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) 1580 DropNSW = true; 1581 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { 1582 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); 1583 Opc0 = AltB0.Opcode; 1584 C0 = cast<Constant>(AltB0.Op1); 1585 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { 1586 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); 1587 Opc1 = AltB1.Opcode; 1588 C1 = cast<Constant>(AltB1.Op1); 1589 } 1590 } 1591 1592 if (Opc0 != Opc1) 1593 return nullptr; 1594 1595 // The opcodes must be the same. Use a new name to make that clear. 1596 BinaryOperator::BinaryOps BOpc = Opc0; 1597 1598 // Select the constant elements needed for the single binop. 1599 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1600 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); 1601 1602 // We are moving a binop after a shuffle. When a shuffle has an undefined 1603 // mask element, the result is undefined, but it is not poison or undefined 1604 // behavior. That is not necessarily true for div/rem/shift. 1605 bool MightCreatePoisonOrUB = 1606 is_contained(Mask, UndefMaskElem) && 1607 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); 1608 if (MightCreatePoisonOrUB) 1609 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); 1610 1611 Value *V; 1612 if (X == Y) { 1613 // Remove a binop and the shuffle by rearranging the constant: 1614 // shuffle (op V, C0), (op V, C1), M --> op V, C' 1615 // shuffle (op C0, V), (op C1, V), M --> op C', V 1616 V = X; 1617 } else { 1618 // If there are 2 different variable operands, we must create a new shuffle 1619 // (select) first, so check uses to ensure that we don't end up with more 1620 // instructions than we started with. 1621 if (!B0->hasOneUse() && !B1->hasOneUse()) 1622 return nullptr; 1623 1624 // If we use the original shuffle mask and op1 is *variable*, we would be 1625 // putting an undef into operand 1 of div/rem/shift. This is either UB or 1626 // poison. We do not have to guard against UB when *constants* are op1 1627 // because safe constants guarantee that we do not overflow sdiv/srem (and 1628 // there's no danger for other opcodes). 1629 // TODO: To allow this case, create a new shuffle mask with no undefs. 1630 if (MightCreatePoisonOrUB && !ConstantsAreOp1) 1631 return nullptr; 1632 1633 // Note: In general, we do not create new shuffles in InstCombine because we 1634 // do not know if a target can lower an arbitrary shuffle optimally. In this 1635 // case, the shuffle uses the existing mask, so there is no additional risk. 1636 1637 // Select the variable vectors first, then perform the binop: 1638 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' 1639 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) 1640 V = Builder.CreateShuffleVector(X, Y, Mask); 1641 } 1642 1643 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : 1644 BinaryOperator::Create(BOpc, NewC, V); 1645 1646 // Flags are intersected from the 2 source binops. But there are 2 exceptions: 1647 // 1. If we changed an opcode, poison conditions might have changed. 1648 // 2. If the shuffle had undef mask elements, the new binop might have undefs 1649 // where the original code did not. But if we already made a safe constant, 1650 // then there's no danger. 1651 NewBO->copyIRFlags(B0); 1652 NewBO->andIRFlags(B1); 1653 if (DropNSW) 1654 NewBO->setHasNoSignedWrap(false); 1655 if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB) 1656 NewBO->dropPoisonGeneratingFlags(); 1657 return NewBO; 1658 } 1659 1660 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and 1661 /// narrowing (concatenating with undef and extracting back to the original 1662 /// length). This allows replacing the wide select with a narrow select. 1663 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, 1664 InstCombiner::BuilderTy &Builder) { 1665 // This must be a narrowing identity shuffle. It extracts the 1st N elements 1666 // of the 1st vector operand of a shuffle. 1667 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) 1668 return nullptr; 1669 1670 // The vector being shuffled must be a vector select that we can eliminate. 1671 // TODO: The one-use requirement could be eased if X and/or Y are constants. 1672 Value *Cond, *X, *Y; 1673 if (!match(Shuf.getOperand(0), 1674 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) 1675 return nullptr; 1676 1677 // We need a narrow condition value. It must be extended with undef elements 1678 // and have the same number of elements as this shuffle. 1679 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); 1680 Value *NarrowCond; 1681 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef()))) || 1682 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || 1683 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) 1684 return nullptr; 1685 1686 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> 1687 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) 1688 Value *Undef = UndefValue::get(X->getType()); 1689 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getShuffleMask()); 1690 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getShuffleMask()); 1691 return SelectInst::Create(NarrowCond, NarrowX, NarrowY); 1692 } 1693 1694 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. 1695 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { 1696 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); 1697 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) 1698 return nullptr; 1699 1700 Value *X, *Y; 1701 ArrayRef<int> Mask; 1702 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Mask(Mask)))) 1703 return nullptr; 1704 1705 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, 1706 // then combining may result in worse codegen. 1707 if (!Op0->hasOneUse()) 1708 return nullptr; 1709 1710 // We are extracting a subvector from a shuffle. Remove excess elements from 1711 // the 1st shuffle mask to eliminate the extract. 1712 // 1713 // This transform is conservatively limited to identity extracts because we do 1714 // not allow arbitrary shuffle mask creation as a target-independent transform 1715 // (because we can't guarantee that will lower efficiently). 1716 // 1717 // If the extracting shuffle has an undef mask element, it transfers to the 1718 // new shuffle mask. Otherwise, copy the original mask element. Example: 1719 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> 1720 // shuf X, Y, <C0, undef, C2, undef> 1721 unsigned NumElts = Shuf.getType()->getVectorNumElements(); 1722 SmallVector<int, 16> NewMask(NumElts); 1723 assert(NumElts < Mask.size() && 1724 "Identity with extract must have less elements than its inputs"); 1725 1726 for (unsigned i = 0; i != NumElts; ++i) { 1727 int ExtractMaskElt = Shuf.getMaskValue(i); 1728 int MaskElt = Mask[i]; 1729 NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt; 1730 } 1731 return new ShuffleVectorInst(X, Y, NewMask); 1732 } 1733 1734 /// Try to replace a shuffle with an insertelement or try to replace a shuffle 1735 /// operand with the operand of an insertelement. 1736 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf, 1737 InstCombiner &IC) { 1738 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); 1739 SmallVector<int, 16> Mask; 1740 Shuf.getShuffleMask(Mask); 1741 1742 // The shuffle must not change vector sizes. 1743 // TODO: This restriction could be removed if the insert has only one use 1744 // (because the transform would require a new length-changing shuffle). 1745 int NumElts = Mask.size(); 1746 if (NumElts != (int)(V0->getType()->getVectorNumElements())) 1747 return nullptr; 1748 1749 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may 1750 // not be able to handle it there if the insertelement has >1 use. 1751 // If the shuffle has an insertelement operand but does not choose the 1752 // inserted scalar element from that value, then we can replace that shuffle 1753 // operand with the source vector of the insertelement. 1754 Value *X; 1755 uint64_t IdxC; 1756 if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1757 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask 1758 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1759 return IC.replaceOperand(Shuf, 0, X); 1760 } 1761 if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) { 1762 // Offset the index constant by the vector width because we are checking for 1763 // accesses to the 2nd vector input of the shuffle. 1764 IdxC += NumElts; 1765 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask 1766 if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) 1767 return IC.replaceOperand(Shuf, 1, X); 1768 } 1769 1770 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' 1771 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { 1772 // We need an insertelement with a constant index. 1773 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), 1774 m_ConstantInt(IndexC)))) 1775 return false; 1776 1777 // Test the shuffle mask to see if it splices the inserted scalar into the 1778 // operand 1 vector of the shuffle. 1779 int NewInsIndex = -1; 1780 for (int i = 0; i != NumElts; ++i) { 1781 // Ignore undef mask elements. 1782 if (Mask[i] == -1) 1783 continue; 1784 1785 // The shuffle takes elements of operand 1 without lane changes. 1786 if (Mask[i] == NumElts + i) 1787 continue; 1788 1789 // The shuffle must choose the inserted scalar exactly once. 1790 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) 1791 return false; 1792 1793 // The shuffle is placing the inserted scalar into element i. 1794 NewInsIndex = i; 1795 } 1796 1797 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); 1798 1799 // Index is updated to the potentially translated insertion lane. 1800 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); 1801 return true; 1802 }; 1803 1804 // If the shuffle is unnecessary, insert the scalar operand directly into 1805 // operand 1 of the shuffle. Example: 1806 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 1807 Value *Scalar; 1808 ConstantInt *IndexC; 1809 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1810 return InsertElementInst::Create(V1, Scalar, IndexC); 1811 1812 // Try again after commuting shuffle. Example: 1813 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> 1814 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 1815 std::swap(V0, V1); 1816 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); 1817 if (isShufflingScalarIntoOp1(Scalar, IndexC)) 1818 return InsertElementInst::Create(V1, Scalar, IndexC); 1819 1820 return nullptr; 1821 } 1822 1823 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { 1824 // Match the operands as identity with padding (also known as concatenation 1825 // with undef) shuffles of the same source type. The backend is expected to 1826 // recreate these concatenations from a shuffle of narrow operands. 1827 auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); 1828 auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); 1829 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || 1830 !Shuffle1 || !Shuffle1->isIdentityWithPadding()) 1831 return nullptr; 1832 1833 // We limit this transform to power-of-2 types because we expect that the 1834 // backend can convert the simplified IR patterns to identical nodes as the 1835 // original IR. 1836 // TODO: If we can verify the same behavior for arbitrary types, the 1837 // power-of-2 checks can be removed. 1838 Value *X = Shuffle0->getOperand(0); 1839 Value *Y = Shuffle1->getOperand(0); 1840 if (X->getType() != Y->getType() || 1841 !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) || 1842 !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) || 1843 !isPowerOf2_32(X->getType()->getVectorNumElements()) || 1844 isa<UndefValue>(X) || isa<UndefValue>(Y)) 1845 return nullptr; 1846 assert(isa<UndefValue>(Shuffle0->getOperand(1)) && 1847 isa<UndefValue>(Shuffle1->getOperand(1)) && 1848 "Unexpected operand for identity shuffle"); 1849 1850 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source 1851 // operands directly by adjusting the shuffle mask to account for the narrower 1852 // types: 1853 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' 1854 int NarrowElts = X->getType()->getVectorNumElements(); 1855 int WideElts = Shuffle0->getType()->getVectorNumElements(); 1856 assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); 1857 1858 Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); 1859 ArrayRef<int> Mask = Shuf.getShuffleMask(); 1860 SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); 1861 for (int i = 0, e = Mask.size(); i != e; ++i) { 1862 if (Mask[i] == -1) 1863 continue; 1864 1865 // If this shuffle is choosing an undef element from 1 of the sources, that 1866 // element is undef. 1867 if (Mask[i] < WideElts) { 1868 if (Shuffle0->getMaskValue(Mask[i]) == -1) 1869 continue; 1870 } else { 1871 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) 1872 continue; 1873 } 1874 1875 // If this shuffle is choosing from the 1st narrow op, the mask element is 1876 // the same. If this shuffle is choosing from the 2nd narrow op, the mask 1877 // element is offset down to adjust for the narrow vector widths. 1878 if (Mask[i] < WideElts) { 1879 assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); 1880 NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); 1881 } else { 1882 assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); 1883 NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); 1884 } 1885 } 1886 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); 1887 } 1888 1889 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 1890 Value *LHS = SVI.getOperand(0); 1891 Value *RHS = SVI.getOperand(1); 1892 if (auto *V = 1893 SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(), 1894 SVI.getType(), SQ.getWithInstruction(&SVI))) 1895 return replaceInstUsesWith(SVI, V); 1896 1897 // shuffle x, x, mask --> shuffle x, undef, mask' 1898 unsigned VWidth = SVI.getType()->getVectorNumElements(); 1899 unsigned LHSWidth = LHS->getType()->getVectorNumElements(); 1900 ArrayRef<int> Mask = SVI.getShuffleMask(); 1901 Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); 1902 if (LHS == RHS) { 1903 assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?"); 1904 // Remap any references to RHS to use LHS. 1905 SmallVector<int, 16> Elts; 1906 for (unsigned i = 0; i != VWidth; ++i) { 1907 // Propagate undef elements or force mask to LHS. 1908 if (Mask[i] < 0) 1909 Elts.push_back(UndefMaskElem); 1910 else 1911 Elts.push_back(Mask[i] % LHSWidth); 1912 } 1913 return new ShuffleVectorInst(LHS, UndefValue::get(RHS->getType()), Elts); 1914 } 1915 1916 // shuffle undef, x, mask --> shuffle x, undef, mask' 1917 if (isa<UndefValue>(LHS)) { 1918 SVI.commute(); 1919 return &SVI; 1920 } 1921 1922 if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) 1923 return I; 1924 1925 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) 1926 return I; 1927 1928 if (Instruction *I = narrowVectorSelect(SVI, Builder)) 1929 return I; 1930 1931 APInt UndefElts(VWidth, 0); 1932 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1933 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { 1934 if (V != &SVI) 1935 return replaceInstUsesWith(SVI, V); 1936 return &SVI; 1937 } 1938 1939 if (Instruction *I = foldIdentityExtractShuffle(SVI)) 1940 return I; 1941 1942 // These transforms have the potential to lose undef knowledge, so they are 1943 // intentionally placed after SimplifyDemandedVectorElts(). 1944 if (Instruction *I = foldShuffleWithInsert(SVI, *this)) 1945 return I; 1946 if (Instruction *I = foldIdentityPaddedShuffles(SVI)) 1947 return I; 1948 1949 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { 1950 Value *V = evaluateInDifferentElementOrder(LHS, Mask); 1951 return replaceInstUsesWith(SVI, V); 1952 } 1953 1954 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to 1955 // a non-vector type. We can instead bitcast the original vector followed by 1956 // an extract of the desired element: 1957 // 1958 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, 1959 // <4 x i32> <i32 0, i32 1, i32 2, i32 3> 1960 // %1 = bitcast <4 x i8> %sroa to i32 1961 // Becomes: 1962 // %bc = bitcast <16 x i8> %in to <4 x i32> 1963 // %ext = extractelement <4 x i32> %bc, i32 0 1964 // 1965 // If the shuffle is extracting a contiguous range of values from the input 1966 // vector then each use which is a bitcast of the extracted size can be 1967 // replaced. This will work if the vector types are compatible, and the begin 1968 // index is aligned to a value in the casted vector type. If the begin index 1969 // isn't aligned then we can shuffle the original vector (keeping the same 1970 // vector type) before extracting. 1971 // 1972 // This code will bail out if the target type is fundamentally incompatible 1973 // with vectors of the source type. 1974 // 1975 // Example of <16 x i8>, target type i32: 1976 // Index range [4,8): v-----------v Will work. 1977 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 1978 // <16 x i8>: | | | | | | | | | | | | | | | | | 1979 // <4 x i32>: | | | | | 1980 // +-----------+-----------+-----------+-----------+ 1981 // Index range [6,10): ^-----------^ Needs an extra shuffle. 1982 // Target type i40: ^--------------^ Won't work, bail. 1983 bool MadeChange = false; 1984 if (isShuffleExtractingFromLHS(SVI, Mask)) { 1985 Value *V = LHS; 1986 unsigned MaskElems = Mask.size(); 1987 VectorType *SrcTy = cast<VectorType>(V->getType()); 1988 unsigned VecBitWidth = SrcTy->getBitWidth(); 1989 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); 1990 assert(SrcElemBitWidth && "vector elements must have a bitwidth"); 1991 unsigned SrcNumElems = SrcTy->getNumElements(); 1992 SmallVector<BitCastInst *, 8> BCs; 1993 DenseMap<Type *, Value *> NewBCs; 1994 for (User *U : SVI.users()) 1995 if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) 1996 if (!BC->use_empty()) 1997 // Only visit bitcasts that weren't previously handled. 1998 BCs.push_back(BC); 1999 for (BitCastInst *BC : BCs) { 2000 unsigned BegIdx = Mask.front(); 2001 Type *TgtTy = BC->getDestTy(); 2002 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); 2003 if (!TgtElemBitWidth) 2004 continue; 2005 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; 2006 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; 2007 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); 2008 if (!VecBitWidthsEqual) 2009 continue; 2010 if (!VectorType::isValidElementType(TgtTy)) 2011 continue; 2012 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); 2013 if (!BegIsAligned) { 2014 // Shuffle the input so [0,NumElements) contains the output, and 2015 // [NumElems,SrcNumElems) is undef. 2016 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, 2017 UndefValue::get(Int32Ty)); 2018 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) 2019 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); 2020 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2021 ConstantVector::get(ShuffleMask), 2022 SVI.getName() + ".extract"); 2023 BegIdx = 0; 2024 } 2025 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; 2026 assert(SrcElemsPerTgtElem); 2027 BegIdx /= SrcElemsPerTgtElem; 2028 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); 2029 auto *NewBC = 2030 BCAlreadyExists 2031 ? NewBCs[CastSrcTy] 2032 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); 2033 if (!BCAlreadyExists) 2034 NewBCs[CastSrcTy] = NewBC; 2035 auto *Ext = Builder.CreateExtractElement( 2036 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); 2037 // The shufflevector isn't being replaced: the bitcast that used it 2038 // is. InstCombine will visit the newly-created instructions. 2039 replaceInstUsesWith(*BC, Ext); 2040 MadeChange = true; 2041 } 2042 } 2043 2044 // If the LHS is a shufflevector itself, see if we can combine it with this 2045 // one without producing an unusual shuffle. 2046 // Cases that might be simplified: 2047 // 1. 2048 // x1=shuffle(v1,v2,mask1) 2049 // x=shuffle(x1,undef,mask) 2050 // ==> 2051 // x=shuffle(v1,undef,newMask) 2052 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 2053 // 2. 2054 // x1=shuffle(v1,undef,mask1) 2055 // x=shuffle(x1,x2,mask) 2056 // where v1.size() == mask1.size() 2057 // ==> 2058 // x=shuffle(v1,x2,newMask) 2059 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] 2060 // 3. 2061 // x2=shuffle(v2,undef,mask2) 2062 // x=shuffle(x1,x2,mask) 2063 // where v2.size() == mask2.size() 2064 // ==> 2065 // x=shuffle(x1,v2,newMask) 2066 // newMask[i] = (mask[i] < x1.size()) 2067 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() 2068 // 4. 2069 // x1=shuffle(v1,undef,mask1) 2070 // x2=shuffle(v2,undef,mask2) 2071 // x=shuffle(x1,x2,mask) 2072 // where v1.size() == v2.size() 2073 // ==> 2074 // x=shuffle(v1,v2,newMask) 2075 // newMask[i] = (mask[i] < x1.size()) 2076 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() 2077 // 2078 // Here we are really conservative: 2079 // we are absolutely afraid of producing a shuffle mask not in the input 2080 // program, because the code gen may not be smart enough to turn a merged 2081 // shuffle into two specific shuffles: it may produce worse code. As such, 2082 // we only merge two shuffles if the result is either a splat or one of the 2083 // input shuffle masks. In this case, merging the shuffles just removes 2084 // one instruction, which we know is safe. This is good for things like 2085 // turning: (splat(splat)) -> splat, or 2086 // merge(V[0..n], V[n+1..2n]) -> V[0..2n] 2087 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); 2088 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); 2089 if (LHSShuffle) 2090 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) 2091 LHSShuffle = nullptr; 2092 if (RHSShuffle) 2093 if (!isa<UndefValue>(RHSShuffle->getOperand(1))) 2094 RHSShuffle = nullptr; 2095 if (!LHSShuffle && !RHSShuffle) 2096 return MadeChange ? &SVI : nullptr; 2097 2098 Value* LHSOp0 = nullptr; 2099 Value* LHSOp1 = nullptr; 2100 Value* RHSOp0 = nullptr; 2101 unsigned LHSOp0Width = 0; 2102 unsigned RHSOp0Width = 0; 2103 if (LHSShuffle) { 2104 LHSOp0 = LHSShuffle->getOperand(0); 2105 LHSOp1 = LHSShuffle->getOperand(1); 2106 LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); 2107 } 2108 if (RHSShuffle) { 2109 RHSOp0 = RHSShuffle->getOperand(0); 2110 RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); 2111 } 2112 Value* newLHS = LHS; 2113 Value* newRHS = RHS; 2114 if (LHSShuffle) { 2115 // case 1 2116 if (isa<UndefValue>(RHS)) { 2117 newLHS = LHSOp0; 2118 newRHS = LHSOp1; 2119 } 2120 // case 2 or 4 2121 else if (LHSOp0Width == LHSWidth) { 2122 newLHS = LHSOp0; 2123 } 2124 } 2125 // case 3 or 4 2126 if (RHSShuffle && RHSOp0Width == LHSWidth) { 2127 newRHS = RHSOp0; 2128 } 2129 // case 4 2130 if (LHSOp0 == RHSOp0) { 2131 newLHS = LHSOp0; 2132 newRHS = nullptr; 2133 } 2134 2135 if (newLHS == LHS && newRHS == RHS) 2136 return MadeChange ? &SVI : nullptr; 2137 2138 ArrayRef<int> LHSMask; 2139 ArrayRef<int> RHSMask; 2140 if (newLHS != LHS) 2141 LHSMask = LHSShuffle->getShuffleMask(); 2142 if (RHSShuffle && newRHS != RHS) 2143 RHSMask = RHSShuffle->getShuffleMask(); 2144 2145 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; 2146 SmallVector<int, 16> newMask; 2147 bool isSplat = true; 2148 int SplatElt = -1; 2149 // Create a new mask for the new ShuffleVectorInst so that the new 2150 // ShuffleVectorInst is equivalent to the original one. 2151 for (unsigned i = 0; i < VWidth; ++i) { 2152 int eltMask; 2153 if (Mask[i] < 0) { 2154 // This element is an undef value. 2155 eltMask = -1; 2156 } else if (Mask[i] < (int)LHSWidth) { 2157 // This element is from left hand side vector operand. 2158 // 2159 // If LHS is going to be replaced (case 1, 2, or 4), calculate the 2160 // new mask value for the element. 2161 if (newLHS != LHS) { 2162 eltMask = LHSMask[Mask[i]]; 2163 // If the value selected is an undef value, explicitly specify it 2164 // with a -1 mask value. 2165 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) 2166 eltMask = -1; 2167 } else 2168 eltMask = Mask[i]; 2169 } else { 2170 // This element is from right hand side vector operand 2171 // 2172 // If the value selected is an undef value, explicitly specify it 2173 // with a -1 mask value. (case 1) 2174 if (isa<UndefValue>(RHS)) 2175 eltMask = -1; 2176 // If RHS is going to be replaced (case 3 or 4), calculate the 2177 // new mask value for the element. 2178 else if (newRHS != RHS) { 2179 eltMask = RHSMask[Mask[i]-LHSWidth]; 2180 // If the value selected is an undef value, explicitly specify it 2181 // with a -1 mask value. 2182 if (eltMask >= (int)RHSOp0Width) { 2183 assert(isa<UndefValue>(RHSShuffle->getOperand(1)) 2184 && "should have been check above"); 2185 eltMask = -1; 2186 } 2187 } else 2188 eltMask = Mask[i]-LHSWidth; 2189 2190 // If LHS's width is changed, shift the mask value accordingly. 2191 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any 2192 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. 2193 // If newRHS == newLHS, we want to remap any references from newRHS to 2194 // newLHS so that we can properly identify splats that may occur due to 2195 // obfuscation across the two vectors. 2196 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) 2197 eltMask += newLHSWidth; 2198 } 2199 2200 // Check if this could still be a splat. 2201 if (eltMask >= 0) { 2202 if (SplatElt >= 0 && SplatElt != eltMask) 2203 isSplat = false; 2204 SplatElt = eltMask; 2205 } 2206 2207 newMask.push_back(eltMask); 2208 } 2209 2210 // If the result mask is equal to one of the original shuffle masks, 2211 // or is a splat, do the replacement. 2212 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { 2213 SmallVector<Constant*, 16> Elts; 2214 for (unsigned i = 0, e = newMask.size(); i != e; ++i) { 2215 if (newMask[i] < 0) { 2216 Elts.push_back(UndefValue::get(Int32Ty)); 2217 } else { 2218 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); 2219 } 2220 } 2221 if (!newRHS) 2222 newRHS = UndefValue::get(newLHS->getType()); 2223 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); 2224 } 2225 2226 return MadeChange ? &SVI : nullptr; 2227 } 2228