1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/PatternMatch.h"
17 #include "llvm/Transforms/InstCombine/InstCombiner.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 #define DEBUG_TYPE "instcombine"
22
canTryToConstantAddTwoShiftAmounts(Value * Sh0,Value * ShAmt0,Value * Sh1,Value * ShAmt1)23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
24 Value *ShAmt1) {
25 // We have two shift amounts from two different shifts. The types of those
26 // shift amounts may not match. If that's the case let's bailout now..
27 if (ShAmt0->getType() != ShAmt1->getType())
28 return false;
29
30 // As input, we have the following pattern:
31 // Sh0 (Sh1 X, Q), K
32 // We want to rewrite that as:
33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
34 // While we know that originally (Q+K) would not overflow
35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
36 // shift amounts. so it may now overflow in smaller bitwidth.
37 // To ensure that does not happen, we need to ensure that the total maximal
38 // shift amount is still representable in that smaller bit width.
39 unsigned MaximalPossibleTotalShiftAmount =
40 (Sh0->getType()->getScalarSizeInBits() - 1) +
41 (Sh1->getType()->getScalarSizeInBits() - 1);
42 APInt MaximalRepresentableShiftAmount =
43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
45 }
46
47 // Given pattern:
48 // (x shiftopcode Q) shiftopcode K
49 // we should rewrite it as
50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
51 //
52 // This is valid for any shift, but they must be identical, and we must be
53 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
55 //
56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator * Sh0,const SimplifyQuery & SQ,bool AnalyzeForSignBitExtraction)58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
59 BinaryOperator *Sh0, const SimplifyQuery &SQ,
60 bool AnalyzeForSignBitExtraction) {
61 // Look for a shift of some instruction, ignore zext of shift amount if any.
62 Instruction *Sh0Op0;
63 Value *ShAmt0;
64 if (!match(Sh0,
65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66 return nullptr;
67
68 // If there is a truncation between the two shifts, we must make note of it
69 // and look through it. The truncation imposes additional constraints on the
70 // transform.
71 Instruction *Sh1;
72 Value *Trunc = nullptr;
73 match(Sh0Op0,
74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
75 m_Instruction(Sh1)));
76
77 // Inner shift: (x shiftopcode ShAmt1)
78 // Like with other shift, ignore zext of shift amount if any.
79 Value *X, *ShAmt1;
80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81 return nullptr;
82
83 // Verify that it would be safe to try to add those two shift amounts.
84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85 return nullptr;
86
87 // We are only looking for signbit extraction if we have two right shifts.
88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89 match(Sh1, m_Shr(m_Value(), m_Value()));
90 // ... and if it's not two right-shifts, we know the answer already.
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92 return nullptr;
93
94 // The shift opcodes must be identical, unless we are just checking whether
95 // this pattern can be interpreted as a sign-bit-extraction.
96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99 return nullptr;
100
101 // If we saw truncation, we'll need to produce extra instruction,
102 // and for that one of the operands of the shift must be one-use,
103 // unless of course we don't actually plan to produce any instructions here.
104 if (Trunc && !AnalyzeForSignBitExtraction &&
105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106 return nullptr;
107
108 // Can we fold (ShAmt0+ShAmt1) ?
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111 SQ.getWithInstruction(Sh0)));
112 if (!NewShAmt)
113 return nullptr; // Did not simplify.
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116 // Is the new shift amount smaller than the bit width of inner/new shift?
117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
118 APInt(NewShAmtBitWidth, XBitWidth))))
119 return nullptr; // FIXME: could perform constant-folding.
120
121 // If there was a truncation, and we have a right-shift, we can only fold if
122 // we are left with the original sign bit. Likewise, if we were just checking
123 // that this is a sighbit extraction, this is the place to check it.
124 // FIXME: zero shift amount is also legal here, but we can't *easily* check
125 // more than one predicate so it's not really worth it.
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127 // If it's not a sign bit extraction, then we're done.
128 if (!match(NewShAmt,
129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
131 return nullptr;
132 // If it is, and that was the question, return the base value.
133 if (AnalyzeForSignBitExtraction)
134 return X;
135 }
136
137 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
138
139 // All good, we can do this fold.
140 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
141
142 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
143
144 // The flags can only be propagated if there wasn't a trunc.
145 if (!Trunc) {
146 // If the pattern did not involve trunc, and both of the original shifts
147 // had the same flag set, preserve the flag.
148 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
149 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
150 Sh1->hasNoUnsignedWrap());
151 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
152 Sh1->hasNoSignedWrap());
153 } else {
154 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
155 }
156 }
157
158 Instruction *Ret = NewShift;
159 if (Trunc) {
160 Builder.Insert(NewShift);
161 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
162 }
163
164 return Ret;
165 }
166
167 // If we have some pattern that leaves only some low bits set, and then performs
168 // left-shift of those bits, if none of the bits that are left after the final
169 // shift are modified by the mask, we can omit the mask.
170 //
171 // There are many variants to this pattern:
172 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
173 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
174 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
175 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
176 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
177 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
178 // All these patterns can be simplified to just:
179 // x << ShiftShAmt
180 // iff:
181 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
182 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
183 static Instruction *
dropRedundantMaskingOfLeftShiftInput(BinaryOperator * OuterShift,const SimplifyQuery & Q,InstCombiner::BuilderTy & Builder)184 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
185 const SimplifyQuery &Q,
186 InstCombiner::BuilderTy &Builder) {
187 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
188 "The input must be 'shl'!");
189
190 Value *Masked, *ShiftShAmt;
191 match(OuterShift,
192 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
193
194 // *If* there is a truncation between an outer shift and a possibly-mask,
195 // then said truncation *must* be one-use, else we can't perform the fold.
196 Value *Trunc;
197 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
198 !Trunc->hasOneUse())
199 return nullptr;
200
201 Type *NarrowestTy = OuterShift->getType();
202 Type *WidestTy = Masked->getType();
203 bool HadTrunc = WidestTy != NarrowestTy;
204
205 // The mask must be computed in a type twice as wide to ensure
206 // that no bits are lost if the sum-of-shifts is wider than the base type.
207 Type *ExtendedTy = WidestTy->getExtendedType();
208
209 Value *MaskShAmt;
210
211 // ((1 << MaskShAmt) - 1)
212 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
213 // (~(-1 << maskNbits))
214 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
215 // (-1 l>> MaskShAmt)
216 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
217 // ((-1 << MaskShAmt) l>> MaskShAmt)
218 auto MaskD =
219 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
220
221 Value *X;
222 Constant *NewMask;
223
224 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
225 // Peek through an optional zext of the shift amount.
226 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
227
228 // Verify that it would be safe to try to add those two shift amounts.
229 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
230 MaskShAmt))
231 return nullptr;
232
233 // Can we simplify (MaskShAmt+ShiftShAmt) ?
234 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
235 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
236 if (!SumOfShAmts)
237 return nullptr; // Did not simplify.
238 // In this pattern SumOfShAmts correlates with the number of low bits
239 // that shall remain in the root value (OuterShift).
240
241 // An extend of an undef value becomes zero because the high bits are never
242 // completely unknown. Replace the `undef` shift amounts with final
243 // shift bitwidth to ensure that the value remains undef when creating the
244 // subsequent shift op.
245 SumOfShAmts = Constant::replaceUndefsWith(
246 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
247 ExtendedTy->getScalarSizeInBits()));
248 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
249 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
250 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
251 auto *ExtendedInvertedMask =
252 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
253 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
254 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
255 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
256 m_Deferred(MaskShAmt)))) {
257 // Peek through an optional zext of the shift amount.
258 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
259
260 // Verify that it would be safe to try to add those two shift amounts.
261 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
262 MaskShAmt))
263 return nullptr;
264
265 // Can we simplify (ShiftShAmt-MaskShAmt) ?
266 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
267 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
268 if (!ShAmtsDiff)
269 return nullptr; // Did not simplify.
270 // In this pattern ShAmtsDiff correlates with the number of high bits that
271 // shall be unset in the root value (OuterShift).
272
273 // An extend of an undef value becomes zero because the high bits are never
274 // completely unknown. Replace the `undef` shift amounts with negated
275 // bitwidth of innermost shift to ensure that the value remains undef when
276 // creating the subsequent shift op.
277 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
278 ShAmtsDiff = Constant::replaceUndefsWith(
279 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
280 -WidestTyBitWidth));
281 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
282 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
283 WidestTyBitWidth,
284 /*isSigned=*/false),
285 ShAmtsDiff),
286 ExtendedTy);
287 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
288 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
289 NewMask =
290 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
291 } else
292 return nullptr; // Don't know anything about this pattern.
293
294 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
295
296 // Does this mask has any unset bits? If not then we can just not apply it.
297 bool NeedMask = !match(NewMask, m_AllOnes());
298
299 // If we need to apply a mask, there are several more restrictions we have.
300 if (NeedMask) {
301 // The old masking instruction must go away.
302 if (!Masked->hasOneUse())
303 return nullptr;
304 // The original "masking" instruction must not have been`ashr`.
305 if (match(Masked, m_AShr(m_Value(), m_Value())))
306 return nullptr;
307 }
308
309 // If we need to apply truncation, let's do it first, since we can.
310 // We have already ensured that the old truncation will go away.
311 if (HadTrunc)
312 X = Builder.CreateTrunc(X, NarrowestTy);
313
314 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
315 // We didn't change the Type of this outermost shift, so we can just do it.
316 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
317 OuterShift->getOperand(1));
318 if (!NeedMask)
319 return NewShift;
320
321 Builder.Insert(NewShift);
322 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
323 }
324
325 /// If we have a shift-by-constant of a bitwise logic op that itself has a
326 /// shift-by-constant operand with identical opcode, we may be able to convert
327 /// that into 2 independent shifts followed by the logic op. This eliminates a
328 /// a use of an intermediate value (reduces dependency chain).
foldShiftOfShiftedLogic(BinaryOperator & I,InstCombiner::BuilderTy & Builder)329 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
330 InstCombiner::BuilderTy &Builder) {
331 assert(I.isShift() && "Expected a shift as input");
332 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
333 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
334 return nullptr;
335
336 Constant *C0, *C1;
337 if (!match(I.getOperand(1), m_Constant(C1)))
338 return nullptr;
339
340 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
341 Type *Ty = I.getType();
342
343 // Find a matching one-use shift by constant. The fold is not valid if the sum
344 // of the shift values equals or exceeds bitwidth.
345 // TODO: Remove the one-use check if the other logic operand (Y) is constant.
346 Value *X, *Y;
347 auto matchFirstShift = [&](Value *V) {
348 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
349 return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
350 match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
351 match(ConstantExpr::getAdd(C0, C1),
352 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
353 };
354
355 // Logic ops are commutative, so check each operand for a match.
356 if (matchFirstShift(LogicInst->getOperand(0)))
357 Y = LogicInst->getOperand(1);
358 else if (matchFirstShift(LogicInst->getOperand(1)))
359 Y = LogicInst->getOperand(0);
360 else
361 return nullptr;
362
363 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
364 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
365 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
366 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
367 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
368 }
369
commonShiftTransforms(BinaryOperator & I)370 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
371 if (Instruction *Phi = foldBinopWithPhiOperands(I))
372 return Phi;
373
374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
375 assert(Op0->getType() == Op1->getType());
376 Type *Ty = I.getType();
377
378 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
379 Value *Y;
380 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
381 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
382 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
383 }
384
385 // See if we can fold away this shift.
386 if (SimplifyDemandedInstructionBits(I))
387 return &I;
388
389 // Try to fold constant and into select arguments.
390 if (isa<Constant>(Op0))
391 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
392 if (Instruction *R = FoldOpIntoSelect(I, SI))
393 return R;
394
395 if (Constant *CUI = dyn_cast<Constant>(Op1))
396 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
397 return Res;
398
399 if (auto *NewShift = cast_or_null<Instruction>(
400 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
401 return NewShift;
402
403 // Pre-shift a constant shifted by a variable amount with constant offset:
404 // C shift (A add nuw C1) --> (C shift C1) shift A
405 Value *A;
406 Constant *C, *C1;
407 if (match(Op0, m_Constant(C)) &&
408 match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) {
409 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
410 return BinaryOperator::Create(I.getOpcode(), NewC, A);
411 }
412
413 unsigned BitWidth = Ty->getScalarSizeInBits();
414
415 const APInt *AC, *AddC;
416 // Try to pre-shift a constant shifted by a variable amount added with a
417 // negative number:
418 // C << (X - AddC) --> (C >> AddC) << X
419 // and
420 // C >> (X - AddC) --> (C << AddC) >> X
421 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
422 AddC->isNegative() && (-*AddC).ult(BitWidth)) {
423 assert(!AC->isZero() && "Expected simplify of shifted zero");
424 unsigned PosOffset = (-*AddC).getZExtValue();
425
426 auto isSuitableForPreShift = [PosOffset, &I, AC]() {
427 switch (I.getOpcode()) {
428 default:
429 return false;
430 case Instruction::Shl:
431 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
432 AC->eq(AC->lshr(PosOffset).shl(PosOffset));
433 case Instruction::LShr:
434 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
435 case Instruction::AShr:
436 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
437 }
438 };
439 if (isSuitableForPreShift()) {
440 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
441 ? AC->lshr(PosOffset)
442 : AC->shl(PosOffset));
443 BinaryOperator *NewShiftOp =
444 BinaryOperator::Create(I.getOpcode(), NewC, A);
445 if (I.getOpcode() == Instruction::Shl) {
446 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
447 } else {
448 NewShiftOp->setIsExact();
449 }
450 return NewShiftOp;
451 }
452 }
453
454 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
455 // Because shifts by negative values (which could occur if A were negative)
456 // are undefined.
457 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
458 match(C, m_Power2())) {
459 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
460 // demand the sign bit (and many others) here??
461 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
462 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
463 return replaceOperand(I, 1, Rem);
464 }
465
466 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
467 return Logic;
468
469 return nullptr;
470 }
471
472 /// Return true if we can simplify two logical (either left or right) shifts
473 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
canEvaluateShiftedShift(unsigned OuterShAmt,bool IsOuterShl,Instruction * InnerShift,InstCombinerImpl & IC,Instruction * CxtI)474 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
475 Instruction *InnerShift,
476 InstCombinerImpl &IC, Instruction *CxtI) {
477 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
478
479 // We need constant scalar or constant splat shifts.
480 const APInt *InnerShiftConst;
481 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
482 return false;
483
484 // Two logical shifts in the same direction:
485 // shl (shl X, C1), C2 --> shl X, C1 + C2
486 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
487 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
488 if (IsInnerShl == IsOuterShl)
489 return true;
490
491 // Equal shift amounts in opposite directions become bitwise 'and':
492 // lshr (shl X, C), C --> and X, C'
493 // shl (lshr X, C), C --> and X, C'
494 if (*InnerShiftConst == OuterShAmt)
495 return true;
496
497 // If the 2nd shift is bigger than the 1st, we can fold:
498 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
499 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
500 // but it isn't profitable unless we know the and'd out bits are already zero.
501 // Also, check that the inner shift is valid (less than the type width) or
502 // we'll crash trying to produce the bit mask for the 'and'.
503 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
504 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
505 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
506 unsigned MaskShift =
507 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
508 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
509 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
510 return true;
511 }
512
513 return false;
514 }
515
516 /// See if we can compute the specified value, but shifted logically to the left
517 /// or right by some number of bits. This should return true if the expression
518 /// can be computed for the same cost as the current expression tree. This is
519 /// used to eliminate extraneous shifting from things like:
520 /// %C = shl i128 %A, 64
521 /// %D = shl i128 %B, 96
522 /// %E = or i128 %C, %D
523 /// %F = lshr i128 %E, 64
524 /// where the client will ask if E can be computed shifted right by 64-bits. If
525 /// this succeeds, getShiftedValue() will be called to produce the value.
canEvaluateShifted(Value * V,unsigned NumBits,bool IsLeftShift,InstCombinerImpl & IC,Instruction * CxtI)526 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
527 InstCombinerImpl &IC, Instruction *CxtI) {
528 // We can always evaluate constants shifted.
529 if (isa<Constant>(V))
530 return true;
531
532 Instruction *I = dyn_cast<Instruction>(V);
533 if (!I) return false;
534
535 // We can't mutate something that has multiple uses: doing so would
536 // require duplicating the instruction in general, which isn't profitable.
537 if (!I->hasOneUse()) return false;
538
539 switch (I->getOpcode()) {
540 default: return false;
541 case Instruction::And:
542 case Instruction::Or:
543 case Instruction::Xor:
544 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
545 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
546 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
547
548 case Instruction::Shl:
549 case Instruction::LShr:
550 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
551
552 case Instruction::Select: {
553 SelectInst *SI = cast<SelectInst>(I);
554 Value *TrueVal = SI->getTrueValue();
555 Value *FalseVal = SI->getFalseValue();
556 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
557 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
558 }
559 case Instruction::PHI: {
560 // We can change a phi if we can change all operands. Note that we never
561 // get into trouble with cyclic PHIs here because we only consider
562 // instructions with a single use.
563 PHINode *PN = cast<PHINode>(I);
564 for (Value *IncValue : PN->incoming_values())
565 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
566 return false;
567 return true;
568 }
569 case Instruction::Mul: {
570 const APInt *MulConst;
571 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
572 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
573 MulConst->isNegatedPowerOf2() &&
574 MulConst->countTrailingZeros() == NumBits;
575 }
576 }
577 }
578
579 /// Fold OuterShift (InnerShift X, C1), C2.
580 /// See canEvaluateShiftedShift() for the constraints on these instructions.
foldShiftedShift(BinaryOperator * InnerShift,unsigned OuterShAmt,bool IsOuterShl,InstCombiner::BuilderTy & Builder)581 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
582 bool IsOuterShl,
583 InstCombiner::BuilderTy &Builder) {
584 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
585 Type *ShType = InnerShift->getType();
586 unsigned TypeWidth = ShType->getScalarSizeInBits();
587
588 // We only accept shifts-by-a-constant in canEvaluateShifted().
589 const APInt *C1;
590 match(InnerShift->getOperand(1), m_APInt(C1));
591 unsigned InnerShAmt = C1->getZExtValue();
592
593 // Change the shift amount and clear the appropriate IR flags.
594 auto NewInnerShift = [&](unsigned ShAmt) {
595 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
596 if (IsInnerShl) {
597 InnerShift->setHasNoUnsignedWrap(false);
598 InnerShift->setHasNoSignedWrap(false);
599 } else {
600 InnerShift->setIsExact(false);
601 }
602 return InnerShift;
603 };
604
605 // Two logical shifts in the same direction:
606 // shl (shl X, C1), C2 --> shl X, C1 + C2
607 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
608 if (IsInnerShl == IsOuterShl) {
609 // If this is an oversized composite shift, then unsigned shifts get 0.
610 if (InnerShAmt + OuterShAmt >= TypeWidth)
611 return Constant::getNullValue(ShType);
612
613 return NewInnerShift(InnerShAmt + OuterShAmt);
614 }
615
616 // Equal shift amounts in opposite directions become bitwise 'and':
617 // lshr (shl X, C), C --> and X, C'
618 // shl (lshr X, C), C --> and X, C'
619 if (InnerShAmt == OuterShAmt) {
620 APInt Mask = IsInnerShl
621 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
622 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
623 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
624 ConstantInt::get(ShType, Mask));
625 if (auto *AndI = dyn_cast<Instruction>(And)) {
626 AndI->moveBefore(InnerShift);
627 AndI->takeName(InnerShift);
628 }
629 return And;
630 }
631
632 assert(InnerShAmt > OuterShAmt &&
633 "Unexpected opposite direction logical shift pair");
634
635 // In general, we would need an 'and' for this transform, but
636 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
637 // lshr (shl X, C1), C2 --> shl X, C1 - C2
638 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
639 return NewInnerShift(InnerShAmt - OuterShAmt);
640 }
641
642 /// When canEvaluateShifted() returns true for an expression, this function
643 /// inserts the new computation that produces the shifted value.
getShiftedValue(Value * V,unsigned NumBits,bool isLeftShift,InstCombinerImpl & IC,const DataLayout & DL)644 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
645 InstCombinerImpl &IC, const DataLayout &DL) {
646 // We can always evaluate constants shifted.
647 if (Constant *C = dyn_cast<Constant>(V)) {
648 if (isLeftShift)
649 return IC.Builder.CreateShl(C, NumBits);
650 else
651 return IC.Builder.CreateLShr(C, NumBits);
652 }
653
654 Instruction *I = cast<Instruction>(V);
655 IC.addToWorklist(I);
656
657 switch (I->getOpcode()) {
658 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
659 case Instruction::And:
660 case Instruction::Or:
661 case Instruction::Xor:
662 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
663 I->setOperand(
664 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
665 I->setOperand(
666 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
667 return I;
668
669 case Instruction::Shl:
670 case Instruction::LShr:
671 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
672 IC.Builder);
673
674 case Instruction::Select:
675 I->setOperand(
676 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
677 I->setOperand(
678 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
679 return I;
680 case Instruction::PHI: {
681 // We can change a phi if we can change all operands. Note that we never
682 // get into trouble with cyclic PHIs here because we only consider
683 // instructions with a single use.
684 PHINode *PN = cast<PHINode>(I);
685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
686 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
687 isLeftShift, IC, DL));
688 return PN;
689 }
690 case Instruction::Mul: {
691 assert(!isLeftShift && "Unexpected shift direction!");
692 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
693 IC.InsertNewInstWith(Neg, *I);
694 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
695 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
696 auto *And = BinaryOperator::CreateAnd(Neg,
697 ConstantInt::get(I->getType(), Mask));
698 And->takeName(I);
699 return IC.InsertNewInstWith(And, *I);
700 }
701 }
702 }
703
704 // If this is a bitwise operator or add with a constant RHS we might be able
705 // to pull it through a shift.
canShiftBinOpWithConstantRHS(BinaryOperator & Shift,BinaryOperator * BO)706 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
707 BinaryOperator *BO) {
708 switch (BO->getOpcode()) {
709 default:
710 return false; // Do not perform transform!
711 case Instruction::Add:
712 return Shift.getOpcode() == Instruction::Shl;
713 case Instruction::Or:
714 case Instruction::And:
715 return true;
716 case Instruction::Xor:
717 // Do not change a 'not' of logical shift because that would create a normal
718 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
719 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
720 }
721 }
722
FoldShiftByConstant(Value * Op0,Constant * C1,BinaryOperator & I)723 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
724 BinaryOperator &I) {
725 // (C2 << X) << C1 --> (C2 << C1) << X
726 // (C2 >> X) >> C1 --> (C2 >> C1) >> X
727 Constant *C2;
728 Value *X;
729 if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X))))
730 return BinaryOperator::Create(
731 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
732
733 const APInt *Op1C;
734 if (!match(C1, m_APInt(Op1C)))
735 return nullptr;
736
737 // See if we can propagate this shift into the input, this covers the trivial
738 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
739 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
740 if (I.getOpcode() != Instruction::AShr &&
741 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
742 LLVM_DEBUG(
743 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
744 " to eliminate shift:\n IN: "
745 << *Op0 << "\n SH: " << I << "\n");
746
747 return replaceInstUsesWith(
748 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
749 }
750
751 // See if we can simplify any instructions used by the instruction whose sole
752 // purpose is to compute bits we don't care about.
753 Type *Ty = I.getType();
754 unsigned TypeBits = Ty->getScalarSizeInBits();
755 assert(!Op1C->uge(TypeBits) &&
756 "Shift over the type width should have been removed already");
757 (void)TypeBits;
758
759 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
760 return FoldedShift;
761
762 if (!Op0->hasOneUse())
763 return nullptr;
764
765 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
766 // If the operand is a bitwise operator with a constant RHS, and the
767 // shift is the only use, we can pull it out of the shift.
768 const APInt *Op0C;
769 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
770 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
771 Value *NewRHS =
772 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
773
774 Value *NewShift =
775 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
776 NewShift->takeName(Op0BO);
777
778 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
779 }
780 }
781 }
782
783 // If we have a select that conditionally executes some binary operator,
784 // see if we can pull it the select and operator through the shift.
785 //
786 // For example, turning:
787 // shl (select C, (add X, C1), X), C2
788 // Into:
789 // Y = shl X, C2
790 // select C, (add Y, C1 << C2), Y
791 Value *Cond;
792 BinaryOperator *TBO;
793 Value *FalseVal;
794 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
795 m_Value(FalseVal)))) {
796 const APInt *C;
797 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
798 match(TBO->getOperand(1), m_APInt(C)) &&
799 canShiftBinOpWithConstantRHS(I, TBO)) {
800 Value *NewRHS =
801 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
802
803 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
804 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
805 return SelectInst::Create(Cond, NewOp, NewShift);
806 }
807 }
808
809 BinaryOperator *FBO;
810 Value *TrueVal;
811 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
812 m_OneUse(m_BinOp(FBO))))) {
813 const APInt *C;
814 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
815 match(FBO->getOperand(1), m_APInt(C)) &&
816 canShiftBinOpWithConstantRHS(I, FBO)) {
817 Value *NewRHS =
818 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
819
820 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
821 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
822 return SelectInst::Create(Cond, NewShift, NewOp);
823 }
824 }
825
826 return nullptr;
827 }
828
visitShl(BinaryOperator & I)829 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
830 const SimplifyQuery Q = SQ.getWithInstruction(&I);
831
832 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
833 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
834 return replaceInstUsesWith(I, V);
835
836 if (Instruction *X = foldVectorBinop(I))
837 return X;
838
839 if (Instruction *V = commonShiftTransforms(I))
840 return V;
841
842 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
843 return V;
844
845 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
846 Type *Ty = I.getType();
847 unsigned BitWidth = Ty->getScalarSizeInBits();
848
849 const APInt *C;
850 if (match(Op1, m_APInt(C))) {
851 unsigned ShAmtC = C->getZExtValue();
852
853 // shl (zext X), C --> zext (shl X, C)
854 // This is only valid if X would have zeros shifted out.
855 Value *X;
856 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
857 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
858 if (ShAmtC < SrcWidth &&
859 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
860 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
861 }
862
863 // (X >> C) << C --> X & (-1 << C)
864 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
865 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
866 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
867 }
868
869 const APInt *C1;
870 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
871 C1->ult(BitWidth)) {
872 unsigned ShrAmt = C1->getZExtValue();
873 if (ShrAmt < ShAmtC) {
874 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
875 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
876 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
877 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
878 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
879 return NewShl;
880 }
881 if (ShrAmt > ShAmtC) {
882 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
883 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
884 auto *NewShr = BinaryOperator::Create(
885 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
886 NewShr->setIsExact(true);
887 return NewShr;
888 }
889 }
890
891 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
892 C1->ult(BitWidth)) {
893 unsigned ShrAmt = C1->getZExtValue();
894 if (ShrAmt < ShAmtC) {
895 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
896 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
897 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
898 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
899 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
900 Builder.Insert(NewShl);
901 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
902 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
903 }
904 if (ShrAmt > ShAmtC) {
905 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
906 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
907 auto *OldShr = cast<BinaryOperator>(Op0);
908 auto *NewShr =
909 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
910 NewShr->setIsExact(OldShr->isExact());
911 Builder.Insert(NewShr);
912 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
913 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
914 }
915 }
916
917 // Similar to above, but look through an intermediate trunc instruction.
918 BinaryOperator *Shr;
919 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
920 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
921 // The larger shift direction survives through the transform.
922 unsigned ShrAmtC = C1->getZExtValue();
923 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
924 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
925 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
926
927 // If C1 > C:
928 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
929 // If C > C1:
930 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
931 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
932 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
933 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
934 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
935 }
936
937 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
938 unsigned AmtSum = ShAmtC + C1->getZExtValue();
939 // Oversized shifts are simplified to zero in InstSimplify.
940 if (AmtSum < BitWidth)
941 // (X << C1) << C2 --> X << (C1 + C2)
942 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
943 }
944
945 // If we have an opposite shift by the same amount, we may be able to
946 // reorder binops and shifts to eliminate math/logic.
947 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
948 switch (BinOpcode) {
949 default:
950 return false;
951 case Instruction::Add:
952 case Instruction::And:
953 case Instruction::Or:
954 case Instruction::Xor:
955 case Instruction::Sub:
956 // NOTE: Sub is not commutable and the tranforms below may not be valid
957 // when the shift-right is operand 1 (RHS) of the sub.
958 return true;
959 }
960 };
961 BinaryOperator *Op0BO;
962 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
963 isSuitableBinOpcode(Op0BO->getOpcode())) {
964 // Commute so shift-right is on LHS of the binop.
965 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
966 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
967 Value *Shr = Op0BO->getOperand(0);
968 Value *Y = Op0BO->getOperand(1);
969 Value *X;
970 const APInt *CC;
971 if (Op0BO->isCommutative() && Y->hasOneUse() &&
972 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
973 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
974 m_APInt(CC)))))
975 std::swap(Shr, Y);
976
977 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
978 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
979 // Y << C
980 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
981 // (X bop (Y << C))
982 Value *B =
983 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
984 unsigned Op1Val = C->getLimitedValue(BitWidth);
985 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
986 Constant *Mask = ConstantInt::get(Ty, Bits);
987 return BinaryOperator::CreateAnd(B, Mask);
988 }
989
990 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
991 if (match(Shr,
992 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
993 m_APInt(CC))))) {
994 // Y << C
995 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
996 // X & (CC << C)
997 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
998 X->getName() + ".mask");
999 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
1000 }
1001 }
1002
1003 // (C1 - X) << C --> (C1 << C) - (X << C)
1004 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
1005 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
1006 Value *NewShift = Builder.CreateShl(X, Op1);
1007 return BinaryOperator::CreateSub(NewLHS, NewShift);
1008 }
1009
1010 // If the shifted-out value is known-zero, then this is a NUW shift.
1011 if (!I.hasNoUnsignedWrap() &&
1012 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
1013 &I)) {
1014 I.setHasNoUnsignedWrap();
1015 return &I;
1016 }
1017
1018 // If the shifted-out value is all signbits, then this is a NSW shift.
1019 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
1020 I.setHasNoSignedWrap();
1021 return &I;
1022 }
1023 }
1024
1025 // Transform (x >> y) << y to x & (-1 << y)
1026 // Valid for any type of right-shift.
1027 Value *X;
1028 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1029 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1030 Value *Mask = Builder.CreateShl(AllOnes, Op1);
1031 return BinaryOperator::CreateAnd(Mask, X);
1032 }
1033
1034 Constant *C1;
1035 if (match(Op1, m_Constant(C1))) {
1036 Constant *C2;
1037 Value *X;
1038 // (X * C2) << C1 --> X * (C2 << C1)
1039 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1040 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1041
1042 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1043 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1044 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1045 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1046 }
1047 }
1048
1049 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1050 if (match(Op0, m_One()) &&
1051 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1052 return BinaryOperator::CreateLShr(
1053 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1054
1055 return nullptr;
1056 }
1057
visitLShr(BinaryOperator & I)1058 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
1059 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1060 SQ.getWithInstruction(&I)))
1061 return replaceInstUsesWith(I, V);
1062
1063 if (Instruction *X = foldVectorBinop(I))
1064 return X;
1065
1066 if (Instruction *R = commonShiftTransforms(I))
1067 return R;
1068
1069 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1070 Type *Ty = I.getType();
1071 const APInt *C;
1072 if (match(Op1, m_APInt(C))) {
1073 unsigned ShAmtC = C->getZExtValue();
1074 unsigned BitWidth = Ty->getScalarSizeInBits();
1075 auto *II = dyn_cast<IntrinsicInst>(Op0);
1076 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1077 (II->getIntrinsicID() == Intrinsic::ctlz ||
1078 II->getIntrinsicID() == Intrinsic::cttz ||
1079 II->getIntrinsicID() == Intrinsic::ctpop)) {
1080 // ctlz.i32(x)>>5 --> zext(x == 0)
1081 // cttz.i32(x)>>5 --> zext(x == 0)
1082 // ctpop.i32(x)>>5 --> zext(x == -1)
1083 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1084 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1085 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1086 return new ZExtInst(Cmp, Ty);
1087 }
1088
1089 Value *X;
1090 const APInt *C1;
1091 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1092 if (C1->ult(ShAmtC)) {
1093 unsigned ShlAmtC = C1->getZExtValue();
1094 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1095 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1096 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1097 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1098 NewLShr->setIsExact(I.isExact());
1099 return NewLShr;
1100 }
1101 if (Op0->hasOneUse()) {
1102 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1103 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1104 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1105 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1106 }
1107 } else if (C1->ugt(ShAmtC)) {
1108 unsigned ShlAmtC = C1->getZExtValue();
1109 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1110 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1111 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1112 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1113 NewShl->setHasNoUnsignedWrap(true);
1114 return NewShl;
1115 }
1116 if (Op0->hasOneUse()) {
1117 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1118 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1119 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1120 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1121 }
1122 } else {
1123 assert(*C1 == ShAmtC);
1124 // (X << C) >>u C --> X & (-1 >>u C)
1125 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1126 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1127 }
1128 }
1129
1130 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1131 // TODO: Consolidate with the more general transform that starts from shl
1132 // (the shifts are in the opposite order).
1133 Value *Y;
1134 if (match(Op0,
1135 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1136 m_Value(Y))))) {
1137 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1138 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1139 unsigned Op1Val = C->getLimitedValue(BitWidth);
1140 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1141 Constant *Mask = ConstantInt::get(Ty, Bits);
1142 return BinaryOperator::CreateAnd(NewAdd, Mask);
1143 }
1144
1145 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1146 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1147 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1148 "Big shift not simplified to zero?");
1149 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1150 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1151 return new ZExtInst(NewLShr, Ty);
1152 }
1153
1154 if (match(Op0, m_SExt(m_Value(X)))) {
1155 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1156 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1157 if (SrcTyBitWidth == 1) {
1158 auto *NewC = ConstantInt::get(
1159 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1160 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1161 }
1162
1163 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1164 Op0->hasOneUse()) {
1165 // Are we moving the sign bit to the low bit and widening with high
1166 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1167 if (ShAmtC == BitWidth - 1) {
1168 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1169 return new ZExtInst(NewLShr, Ty);
1170 }
1171
1172 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1173 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1174 // The new shift amount can't be more than the narrow source type.
1175 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1176 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1177 return new ZExtInst(AShr, Ty);
1178 }
1179 }
1180 }
1181
1182 if (ShAmtC == BitWidth - 1) {
1183 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1184 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1185 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1186
1187 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1188 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1189 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1190
1191 // Check if a number is negative and odd:
1192 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1193 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1194 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1195 return BinaryOperator::CreateAnd(Signbit, X);
1196 }
1197 }
1198
1199 // (X >>u C1) >>u C --> X >>u (C1 + C)
1200 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1201 // Oversized shifts are simplified to zero in InstSimplify.
1202 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1203 if (AmtSum < BitWidth)
1204 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1205 }
1206
1207 Instruction *TruncSrc;
1208 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1209 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1210 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1211 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1212
1213 // If the combined shift fits in the source width:
1214 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1215 //
1216 // If the first shift covers the number of bits truncated, then the
1217 // mask instruction is eliminated (and so the use check is relaxed).
1218 if (AmtSum < SrcWidth &&
1219 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1220 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1221 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1222
1223 // If the first shift does not cover the number of bits truncated, then
1224 // we require a mask to get rid of high bits in the result.
1225 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1226 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1227 }
1228 }
1229
1230 const APInt *MulC;
1231 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
1232 // Look for a "splat" mul pattern - it replicates bits across each half of
1233 // a value, so a right shift is just a mask of the low bits:
1234 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
1235 // TODO: Generalize to allow more than just half-width shifts?
1236 if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1237 MulC->logBase2() == ShAmtC)
1238 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1239
1240 // The one-use check is not strictly necessary, but codegen may not be
1241 // able to invert the transform and perf may suffer with an extra mul
1242 // instruction.
1243 if (Op0->hasOneUse()) {
1244 APInt NewMulC = MulC->lshr(ShAmtC);
1245 // if c is divisible by (1 << ShAmtC):
1246 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC)
1247 if (MulC->eq(NewMulC.shl(ShAmtC))) {
1248 auto *NewMul =
1249 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
1250 BinaryOperator *OrigMul = cast<BinaryOperator>(Op0);
1251 NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap());
1252 return NewMul;
1253 }
1254 }
1255 }
1256
1257 // Try to narrow bswap.
1258 // In the case where the shift amount equals the bitwidth difference, the
1259 // shift is eliminated.
1260 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1261 m_OneUse(m_ZExt(m_Value(X))))))) {
1262 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1263 unsigned WidthDiff = BitWidth - SrcWidth;
1264 if (SrcWidth % 16 == 0) {
1265 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1266 if (ShAmtC >= WidthDiff) {
1267 // (bswap (zext X)) >> C --> zext (bswap X >> C')
1268 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1269 return new ZExtInst(NewShift, Ty);
1270 } else {
1271 // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
1272 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
1273 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1274 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1275 }
1276 }
1277 }
1278
1279 // If the shifted-out value is known-zero, then this is an exact shift.
1280 if (!I.isExact() &&
1281 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1282 I.setIsExact();
1283 return &I;
1284 }
1285 }
1286
1287 // Transform (x << y) >> y to x & (-1 >> y)
1288 Value *X;
1289 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1290 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1291 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1292 return BinaryOperator::CreateAnd(Mask, X);
1293 }
1294
1295 return nullptr;
1296 }
1297
1298 Instruction *
foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator & OldAShr)1299 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1300 BinaryOperator &OldAShr) {
1301 assert(OldAShr.getOpcode() == Instruction::AShr &&
1302 "Must be called with arithmetic right-shift instruction only.");
1303
1304 // Check that constant C is a splat of the element-wise bitwidth of V.
1305 auto BitWidthSplat = [](Constant *C, Value *V) {
1306 return match(
1307 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1308 APInt(C->getType()->getScalarSizeInBits(),
1309 V->getType()->getScalarSizeInBits())));
1310 };
1311
1312 // It should look like variable-length sign-extension on the outside:
1313 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1314 Value *NBits;
1315 Instruction *MaybeTrunc;
1316 Constant *C1, *C2;
1317 if (!match(&OldAShr,
1318 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1319 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1320 m_ZExtOrSelf(m_Value(NBits))))),
1321 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1322 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1323 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1324 return nullptr;
1325
1326 // There may or may not be a truncation after outer two shifts.
1327 Instruction *HighBitExtract;
1328 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1329 bool HadTrunc = MaybeTrunc != HighBitExtract;
1330
1331 // And finally, the innermost part of the pattern must be a right-shift.
1332 Value *X, *NumLowBitsToSkip;
1333 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1334 return nullptr;
1335
1336 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1337 Constant *C0;
1338 if (!match(NumLowBitsToSkip,
1339 m_ZExtOrSelf(
1340 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1341 !BitWidthSplat(C0, HighBitExtract))
1342 return nullptr;
1343
1344 // Since the NBits is identical for all shifts, if the outermost and
1345 // innermost shifts are identical, then outermost shifts are redundant.
1346 // If we had truncation, do keep it though.
1347 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1348 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1349
1350 // Else, if there was a truncation, then we need to ensure that one
1351 // instruction will go away.
1352 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1353 return nullptr;
1354
1355 // Finally, bypass two innermost shifts, and perform the outermost shift on
1356 // the operands of the innermost shift.
1357 Instruction *NewAShr =
1358 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1359 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1360 if (!HadTrunc)
1361 return NewAShr;
1362
1363 Builder.Insert(NewAShr);
1364 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1365 }
1366
visitAShr(BinaryOperator & I)1367 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1368 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1369 SQ.getWithInstruction(&I)))
1370 return replaceInstUsesWith(I, V);
1371
1372 if (Instruction *X = foldVectorBinop(I))
1373 return X;
1374
1375 if (Instruction *R = commonShiftTransforms(I))
1376 return R;
1377
1378 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1379 Type *Ty = I.getType();
1380 unsigned BitWidth = Ty->getScalarSizeInBits();
1381 const APInt *ShAmtAPInt;
1382 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1383 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1384
1385 // If the shift amount equals the difference in width of the destination
1386 // and source scalar types:
1387 // ashr (shl (zext X), C), C --> sext X
1388 Value *X;
1389 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1390 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1391 return new SExtInst(X, Ty);
1392
1393 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1394 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1395 const APInt *ShOp1;
1396 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1397 ShOp1->ult(BitWidth)) {
1398 unsigned ShlAmt = ShOp1->getZExtValue();
1399 if (ShlAmt < ShAmt) {
1400 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1401 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1402 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1403 NewAShr->setIsExact(I.isExact());
1404 return NewAShr;
1405 }
1406 if (ShlAmt > ShAmt) {
1407 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1408 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1409 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1410 NewShl->setHasNoSignedWrap(true);
1411 return NewShl;
1412 }
1413 }
1414
1415 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1416 ShOp1->ult(BitWidth)) {
1417 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1418 // Oversized arithmetic shifts replicate the sign bit.
1419 AmtSum = std::min(AmtSum, BitWidth - 1);
1420 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1421 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1422 }
1423
1424 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1425 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1426 // ashr (sext X), C --> sext (ashr X, C')
1427 Type *SrcTy = X->getType();
1428 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1429 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1430 return new SExtInst(NewSh, Ty);
1431 }
1432
1433 if (ShAmt == BitWidth - 1) {
1434 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1435 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1436 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1437
1438 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1439 Value *Y;
1440 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1441 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1442 }
1443
1444 // If the shifted-out value is known-zero, then this is an exact shift.
1445 if (!I.isExact() &&
1446 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1447 I.setIsExact();
1448 return &I;
1449 }
1450 }
1451
1452 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1453 // as the pattern to splat the lowest bit.
1454 // FIXME: iff X is already masked, we don't need the one-use check.
1455 Value *X;
1456 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1457 match(Op0, m_OneUse(m_Shl(m_Value(X),
1458 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1459 Constant *Mask = ConstantInt::get(Ty, 1);
1460 // Retain the knowledge about the ignored lanes.
1461 Mask = Constant::mergeUndefsWith(
1462 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1463 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1464 X = Builder.CreateAnd(X, Mask);
1465 return BinaryOperator::CreateNeg(X);
1466 }
1467
1468 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1469 return R;
1470
1471 // See if we can turn a signed shr into an unsigned shr.
1472 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1473 return BinaryOperator::CreateLShr(Op0, Op1);
1474
1475 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1476 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1477 // Note that we must drop 'exact'-ness of the shift!
1478 // Note that we can't keep undef's in -1 vector constant!
1479 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1480 return BinaryOperator::CreateNot(NewAShr);
1481 }
1482
1483 return nullptr;
1484 }
1485