1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements sinking of negation into expression trees, 10 // as long as that can be done without increasing instruction count. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/TargetFolder.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Use.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/DebugCounter.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <functional> 46 #include <tuple> 47 #include <utility> 48 49 namespace llvm { 50 class AssumptionCache; 51 class DataLayout; 52 class DominatorTree; 53 class LLVMContext; 54 } // namespace llvm 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "instcombine" 59 60 STATISTIC(NegatorTotalNegationsAttempted, 61 "Negator: Number of negations attempted to be sinked"); 62 STATISTIC(NegatorNumTreesNegated, 63 "Negator: Number of negations successfully sinked"); 64 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever " 65 "reached while attempting to sink negation"); 66 STATISTIC(NegatorTimesDepthLimitReached, 67 "Negator: How many times did the traversal depth limit was reached " 68 "during sinking"); 69 STATISTIC( 70 NegatorNumValuesVisited, 71 "Negator: Total number of values visited during attempts to sink negation"); 72 STATISTIC(NegatorMaxTotalValuesVisited, 73 "Negator: Maximal number of values ever visited while attempting to " 74 "sink negation"); 75 STATISTIC(NegatorNumInstructionsCreatedTotal, 76 "Negator: Number of new negated instructions created, total"); 77 STATISTIC(NegatorMaxInstructionsCreated, 78 "Negator: Maximal number of new instructions created during negation " 79 "attempt"); 80 STATISTIC(NegatorNumInstructionsNegatedSuccess, 81 "Negator: Number of new negated instructions created in successful " 82 "negation sinking attempts"); 83 84 DEBUG_COUNTER(NegatorCounter, "instcombine-negator", 85 "Controls Negator transformations in InstCombine pass"); 86 87 static cl::opt<bool> 88 NegatorEnabled("instcombine-negator-enabled", cl::init(true), 89 cl::desc("Should we attempt to sink negations?")); 90 91 static cl::opt<unsigned> 92 NegatorMaxDepth("instcombine-negator-max-depth", 93 cl::init(NegatorDefaultMaxDepth), 94 cl::desc("What is the maximal lookup depth when trying to " 95 "check for viability of negation sinking.")); 96 97 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_, 98 const DominatorTree &DT_, bool IsTrulyNegation_) 99 : Builder(C, TargetFolder(DL_), 100 IRBuilderCallbackInserter([&](Instruction *I) { 101 ++NegatorNumInstructionsCreatedTotal; 102 NewInstructions.push_back(I); 103 })), 104 DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {} 105 106 #if LLVM_ENABLE_STATS 107 Negator::~Negator() { 108 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator); 109 } 110 #endif 111 112 // FIXME: can this be reworked into a worklist-based algorithm while preserving 113 // the depth-first, early bailout traversal? 114 LLVM_NODISCARD Value *Negator::visit(Value *V, unsigned Depth) { 115 NegatorMaxDepthVisited.updateMax(Depth); 116 ++NegatorNumValuesVisited; 117 118 #if LLVM_ENABLE_STATS 119 ++NumValuesVisitedInThisNegator; 120 #endif 121 122 // -(undef) -> undef. 123 if (match(V, m_Undef())) 124 return V; 125 126 // In i1, negation can simply be ignored. 127 if (V->getType()->isIntOrIntVectorTy(1)) 128 return V; 129 130 Value *X; 131 132 // -(-(X)) -> X. 133 if (match(V, m_Neg(m_Value(X)))) 134 return X; 135 136 // Integral constants can be freely negated. 137 if (match(V, m_AnyIntegralConstant())) 138 return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false, 139 /*HasNSW=*/false); 140 141 // If we have a non-instruction, then give up. 142 if (!isa<Instruction>(V)) 143 return nullptr; 144 145 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've 146 // got instruction that does not require recursive reasoning, we can still 147 // negate it even if it has other uses, without increasing instruction count. 148 if (!V->hasOneUse() && !IsTrulyNegation) 149 return nullptr; 150 151 auto *I = cast<Instruction>(V); 152 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 153 154 // We must preserve the insertion point and debug info that is set in the 155 // builder at the time this function is called. 156 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 157 // And since we are trying to negate instruction I, that tells us about the 158 // insertion point and the debug info that we need to keep. 159 Builder.SetInsertPoint(I); 160 161 // In some cases we can give the answer without further recursion. 162 switch (I->getOpcode()) { 163 case Instruction::Add: 164 // `inc` is always negatible. 165 if (match(I->getOperand(1), m_One())) 166 return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg"); 167 break; 168 case Instruction::Xor: 169 // `not` is always negatible. 170 if (match(I, m_Not(m_Value(X)))) 171 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1), 172 I->getName() + ".neg"); 173 break; 174 case Instruction::AShr: 175 case Instruction::LShr: { 176 // Right-shift sign bit smear is negatible. 177 const APInt *Op1Val; 178 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) { 179 Value *BO = I->getOpcode() == Instruction::AShr 180 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1)) 181 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1)); 182 if (auto *NewInstr = dyn_cast<Instruction>(BO)) { 183 NewInstr->copyIRFlags(I); 184 NewInstr->setName(I->getName() + ".neg"); 185 } 186 return BO; 187 } 188 break; 189 } 190 case Instruction::SExt: 191 case Instruction::ZExt: 192 // `*ext` of i1 is always negatible 193 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1)) 194 return I->getOpcode() == Instruction::SExt 195 ? Builder.CreateZExt(I->getOperand(0), I->getType(), 196 I->getName() + ".neg") 197 : Builder.CreateSExt(I->getOperand(0), I->getType(), 198 I->getName() + ".neg"); 199 break; 200 default: 201 break; // Other instructions require recursive reasoning. 202 } 203 204 // Some other cases, while still don't require recursion, 205 // are restricted to the one-use case. 206 if (!V->hasOneUse()) 207 return nullptr; 208 209 switch (I->getOpcode()) { 210 case Instruction::Sub: 211 // `sub` is always negatible. 212 // But if the old `sub` sticks around, even thought we don't increase 213 // instruction count, this is a likely regression since we increased 214 // live-range of *both* of the operands, which might lead to more spilling. 215 return Builder.CreateSub(I->getOperand(1), I->getOperand(0), 216 I->getName() + ".neg"); 217 case Instruction::SDiv: 218 // `sdiv` is negatible if divisor is not undef/INT_MIN/1. 219 // While this is normally not behind a use-check, 220 // let's consider division to be special since it's costly. 221 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) { 222 if (!Op1C->containsUndefElement() && Op1C->isNotMinSignedValue() && 223 Op1C->isNotOneValue()) { 224 Value *BO = 225 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C), 226 I->getName() + ".neg"); 227 if (auto *NewInstr = dyn_cast<Instruction>(BO)) 228 NewInstr->setIsExact(I->isExact()); 229 return BO; 230 } 231 } 232 break; 233 } 234 235 // Rest of the logic is recursive, so if it's time to give up then it's time. 236 if (Depth > NegatorMaxDepth) { 237 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in " 238 << *V << ". Giving up.\n"); 239 ++NegatorTimesDepthLimitReached; 240 return nullptr; 241 } 242 243 switch (I->getOpcode()) { 244 case Instruction::PHI: { 245 // `phi` is negatible if all the incoming values are negatible. 246 PHINode *PHI = cast<PHINode>(I); 247 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands()); 248 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) { 249 if (!(std::get<1>(I) = visit(std::get<0>(I), Depth + 1))) // Early return. 250 return nullptr; 251 } 252 // All incoming values are indeed negatible. Create negated PHI node. 253 PHINode *NegatedPHI = Builder.CreatePHI( 254 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg"); 255 for (auto I : zip(NegatedIncomingValues, PHI->blocks())) 256 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I)); 257 return NegatedPHI; 258 } 259 case Instruction::Select: { 260 { 261 // `abs`/`nabs` is always negatible. 262 Value *LHS, *RHS; 263 SelectPatternFlavor SPF = 264 matchSelectPattern(I, LHS, RHS, /*CastOp=*/nullptr, Depth).Flavor; 265 if (SPF == SPF_ABS || SPF == SPF_NABS) { 266 auto *NewSelect = cast<SelectInst>(I->clone()); 267 // Just swap the operands of the select. 268 NewSelect->swapValues(); 269 // Don't swap prof metadata, we didn't change the branch behavior. 270 NewSelect->setName(I->getName() + ".neg"); 271 Builder.Insert(NewSelect); 272 return NewSelect; 273 } 274 } 275 // `select` is negatible if both hands of `select` are negatible. 276 Value *NegOp1 = visit(I->getOperand(1), Depth + 1); 277 if (!NegOp1) // Early return. 278 return nullptr; 279 Value *NegOp2 = visit(I->getOperand(2), Depth + 1); 280 if (!NegOp2) 281 return nullptr; 282 // Do preserve the metadata! 283 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2, 284 I->getName() + ".neg", /*MDFrom=*/I); 285 } 286 case Instruction::ShuffleVector: { 287 // `shufflevector` is negatible if both operands are negatible. 288 ShuffleVectorInst *Shuf = cast<ShuffleVectorInst>(I); 289 Value *NegOp0 = visit(I->getOperand(0), Depth + 1); 290 if (!NegOp0) // Early return. 291 return nullptr; 292 Value *NegOp1 = visit(I->getOperand(1), Depth + 1); 293 if (!NegOp1) 294 return nullptr; 295 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(), 296 I->getName() + ".neg"); 297 } 298 case Instruction::Trunc: { 299 // `trunc` is negatible if its operand is negatible. 300 Value *NegOp = visit(I->getOperand(0), Depth + 1); 301 if (!NegOp) // Early return. 302 return nullptr; 303 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg"); 304 } 305 case Instruction::Shl: { 306 // `shl` is negatible if the first operand is negatible. 307 Value *NegOp0 = visit(I->getOperand(0), Depth + 1); 308 if (!NegOp0) // Early return. 309 return nullptr; 310 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg"); 311 } 312 case Instruction::Or: 313 if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I, 314 &DT)) 315 return nullptr; // Don't know how to handle `or` in general. 316 // `or`/`add` are interchangeable when operands have no common bits set. 317 // `inc` is always negatible. 318 if (match(I->getOperand(1), m_One())) 319 return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg"); 320 // Else, just defer to Instruction::Add handling. 321 LLVM_FALLTHROUGH; 322 case Instruction::Add: { 323 // `add` is negatible if both of its operands are negatible. 324 Value *NegOp0 = visit(I->getOperand(0), Depth + 1); 325 if (!NegOp0) // Early return. 326 return nullptr; 327 Value *NegOp1 = visit(I->getOperand(1), Depth + 1); 328 if (!NegOp1) 329 return nullptr; 330 return Builder.CreateAdd(NegOp0, NegOp1, I->getName() + ".neg"); 331 } 332 case Instruction::Xor: 333 // `xor` is negatible if one of its operands is invertible. 334 // FIXME: InstCombineInverter? But how to connect Inverter and Negator? 335 if (auto *C = dyn_cast<Constant>(I->getOperand(1))) { 336 Value *Xor = Builder.CreateXor(I->getOperand(0), ConstantExpr::getNot(C)); 337 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1), 338 I->getName() + ".neg"); 339 } 340 return nullptr; 341 case Instruction::Mul: { 342 // `mul` is negatible if one of its operands is negatible. 343 Value *NegatedOp, *OtherOp; 344 // First try the second operand, in case it's a constant it will be best to 345 // just invert it instead of sinking the `neg` deeper. 346 if (Value *NegOp1 = visit(I->getOperand(1), Depth + 1)) { 347 NegatedOp = NegOp1; 348 OtherOp = I->getOperand(0); 349 } else if (Value *NegOp0 = visit(I->getOperand(0), Depth + 1)) { 350 NegatedOp = NegOp0; 351 OtherOp = I->getOperand(1); 352 } else 353 // Can't negate either of them. 354 return nullptr; 355 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg"); 356 } 357 default: 358 return nullptr; // Don't know, likely not negatible for free. 359 } 360 361 llvm_unreachable("Can't get here. We always return from switch."); 362 } 363 364 LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) { 365 Value *Negated = visit(Root, /*Depth=*/0); 366 if (!Negated) { 367 // We must cleanup newly-inserted instructions, to avoid any potential 368 // endless combine looping. 369 llvm::for_each(llvm::reverse(NewInstructions), 370 [&](Instruction *I) { I->eraseFromParent(); }); 371 return llvm::None; 372 } 373 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated); 374 } 375 376 LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root, 377 InstCombiner &IC) { 378 ++NegatorTotalNegationsAttempted; 379 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root 380 << "\n"); 381 382 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter)) 383 return nullptr; 384 385 Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(), 386 IC.getDominatorTree(), LHSIsZero); 387 Optional<Result> Res = N.run(Root); 388 if (!Res) { // Negation failed. 389 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root 390 << "\n"); 391 return nullptr; 392 } 393 394 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root 395 << "\n NEW: " << *Res->second << "\n"); 396 ++NegatorNumTreesNegated; 397 398 // We must temporarily unset the 'current' insertion point and DebugLoc of the 399 // InstCombine's IRBuilder so that it won't interfere with the ones we have 400 // already specified when producing negated instructions. 401 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 402 IC.Builder.ClearInsertionPoint(); 403 IC.Builder.SetCurrentDebugLocation(DebugLoc()); 404 405 // And finally, we must add newly-created instructions into the InstCombine's 406 // worklist (in a proper order!) so it can attempt to combine them. 407 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size() 408 << " instrs to InstCombine\n"); 409 NegatorMaxInstructionsCreated.updateMax(Res->first.size()); 410 NegatorNumInstructionsNegatedSuccess += Res->first.size(); 411 412 // They are in def-use order, so nothing fancy, just insert them in order. 413 llvm::for_each(Res->first, 414 [&](Instruction *I) { IC.Builder.Insert(I, I->getName()); }); 415 416 // And return the new root. 417 return Res->second; 418 } 419