1 //===- InstCombineMulDivRem.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, 10 // srem, urem, frem. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <utility> 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 #define DEBUG_TYPE "instcombine" 45 46 /// The specific integer value is used in a context where it is known to be 47 /// non-zero. If this allows us to simplify the computation, do so and return 48 /// the new operand, otherwise return null. 49 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC, 50 Instruction &CxtI) { 51 // If V has multiple uses, then we would have to do more analysis to determine 52 // if this is safe. For example, the use could be in dynamically unreached 53 // code. 54 if (!V->hasOneUse()) return nullptr; 55 56 bool MadeChange = false; 57 58 // ((1 << A) >>u B) --> (1 << (A-B)) 59 // Because V cannot be zero, we know that B is less than A. 60 Value *A = nullptr, *B = nullptr, *One = nullptr; 61 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) && 62 match(One, m_One())) { 63 A = IC.Builder.CreateSub(A, B); 64 return IC.Builder.CreateShl(One, A); 65 } 66 67 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it 68 // inexact. Similarly for <<. 69 BinaryOperator *I = dyn_cast<BinaryOperator>(V); 70 if (I && I->isLogicalShift() && 71 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) { 72 // We know that this is an exact/nuw shift and that the input is a 73 // non-zero context as well. 74 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) { 75 I->setOperand(0, V2); 76 MadeChange = true; 77 } 78 79 if (I->getOpcode() == Instruction::LShr && !I->isExact()) { 80 I->setIsExact(); 81 MadeChange = true; 82 } 83 84 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { 85 I->setHasNoUnsignedWrap(); 86 MadeChange = true; 87 } 88 } 89 90 // TODO: Lots more we could do here: 91 // If V is a phi node, we can call this on each of its operands. 92 // "select cond, X, 0" can simplify to "X". 93 94 return MadeChange ? V : nullptr; 95 } 96 97 /// A helper routine of InstCombiner::visitMul(). 98 /// 99 /// If C is a scalar/vector of known powers of 2, then this function returns 100 /// a new scalar/vector obtained from logBase2 of C. 101 /// Return a null pointer otherwise. 102 static Constant *getLogBase2(Type *Ty, Constant *C) { 103 const APInt *IVal; 104 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 105 return ConstantInt::get(Ty, IVal->logBase2()); 106 107 if (!Ty->isVectorTy()) 108 return nullptr; 109 110 SmallVector<Constant *, 4> Elts; 111 for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) { 112 Constant *Elt = C->getAggregateElement(I); 113 if (!Elt) 114 return nullptr; 115 if (isa<UndefValue>(Elt)) { 116 Elts.push_back(UndefValue::get(Ty->getScalarType())); 117 continue; 118 } 119 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 120 return nullptr; 121 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 122 } 123 124 return ConstantVector::get(Elts); 125 } 126 127 Instruction *InstCombiner::visitMul(BinaryOperator &I) { 128 if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1), 129 SQ.getWithInstruction(&I))) 130 return replaceInstUsesWith(I, V); 131 132 if (SimplifyAssociativeOrCommutative(I)) 133 return &I; 134 135 if (Instruction *X = foldVectorBinop(I)) 136 return X; 137 138 if (Value *V = SimplifyUsingDistributiveLaws(I)) 139 return replaceInstUsesWith(I, V); 140 141 // X * -1 == 0 - X 142 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 143 if (match(Op1, m_AllOnes())) { 144 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName()); 145 if (I.hasNoSignedWrap()) 146 BO->setHasNoSignedWrap(); 147 return BO; 148 } 149 150 // Also allow combining multiply instructions on vectors. 151 { 152 Value *NewOp; 153 Constant *C1, *C2; 154 const APInt *IVal; 155 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), 156 m_Constant(C1))) && 157 match(C1, m_APInt(IVal))) { 158 // ((X << C2)*C1) == (X * (C1 << C2)) 159 Constant *Shl = ConstantExpr::getShl(C1, C2); 160 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0)); 161 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl); 162 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap()) 163 BO->setHasNoUnsignedWrap(); 164 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() && 165 Shl->isNotMinSignedValue()) 166 BO->setHasNoSignedWrap(); 167 return BO; 168 } 169 170 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { 171 // Replace X*(2^C) with X << C, where C is either a scalar or a vector. 172 if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) { 173 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); 174 175 if (I.hasNoUnsignedWrap()) 176 Shl->setHasNoUnsignedWrap(); 177 if (I.hasNoSignedWrap()) { 178 const APInt *V; 179 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1) 180 Shl->setHasNoSignedWrap(); 181 } 182 183 return Shl; 184 } 185 } 186 } 187 188 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 189 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n 190 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n 191 // The "* (2**n)" thus becomes a potential shifting opportunity. 192 { 193 const APInt & Val = CI->getValue(); 194 const APInt &PosVal = Val.abs(); 195 if (Val.isNegative() && PosVal.isPowerOf2()) { 196 Value *X = nullptr, *Y = nullptr; 197 if (Op0->hasOneUse()) { 198 ConstantInt *C1; 199 Value *Sub = nullptr; 200 if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) 201 Sub = Builder.CreateSub(X, Y, "suba"); 202 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) 203 Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc"); 204 if (Sub) 205 return 206 BinaryOperator::CreateMul(Sub, 207 ConstantInt::get(Y->getType(), PosVal)); 208 } 209 } 210 } 211 } 212 213 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 214 return FoldedMul; 215 216 // Simplify mul instructions with a constant RHS. 217 if (isa<Constant>(Op1)) { 218 // Canonicalize (X+C1)*CI -> X*CI+C1*CI. 219 Value *X; 220 Constant *C1; 221 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { 222 Value *Mul = Builder.CreateMul(C1, Op1); 223 // Only go forward with the transform if C1*CI simplifies to a tidier 224 // constant. 225 if (!match(Mul, m_Mul(m_Value(), m_Value()))) 226 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul); 227 } 228 } 229 230 // -X * C --> X * -C 231 Value *X, *Y; 232 Constant *Op1C; 233 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C))) 234 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C)); 235 236 // -X * -Y --> X * Y 237 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) { 238 auto *NewMul = BinaryOperator::CreateMul(X, Y); 239 if (I.hasNoSignedWrap() && 240 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() && 241 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap()) 242 NewMul->setHasNoSignedWrap(); 243 return NewMul; 244 } 245 246 // -X * Y --> -(X * Y) 247 // X * -Y --> -(X * Y) 248 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y)))) 249 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y)); 250 251 // (X / Y) * Y = X - (X % Y) 252 // (X / Y) * -Y = (X % Y) - X 253 { 254 Value *Y = Op1; 255 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0); 256 if (!Div || (Div->getOpcode() != Instruction::UDiv && 257 Div->getOpcode() != Instruction::SDiv)) { 258 Y = Op0; 259 Div = dyn_cast<BinaryOperator>(Op1); 260 } 261 Value *Neg = dyn_castNegVal(Y); 262 if (Div && Div->hasOneUse() && 263 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) && 264 (Div->getOpcode() == Instruction::UDiv || 265 Div->getOpcode() == Instruction::SDiv)) { 266 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1); 267 268 // If the division is exact, X % Y is zero, so we end up with X or -X. 269 if (Div->isExact()) { 270 if (DivOp1 == Y) 271 return replaceInstUsesWith(I, X); 272 return BinaryOperator::CreateNeg(X); 273 } 274 275 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem 276 : Instruction::SRem; 277 Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1); 278 if (DivOp1 == Y) 279 return BinaryOperator::CreateSub(X, Rem); 280 return BinaryOperator::CreateSub(Rem, X); 281 } 282 } 283 284 /// i1 mul -> i1 and. 285 if (I.getType()->isIntOrIntVectorTy(1)) 286 return BinaryOperator::CreateAnd(Op0, Op1); 287 288 // X*(1 << Y) --> X << Y 289 // (1 << Y)*X --> X << Y 290 { 291 Value *Y; 292 BinaryOperator *BO = nullptr; 293 bool ShlNSW = false; 294 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) { 295 BO = BinaryOperator::CreateShl(Op1, Y); 296 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap(); 297 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) { 298 BO = BinaryOperator::CreateShl(Op0, Y); 299 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap(); 300 } 301 if (BO) { 302 if (I.hasNoUnsignedWrap()) 303 BO->setHasNoUnsignedWrap(); 304 if (I.hasNoSignedWrap() && ShlNSW) 305 BO->setHasNoSignedWrap(); 306 return BO; 307 } 308 } 309 310 // (bool X) * Y --> X ? Y : 0 311 // Y * (bool X) --> X ? Y : 0 312 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 313 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0)); 314 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 315 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0)); 316 317 // (lshr X, 31) * Y --> (ashr X, 31) & Y 318 // Y * (lshr X, 31) --> (ashr X, 31) & Y 319 // TODO: We are not checking one-use because the elimination of the multiply 320 // is better for analysis? 321 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be 322 // more similar to what we're doing above. 323 const APInt *C; 324 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) 325 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1); 326 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1) 327 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0); 328 329 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 330 return Ext; 331 332 bool Changed = false; 333 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) { 334 Changed = true; 335 I.setHasNoSignedWrap(true); 336 } 337 338 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) { 339 Changed = true; 340 I.setHasNoUnsignedWrap(true); 341 } 342 343 return Changed ? &I : nullptr; 344 } 345 346 Instruction *InstCombiner::visitFMul(BinaryOperator &I) { 347 if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1), 348 I.getFastMathFlags(), 349 SQ.getWithInstruction(&I))) 350 return replaceInstUsesWith(I, V); 351 352 if (SimplifyAssociativeOrCommutative(I)) 353 return &I; 354 355 if (Instruction *X = foldVectorBinop(I)) 356 return X; 357 358 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I)) 359 return FoldedMul; 360 361 // X * -1.0 --> -X 362 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 363 if (match(Op1, m_SpecificFP(-1.0))) 364 return BinaryOperator::CreateFNegFMF(Op0, &I); 365 366 // -X * -Y --> X * Y 367 Value *X, *Y; 368 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 369 return BinaryOperator::CreateFMulFMF(X, Y, &I); 370 371 // -X * C --> X * -C 372 Constant *C; 373 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C))) 374 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 375 376 // Sink negation: -X * Y --> -(X * Y) 377 if (match(Op0, m_OneUse(m_FNeg(m_Value(X))))) 378 return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I); 379 380 // Sink negation: Y * -X --> -(X * Y) 381 if (match(Op1, m_OneUse(m_FNeg(m_Value(X))))) 382 return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I); 383 384 // fabs(X) * fabs(X) -> X * X 385 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X)))) 386 return BinaryOperator::CreateFMulFMF(X, X, &I); 387 388 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E) 389 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 390 return replaceInstUsesWith(I, V); 391 392 if (I.hasAllowReassoc()) { 393 // Reassociate constant RHS with another constant to form constant 394 // expression. 395 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) { 396 Constant *C1; 397 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) { 398 // (C1 / X) * C --> (C * C1) / X 399 Constant *CC1 = ConstantExpr::getFMul(C, C1); 400 if (CC1->isNormalFP()) 401 return BinaryOperator::CreateFDivFMF(CC1, X, &I); 402 } 403 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { 404 // (X / C1) * C --> X * (C / C1) 405 Constant *CDivC1 = ConstantExpr::getFDiv(C, C1); 406 if (CDivC1->isNormalFP()) 407 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I); 408 409 // If the constant was a denormal, try reassociating differently. 410 // (X / C1) * C --> X / (C1 / C) 411 Constant *C1DivC = ConstantExpr::getFDiv(C1, C); 412 if (Op0->hasOneUse() && C1DivC->isNormalFP()) 413 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I); 414 } 415 416 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are 417 // canonicalized to 'fadd X, C'. Distributing the multiply may allow 418 // further folds and (X * C) + C2 is 'fma'. 419 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) { 420 // (X + C1) * C --> (X * C) + (C * C1) 421 Constant *CC1 = ConstantExpr::getFMul(C, C1); 422 Value *XC = Builder.CreateFMulFMF(X, C, &I); 423 return BinaryOperator::CreateFAddFMF(XC, CC1, &I); 424 } 425 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) { 426 // (C1 - X) * C --> (C * C1) - (X * C) 427 Constant *CC1 = ConstantExpr::getFMul(C, C1); 428 Value *XC = Builder.CreateFMulFMF(X, C, &I); 429 return BinaryOperator::CreateFSubFMF(CC1, XC, &I); 430 } 431 } 432 433 Value *Z; 434 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))), 435 m_Value(Z)))) { 436 // Sink division: (X / Y) * Z --> (X * Z) / Y 437 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I); 438 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I); 439 } 440 441 // sqrt(X) * sqrt(Y) -> sqrt(X * Y) 442 // nnan disallows the possibility of returning a number if both operands are 443 // negative (in that case, we should return NaN). 444 if (I.hasNoNaNs() && 445 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) && 446 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { 447 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 448 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I); 449 return replaceInstUsesWith(I, Sqrt); 450 } 451 452 // Like the similar transform in instsimplify, this requires 'nsz' because 453 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0. 454 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && 455 Op0->hasNUses(2)) { 456 // Peek through fdiv to find squaring of square root: 457 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y 458 if (match(Op0, m_FDiv(m_Value(X), 459 m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) { 460 Value *XX = Builder.CreateFMulFMF(X, X, &I); 461 return BinaryOperator::CreateFDivFMF(XX, Y, &I); 462 } 463 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X) 464 if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)), 465 m_Value(X)))) { 466 Value *XX = Builder.CreateFMulFMF(X, X, &I); 467 return BinaryOperator::CreateFDivFMF(Y, XX, &I); 468 } 469 } 470 471 // exp(X) * exp(Y) -> exp(X + Y) 472 // Match as long as at least one of exp has only one use. 473 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) && 474 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) && 475 (Op0->hasOneUse() || Op1->hasOneUse())) { 476 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 477 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I); 478 return replaceInstUsesWith(I, Exp); 479 } 480 481 // exp2(X) * exp2(Y) -> exp2(X + Y) 482 // Match as long as at least one of exp2 has only one use. 483 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) && 484 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) && 485 (Op0->hasOneUse() || Op1->hasOneUse())) { 486 Value *XY = Builder.CreateFAddFMF(X, Y, &I); 487 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I); 488 return replaceInstUsesWith(I, Exp2); 489 } 490 491 // (X*Y) * X => (X*X) * Y where Y != X 492 // The purpose is two-fold: 493 // 1) to form a power expression (of X). 494 // 2) potentially shorten the critical path: After transformation, the 495 // latency of the instruction Y is amortized by the expression of X*X, 496 // and therefore Y is in a "less critical" position compared to what it 497 // was before the transformation. 498 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && 499 Op1 != Y) { 500 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I); 501 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 502 } 503 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && 504 Op0 != Y) { 505 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I); 506 return BinaryOperator::CreateFMulFMF(XX, Y, &I); 507 } 508 } 509 510 // log2(X * 0.5) * Y = log2(X) * Y - Y 511 if (I.isFast()) { 512 IntrinsicInst *Log2 = nullptr; 513 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>( 514 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 515 Log2 = cast<IntrinsicInst>(Op0); 516 Y = Op1; 517 } 518 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>( 519 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) { 520 Log2 = cast<IntrinsicInst>(Op1); 521 Y = Op0; 522 } 523 if (Log2) { 524 Log2->setArgOperand(0, X); 525 Log2->copyFastMathFlags(&I); 526 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I); 527 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I); 528 } 529 } 530 531 return nullptr; 532 } 533 534 /// Fold a divide or remainder with a select instruction divisor when one of the 535 /// select operands is zero. In that case, we can use the other select operand 536 /// because div/rem by zero is undefined. 537 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) { 538 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1)); 539 if (!SI) 540 return false; 541 542 int NonNullOperand; 543 if (match(SI->getTrueValue(), m_Zero())) 544 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y 545 NonNullOperand = 2; 546 else if (match(SI->getFalseValue(), m_Zero())) 547 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y 548 NonNullOperand = 1; 549 else 550 return false; 551 552 // Change the div/rem to use 'Y' instead of the select. 553 I.setOperand(1, SI->getOperand(NonNullOperand)); 554 555 // Okay, we know we replace the operand of the div/rem with 'Y' with no 556 // problem. However, the select, or the condition of the select may have 557 // multiple uses. Based on our knowledge that the operand must be non-zero, 558 // propagate the known value for the select into other uses of it, and 559 // propagate a known value of the condition into its other users. 560 561 // If the select and condition only have a single use, don't bother with this, 562 // early exit. 563 Value *SelectCond = SI->getCondition(); 564 if (SI->use_empty() && SelectCond->hasOneUse()) 565 return true; 566 567 // Scan the current block backward, looking for other uses of SI. 568 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin(); 569 Type *CondTy = SelectCond->getType(); 570 while (BBI != BBFront) { 571 --BBI; 572 // If we found an instruction that we can't assume will return, so 573 // information from below it cannot be propagated above it. 574 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 575 break; 576 577 // Replace uses of the select or its condition with the known values. 578 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); 579 I != E; ++I) { 580 if (*I == SI) { 581 *I = SI->getOperand(NonNullOperand); 582 Worklist.Add(&*BBI); 583 } else if (*I == SelectCond) { 584 *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy) 585 : ConstantInt::getFalse(CondTy); 586 Worklist.Add(&*BBI); 587 } 588 } 589 590 // If we past the instruction, quit looking for it. 591 if (&*BBI == SI) 592 SI = nullptr; 593 if (&*BBI == SelectCond) 594 SelectCond = nullptr; 595 596 // If we ran out of things to eliminate, break out of the loop. 597 if (!SelectCond && !SI) 598 break; 599 600 } 601 return true; 602 } 603 604 /// True if the multiply can not be expressed in an int this size. 605 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, 606 bool IsSigned) { 607 bool Overflow; 608 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow); 609 return Overflow; 610 } 611 612 /// True if C1 is a multiple of C2. Quotient contains C1/C2. 613 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, 614 bool IsSigned) { 615 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal"); 616 617 // Bail if we will divide by zero. 618 if (C2.isNullValue()) 619 return false; 620 621 // Bail if we would divide INT_MIN by -1. 622 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue()) 623 return false; 624 625 APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned); 626 if (IsSigned) 627 APInt::sdivrem(C1, C2, Quotient, Remainder); 628 else 629 APInt::udivrem(C1, C2, Quotient, Remainder); 630 631 return Remainder.isMinValue(); 632 } 633 634 /// This function implements the transforms common to both integer division 635 /// instructions (udiv and sdiv). It is called by the visitors to those integer 636 /// division instructions. 637 /// Common integer divide transforms 638 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { 639 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 640 bool IsSigned = I.getOpcode() == Instruction::SDiv; 641 Type *Ty = I.getType(); 642 643 // The RHS is known non-zero. 644 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { 645 I.setOperand(1, V); 646 return &I; 647 } 648 649 // Handle cases involving: [su]div X, (select Cond, Y, Z) 650 // This does not apply for fdiv. 651 if (simplifyDivRemOfSelectWithZeroOp(I)) 652 return &I; 653 654 const APInt *C2; 655 if (match(Op1, m_APInt(C2))) { 656 Value *X; 657 const APInt *C1; 658 659 // (X / C1) / C2 -> X / (C1*C2) 660 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) || 661 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) { 662 APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); 663 if (!multiplyOverflows(*C1, *C2, Product, IsSigned)) 664 return BinaryOperator::Create(I.getOpcode(), X, 665 ConstantInt::get(Ty, Product)); 666 } 667 668 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) || 669 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) { 670 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); 671 672 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1. 673 if (isMultiple(*C2, *C1, Quotient, IsSigned)) { 674 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X, 675 ConstantInt::get(Ty, Quotient)); 676 NewDiv->setIsExact(I.isExact()); 677 return NewDiv; 678 } 679 680 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2. 681 if (isMultiple(*C1, *C2, Quotient, IsSigned)) { 682 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 683 ConstantInt::get(Ty, Quotient)); 684 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 685 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 686 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 687 return Mul; 688 } 689 } 690 691 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) && 692 *C1 != C1->getBitWidth() - 1) || 693 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) { 694 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned); 695 APInt C1Shifted = APInt::getOneBitSet( 696 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue())); 697 698 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1. 699 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) { 700 auto *BO = BinaryOperator::Create(I.getOpcode(), X, 701 ConstantInt::get(Ty, Quotient)); 702 BO->setIsExact(I.isExact()); 703 return BO; 704 } 705 706 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2. 707 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) { 708 auto *Mul = BinaryOperator::Create(Instruction::Mul, X, 709 ConstantInt::get(Ty, Quotient)); 710 auto *OBO = cast<OverflowingBinaryOperator>(Op0); 711 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap()); 712 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 713 return Mul; 714 } 715 } 716 717 if (!C2->isNullValue()) // avoid X udiv 0 718 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I)) 719 return FoldedDiv; 720 } 721 722 if (match(Op0, m_One())) { 723 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?"); 724 if (IsSigned) { 725 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the 726 // result is one, if Op1 is -1 then the result is minus one, otherwise 727 // it's zero. 728 Value *Inc = Builder.CreateAdd(Op1, Op0); 729 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3)); 730 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0)); 731 } else { 732 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the 733 // result is one, otherwise it's zero. 734 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty); 735 } 736 } 737 738 // See if we can fold away this div instruction. 739 if (SimplifyDemandedInstructionBits(I)) 740 return &I; 741 742 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y 743 Value *X, *Z; 744 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1 745 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || 746 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) 747 return BinaryOperator::Create(I.getOpcode(), X, Op1); 748 749 // (X << Y) / X -> 1 << Y 750 Value *Y; 751 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y)))) 752 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y); 753 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y)))) 754 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y); 755 756 // X / (X * Y) -> 1 / Y if the multiplication does not overflow. 757 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) { 758 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap(); 759 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap(); 760 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) { 761 I.setOperand(0, ConstantInt::get(Ty, 1)); 762 I.setOperand(1, Y); 763 return &I; 764 } 765 } 766 767 return nullptr; 768 } 769 770 static const unsigned MaxDepth = 6; 771 772 namespace { 773 774 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1, 775 const BinaryOperator &I, 776 InstCombiner &IC); 777 778 /// Used to maintain state for visitUDivOperand(). 779 struct UDivFoldAction { 780 /// Informs visitUDiv() how to fold this operand. This can be zero if this 781 /// action joins two actions together. 782 FoldUDivOperandCb FoldAction; 783 784 /// Which operand to fold. 785 Value *OperandToFold; 786 787 union { 788 /// The instruction returned when FoldAction is invoked. 789 Instruction *FoldResult; 790 791 /// Stores the LHS action index if this action joins two actions together. 792 size_t SelectLHSIdx; 793 }; 794 795 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) 796 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} 797 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) 798 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} 799 }; 800 801 } // end anonymous namespace 802 803 // X udiv 2^C -> X >> C 804 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, 805 const BinaryOperator &I, InstCombiner &IC) { 806 Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1)); 807 if (!C1) 808 llvm_unreachable("Failed to constant fold udiv -> logbase2"); 809 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1); 810 if (I.isExact()) 811 LShr->setIsExact(); 812 return LShr; 813 } 814 815 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 816 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2) 817 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, 818 InstCombiner &IC) { 819 Value *ShiftLeft; 820 if (!match(Op1, m_ZExt(m_Value(ShiftLeft)))) 821 ShiftLeft = Op1; 822 823 Constant *CI; 824 Value *N; 825 if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N)))) 826 llvm_unreachable("match should never fail here!"); 827 Constant *Log2Base = getLogBase2(N->getType(), CI); 828 if (!Log2Base) 829 llvm_unreachable("getLogBase2 should never fail here!"); 830 N = IC.Builder.CreateAdd(N, Log2Base); 831 if (Op1 != ShiftLeft) 832 N = IC.Builder.CreateZExt(N, Op1->getType()); 833 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); 834 if (I.isExact()) 835 LShr->setIsExact(); 836 return LShr; 837 } 838 839 // Recursively visits the possible right hand operands of a udiv 840 // instruction, seeing through select instructions, to determine if we can 841 // replace the udiv with something simpler. If we find that an operand is not 842 // able to simplify the udiv, we abort the entire transformation. 843 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, 844 SmallVectorImpl<UDivFoldAction> &Actions, 845 unsigned Depth = 0) { 846 // Check to see if this is an unsigned division with an exact power of 2, 847 // if so, convert to a right shift. 848 if (match(Op1, m_Power2())) { 849 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); 850 return Actions.size(); 851 } 852 853 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) 854 if (match(Op1, m_Shl(m_Power2(), m_Value())) || 855 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { 856 Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); 857 return Actions.size(); 858 } 859 860 // The remaining tests are all recursive, so bail out if we hit the limit. 861 if (Depth++ == MaxDepth) 862 return 0; 863 864 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 865 if (size_t LHSIdx = 866 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth)) 867 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) { 868 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1)); 869 return Actions.size(); 870 } 871 872 return 0; 873 } 874 875 /// If we have zero-extended operands of an unsigned div or rem, we may be able 876 /// to narrow the operation (sink the zext below the math). 877 static Instruction *narrowUDivURem(BinaryOperator &I, 878 InstCombiner::BuilderTy &Builder) { 879 Instruction::BinaryOps Opcode = I.getOpcode(); 880 Value *N = I.getOperand(0); 881 Value *D = I.getOperand(1); 882 Type *Ty = I.getType(); 883 Value *X, *Y; 884 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) && 885 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) { 886 // udiv (zext X), (zext Y) --> zext (udiv X, Y) 887 // urem (zext X), (zext Y) --> zext (urem X, Y) 888 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y); 889 return new ZExtInst(NarrowOp, Ty); 890 } 891 892 Constant *C; 893 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) || 894 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) { 895 // If the constant is the same in the smaller type, use the narrow version. 896 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType()); 897 if (ConstantExpr::getZExt(TruncC, Ty) != C) 898 return nullptr; 899 900 // udiv (zext X), C --> zext (udiv X, C') 901 // urem (zext X), C --> zext (urem X, C') 902 // udiv C, (zext X) --> zext (udiv C', X) 903 // urem C, (zext X) --> zext (urem C', X) 904 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC) 905 : Builder.CreateBinOp(Opcode, TruncC, X); 906 return new ZExtInst(NarrowOp, Ty); 907 } 908 909 return nullptr; 910 } 911 912 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { 913 if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1), 914 SQ.getWithInstruction(&I))) 915 return replaceInstUsesWith(I, V); 916 917 if (Instruction *X = foldVectorBinop(I)) 918 return X; 919 920 // Handle the integer div common cases 921 if (Instruction *Common = commonIDivTransforms(I)) 922 return Common; 923 924 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 925 Value *X; 926 const APInt *C1, *C2; 927 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) { 928 // (X lshr C1) udiv C2 --> X udiv (C2 << C1) 929 bool Overflow; 930 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow); 931 if (!Overflow) { 932 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value())); 933 BinaryOperator *BO = BinaryOperator::CreateUDiv( 934 X, ConstantInt::get(X->getType(), C2ShlC1)); 935 if (IsExact) 936 BO->setIsExact(); 937 return BO; 938 } 939 } 940 941 // Op0 / C where C is large (negative) --> zext (Op0 >= C) 942 // TODO: Could use isKnownNegative() to handle non-constant values. 943 Type *Ty = I.getType(); 944 if (match(Op1, m_Negative())) { 945 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1); 946 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 947 } 948 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined) 949 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 950 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 951 return CastInst::CreateZExtOrBitCast(Cmp, Ty); 952 } 953 954 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder)) 955 return NarrowDiv; 956 957 // If the udiv operands are non-overflowing multiplies with a common operand, 958 // then eliminate the common factor: 959 // (A * B) / (A * X) --> B / X (and commuted variants) 960 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching. 961 // TODO: If -reassociation handled this generally, we could remove this. 962 Value *A, *B; 963 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) { 964 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) || 965 match(Op1, m_NUWMul(m_Value(X), m_Specific(A)))) 966 return BinaryOperator::CreateUDiv(B, X); 967 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) || 968 match(Op1, m_NUWMul(m_Value(X), m_Specific(B)))) 969 return BinaryOperator::CreateUDiv(A, X); 970 } 971 972 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) 973 SmallVector<UDivFoldAction, 6> UDivActions; 974 if (visitUDivOperand(Op0, Op1, I, UDivActions)) 975 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { 976 FoldUDivOperandCb Action = UDivActions[i].FoldAction; 977 Value *ActionOp1 = UDivActions[i].OperandToFold; 978 Instruction *Inst; 979 if (Action) 980 Inst = Action(Op0, ActionOp1, I, *this); 981 else { 982 // This action joins two actions together. The RHS of this action is 983 // simply the last action we processed, we saved the LHS action index in 984 // the joining action. 985 size_t SelectRHSIdx = i - 1; 986 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; 987 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; 988 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; 989 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), 990 SelectLHS, SelectRHS); 991 } 992 993 // If this is the last action to process, return it to the InstCombiner. 994 // Otherwise, we insert it before the UDiv and record it so that we may 995 // use it as part of a joining action (i.e., a SelectInst). 996 if (e - i != 1) { 997 Inst->insertBefore(&I); 998 UDivActions[i].FoldResult = Inst; 999 } else 1000 return Inst; 1001 } 1002 1003 return nullptr; 1004 } 1005 1006 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { 1007 if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1), 1008 SQ.getWithInstruction(&I))) 1009 return replaceInstUsesWith(I, V); 1010 1011 if (Instruction *X = foldVectorBinop(I)) 1012 return X; 1013 1014 // Handle the integer div common cases 1015 if (Instruction *Common = commonIDivTransforms(I)) 1016 return Common; 1017 1018 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1019 Value *X; 1020 // sdiv Op0, -1 --> -Op0 1021 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined) 1022 if (match(Op1, m_AllOnes()) || 1023 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1024 return BinaryOperator::CreateNeg(Op0); 1025 1026 // X / INT_MIN --> X == INT_MIN 1027 if (match(Op1, m_SignMask())) 1028 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType()); 1029 1030 const APInt *Op1C; 1031 if (match(Op1, m_APInt(Op1C))) { 1032 // sdiv exact X, C --> ashr exact X, log2(C) 1033 if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) { 1034 Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2()); 1035 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); 1036 } 1037 1038 // If the dividend is sign-extended and the constant divisor is small enough 1039 // to fit in the source type, shrink the division to the narrower type: 1040 // (sext X) sdiv C --> sext (X sdiv C) 1041 Value *Op0Src; 1042 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) && 1043 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) { 1044 1045 // In the general case, we need to make sure that the dividend is not the 1046 // minimum signed value because dividing that by -1 is UB. But here, we 1047 // know that the -1 divisor case is already handled above. 1048 1049 Constant *NarrowDivisor = 1050 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType()); 1051 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor); 1052 return new SExtInst(NarrowOp, Op0->getType()); 1053 } 1054 1055 // -X / C --> X / -C (if the negation doesn't overflow). 1056 // TODO: This could be enhanced to handle arbitrary vector constants by 1057 // checking if all elements are not the min-signed-val. 1058 if (!Op1C->isMinSignedValue() && 1059 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) { 1060 Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C)); 1061 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC); 1062 BO->setIsExact(I.isExact()); 1063 return BO; 1064 } 1065 } 1066 1067 // -X / Y --> -(X / Y) 1068 Value *Y; 1069 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1070 return BinaryOperator::CreateNSWNeg( 1071 Builder.CreateSDiv(X, Y, I.getName(), I.isExact())); 1072 1073 // If the sign bits of both operands are zero (i.e. we can prove they are 1074 // unsigned inputs), turn this into a udiv. 1075 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 1076 if (MaskedValueIsZero(Op0, Mask, 0, &I)) { 1077 if (MaskedValueIsZero(Op1, Mask, 0, &I)) { 1078 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set 1079 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1080 BO->setIsExact(I.isExact()); 1081 return BO; 1082 } 1083 1084 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1085 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) 1086 // Safe because the only negative value (1 << Y) can take on is 1087 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have 1088 // the sign bit set. 1089 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); 1090 BO->setIsExact(I.isExact()); 1091 return BO; 1092 } 1093 } 1094 1095 return nullptr; 1096 } 1097 1098 /// Remove negation and try to convert division into multiplication. 1099 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) { 1100 Constant *C; 1101 if (!match(I.getOperand(1), m_Constant(C))) 1102 return nullptr; 1103 1104 // -X / C --> X / -C 1105 Value *X; 1106 if (match(I.getOperand(0), m_FNeg(m_Value(X)))) 1107 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1108 1109 // If the constant divisor has an exact inverse, this is always safe. If not, 1110 // then we can still create a reciprocal if fast-math-flags allow it and the 1111 // constant is a regular number (not zero, infinite, or denormal). 1112 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP()))) 1113 return nullptr; 1114 1115 // Disallow denormal constants because we don't know what would happen 1116 // on all targets. 1117 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1118 // denorms are flushed? 1119 auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C); 1120 if (!RecipC->isNormalFP()) 1121 return nullptr; 1122 1123 // X / C --> X * (1 / C) 1124 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I); 1125 } 1126 1127 /// Remove negation and try to reassociate constant math. 1128 static Instruction *foldFDivConstantDividend(BinaryOperator &I) { 1129 Constant *C; 1130 if (!match(I.getOperand(0), m_Constant(C))) 1131 return nullptr; 1132 1133 // C / -X --> -C / X 1134 Value *X; 1135 if (match(I.getOperand(1), m_FNeg(m_Value(X)))) 1136 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1137 1138 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal()) 1139 return nullptr; 1140 1141 // Try to reassociate C / X expressions where X includes another constant. 1142 Constant *C2, *NewC = nullptr; 1143 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) { 1144 // C / (X * C2) --> (C / C2) / X 1145 NewC = ConstantExpr::getFDiv(C, C2); 1146 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) { 1147 // C / (X / C2) --> (C * C2) / X 1148 NewC = ConstantExpr::getFMul(C, C2); 1149 } 1150 // Disallow denormal constants because we don't know what would happen 1151 // on all targets. 1152 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that 1153 // denorms are flushed? 1154 if (!NewC || !NewC->isNormalFP()) 1155 return nullptr; 1156 1157 return BinaryOperator::CreateFDivFMF(NewC, X, &I); 1158 } 1159 1160 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { 1161 if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1), 1162 I.getFastMathFlags(), 1163 SQ.getWithInstruction(&I))) 1164 return replaceInstUsesWith(I, V); 1165 1166 if (Instruction *X = foldVectorBinop(I)) 1167 return X; 1168 1169 if (Instruction *R = foldFDivConstantDivisor(I)) 1170 return R; 1171 1172 if (Instruction *R = foldFDivConstantDividend(I)) 1173 return R; 1174 1175 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1176 if (isa<Constant>(Op0)) 1177 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1178 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1179 return R; 1180 1181 if (isa<Constant>(Op1)) 1182 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 1183 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1184 return R; 1185 1186 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) { 1187 Value *X, *Y; 1188 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1189 (!isa<Constant>(Y) || !isa<Constant>(Op1))) { 1190 // (X / Y) / Z => X / (Y * Z) 1191 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I); 1192 return BinaryOperator::CreateFDivFMF(X, YZ, &I); 1193 } 1194 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) && 1195 (!isa<Constant>(Y) || !isa<Constant>(Op0))) { 1196 // Z / (X / Y) => (Y * Z) / X 1197 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I); 1198 return BinaryOperator::CreateFDivFMF(YZ, X, &I); 1199 } 1200 } 1201 1202 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) { 1203 // sin(X) / cos(X) -> tan(X) 1204 // cos(X) / sin(X) -> 1/tan(X) (cotangent) 1205 Value *X; 1206 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) && 1207 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X))); 1208 bool IsCot = 1209 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) && 1210 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X))); 1211 1212 if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan, 1213 LibFunc_tanf, LibFunc_tanl)) { 1214 IRBuilder<> B(&I); 1215 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 1216 B.setFastMathFlags(I.getFastMathFlags()); 1217 AttributeList Attrs = 1218 cast<CallBase>(Op0)->getCalledFunction()->getAttributes(); 1219 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf, 1220 LibFunc_tanl, B, Attrs); 1221 if (IsCot) 1222 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res); 1223 return replaceInstUsesWith(I, Res); 1224 } 1225 } 1226 1227 // -X / -Y -> X / Y 1228 Value *X, *Y; 1229 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) { 1230 I.setOperand(0, X); 1231 I.setOperand(1, Y); 1232 return &I; 1233 } 1234 1235 // X / (X * Y) --> 1.0 / Y 1236 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed. 1237 // We can ignore the possibility that X is infinity because INF/INF is NaN. 1238 if (I.hasNoNaNs() && I.hasAllowReassoc() && 1239 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) { 1240 I.setOperand(0, ConstantFP::get(I.getType(), 1.0)); 1241 I.setOperand(1, Y); 1242 return &I; 1243 } 1244 1245 return nullptr; 1246 } 1247 1248 /// This function implements the transforms common to both integer remainder 1249 /// instructions (urem and srem). It is called by the visitors to those integer 1250 /// remainder instructions. 1251 /// Common integer remainder transforms 1252 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { 1253 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1254 1255 // The RHS is known non-zero. 1256 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { 1257 I.setOperand(1, V); 1258 return &I; 1259 } 1260 1261 // Handle cases involving: rem X, (select Cond, Y, Z) 1262 if (simplifyDivRemOfSelectWithZeroOp(I)) 1263 return &I; 1264 1265 if (isa<Constant>(Op1)) { 1266 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { 1267 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { 1268 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1269 return R; 1270 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) { 1271 const APInt *Op1Int; 1272 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() && 1273 (I.getOpcode() == Instruction::URem || 1274 !Op1Int->isMinSignedValue())) { 1275 // foldOpIntoPhi will speculate instructions to the end of the PHI's 1276 // predecessor blocks, so do this only if we know the srem or urem 1277 // will not fault. 1278 if (Instruction *NV = foldOpIntoPhi(I, PN)) 1279 return NV; 1280 } 1281 } 1282 1283 // See if we can fold away this rem instruction. 1284 if (SimplifyDemandedInstructionBits(I)) 1285 return &I; 1286 } 1287 } 1288 1289 return nullptr; 1290 } 1291 1292 Instruction *InstCombiner::visitURem(BinaryOperator &I) { 1293 if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1), 1294 SQ.getWithInstruction(&I))) 1295 return replaceInstUsesWith(I, V); 1296 1297 if (Instruction *X = foldVectorBinop(I)) 1298 return X; 1299 1300 if (Instruction *common = commonIRemTransforms(I)) 1301 return common; 1302 1303 if (Instruction *NarrowRem = narrowUDivURem(I, Builder)) 1304 return NarrowRem; 1305 1306 // X urem Y -> X and Y-1, where Y is a power of 2, 1307 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1308 Type *Ty = I.getType(); 1309 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) { 1310 Constant *N1 = Constant::getAllOnesValue(Ty); 1311 Value *Add = Builder.CreateAdd(Op1, N1); 1312 return BinaryOperator::CreateAnd(Op0, Add); 1313 } 1314 1315 // 1 urem X -> zext(X != 1) 1316 if (match(Op0, m_One())) 1317 return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty); 1318 1319 // X urem C -> X < C ? X : X - C, where C >= signbit. 1320 if (match(Op1, m_Negative())) { 1321 Value *Cmp = Builder.CreateICmpULT(Op0, Op1); 1322 Value *Sub = Builder.CreateSub(Op0, Op1); 1323 return SelectInst::Create(Cmp, Op0, Sub); 1324 } 1325 1326 // If the divisor is a sext of a boolean, then the divisor must be max 1327 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also 1328 // max unsigned value. In that case, the remainder is 0: 1329 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0 1330 Value *X; 1331 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1332 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty)); 1333 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0); 1334 } 1335 1336 return nullptr; 1337 } 1338 1339 Instruction *InstCombiner::visitSRem(BinaryOperator &I) { 1340 if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1), 1341 SQ.getWithInstruction(&I))) 1342 return replaceInstUsesWith(I, V); 1343 1344 if (Instruction *X = foldVectorBinop(I)) 1345 return X; 1346 1347 // Handle the integer rem common cases 1348 if (Instruction *Common = commonIRemTransforms(I)) 1349 return Common; 1350 1351 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1352 { 1353 const APInt *Y; 1354 // X % -Y -> X % Y 1355 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) { 1356 Worklist.AddValue(I.getOperand(1)); 1357 I.setOperand(1, ConstantInt::get(I.getType(), -*Y)); 1358 return &I; 1359 } 1360 } 1361 1362 // -X srem Y --> -(X srem Y) 1363 Value *X, *Y; 1364 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y)))) 1365 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y)); 1366 1367 // If the sign bits of both operands are zero (i.e. we can prove they are 1368 // unsigned inputs), turn this into a urem. 1369 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits())); 1370 if (MaskedValueIsZero(Op1, Mask, 0, &I) && 1371 MaskedValueIsZero(Op0, Mask, 0, &I)) { 1372 // X srem Y -> X urem Y, iff X and Y don't have sign bit set 1373 return BinaryOperator::CreateURem(Op0, Op1, I.getName()); 1374 } 1375 1376 // If it's a constant vector, flip any negative values positive. 1377 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) { 1378 Constant *C = cast<Constant>(Op1); 1379 unsigned VWidth = C->getType()->getVectorNumElements(); 1380 1381 bool hasNegative = false; 1382 bool hasMissing = false; 1383 for (unsigned i = 0; i != VWidth; ++i) { 1384 Constant *Elt = C->getAggregateElement(i); 1385 if (!Elt) { 1386 hasMissing = true; 1387 break; 1388 } 1389 1390 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt)) 1391 if (RHS->isNegative()) 1392 hasNegative = true; 1393 } 1394 1395 if (hasNegative && !hasMissing) { 1396 SmallVector<Constant *, 16> Elts(VWidth); 1397 for (unsigned i = 0; i != VWidth; ++i) { 1398 Elts[i] = C->getAggregateElement(i); // Handle undef, etc. 1399 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) { 1400 if (RHS->isNegative()) 1401 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); 1402 } 1403 } 1404 1405 Constant *NewRHSV = ConstantVector::get(Elts); 1406 if (NewRHSV != C) { // Don't loop on -MININT 1407 Worklist.AddValue(I.getOperand(1)); 1408 I.setOperand(1, NewRHSV); 1409 return &I; 1410 } 1411 } 1412 } 1413 1414 return nullptr; 1415 } 1416 1417 Instruction *InstCombiner::visitFRem(BinaryOperator &I) { 1418 if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1), 1419 I.getFastMathFlags(), 1420 SQ.getWithInstruction(&I))) 1421 return replaceInstUsesWith(I, V); 1422 1423 if (Instruction *X = foldVectorBinop(I)) 1424 return X; 1425 1426 return nullptr; 1427 } 1428