1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <utility>
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 /// The specific integer value is used in a context where it is known to be
47 /// non-zero.  If this allows us to simplify the computation, do so and return
48 /// the new operand, otherwise return null.
49 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
50                                         Instruction &CxtI) {
51   // If V has multiple uses, then we would have to do more analysis to determine
52   // if this is safe.  For example, the use could be in dynamically unreached
53   // code.
54   if (!V->hasOneUse()) return nullptr;
55 
56   bool MadeChange = false;
57 
58   // ((1 << A) >>u B) --> (1 << (A-B))
59   // Because V cannot be zero, we know that B is less than A.
60   Value *A = nullptr, *B = nullptr, *One = nullptr;
61   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
62       match(One, m_One())) {
63     A = IC.Builder.CreateSub(A, B);
64     return IC.Builder.CreateShl(One, A);
65   }
66 
67   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
68   // inexact.  Similarly for <<.
69   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
70   if (I && I->isLogicalShift() &&
71       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
72     // We know that this is an exact/nuw shift and that the input is a
73     // non-zero context as well.
74     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
75       IC.replaceOperand(*I, 0, V2);
76       MadeChange = true;
77     }
78 
79     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
80       I->setIsExact();
81       MadeChange = true;
82     }
83 
84     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
85       I->setHasNoUnsignedWrap();
86       MadeChange = true;
87     }
88   }
89 
90   // TODO: Lots more we could do here:
91   //    If V is a phi node, we can call this on each of its operands.
92   //    "select cond, X, 0" can simplify to "X".
93 
94   return MadeChange ? V : nullptr;
95 }
96 
97 /// A helper routine of InstCombiner::visitMul().
98 ///
99 /// If C is a scalar/fixed width vector of known powers of 2, then this
100 /// function returns a new scalar/fixed width vector obtained from logBase2
101 /// of C.
102 /// Return a null pointer otherwise.
103 static Constant *getLogBase2(Type *Ty, Constant *C) {
104   const APInt *IVal;
105   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106     return ConstantInt::get(Ty, IVal->logBase2());
107 
108   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
109   if (!isa<FixedVectorType>(Ty))
110     return nullptr;
111 
112   SmallVector<Constant *, 4> Elts;
113   for (unsigned I = 0, E = cast<FixedVectorType>(Ty)->getNumElements(); I != E;
114        ++I) {
115     Constant *Elt = C->getAggregateElement(I);
116     if (!Elt)
117       return nullptr;
118     if (isa<UndefValue>(Elt)) {
119       Elts.push_back(UndefValue::get(Ty->getScalarType()));
120       continue;
121     }
122     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
123       return nullptr;
124     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
125   }
126 
127   return ConstantVector::get(Elts);
128 }
129 
130 // TODO: This is a specific form of a much more general pattern.
131 //       We could detect a select with any binop identity constant, or we
132 //       could use SimplifyBinOp to see if either arm of the select reduces.
133 //       But that needs to be done carefully and/or while removing potential
134 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
135 static Value *foldMulSelectToNegate(BinaryOperator &I,
136                                     InstCombiner::BuilderTy &Builder) {
137   Value *Cond, *OtherOp;
138 
139   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
140   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
141   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
142                         m_Value(OtherOp))))
143     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
144 
145   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
146   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
147   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
148                         m_Value(OtherOp))))
149     return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
150 
151   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
152   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
153   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
154                                            m_SpecificFP(-1.0))),
155                          m_Value(OtherOp)))) {
156     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
157     Builder.setFastMathFlags(I.getFastMathFlags());
158     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
159   }
160 
161   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
162   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
163   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
164                                            m_SpecificFP(1.0))),
165                          m_Value(OtherOp)))) {
166     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
167     Builder.setFastMathFlags(I.getFastMathFlags());
168     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
169   }
170 
171   return nullptr;
172 }
173 
174 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
175   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
176                                  SQ.getWithInstruction(&I)))
177     return replaceInstUsesWith(I, V);
178 
179   if (SimplifyAssociativeOrCommutative(I))
180     return &I;
181 
182   if (Instruction *X = foldVectorBinop(I))
183     return X;
184 
185   if (Value *V = SimplifyUsingDistributiveLaws(I))
186     return replaceInstUsesWith(I, V);
187 
188   // X * -1 == 0 - X
189   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
190   if (match(Op1, m_AllOnes())) {
191     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
192     if (I.hasNoSignedWrap())
193       BO->setHasNoSignedWrap();
194     return BO;
195   }
196 
197   // Also allow combining multiply instructions on vectors.
198   {
199     Value *NewOp;
200     Constant *C1, *C2;
201     const APInt *IVal;
202     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
203                         m_Constant(C1))) &&
204         match(C1, m_APInt(IVal))) {
205       // ((X << C2)*C1) == (X * (C1 << C2))
206       Constant *Shl = ConstantExpr::getShl(C1, C2);
207       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
208       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
209       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
210         BO->setHasNoUnsignedWrap();
211       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
212           Shl->isNotMinSignedValue())
213         BO->setHasNoSignedWrap();
214       return BO;
215     }
216 
217     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
218       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
219       if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
220         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
221 
222         if (I.hasNoUnsignedWrap())
223           Shl->setHasNoUnsignedWrap();
224         if (I.hasNoSignedWrap()) {
225           const APInt *V;
226           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
227             Shl->setHasNoSignedWrap();
228         }
229 
230         return Shl;
231       }
232     }
233   }
234 
235   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
236     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
237     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
238     // The "* (2**n)" thus becomes a potential shifting opportunity.
239     {
240       const APInt &   Val = CI->getValue();
241       const APInt &PosVal = Val.abs();
242       if (Val.isNegative() && PosVal.isPowerOf2()) {
243         Value *X = nullptr, *Y = nullptr;
244         if (Op0->hasOneUse()) {
245           ConstantInt *C1;
246           Value *Sub = nullptr;
247           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
248             Sub = Builder.CreateSub(X, Y, "suba");
249           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
250             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
251           if (Sub)
252             return
253               BinaryOperator::CreateMul(Sub,
254                                         ConstantInt::get(Y->getType(), PosVal));
255         }
256       }
257     }
258   }
259 
260   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
261     return FoldedMul;
262 
263   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
264     return replaceInstUsesWith(I, FoldedMul);
265 
266   // Simplify mul instructions with a constant RHS.
267   if (isa<Constant>(Op1)) {
268     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
269     Value *X;
270     Constant *C1;
271     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
272       Value *Mul = Builder.CreateMul(C1, Op1);
273       // Only go forward with the transform if C1*CI simplifies to a tidier
274       // constant.
275       if (!match(Mul, m_Mul(m_Value(), m_Value())))
276         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
277     }
278   }
279 
280   // abs(X) * abs(X) -> X * X
281   // nabs(X) * nabs(X) -> X * X
282   if (Op0 == Op1) {
283     Value *X, *Y;
284     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
285     if (SPF == SPF_ABS || SPF == SPF_NABS)
286       return BinaryOperator::CreateMul(X, X);
287   }
288 
289   // -X * C --> X * -C
290   Value *X, *Y;
291   Constant *Op1C;
292   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
293     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
294 
295   // -X * -Y --> X * Y
296   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
297     auto *NewMul = BinaryOperator::CreateMul(X, Y);
298     if (I.hasNoSignedWrap() &&
299         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
300         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
301       NewMul->setHasNoSignedWrap();
302     return NewMul;
303   }
304 
305   // -X * Y --> -(X * Y)
306   // X * -Y --> -(X * Y)
307   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
308     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
309 
310   // (X / Y) *  Y = X - (X % Y)
311   // (X / Y) * -Y = (X % Y) - X
312   {
313     Value *Y = Op1;
314     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
315     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
316                  Div->getOpcode() != Instruction::SDiv)) {
317       Y = Op0;
318       Div = dyn_cast<BinaryOperator>(Op1);
319     }
320     Value *Neg = dyn_castNegVal(Y);
321     if (Div && Div->hasOneUse() &&
322         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
323         (Div->getOpcode() == Instruction::UDiv ||
324          Div->getOpcode() == Instruction::SDiv)) {
325       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
326 
327       // If the division is exact, X % Y is zero, so we end up with X or -X.
328       if (Div->isExact()) {
329         if (DivOp1 == Y)
330           return replaceInstUsesWith(I, X);
331         return BinaryOperator::CreateNeg(X);
332       }
333 
334       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
335                                                           : Instruction::SRem;
336       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
337       if (DivOp1 == Y)
338         return BinaryOperator::CreateSub(X, Rem);
339       return BinaryOperator::CreateSub(Rem, X);
340     }
341   }
342 
343   /// i1 mul -> i1 and.
344   if (I.getType()->isIntOrIntVectorTy(1))
345     return BinaryOperator::CreateAnd(Op0, Op1);
346 
347   // X*(1 << Y) --> X << Y
348   // (1 << Y)*X --> X << Y
349   {
350     Value *Y;
351     BinaryOperator *BO = nullptr;
352     bool ShlNSW = false;
353     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
354       BO = BinaryOperator::CreateShl(Op1, Y);
355       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
356     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
357       BO = BinaryOperator::CreateShl(Op0, Y);
358       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
359     }
360     if (BO) {
361       if (I.hasNoUnsignedWrap())
362         BO->setHasNoUnsignedWrap();
363       if (I.hasNoSignedWrap() && ShlNSW)
364         BO->setHasNoSignedWrap();
365       return BO;
366     }
367   }
368 
369   // (bool X) * Y --> X ? Y : 0
370   // Y * (bool X) --> X ? Y : 0
371   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
372     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
373   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
374     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
375 
376   // (lshr X, 31) * Y --> (ashr X, 31) & Y
377   // Y * (lshr X, 31) --> (ashr X, 31) & Y
378   // TODO: We are not checking one-use because the elimination of the multiply
379   //       is better for analysis?
380   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
381   //       more similar to what we're doing above.
382   const APInt *C;
383   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
384     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
385   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
386     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
387 
388   if (Instruction *Ext = narrowMathIfNoOverflow(I))
389     return Ext;
390 
391   bool Changed = false;
392   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
393     Changed = true;
394     I.setHasNoSignedWrap(true);
395   }
396 
397   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
398     Changed = true;
399     I.setHasNoUnsignedWrap(true);
400   }
401 
402   return Changed ? &I : nullptr;
403 }
404 
405 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
406   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
407                                   I.getFastMathFlags(),
408                                   SQ.getWithInstruction(&I)))
409     return replaceInstUsesWith(I, V);
410 
411   if (SimplifyAssociativeOrCommutative(I))
412     return &I;
413 
414   if (Instruction *X = foldVectorBinop(I))
415     return X;
416 
417   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
418     return FoldedMul;
419 
420   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
421     return replaceInstUsesWith(I, FoldedMul);
422 
423   // X * -1.0 --> -X
424   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
425   if (match(Op1, m_SpecificFP(-1.0)))
426     return UnaryOperator::CreateFNegFMF(Op0, &I);
427 
428   // -X * -Y --> X * Y
429   Value *X, *Y;
430   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
431     return BinaryOperator::CreateFMulFMF(X, Y, &I);
432 
433   // -X * C --> X * -C
434   Constant *C;
435   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
436     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
437 
438   // fabs(X) * fabs(X) -> X * X
439   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
440     return BinaryOperator::CreateFMulFMF(X, X, &I);
441 
442   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
443   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
444     return replaceInstUsesWith(I, V);
445 
446   if (I.hasAllowReassoc()) {
447     // Reassociate constant RHS with another constant to form constant
448     // expression.
449     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
450       Constant *C1;
451       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
452         // (C1 / X) * C --> (C * C1) / X
453         Constant *CC1 = ConstantExpr::getFMul(C, C1);
454         if (CC1->isNormalFP())
455           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
456       }
457       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
458         // (X / C1) * C --> X * (C / C1)
459         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
460         if (CDivC1->isNormalFP())
461           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
462 
463         // If the constant was a denormal, try reassociating differently.
464         // (X / C1) * C --> X / (C1 / C)
465         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
466         if (Op0->hasOneUse() && C1DivC->isNormalFP())
467           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
468       }
469 
470       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
471       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
472       // further folds and (X * C) + C2 is 'fma'.
473       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
474         // (X + C1) * C --> (X * C) + (C * C1)
475         Constant *CC1 = ConstantExpr::getFMul(C, C1);
476         Value *XC = Builder.CreateFMulFMF(X, C, &I);
477         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
478       }
479       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
480         // (C1 - X) * C --> (C * C1) - (X * C)
481         Constant *CC1 = ConstantExpr::getFMul(C, C1);
482         Value *XC = Builder.CreateFMulFMF(X, C, &I);
483         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
484       }
485     }
486 
487     Value *Z;
488     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
489                            m_Value(Z)))) {
490       // Sink division: (X / Y) * Z --> (X * Z) / Y
491       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
492       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
493     }
494 
495     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
496     // nnan disallows the possibility of returning a number if both operands are
497     // negative (in that case, we should return NaN).
498     if (I.hasNoNaNs() &&
499         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
500         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
501       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
502       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
503       return replaceInstUsesWith(I, Sqrt);
504     }
505 
506     // Like the similar transform in instsimplify, this requires 'nsz' because
507     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
508     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
509         Op0->hasNUses(2)) {
510       // Peek through fdiv to find squaring of square root:
511       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
512       if (match(Op0, m_FDiv(m_Value(X),
513                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
514         Value *XX = Builder.CreateFMulFMF(X, X, &I);
515         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
516       }
517       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
518       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
519                             m_Value(X)))) {
520         Value *XX = Builder.CreateFMulFMF(X, X, &I);
521         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
522       }
523     }
524 
525     // exp(X) * exp(Y) -> exp(X + Y)
526     // Match as long as at least one of exp has only one use.
527     if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
528         match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
529         (Op0->hasOneUse() || Op1->hasOneUse())) {
530       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
531       Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
532       return replaceInstUsesWith(I, Exp);
533     }
534 
535     // exp2(X) * exp2(Y) -> exp2(X + Y)
536     // Match as long as at least one of exp2 has only one use.
537     if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
538         match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
539         (Op0->hasOneUse() || Op1->hasOneUse())) {
540       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
541       Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
542       return replaceInstUsesWith(I, Exp2);
543     }
544 
545     // (X*Y) * X => (X*X) * Y where Y != X
546     //  The purpose is two-fold:
547     //   1) to form a power expression (of X).
548     //   2) potentially shorten the critical path: After transformation, the
549     //  latency of the instruction Y is amortized by the expression of X*X,
550     //  and therefore Y is in a "less critical" position compared to what it
551     //  was before the transformation.
552     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
553         Op1 != Y) {
554       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
555       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
556     }
557     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
558         Op0 != Y) {
559       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
560       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
561     }
562   }
563 
564   // log2(X * 0.5) * Y = log2(X) * Y - Y
565   if (I.isFast()) {
566     IntrinsicInst *Log2 = nullptr;
567     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
568             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
569       Log2 = cast<IntrinsicInst>(Op0);
570       Y = Op1;
571     }
572     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
573             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
574       Log2 = cast<IntrinsicInst>(Op1);
575       Y = Op0;
576     }
577     if (Log2) {
578       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
579       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
580       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
581     }
582   }
583 
584   return nullptr;
585 }
586 
587 /// Fold a divide or remainder with a select instruction divisor when one of the
588 /// select operands is zero. In that case, we can use the other select operand
589 /// because div/rem by zero is undefined.
590 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
591   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
592   if (!SI)
593     return false;
594 
595   int NonNullOperand;
596   if (match(SI->getTrueValue(), m_Zero()))
597     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
598     NonNullOperand = 2;
599   else if (match(SI->getFalseValue(), m_Zero()))
600     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
601     NonNullOperand = 1;
602   else
603     return false;
604 
605   // Change the div/rem to use 'Y' instead of the select.
606   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
607 
608   // Okay, we know we replace the operand of the div/rem with 'Y' with no
609   // problem.  However, the select, or the condition of the select may have
610   // multiple uses.  Based on our knowledge that the operand must be non-zero,
611   // propagate the known value for the select into other uses of it, and
612   // propagate a known value of the condition into its other users.
613 
614   // If the select and condition only have a single use, don't bother with this,
615   // early exit.
616   Value *SelectCond = SI->getCondition();
617   if (SI->use_empty() && SelectCond->hasOneUse())
618     return true;
619 
620   // Scan the current block backward, looking for other uses of SI.
621   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
622   Type *CondTy = SelectCond->getType();
623   while (BBI != BBFront) {
624     --BBI;
625     // If we found an instruction that we can't assume will return, so
626     // information from below it cannot be propagated above it.
627     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
628       break;
629 
630     // Replace uses of the select or its condition with the known values.
631     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
632          I != E; ++I) {
633       if (*I == SI) {
634         replaceUse(*I, SI->getOperand(NonNullOperand));
635         Worklist.push(&*BBI);
636       } else if (*I == SelectCond) {
637         replaceUse(*I, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
638                                            : ConstantInt::getFalse(CondTy));
639         Worklist.push(&*BBI);
640       }
641     }
642 
643     // If we past the instruction, quit looking for it.
644     if (&*BBI == SI)
645       SI = nullptr;
646     if (&*BBI == SelectCond)
647       SelectCond = nullptr;
648 
649     // If we ran out of things to eliminate, break out of the loop.
650     if (!SelectCond && !SI)
651       break;
652 
653   }
654   return true;
655 }
656 
657 /// True if the multiply can not be expressed in an int this size.
658 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
659                               bool IsSigned) {
660   bool Overflow;
661   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
662   return Overflow;
663 }
664 
665 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
666 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
667                        bool IsSigned) {
668   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
669 
670   // Bail if we will divide by zero.
671   if (C2.isNullValue())
672     return false;
673 
674   // Bail if we would divide INT_MIN by -1.
675   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
676     return false;
677 
678   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
679   if (IsSigned)
680     APInt::sdivrem(C1, C2, Quotient, Remainder);
681   else
682     APInt::udivrem(C1, C2, Quotient, Remainder);
683 
684   return Remainder.isMinValue();
685 }
686 
687 /// This function implements the transforms common to both integer division
688 /// instructions (udiv and sdiv). It is called by the visitors to those integer
689 /// division instructions.
690 /// Common integer divide transforms
691 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
692   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
693   bool IsSigned = I.getOpcode() == Instruction::SDiv;
694   Type *Ty = I.getType();
695 
696   // The RHS is known non-zero.
697   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
698     return replaceOperand(I, 1, V);
699 
700   // Handle cases involving: [su]div X, (select Cond, Y, Z)
701   // This does not apply for fdiv.
702   if (simplifyDivRemOfSelectWithZeroOp(I))
703     return &I;
704 
705   const APInt *C2;
706   if (match(Op1, m_APInt(C2))) {
707     Value *X;
708     const APInt *C1;
709 
710     // (X / C1) / C2  -> X / (C1*C2)
711     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
712         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
713       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
714       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
715         return BinaryOperator::Create(I.getOpcode(), X,
716                                       ConstantInt::get(Ty, Product));
717     }
718 
719     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
720         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
721       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
722 
723       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
724       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
725         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
726                                               ConstantInt::get(Ty, Quotient));
727         NewDiv->setIsExact(I.isExact());
728         return NewDiv;
729       }
730 
731       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
732       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
733         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
734                                            ConstantInt::get(Ty, Quotient));
735         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
736         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
737         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
738         return Mul;
739       }
740     }
741 
742     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
743          *C1 != C1->getBitWidth() - 1) ||
744         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
745       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
746       APInt C1Shifted = APInt::getOneBitSet(
747           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
748 
749       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
750       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
751         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
752                                           ConstantInt::get(Ty, Quotient));
753         BO->setIsExact(I.isExact());
754         return BO;
755       }
756 
757       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
758       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
759         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
760                                            ConstantInt::get(Ty, Quotient));
761         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
762         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
763         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
764         return Mul;
765       }
766     }
767 
768     if (!C2->isNullValue()) // avoid X udiv 0
769       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
770         return FoldedDiv;
771   }
772 
773   if (match(Op0, m_One())) {
774     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
775     if (IsSigned) {
776       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
777       // result is one, if Op1 is -1 then the result is minus one, otherwise
778       // it's zero.
779       Value *Inc = Builder.CreateAdd(Op1, Op0);
780       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
781       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
782     } else {
783       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
784       // result is one, otherwise it's zero.
785       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
786     }
787   }
788 
789   // See if we can fold away this div instruction.
790   if (SimplifyDemandedInstructionBits(I))
791     return &I;
792 
793   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
794   Value *X, *Z;
795   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
796     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
797         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
798       return BinaryOperator::Create(I.getOpcode(), X, Op1);
799 
800   // (X << Y) / X -> 1 << Y
801   Value *Y;
802   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
803     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
804   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
805     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
806 
807   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
808   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
809     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
810     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
811     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
812       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
813       replaceOperand(I, 1, Y);
814       return &I;
815     }
816   }
817 
818   return nullptr;
819 }
820 
821 static const unsigned MaxDepth = 6;
822 
823 namespace {
824 
825 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
826                                            const BinaryOperator &I,
827                                            InstCombiner &IC);
828 
829 /// Used to maintain state for visitUDivOperand().
830 struct UDivFoldAction {
831   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
832   /// action joins two actions together.
833   FoldUDivOperandCb FoldAction;
834 
835   /// Which operand to fold.
836   Value *OperandToFold;
837 
838   union {
839     /// The instruction returned when FoldAction is invoked.
840     Instruction *FoldResult;
841 
842     /// Stores the LHS action index if this action joins two actions together.
843     size_t SelectLHSIdx;
844   };
845 
846   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
847       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
848   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
849       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
850 };
851 
852 } // end anonymous namespace
853 
854 // X udiv 2^C -> X >> C
855 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
856                                     const BinaryOperator &I, InstCombiner &IC) {
857   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
858   if (!C1)
859     llvm_unreachable("Failed to constant fold udiv -> logbase2");
860   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
861   if (I.isExact())
862     LShr->setIsExact();
863   return LShr;
864 }
865 
866 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
867 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
868 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
869                                 InstCombiner &IC) {
870   Value *ShiftLeft;
871   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
872     ShiftLeft = Op1;
873 
874   Constant *CI;
875   Value *N;
876   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
877     llvm_unreachable("match should never fail here!");
878   Constant *Log2Base = getLogBase2(N->getType(), CI);
879   if (!Log2Base)
880     llvm_unreachable("getLogBase2 should never fail here!");
881   N = IC.Builder.CreateAdd(N, Log2Base);
882   if (Op1 != ShiftLeft)
883     N = IC.Builder.CreateZExt(N, Op1->getType());
884   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
885   if (I.isExact())
886     LShr->setIsExact();
887   return LShr;
888 }
889 
890 // Recursively visits the possible right hand operands of a udiv
891 // instruction, seeing through select instructions, to determine if we can
892 // replace the udiv with something simpler.  If we find that an operand is not
893 // able to simplify the udiv, we abort the entire transformation.
894 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
895                                SmallVectorImpl<UDivFoldAction> &Actions,
896                                unsigned Depth = 0) {
897   // Check to see if this is an unsigned division with an exact power of 2,
898   // if so, convert to a right shift.
899   if (match(Op1, m_Power2())) {
900     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
901     return Actions.size();
902   }
903 
904   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
905   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
906       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
907     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
908     return Actions.size();
909   }
910 
911   // The remaining tests are all recursive, so bail out if we hit the limit.
912   if (Depth++ == MaxDepth)
913     return 0;
914 
915   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
916     if (size_t LHSIdx =
917             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
918       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
919         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
920         return Actions.size();
921       }
922 
923   return 0;
924 }
925 
926 /// If we have zero-extended operands of an unsigned div or rem, we may be able
927 /// to narrow the operation (sink the zext below the math).
928 static Instruction *narrowUDivURem(BinaryOperator &I,
929                                    InstCombiner::BuilderTy &Builder) {
930   Instruction::BinaryOps Opcode = I.getOpcode();
931   Value *N = I.getOperand(0);
932   Value *D = I.getOperand(1);
933   Type *Ty = I.getType();
934   Value *X, *Y;
935   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
936       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
937     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
938     // urem (zext X), (zext Y) --> zext (urem X, Y)
939     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
940     return new ZExtInst(NarrowOp, Ty);
941   }
942 
943   Constant *C;
944   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
945       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
946     // If the constant is the same in the smaller type, use the narrow version.
947     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
948     if (ConstantExpr::getZExt(TruncC, Ty) != C)
949       return nullptr;
950 
951     // udiv (zext X), C --> zext (udiv X, C')
952     // urem (zext X), C --> zext (urem X, C')
953     // udiv C, (zext X) --> zext (udiv C', X)
954     // urem C, (zext X) --> zext (urem C', X)
955     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
956                                        : Builder.CreateBinOp(Opcode, TruncC, X);
957     return new ZExtInst(NarrowOp, Ty);
958   }
959 
960   return nullptr;
961 }
962 
963 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
964   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
965                                   SQ.getWithInstruction(&I)))
966     return replaceInstUsesWith(I, V);
967 
968   if (Instruction *X = foldVectorBinop(I))
969     return X;
970 
971   // Handle the integer div common cases
972   if (Instruction *Common = commonIDivTransforms(I))
973     return Common;
974 
975   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
976   Value *X;
977   const APInt *C1, *C2;
978   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
979     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
980     bool Overflow;
981     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
982     if (!Overflow) {
983       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
984       BinaryOperator *BO = BinaryOperator::CreateUDiv(
985           X, ConstantInt::get(X->getType(), C2ShlC1));
986       if (IsExact)
987         BO->setIsExact();
988       return BO;
989     }
990   }
991 
992   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
993   // TODO: Could use isKnownNegative() to handle non-constant values.
994   Type *Ty = I.getType();
995   if (match(Op1, m_Negative())) {
996     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
997     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
998   }
999   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1000   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1001     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1002     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1003   }
1004 
1005   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1006     return NarrowDiv;
1007 
1008   // If the udiv operands are non-overflowing multiplies with a common operand,
1009   // then eliminate the common factor:
1010   // (A * B) / (A * X) --> B / X (and commuted variants)
1011   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1012   // TODO: If -reassociation handled this generally, we could remove this.
1013   Value *A, *B;
1014   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1015     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1016         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1017       return BinaryOperator::CreateUDiv(B, X);
1018     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1019         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1020       return BinaryOperator::CreateUDiv(A, X);
1021   }
1022 
1023   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1024   SmallVector<UDivFoldAction, 6> UDivActions;
1025   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1026     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1027       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1028       Value *ActionOp1 = UDivActions[i].OperandToFold;
1029       Instruction *Inst;
1030       if (Action)
1031         Inst = Action(Op0, ActionOp1, I, *this);
1032       else {
1033         // This action joins two actions together.  The RHS of this action is
1034         // simply the last action we processed, we saved the LHS action index in
1035         // the joining action.
1036         size_t SelectRHSIdx = i - 1;
1037         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1038         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1039         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1040         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1041                                   SelectLHS, SelectRHS);
1042       }
1043 
1044       // If this is the last action to process, return it to the InstCombiner.
1045       // Otherwise, we insert it before the UDiv and record it so that we may
1046       // use it as part of a joining action (i.e., a SelectInst).
1047       if (e - i != 1) {
1048         Inst->insertBefore(&I);
1049         UDivActions[i].FoldResult = Inst;
1050       } else
1051         return Inst;
1052     }
1053 
1054   return nullptr;
1055 }
1056 
1057 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1058   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1059                                   SQ.getWithInstruction(&I)))
1060     return replaceInstUsesWith(I, V);
1061 
1062   if (Instruction *X = foldVectorBinop(I))
1063     return X;
1064 
1065   // Handle the integer div common cases
1066   if (Instruction *Common = commonIDivTransforms(I))
1067     return Common;
1068 
1069   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1070   Value *X;
1071   // sdiv Op0, -1 --> -Op0
1072   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1073   if (match(Op1, m_AllOnes()) ||
1074       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1075     return BinaryOperator::CreateNeg(Op0);
1076 
1077   // X / INT_MIN --> X == INT_MIN
1078   if (match(Op1, m_SignMask()))
1079     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1080 
1081   const APInt *Op1C;
1082   if (match(Op1, m_APInt(Op1C))) {
1083     // sdiv exact X, C  -->  ashr exact X, log2(C)
1084     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1085       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1086       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1087     }
1088 
1089     // If the dividend is sign-extended and the constant divisor is small enough
1090     // to fit in the source type, shrink the division to the narrower type:
1091     // (sext X) sdiv C --> sext (X sdiv C)
1092     Value *Op0Src;
1093     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1094         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1095 
1096       // In the general case, we need to make sure that the dividend is not the
1097       // minimum signed value because dividing that by -1 is UB. But here, we
1098       // know that the -1 divisor case is already handled above.
1099 
1100       Constant *NarrowDivisor =
1101           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1102       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1103       return new SExtInst(NarrowOp, Op0->getType());
1104     }
1105 
1106     // -X / C --> X / -C (if the negation doesn't overflow).
1107     // TODO: This could be enhanced to handle arbitrary vector constants by
1108     //       checking if all elements are not the min-signed-val.
1109     if (!Op1C->isMinSignedValue() &&
1110         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1111       Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C));
1112       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1113       BO->setIsExact(I.isExact());
1114       return BO;
1115     }
1116   }
1117 
1118   // -X / Y --> -(X / Y)
1119   Value *Y;
1120   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1121     return BinaryOperator::CreateNSWNeg(
1122         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1123 
1124   // If the sign bits of both operands are zero (i.e. we can prove they are
1125   // unsigned inputs), turn this into a udiv.
1126   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1127   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1128     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1129       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1130       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1131       BO->setIsExact(I.isExact());
1132       return BO;
1133     }
1134 
1135     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1136       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1137       // Safe because the only negative value (1 << Y) can take on is
1138       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1139       // the sign bit set.
1140       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1141       BO->setIsExact(I.isExact());
1142       return BO;
1143     }
1144   }
1145 
1146   return nullptr;
1147 }
1148 
1149 /// Remove negation and try to convert division into multiplication.
1150 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1151   Constant *C;
1152   if (!match(I.getOperand(1), m_Constant(C)))
1153     return nullptr;
1154 
1155   // -X / C --> X / -C
1156   Value *X;
1157   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1158     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1159 
1160   // If the constant divisor has an exact inverse, this is always safe. If not,
1161   // then we can still create a reciprocal if fast-math-flags allow it and the
1162   // constant is a regular number (not zero, infinite, or denormal).
1163   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1164     return nullptr;
1165 
1166   // Disallow denormal constants because we don't know what would happen
1167   // on all targets.
1168   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1169   // denorms are flushed?
1170   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1171   if (!RecipC->isNormalFP())
1172     return nullptr;
1173 
1174   // X / C --> X * (1 / C)
1175   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1176 }
1177 
1178 /// Remove negation and try to reassociate constant math.
1179 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1180   Constant *C;
1181   if (!match(I.getOperand(0), m_Constant(C)))
1182     return nullptr;
1183 
1184   // C / -X --> -C / X
1185   Value *X;
1186   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1187     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1188 
1189   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1190     return nullptr;
1191 
1192   // Try to reassociate C / X expressions where X includes another constant.
1193   Constant *C2, *NewC = nullptr;
1194   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1195     // C / (X * C2) --> (C / C2) / X
1196     NewC = ConstantExpr::getFDiv(C, C2);
1197   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1198     // C / (X / C2) --> (C * C2) / X
1199     NewC = ConstantExpr::getFMul(C, C2);
1200   }
1201   // Disallow denormal constants because we don't know what would happen
1202   // on all targets.
1203   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1204   // denorms are flushed?
1205   if (!NewC || !NewC->isNormalFP())
1206     return nullptr;
1207 
1208   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1209 }
1210 
1211 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1212   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1213                                   I.getFastMathFlags(),
1214                                   SQ.getWithInstruction(&I)))
1215     return replaceInstUsesWith(I, V);
1216 
1217   if (Instruction *X = foldVectorBinop(I))
1218     return X;
1219 
1220   if (Instruction *R = foldFDivConstantDivisor(I))
1221     return R;
1222 
1223   if (Instruction *R = foldFDivConstantDividend(I))
1224     return R;
1225 
1226   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1227   if (isa<Constant>(Op0))
1228     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1229       if (Instruction *R = FoldOpIntoSelect(I, SI))
1230         return R;
1231 
1232   if (isa<Constant>(Op1))
1233     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1234       if (Instruction *R = FoldOpIntoSelect(I, SI))
1235         return R;
1236 
1237   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1238     Value *X, *Y;
1239     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1240         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1241       // (X / Y) / Z => X / (Y * Z)
1242       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1243       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1244     }
1245     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1246         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1247       // Z / (X / Y) => (Y * Z) / X
1248       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1249       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1250     }
1251     // Z / (1.0 / Y) => (Y * Z)
1252     //
1253     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1254     // m_OneUse check is avoided because even in the case of the multiple uses
1255     // for 1.0/Y, the number of instructions remain the same and a division is
1256     // replaced by a multiplication.
1257     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1258       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1259   }
1260 
1261   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1262     // sin(X) / cos(X) -> tan(X)
1263     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1264     Value *X;
1265     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1266                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1267     bool IsCot =
1268         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1269                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1270 
1271     if ((IsTan || IsCot) &&
1272         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1273       IRBuilder<> B(&I);
1274       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1275       B.setFastMathFlags(I.getFastMathFlags());
1276       AttributeList Attrs =
1277           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1278       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1279                                         LibFunc_tanl, B, Attrs);
1280       if (IsCot)
1281         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1282       return replaceInstUsesWith(I, Res);
1283     }
1284   }
1285 
1286   // -X / -Y -> X / Y
1287   Value *X, *Y;
1288   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
1289     replaceOperand(I, 0, X);
1290     replaceOperand(I, 1, Y);
1291     return &I;
1292   }
1293 
1294   // X / (X * Y) --> 1.0 / Y
1295   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1296   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1297   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1298       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1299     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1300     replaceOperand(I, 1, Y);
1301     return &I;
1302   }
1303 
1304   // X / fabs(X) -> copysign(1.0, X)
1305   // fabs(X) / X -> copysign(1.0, X)
1306   if (I.hasNoNaNs() && I.hasNoInfs() &&
1307       (match(&I,
1308              m_FDiv(m_Value(X), m_Intrinsic<Intrinsic::fabs>(m_Deferred(X)))) ||
1309        match(&I, m_FDiv(m_Intrinsic<Intrinsic::fabs>(m_Value(X)),
1310                         m_Deferred(X))))) {
1311     Value *V = Builder.CreateBinaryIntrinsic(
1312         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1313     return replaceInstUsesWith(I, V);
1314   }
1315   return nullptr;
1316 }
1317 
1318 /// This function implements the transforms common to both integer remainder
1319 /// instructions (urem and srem). It is called by the visitors to those integer
1320 /// remainder instructions.
1321 /// Common integer remainder transforms
1322 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1323   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1324 
1325   // The RHS is known non-zero.
1326   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1327     return replaceOperand(I, 1, V);
1328 
1329   // Handle cases involving: rem X, (select Cond, Y, Z)
1330   if (simplifyDivRemOfSelectWithZeroOp(I))
1331     return &I;
1332 
1333   if (isa<Constant>(Op1)) {
1334     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1335       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1336         if (Instruction *R = FoldOpIntoSelect(I, SI))
1337           return R;
1338       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1339         const APInt *Op1Int;
1340         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1341             (I.getOpcode() == Instruction::URem ||
1342              !Op1Int->isMinSignedValue())) {
1343           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1344           // predecessor blocks, so do this only if we know the srem or urem
1345           // will not fault.
1346           if (Instruction *NV = foldOpIntoPhi(I, PN))
1347             return NV;
1348         }
1349       }
1350 
1351       // See if we can fold away this rem instruction.
1352       if (SimplifyDemandedInstructionBits(I))
1353         return &I;
1354     }
1355   }
1356 
1357   return nullptr;
1358 }
1359 
1360 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1361   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1362                                   SQ.getWithInstruction(&I)))
1363     return replaceInstUsesWith(I, V);
1364 
1365   if (Instruction *X = foldVectorBinop(I))
1366     return X;
1367 
1368   if (Instruction *common = commonIRemTransforms(I))
1369     return common;
1370 
1371   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1372     return NarrowRem;
1373 
1374   // X urem Y -> X and Y-1, where Y is a power of 2,
1375   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1376   Type *Ty = I.getType();
1377   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1378     // This may increase instruction count, we don't enforce that Y is a
1379     // constant.
1380     Constant *N1 = Constant::getAllOnesValue(Ty);
1381     Value *Add = Builder.CreateAdd(Op1, N1);
1382     return BinaryOperator::CreateAnd(Op0, Add);
1383   }
1384 
1385   // 1 urem X -> zext(X != 1)
1386   if (match(Op0, m_One())) {
1387     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1388     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1389   }
1390 
1391   // X urem C -> X < C ? X : X - C, where C >= signbit.
1392   if (match(Op1, m_Negative())) {
1393     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1394     Value *Sub = Builder.CreateSub(Op0, Op1);
1395     return SelectInst::Create(Cmp, Op0, Sub);
1396   }
1397 
1398   // If the divisor is a sext of a boolean, then the divisor must be max
1399   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1400   // max unsigned value. In that case, the remainder is 0:
1401   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1402   Value *X;
1403   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1404     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1405     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1406   }
1407 
1408   return nullptr;
1409 }
1410 
1411 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1412   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1413                                   SQ.getWithInstruction(&I)))
1414     return replaceInstUsesWith(I, V);
1415 
1416   if (Instruction *X = foldVectorBinop(I))
1417     return X;
1418 
1419   // Handle the integer rem common cases
1420   if (Instruction *Common = commonIRemTransforms(I))
1421     return Common;
1422 
1423   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1424   {
1425     const APInt *Y;
1426     // X % -Y -> X % Y
1427     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1428       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1429   }
1430 
1431   // -X srem Y --> -(X srem Y)
1432   Value *X, *Y;
1433   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1434     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1435 
1436   // If the sign bits of both operands are zero (i.e. we can prove they are
1437   // unsigned inputs), turn this into a urem.
1438   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1439   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1440       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1441     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1442     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1443   }
1444 
1445   // If it's a constant vector, flip any negative values positive.
1446   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1447     Constant *C = cast<Constant>(Op1);
1448     unsigned VWidth = cast<VectorType>(C->getType())->getNumElements();
1449 
1450     bool hasNegative = false;
1451     bool hasMissing = false;
1452     for (unsigned i = 0; i != VWidth; ++i) {
1453       Constant *Elt = C->getAggregateElement(i);
1454       if (!Elt) {
1455         hasMissing = true;
1456         break;
1457       }
1458 
1459       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1460         if (RHS->isNegative())
1461           hasNegative = true;
1462     }
1463 
1464     if (hasNegative && !hasMissing) {
1465       SmallVector<Constant *, 16> Elts(VWidth);
1466       for (unsigned i = 0; i != VWidth; ++i) {
1467         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1468         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1469           if (RHS->isNegative())
1470             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1471         }
1472       }
1473 
1474       Constant *NewRHSV = ConstantVector::get(Elts);
1475       if (NewRHSV != C)  // Don't loop on -MININT
1476         return replaceOperand(I, 1, NewRHSV);
1477     }
1478   }
1479 
1480   return nullptr;
1481 }
1482 
1483 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1484   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1485                                   I.getFastMathFlags(),
1486                                   SQ.getWithInstruction(&I)))
1487     return replaceInstUsesWith(I, V);
1488 
1489   if (Instruction *X = foldVectorBinop(I))
1490     return X;
1491 
1492   return nullptr;
1493 }
1494