1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombiner.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <utility>
40 
41 #define DEBUG_TYPE "instcombine"
42 #include "llvm/Transforms/Utils/InstructionWorklist.h"
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero.  If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
50 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
51                                         Instruction &CxtI) {
52   // If V has multiple uses, then we would have to do more analysis to determine
53   // if this is safe.  For example, the use could be in dynamically unreached
54   // code.
55   if (!V->hasOneUse()) return nullptr;
56 
57   bool MadeChange = false;
58 
59   // ((1 << A) >>u B) --> (1 << (A-B))
60   // Because V cannot be zero, we know that B is less than A.
61   Value *A = nullptr, *B = nullptr, *One = nullptr;
62   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63       match(One, m_One())) {
64     A = IC.Builder.CreateSub(A, B);
65     return IC.Builder.CreateShl(One, A);
66   }
67 
68   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69   // inexact.  Similarly for <<.
70   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71   if (I && I->isLogicalShift() &&
72       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73     // We know that this is an exact/nuw shift and that the input is a
74     // non-zero context as well.
75     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76       IC.replaceOperand(*I, 0, V2);
77       MadeChange = true;
78     }
79 
80     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81       I->setIsExact();
82       MadeChange = true;
83     }
84 
85     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86       I->setHasNoUnsignedWrap();
87       MadeChange = true;
88     }
89   }
90 
91   // TODO: Lots more we could do here:
92   //    If V is a phi node, we can call this on each of its operands.
93   //    "select cond, X, 0" can simplify to "X".
94 
95   return MadeChange ? V : nullptr;
96 }
97 
98 // TODO: This is a specific form of a much more general pattern.
99 //       We could detect a select with any binop identity constant, or we
100 //       could use SimplifyBinOp to see if either arm of the select reduces.
101 //       But that needs to be done carefully and/or while removing potential
102 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
103 static Value *foldMulSelectToNegate(BinaryOperator &I,
104                                     InstCombiner::BuilderTy &Builder) {
105   Value *Cond, *OtherOp;
106 
107   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
110                         m_Value(OtherOp)))) {
111     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
112     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
113     return Builder.CreateSelect(Cond, OtherOp, Neg);
114   }
115   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
116   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
117   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
118                         m_Value(OtherOp)))) {
119     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
120     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
121     return Builder.CreateSelect(Cond, Neg, OtherOp);
122   }
123 
124   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
125   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
126   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
127                                            m_SpecificFP(-1.0))),
128                          m_Value(OtherOp)))) {
129     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
130     Builder.setFastMathFlags(I.getFastMathFlags());
131     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
132   }
133 
134   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
135   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
136   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
137                                            m_SpecificFP(1.0))),
138                          m_Value(OtherOp)))) {
139     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
140     Builder.setFastMathFlags(I.getFastMathFlags());
141     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
142   }
143 
144   return nullptr;
145 }
146 
147 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
148   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
149                                  SQ.getWithInstruction(&I)))
150     return replaceInstUsesWith(I, V);
151 
152   if (SimplifyAssociativeOrCommutative(I))
153     return &I;
154 
155   if (Instruction *X = foldVectorBinop(I))
156     return X;
157 
158   if (Value *V = SimplifyUsingDistributiveLaws(I))
159     return replaceInstUsesWith(I, V);
160 
161   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
162   unsigned BitWidth = I.getType()->getScalarSizeInBits();
163 
164   // X * -1 == 0 - X
165   if (match(Op1, m_AllOnes())) {
166     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
167     if (I.hasNoSignedWrap())
168       BO->setHasNoSignedWrap();
169     return BO;
170   }
171 
172   // Also allow combining multiply instructions on vectors.
173   {
174     Value *NewOp;
175     Constant *C1, *C2;
176     const APInt *IVal;
177     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
178                         m_Constant(C1))) &&
179         match(C1, m_APInt(IVal))) {
180       // ((X << C2)*C1) == (X * (C1 << C2))
181       Constant *Shl = ConstantExpr::getShl(C1, C2);
182       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
183       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
184       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
185         BO->setHasNoUnsignedWrap();
186       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
187           Shl->isNotMinSignedValue())
188         BO->setHasNoSignedWrap();
189       return BO;
190     }
191 
192     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
193       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
194       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
195         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
196 
197         if (I.hasNoUnsignedWrap())
198           Shl->setHasNoUnsignedWrap();
199         if (I.hasNoSignedWrap()) {
200           const APInt *V;
201           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
202             Shl->setHasNoSignedWrap();
203         }
204 
205         return Shl;
206       }
207     }
208   }
209 
210   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
211     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
212     // The "* (1<<C)" thus becomes a potential shifting opportunity.
213     if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
214       return BinaryOperator::CreateMul(
215           NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
216   }
217 
218   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
219     return FoldedMul;
220 
221   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
222     return replaceInstUsesWith(I, FoldedMul);
223 
224   // Simplify mul instructions with a constant RHS.
225   if (isa<Constant>(Op1)) {
226     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
227     Value *X;
228     Constant *C1;
229     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
230       Value *Mul = Builder.CreateMul(C1, Op1);
231       // Only go forward with the transform if C1*CI simplifies to a tidier
232       // constant.
233       if (!match(Mul, m_Mul(m_Value(), m_Value())))
234         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
235     }
236   }
237 
238   // abs(X) * abs(X) -> X * X
239   // nabs(X) * nabs(X) -> X * X
240   if (Op0 == Op1) {
241     Value *X, *Y;
242     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
243     if (SPF == SPF_ABS || SPF == SPF_NABS)
244       return BinaryOperator::CreateMul(X, X);
245 
246     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
247       return BinaryOperator::CreateMul(X, X);
248   }
249 
250   // -X * C --> X * -C
251   Value *X, *Y;
252   Constant *Op1C;
253   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
254     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
255 
256   // -X * -Y --> X * Y
257   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
258     auto *NewMul = BinaryOperator::CreateMul(X, Y);
259     if (I.hasNoSignedWrap() &&
260         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
261         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
262       NewMul->setHasNoSignedWrap();
263     return NewMul;
264   }
265 
266   // -X * Y --> -(X * Y)
267   // X * -Y --> -(X * Y)
268   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
269     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
270 
271   // (X / Y) *  Y = X - (X % Y)
272   // (X / Y) * -Y = (X % Y) - X
273   {
274     Value *Y = Op1;
275     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
276     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
277                  Div->getOpcode() != Instruction::SDiv)) {
278       Y = Op0;
279       Div = dyn_cast<BinaryOperator>(Op1);
280     }
281     Value *Neg = dyn_castNegVal(Y);
282     if (Div && Div->hasOneUse() &&
283         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
284         (Div->getOpcode() == Instruction::UDiv ||
285          Div->getOpcode() == Instruction::SDiv)) {
286       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
287 
288       // If the division is exact, X % Y is zero, so we end up with X or -X.
289       if (Div->isExact()) {
290         if (DivOp1 == Y)
291           return replaceInstUsesWith(I, X);
292         return BinaryOperator::CreateNeg(X);
293       }
294 
295       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
296                                                           : Instruction::SRem;
297       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
298       if (DivOp1 == Y)
299         return BinaryOperator::CreateSub(X, Rem);
300       return BinaryOperator::CreateSub(Rem, X);
301     }
302   }
303 
304   /// i1 mul -> i1 and.
305   if (I.getType()->isIntOrIntVectorTy(1))
306     return BinaryOperator::CreateAnd(Op0, Op1);
307 
308   // X*(1 << Y) --> X << Y
309   // (1 << Y)*X --> X << Y
310   {
311     Value *Y;
312     BinaryOperator *BO = nullptr;
313     bool ShlNSW = false;
314     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
315       BO = BinaryOperator::CreateShl(Op1, Y);
316       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
317     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
318       BO = BinaryOperator::CreateShl(Op0, Y);
319       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
320     }
321     if (BO) {
322       if (I.hasNoUnsignedWrap())
323         BO->setHasNoUnsignedWrap();
324       if (I.hasNoSignedWrap() && ShlNSW)
325         BO->setHasNoSignedWrap();
326       return BO;
327     }
328   }
329 
330   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
331   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
332   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
333   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
334        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
335       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
336       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
337     Value *And = Builder.CreateAnd(X, Y, "mulbool");
338     return CastInst::Create(Instruction::ZExt, And, I.getType());
339   }
340   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
341   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
342   // Note: -1 * 1 == 1 * -1  == -1
343   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
344        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
345       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
346       (Op0->hasOneUse() || Op1->hasOneUse())) {
347     Value *And = Builder.CreateAnd(X, Y, "mulbool");
348     return CastInst::Create(Instruction::SExt, And, I.getType());
349   }
350 
351   // (zext bool X) * Y --> X ? Y : 0
352   // Y * (zext bool X) --> X ? Y : 0
353   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
354     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
355   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
356     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
357 
358   // (sext bool X) * C --> X ? -C : 0
359   Constant *ImmC;
360   if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1) &&
361       match(Op1, m_ImmConstant(ImmC))) {
362     Constant *NegC = ConstantExpr::getNeg(ImmC);
363     return SelectInst::Create(X, NegC, ConstantInt::getNullValue(I.getType()));
364   }
365 
366   // (lshr X, 31) * Y --> (ashr X, 31) & Y
367   // Y * (lshr X, 31) --> (ashr X, 31) & Y
368   // TODO: We are not checking one-use because the elimination of the multiply
369   //       is better for analysis?
370   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
371   //       more similar to what we're doing above.
372   const APInt *C;
373   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
374     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
375   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
376     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
377 
378   // ((ashr X, 31) | 1) * X --> abs(X)
379   // X * ((ashr X, 31) | 1) --> abs(X)
380   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
381                                     m_SpecificIntAllowUndef(BitWidth - 1)),
382                              m_One()),
383                         m_Deferred(X)))) {
384     Value *Abs = Builder.CreateBinaryIntrinsic(
385         Intrinsic::abs, X,
386         ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
387     Abs->takeName(&I);
388     return replaceInstUsesWith(I, Abs);
389   }
390 
391   if (Instruction *Ext = narrowMathIfNoOverflow(I))
392     return Ext;
393 
394   bool Changed = false;
395   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
396     Changed = true;
397     I.setHasNoSignedWrap(true);
398   }
399 
400   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
401     Changed = true;
402     I.setHasNoUnsignedWrap(true);
403   }
404 
405   return Changed ? &I : nullptr;
406 }
407 
408 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
409   BinaryOperator::BinaryOps Opcode = I.getOpcode();
410   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
411          "Expected fmul or fdiv");
412 
413   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
414   Value *X, *Y;
415 
416   // -X * -Y --> X * Y
417   // -X / -Y --> X / Y
418   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
419     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
420 
421   // fabs(X) * fabs(X) -> X * X
422   // fabs(X) / fabs(X) -> X / X
423   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
424     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
425 
426   // fabs(X) * fabs(Y) --> fabs(X * Y)
427   // fabs(X) / fabs(Y) --> fabs(X / Y)
428   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
429       (Op0->hasOneUse() || Op1->hasOneUse())) {
430     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
431     Builder.setFastMathFlags(I.getFastMathFlags());
432     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
433     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
434     Fabs->takeName(&I);
435     return replaceInstUsesWith(I, Fabs);
436   }
437 
438   return nullptr;
439 }
440 
441 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
442   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
443                                   I.getFastMathFlags(),
444                                   SQ.getWithInstruction(&I)))
445     return replaceInstUsesWith(I, V);
446 
447   if (SimplifyAssociativeOrCommutative(I))
448     return &I;
449 
450   if (Instruction *X = foldVectorBinop(I))
451     return X;
452 
453   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
454     return FoldedMul;
455 
456   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
457     return replaceInstUsesWith(I, FoldedMul);
458 
459   if (Instruction *R = foldFPSignBitOps(I))
460     return R;
461 
462   // X * -1.0 --> -X
463   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
464   if (match(Op1, m_SpecificFP(-1.0)))
465     return UnaryOperator::CreateFNegFMF(Op0, &I);
466 
467   // -X * C --> X * -C
468   Value *X, *Y;
469   Constant *C;
470   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
471     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
472 
473   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
474   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
475     return replaceInstUsesWith(I, V);
476 
477   if (I.hasAllowReassoc()) {
478     // Reassociate constant RHS with another constant to form constant
479     // expression.
480     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
481       Constant *C1;
482       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
483         // (C1 / X) * C --> (C * C1) / X
484         Constant *CC1 = ConstantExpr::getFMul(C, C1);
485         if (CC1->isNormalFP())
486           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
487       }
488       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
489         // (X / C1) * C --> X * (C / C1)
490         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
491         if (CDivC1->isNormalFP())
492           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
493 
494         // If the constant was a denormal, try reassociating differently.
495         // (X / C1) * C --> X / (C1 / C)
496         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
497         if (Op0->hasOneUse() && C1DivC->isNormalFP())
498           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
499       }
500 
501       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
502       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
503       // further folds and (X * C) + C2 is 'fma'.
504       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
505         // (X + C1) * C --> (X * C) + (C * C1)
506         Constant *CC1 = ConstantExpr::getFMul(C, C1);
507         Value *XC = Builder.CreateFMulFMF(X, C, &I);
508         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
509       }
510       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
511         // (C1 - X) * C --> (C * C1) - (X * C)
512         Constant *CC1 = ConstantExpr::getFMul(C, C1);
513         Value *XC = Builder.CreateFMulFMF(X, C, &I);
514         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
515       }
516     }
517 
518     Value *Z;
519     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
520                            m_Value(Z)))) {
521       // Sink division: (X / Y) * Z --> (X * Z) / Y
522       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
523       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
524     }
525 
526     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
527     // nnan disallows the possibility of returning a number if both operands are
528     // negative (in that case, we should return NaN).
529     if (I.hasNoNaNs() &&
530         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
531         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
532       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
533       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
534       return replaceInstUsesWith(I, Sqrt);
535     }
536 
537     // The following transforms are done irrespective of the number of uses
538     // for the expression "1.0/sqrt(X)".
539     //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
540     //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
541     // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
542     // has the necessary (reassoc) fast-math-flags.
543     if (I.hasNoSignedZeros() &&
544         match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
545         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
546       return BinaryOperator::CreateFDivFMF(X, Y, &I);
547     if (I.hasNoSignedZeros() &&
548         match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
549         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
550       return BinaryOperator::CreateFDivFMF(X, Y, &I);
551 
552     // Like the similar transform in instsimplify, this requires 'nsz' because
553     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
554     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
555         Op0->hasNUses(2)) {
556       // Peek through fdiv to find squaring of square root:
557       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
558       if (match(Op0, m_FDiv(m_Value(X),
559                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
560         Value *XX = Builder.CreateFMulFMF(X, X, &I);
561         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
562       }
563       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
564       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
565                             m_Value(X)))) {
566         Value *XX = Builder.CreateFMulFMF(X, X, &I);
567         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
568       }
569     }
570 
571     if (I.isOnlyUserOfAnyOperand()) {
572       // pow(x, y) * pow(x, z) -> pow(x, y + z)
573       if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
574           match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
575         auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
576         auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
577         return replaceInstUsesWith(I, NewPow);
578       }
579 
580       // powi(x, y) * powi(x, z) -> powi(x, y + z)
581       if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
582           match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
583           Y->getType() == Z->getType()) {
584         auto *YZ = Builder.CreateAdd(Y, Z);
585         auto *NewPow = Builder.CreateIntrinsic(
586             Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
587         return replaceInstUsesWith(I, NewPow);
588       }
589 
590       // exp(X) * exp(Y) -> exp(X + Y)
591       if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
592           match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
593         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
594         Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
595         return replaceInstUsesWith(I, Exp);
596       }
597 
598       // exp2(X) * exp2(Y) -> exp2(X + Y)
599       if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
600           match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
601         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
602         Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
603         return replaceInstUsesWith(I, Exp2);
604       }
605     }
606 
607     // (X*Y) * X => (X*X) * Y where Y != X
608     //  The purpose is two-fold:
609     //   1) to form a power expression (of X).
610     //   2) potentially shorten the critical path: After transformation, the
611     //  latency of the instruction Y is amortized by the expression of X*X,
612     //  and therefore Y is in a "less critical" position compared to what it
613     //  was before the transformation.
614     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
615         Op1 != Y) {
616       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
617       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
618     }
619     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
620         Op0 != Y) {
621       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
622       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
623     }
624   }
625 
626   // log2(X * 0.5) * Y = log2(X) * Y - Y
627   if (I.isFast()) {
628     IntrinsicInst *Log2 = nullptr;
629     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
630             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
631       Log2 = cast<IntrinsicInst>(Op0);
632       Y = Op1;
633     }
634     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
635             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
636       Log2 = cast<IntrinsicInst>(Op1);
637       Y = Op0;
638     }
639     if (Log2) {
640       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
641       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
642       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
643     }
644   }
645 
646   return nullptr;
647 }
648 
649 /// Fold a divide or remainder with a select instruction divisor when one of the
650 /// select operands is zero. In that case, we can use the other select operand
651 /// because div/rem by zero is undefined.
652 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
653   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
654   if (!SI)
655     return false;
656 
657   int NonNullOperand;
658   if (match(SI->getTrueValue(), m_Zero()))
659     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
660     NonNullOperand = 2;
661   else if (match(SI->getFalseValue(), m_Zero()))
662     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
663     NonNullOperand = 1;
664   else
665     return false;
666 
667   // Change the div/rem to use 'Y' instead of the select.
668   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
669 
670   // Okay, we know we replace the operand of the div/rem with 'Y' with no
671   // problem.  However, the select, or the condition of the select may have
672   // multiple uses.  Based on our knowledge that the operand must be non-zero,
673   // propagate the known value for the select into other uses of it, and
674   // propagate a known value of the condition into its other users.
675 
676   // If the select and condition only have a single use, don't bother with this,
677   // early exit.
678   Value *SelectCond = SI->getCondition();
679   if (SI->use_empty() && SelectCond->hasOneUse())
680     return true;
681 
682   // Scan the current block backward, looking for other uses of SI.
683   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
684   Type *CondTy = SelectCond->getType();
685   while (BBI != BBFront) {
686     --BBI;
687     // If we found an instruction that we can't assume will return, so
688     // information from below it cannot be propagated above it.
689     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
690       break;
691 
692     // Replace uses of the select or its condition with the known values.
693     for (Use &Op : BBI->operands()) {
694       if (Op == SI) {
695         replaceUse(Op, SI->getOperand(NonNullOperand));
696         Worklist.push(&*BBI);
697       } else if (Op == SelectCond) {
698         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
699                                            : ConstantInt::getFalse(CondTy));
700         Worklist.push(&*BBI);
701       }
702     }
703 
704     // If we past the instruction, quit looking for it.
705     if (&*BBI == SI)
706       SI = nullptr;
707     if (&*BBI == SelectCond)
708       SelectCond = nullptr;
709 
710     // If we ran out of things to eliminate, break out of the loop.
711     if (!SelectCond && !SI)
712       break;
713 
714   }
715   return true;
716 }
717 
718 /// True if the multiply can not be expressed in an int this size.
719 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
720                               bool IsSigned) {
721   bool Overflow;
722   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
723   return Overflow;
724 }
725 
726 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
727 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
728                        bool IsSigned) {
729   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
730 
731   // Bail if we will divide by zero.
732   if (C2.isZero())
733     return false;
734 
735   // Bail if we would divide INT_MIN by -1.
736   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
737     return false;
738 
739   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
740   if (IsSigned)
741     APInt::sdivrem(C1, C2, Quotient, Remainder);
742   else
743     APInt::udivrem(C1, C2, Quotient, Remainder);
744 
745   return Remainder.isMinValue();
746 }
747 
748 /// This function implements the transforms common to both integer division
749 /// instructions (udiv and sdiv). It is called by the visitors to those integer
750 /// division instructions.
751 /// Common integer divide transforms
752 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
753   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
754   bool IsSigned = I.getOpcode() == Instruction::SDiv;
755   Type *Ty = I.getType();
756 
757   // The RHS is known non-zero.
758   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
759     return replaceOperand(I, 1, V);
760 
761   // Handle cases involving: [su]div X, (select Cond, Y, Z)
762   // This does not apply for fdiv.
763   if (simplifyDivRemOfSelectWithZeroOp(I))
764     return &I;
765 
766   // If the divisor is a select-of-constants, try to constant fold all div ops:
767   // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
768   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
769   if (match(Op0, m_ImmConstant()) &&
770       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
771     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1)))
772       return R;
773   }
774 
775   const APInt *C2;
776   if (match(Op1, m_APInt(C2))) {
777     Value *X;
778     const APInt *C1;
779 
780     // (X / C1) / C2  -> X / (C1*C2)
781     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
782         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
783       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
784       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
785         return BinaryOperator::Create(I.getOpcode(), X,
786                                       ConstantInt::get(Ty, Product));
787     }
788 
789     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
790         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
791       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
792 
793       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
794       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
795         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
796                                               ConstantInt::get(Ty, Quotient));
797         NewDiv->setIsExact(I.isExact());
798         return NewDiv;
799       }
800 
801       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
802       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
803         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
804                                            ConstantInt::get(Ty, Quotient));
805         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
806         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
807         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
808         return Mul;
809       }
810     }
811 
812     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
813          C1->ult(C1->getBitWidth() - 1)) ||
814         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
815          C1->ult(C1->getBitWidth()))) {
816       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
817       APInt C1Shifted = APInt::getOneBitSet(
818           C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
819 
820       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
821       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
822         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
823                                           ConstantInt::get(Ty, Quotient));
824         BO->setIsExact(I.isExact());
825         return BO;
826       }
827 
828       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
829       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
830         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
831                                            ConstantInt::get(Ty, Quotient));
832         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
833         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
834         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
835         return Mul;
836       }
837     }
838 
839     if (!C2->isZero()) // avoid X udiv 0
840       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
841         return FoldedDiv;
842   }
843 
844   if (match(Op0, m_One())) {
845     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
846     if (IsSigned) {
847       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
848       // result is one, if Op1 is -1 then the result is minus one, otherwise
849       // it's zero.
850       Value *Inc = Builder.CreateAdd(Op1, Op0);
851       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
852       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
853     } else {
854       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
855       // result is one, otherwise it's zero.
856       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
857     }
858   }
859 
860   // See if we can fold away this div instruction.
861   if (SimplifyDemandedInstructionBits(I))
862     return &I;
863 
864   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
865   Value *X, *Z;
866   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
867     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
868         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
869       return BinaryOperator::Create(I.getOpcode(), X, Op1);
870 
871   // (X << Y) / X -> 1 << Y
872   Value *Y;
873   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
874     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
875   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
876     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
877 
878   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
879   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
880     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
881     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
882     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
883       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
884       replaceOperand(I, 1, Y);
885       return &I;
886     }
887   }
888 
889   return nullptr;
890 }
891 
892 static const unsigned MaxDepth = 6;
893 
894 namespace {
895 
896 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
897                                            const BinaryOperator &I,
898                                            InstCombinerImpl &IC);
899 
900 /// Used to maintain state for visitUDivOperand().
901 struct UDivFoldAction {
902   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
903   /// action joins two actions together.
904   FoldUDivOperandCb FoldAction;
905 
906   /// Which operand to fold.
907   Value *OperandToFold;
908 
909   union {
910     /// The instruction returned when FoldAction is invoked.
911     Instruction *FoldResult;
912 
913     /// Stores the LHS action index if this action joins two actions together.
914     size_t SelectLHSIdx;
915   };
916 
917   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
918       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
919   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
920       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
921 };
922 
923 } // end anonymous namespace
924 
925 // X udiv 2^C -> X >> C
926 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
927                                     const BinaryOperator &I,
928                                     InstCombinerImpl &IC) {
929   Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
930   if (!C1)
931     llvm_unreachable("Failed to constant fold udiv -> logbase2");
932   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
933   if (I.isExact())
934     LShr->setIsExact();
935   return LShr;
936 }
937 
938 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
939 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
940 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
941                                 InstCombinerImpl &IC) {
942   Value *ShiftLeft;
943   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
944     ShiftLeft = Op1;
945 
946   Constant *CI;
947   Value *N;
948   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
949     llvm_unreachable("match should never fail here!");
950   Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
951   if (!Log2Base)
952     llvm_unreachable("getLogBase2 should never fail here!");
953   N = IC.Builder.CreateAdd(N, Log2Base);
954   if (Op1 != ShiftLeft)
955     N = IC.Builder.CreateZExt(N, Op1->getType());
956   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
957   if (I.isExact())
958     LShr->setIsExact();
959   return LShr;
960 }
961 
962 // Recursively visits the possible right hand operands of a udiv
963 // instruction, seeing through select instructions, to determine if we can
964 // replace the udiv with something simpler.  If we find that an operand is not
965 // able to simplify the udiv, we abort the entire transformation.
966 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
967                                SmallVectorImpl<UDivFoldAction> &Actions,
968                                unsigned Depth = 0) {
969   // FIXME: assert that Op1 isn't/doesn't contain undef.
970 
971   // Check to see if this is an unsigned division with an exact power of 2,
972   // if so, convert to a right shift.
973   if (match(Op1, m_Power2())) {
974     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
975     return Actions.size();
976   }
977 
978   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
979   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
980       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
981     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
982     return Actions.size();
983   }
984 
985   // The remaining tests are all recursive, so bail out if we hit the limit.
986   if (Depth++ == MaxDepth)
987     return 0;
988 
989   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
990     // FIXME: missed optimization: if one of the hands of select is/contains
991     //        undef, just directly pick the other one.
992     // FIXME: can both hands contain undef?
993     if (size_t LHSIdx =
994             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
995       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
996         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
997         return Actions.size();
998       }
999 
1000   return 0;
1001 }
1002 
1003 /// If we have zero-extended operands of an unsigned div or rem, we may be able
1004 /// to narrow the operation (sink the zext below the math).
1005 static Instruction *narrowUDivURem(BinaryOperator &I,
1006                                    InstCombiner::BuilderTy &Builder) {
1007   Instruction::BinaryOps Opcode = I.getOpcode();
1008   Value *N = I.getOperand(0);
1009   Value *D = I.getOperand(1);
1010   Type *Ty = I.getType();
1011   Value *X, *Y;
1012   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1013       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1014     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1015     // urem (zext X), (zext Y) --> zext (urem X, Y)
1016     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
1017     return new ZExtInst(NarrowOp, Ty);
1018   }
1019 
1020   Constant *C;
1021   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
1022       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
1023     // If the constant is the same in the smaller type, use the narrow version.
1024     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1025     if (ConstantExpr::getZExt(TruncC, Ty) != C)
1026       return nullptr;
1027 
1028     // udiv (zext X), C --> zext (udiv X, C')
1029     // urem (zext X), C --> zext (urem X, C')
1030     // udiv C, (zext X) --> zext (udiv C', X)
1031     // urem C, (zext X) --> zext (urem C', X)
1032     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1033                                        : Builder.CreateBinOp(Opcode, TruncC, X);
1034     return new ZExtInst(NarrowOp, Ty);
1035   }
1036 
1037   return nullptr;
1038 }
1039 
1040 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1041   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1042                                   SQ.getWithInstruction(&I)))
1043     return replaceInstUsesWith(I, V);
1044 
1045   if (Instruction *X = foldVectorBinop(I))
1046     return X;
1047 
1048   // Handle the integer div common cases
1049   if (Instruction *Common = commonIDivTransforms(I))
1050     return Common;
1051 
1052   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1053   Value *X;
1054   const APInt *C1, *C2;
1055   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1056     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1057     bool Overflow;
1058     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1059     if (!Overflow) {
1060       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1061       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1062           X, ConstantInt::get(X->getType(), C2ShlC1));
1063       if (IsExact)
1064         BO->setIsExact();
1065       return BO;
1066     }
1067   }
1068 
1069   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1070   // TODO: Could use isKnownNegative() to handle non-constant values.
1071   Type *Ty = I.getType();
1072   if (match(Op1, m_Negative())) {
1073     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1074     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1075   }
1076   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1077   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1078     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1079     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1080   }
1081 
1082   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1083     return NarrowDiv;
1084 
1085   // If the udiv operands are non-overflowing multiplies with a common operand,
1086   // then eliminate the common factor:
1087   // (A * B) / (A * X) --> B / X (and commuted variants)
1088   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1089   // TODO: If -reassociation handled this generally, we could remove this.
1090   Value *A, *B;
1091   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1092     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1093         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1094       return BinaryOperator::CreateUDiv(B, X);
1095     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1096         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1097       return BinaryOperator::CreateUDiv(A, X);
1098   }
1099 
1100   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1101   SmallVector<UDivFoldAction, 6> UDivActions;
1102   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1103     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1104       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1105       Value *ActionOp1 = UDivActions[i].OperandToFold;
1106       Instruction *Inst;
1107       if (Action)
1108         Inst = Action(Op0, ActionOp1, I, *this);
1109       else {
1110         // This action joins two actions together.  The RHS of this action is
1111         // simply the last action we processed, we saved the LHS action index in
1112         // the joining action.
1113         size_t SelectRHSIdx = i - 1;
1114         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1115         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1116         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1117         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1118                                   SelectLHS, SelectRHS);
1119       }
1120 
1121       // If this is the last action to process, return it to the InstCombiner.
1122       // Otherwise, we insert it before the UDiv and record it so that we may
1123       // use it as part of a joining action (i.e., a SelectInst).
1124       if (e - i != 1) {
1125         Inst->insertBefore(&I);
1126         UDivActions[i].FoldResult = Inst;
1127       } else
1128         return Inst;
1129     }
1130 
1131   return nullptr;
1132 }
1133 
1134 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1135   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1136                                   SQ.getWithInstruction(&I)))
1137     return replaceInstUsesWith(I, V);
1138 
1139   if (Instruction *X = foldVectorBinop(I))
1140     return X;
1141 
1142   // Handle the integer div common cases
1143   if (Instruction *Common = commonIDivTransforms(I))
1144     return Common;
1145 
1146   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1147   Type *Ty = I.getType();
1148   Value *X;
1149   // sdiv Op0, -1 --> -Op0
1150   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1151   if (match(Op1, m_AllOnes()) ||
1152       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1153     return BinaryOperator::CreateNeg(Op0);
1154 
1155   // X / INT_MIN --> X == INT_MIN
1156   if (match(Op1, m_SignMask()))
1157     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1158 
1159   // sdiv exact X,  1<<C  -->    ashr exact X, C   iff  1<<C  is non-negative
1160   // sdiv exact X, -1<<C  -->  -(ashr exact X, C)
1161   if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1162                       match(Op1, m_NegatedPower2()))) {
1163     bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1164     if (DivisorWasNegative)
1165       Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1166     auto *AShr = BinaryOperator::CreateExactAShr(
1167         Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1168     if (!DivisorWasNegative)
1169       return AShr;
1170     Builder.Insert(AShr);
1171     AShr->setName(I.getName() + ".neg");
1172     return BinaryOperator::CreateNeg(AShr, I.getName());
1173   }
1174 
1175   const APInt *Op1C;
1176   if (match(Op1, m_APInt(Op1C))) {
1177     // If the dividend is sign-extended and the constant divisor is small enough
1178     // to fit in the source type, shrink the division to the narrower type:
1179     // (sext X) sdiv C --> sext (X sdiv C)
1180     Value *Op0Src;
1181     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1182         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1183 
1184       // In the general case, we need to make sure that the dividend is not the
1185       // minimum signed value because dividing that by -1 is UB. But here, we
1186       // know that the -1 divisor case is already handled above.
1187 
1188       Constant *NarrowDivisor =
1189           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1190       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1191       return new SExtInst(NarrowOp, Ty);
1192     }
1193 
1194     // -X / C --> X / -C (if the negation doesn't overflow).
1195     // TODO: This could be enhanced to handle arbitrary vector constants by
1196     //       checking if all elements are not the min-signed-val.
1197     if (!Op1C->isMinSignedValue() &&
1198         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1199       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1200       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1201       BO->setIsExact(I.isExact());
1202       return BO;
1203     }
1204   }
1205 
1206   // -X / Y --> -(X / Y)
1207   Value *Y;
1208   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1209     return BinaryOperator::CreateNSWNeg(
1210         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1211 
1212   // abs(X) / X --> X > -1 ? 1 : -1
1213   // X / abs(X) --> X > -1 ? 1 : -1
1214   if (match(&I, m_c_BinOp(
1215                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1216                     m_Deferred(X)))) {
1217     Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1218     Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1219     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1220   }
1221 
1222   // If the sign bits of both operands are zero (i.e. we can prove they are
1223   // unsigned inputs), turn this into a udiv.
1224   APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1225   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1226     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1227       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1228       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1229       BO->setIsExact(I.isExact());
1230       return BO;
1231     }
1232 
1233     if (match(Op1, m_NegatedPower2())) {
1234       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1235       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1236       return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
1237           Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1238     }
1239 
1240     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1241       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1242       // Safe because the only negative value (1 << Y) can take on is
1243       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1244       // the sign bit set.
1245       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1246       BO->setIsExact(I.isExact());
1247       return BO;
1248     }
1249   }
1250 
1251   return nullptr;
1252 }
1253 
1254 /// Remove negation and try to convert division into multiplication.
1255 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1256   Constant *C;
1257   if (!match(I.getOperand(1), m_Constant(C)))
1258     return nullptr;
1259 
1260   // -X / C --> X / -C
1261   Value *X;
1262   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1263     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1264 
1265   // If the constant divisor has an exact inverse, this is always safe. If not,
1266   // then we can still create a reciprocal if fast-math-flags allow it and the
1267   // constant is a regular number (not zero, infinite, or denormal).
1268   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1269     return nullptr;
1270 
1271   // Disallow denormal constants because we don't know what would happen
1272   // on all targets.
1273   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1274   // denorms are flushed?
1275   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1276   if (!RecipC->isNormalFP())
1277     return nullptr;
1278 
1279   // X / C --> X * (1 / C)
1280   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1281 }
1282 
1283 /// Remove negation and try to reassociate constant math.
1284 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1285   Constant *C;
1286   if (!match(I.getOperand(0), m_Constant(C)))
1287     return nullptr;
1288 
1289   // C / -X --> -C / X
1290   Value *X;
1291   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1292     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1293 
1294   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1295     return nullptr;
1296 
1297   // Try to reassociate C / X expressions where X includes another constant.
1298   Constant *C2, *NewC = nullptr;
1299   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1300     // C / (X * C2) --> (C / C2) / X
1301     NewC = ConstantExpr::getFDiv(C, C2);
1302   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1303     // C / (X / C2) --> (C * C2) / X
1304     NewC = ConstantExpr::getFMul(C, C2);
1305   }
1306   // Disallow denormal constants because we don't know what would happen
1307   // on all targets.
1308   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1309   // denorms are flushed?
1310   if (!NewC || !NewC->isNormalFP())
1311     return nullptr;
1312 
1313   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1314 }
1315 
1316 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1317 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1318                                        InstCombiner::BuilderTy &Builder) {
1319   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1320   auto *II = dyn_cast<IntrinsicInst>(Op1);
1321   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1322       !I.hasAllowReciprocal())
1323     return nullptr;
1324 
1325   // Z / pow(X, Y) --> Z * pow(X, -Y)
1326   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1327   // In the general case, this creates an extra instruction, but fmul allows
1328   // for better canonicalization and optimization than fdiv.
1329   Intrinsic::ID IID = II->getIntrinsicID();
1330   SmallVector<Value *> Args;
1331   switch (IID) {
1332   case Intrinsic::pow:
1333     Args.push_back(II->getArgOperand(0));
1334     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1335     break;
1336   case Intrinsic::powi: {
1337     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1338     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1339     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1340     // non-standard results, so this corner case should be acceptable if the
1341     // code rules out INF values.
1342     if (!I.hasNoInfs())
1343       return nullptr;
1344     Args.push_back(II->getArgOperand(0));
1345     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1346     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1347     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1348     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1349   }
1350   case Intrinsic::exp:
1351   case Intrinsic::exp2:
1352     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1353     break;
1354   default:
1355     return nullptr;
1356   }
1357   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1358   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1359 }
1360 
1361 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1362   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1363                                   I.getFastMathFlags(),
1364                                   SQ.getWithInstruction(&I)))
1365     return replaceInstUsesWith(I, V);
1366 
1367   if (Instruction *X = foldVectorBinop(I))
1368     return X;
1369 
1370   if (Instruction *R = foldFDivConstantDivisor(I))
1371     return R;
1372 
1373   if (Instruction *R = foldFDivConstantDividend(I))
1374     return R;
1375 
1376   if (Instruction *R = foldFPSignBitOps(I))
1377     return R;
1378 
1379   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1380   if (isa<Constant>(Op0))
1381     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1382       if (Instruction *R = FoldOpIntoSelect(I, SI))
1383         return R;
1384 
1385   if (isa<Constant>(Op1))
1386     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1387       if (Instruction *R = FoldOpIntoSelect(I, SI))
1388         return R;
1389 
1390   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1391     Value *X, *Y;
1392     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1393         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1394       // (X / Y) / Z => X / (Y * Z)
1395       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1396       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1397     }
1398     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1399         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1400       // Z / (X / Y) => (Y * Z) / X
1401       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1402       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1403     }
1404     // Z / (1.0 / Y) => (Y * Z)
1405     //
1406     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1407     // m_OneUse check is avoided because even in the case of the multiple uses
1408     // for 1.0/Y, the number of instructions remain the same and a division is
1409     // replaced by a multiplication.
1410     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1411       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1412   }
1413 
1414   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1415     // sin(X) / cos(X) -> tan(X)
1416     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1417     Value *X;
1418     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1419                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1420     bool IsCot =
1421         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1422                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1423 
1424     if ((IsTan || IsCot) &&
1425         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1426       IRBuilder<> B(&I);
1427       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1428       B.setFastMathFlags(I.getFastMathFlags());
1429       AttributeList Attrs =
1430           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1431       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1432                                         LibFunc_tanl, B, Attrs);
1433       if (IsCot)
1434         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1435       return replaceInstUsesWith(I, Res);
1436     }
1437   }
1438 
1439   // X / (X * Y) --> 1.0 / Y
1440   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1441   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1442   Value *X, *Y;
1443   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1444       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1445     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1446     replaceOperand(I, 1, Y);
1447     return &I;
1448   }
1449 
1450   // X / fabs(X) -> copysign(1.0, X)
1451   // fabs(X) / X -> copysign(1.0, X)
1452   if (I.hasNoNaNs() && I.hasNoInfs() &&
1453       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1454        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1455     Value *V = Builder.CreateBinaryIntrinsic(
1456         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1457     return replaceInstUsesWith(I, V);
1458   }
1459 
1460   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1461     return Mul;
1462 
1463   return nullptr;
1464 }
1465 
1466 /// This function implements the transforms common to both integer remainder
1467 /// instructions (urem and srem). It is called by the visitors to those integer
1468 /// remainder instructions.
1469 /// Common integer remainder transforms
1470 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1471   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1472 
1473   // The RHS is known non-zero.
1474   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1475     return replaceOperand(I, 1, V);
1476 
1477   // Handle cases involving: rem X, (select Cond, Y, Z)
1478   if (simplifyDivRemOfSelectWithZeroOp(I))
1479     return &I;
1480 
1481   // If the divisor is a select-of-constants, try to constant fold all rem ops:
1482   // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
1483   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1484   if (match(Op0, m_ImmConstant()) &&
1485       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1486     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1)))
1487       return R;
1488   }
1489 
1490   if (isa<Constant>(Op1)) {
1491     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1492       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1493         if (Instruction *R = FoldOpIntoSelect(I, SI))
1494           return R;
1495       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1496         const APInt *Op1Int;
1497         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1498             (I.getOpcode() == Instruction::URem ||
1499              !Op1Int->isMinSignedValue())) {
1500           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1501           // predecessor blocks, so do this only if we know the srem or urem
1502           // will not fault.
1503           if (Instruction *NV = foldOpIntoPhi(I, PN))
1504             return NV;
1505         }
1506       }
1507 
1508       // See if we can fold away this rem instruction.
1509       if (SimplifyDemandedInstructionBits(I))
1510         return &I;
1511     }
1512   }
1513 
1514   return nullptr;
1515 }
1516 
1517 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1518   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1519                                   SQ.getWithInstruction(&I)))
1520     return replaceInstUsesWith(I, V);
1521 
1522   if (Instruction *X = foldVectorBinop(I))
1523     return X;
1524 
1525   if (Instruction *common = commonIRemTransforms(I))
1526     return common;
1527 
1528   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1529     return NarrowRem;
1530 
1531   // X urem Y -> X and Y-1, where Y is a power of 2,
1532   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1533   Type *Ty = I.getType();
1534   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1535     // This may increase instruction count, we don't enforce that Y is a
1536     // constant.
1537     Constant *N1 = Constant::getAllOnesValue(Ty);
1538     Value *Add = Builder.CreateAdd(Op1, N1);
1539     return BinaryOperator::CreateAnd(Op0, Add);
1540   }
1541 
1542   // 1 urem X -> zext(X != 1)
1543   if (match(Op0, m_One())) {
1544     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1545     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1546   }
1547 
1548   // X urem C -> X < C ? X : X - C, where C >= signbit.
1549   if (match(Op1, m_Negative())) {
1550     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1551     Value *Sub = Builder.CreateSub(Op0, Op1);
1552     return SelectInst::Create(Cmp, Op0, Sub);
1553   }
1554 
1555   // If the divisor is a sext of a boolean, then the divisor must be max
1556   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1557   // max unsigned value. In that case, the remainder is 0:
1558   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1559   Value *X;
1560   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1561     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1562     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1563   }
1564 
1565   return nullptr;
1566 }
1567 
1568 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1569   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1570                                   SQ.getWithInstruction(&I)))
1571     return replaceInstUsesWith(I, V);
1572 
1573   if (Instruction *X = foldVectorBinop(I))
1574     return X;
1575 
1576   // Handle the integer rem common cases
1577   if (Instruction *Common = commonIRemTransforms(I))
1578     return Common;
1579 
1580   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1581   {
1582     const APInt *Y;
1583     // X % -Y -> X % Y
1584     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1585       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1586   }
1587 
1588   // -X srem Y --> -(X srem Y)
1589   Value *X, *Y;
1590   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1591     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1592 
1593   // If the sign bits of both operands are zero (i.e. we can prove they are
1594   // unsigned inputs), turn this into a urem.
1595   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1596   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1597       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1598     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1599     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1600   }
1601 
1602   // If it's a constant vector, flip any negative values positive.
1603   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1604     Constant *C = cast<Constant>(Op1);
1605     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1606 
1607     bool hasNegative = false;
1608     bool hasMissing = false;
1609     for (unsigned i = 0; i != VWidth; ++i) {
1610       Constant *Elt = C->getAggregateElement(i);
1611       if (!Elt) {
1612         hasMissing = true;
1613         break;
1614       }
1615 
1616       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1617         if (RHS->isNegative())
1618           hasNegative = true;
1619     }
1620 
1621     if (hasNegative && !hasMissing) {
1622       SmallVector<Constant *, 16> Elts(VWidth);
1623       for (unsigned i = 0; i != VWidth; ++i) {
1624         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1625         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1626           if (RHS->isNegative())
1627             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1628         }
1629       }
1630 
1631       Constant *NewRHSV = ConstantVector::get(Elts);
1632       if (NewRHSV != C)  // Don't loop on -MININT
1633         return replaceOperand(I, 1, NewRHSV);
1634     }
1635   }
1636 
1637   return nullptr;
1638 }
1639 
1640 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1641   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1642                                   I.getFastMathFlags(),
1643                                   SQ.getWithInstruction(&I)))
1644     return replaceInstUsesWith(I, V);
1645 
1646   if (Instruction *X = foldVectorBinop(I))
1647     return X;
1648 
1649   return nullptr;
1650 }
1651