1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero.  If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
50 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
51                                         Instruction &CxtI) {
52   // If V has multiple uses, then we would have to do more analysis to determine
53   // if this is safe.  For example, the use could be in dynamically unreached
54   // code.
55   if (!V->hasOneUse()) return nullptr;
56 
57   bool MadeChange = false;
58 
59   // ((1 << A) >>u B) --> (1 << (A-B))
60   // Because V cannot be zero, we know that B is less than A.
61   Value *A = nullptr, *B = nullptr, *One = nullptr;
62   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63       match(One, m_One())) {
64     A = IC.Builder.CreateSub(A, B);
65     return IC.Builder.CreateShl(One, A);
66   }
67 
68   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69   // inexact.  Similarly for <<.
70   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71   if (I && I->isLogicalShift() &&
72       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73     // We know that this is an exact/nuw shift and that the input is a
74     // non-zero context as well.
75     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76       I->setOperand(0, V2);
77       MadeChange = true;
78     }
79 
80     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81       I->setIsExact();
82       MadeChange = true;
83     }
84 
85     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86       I->setHasNoUnsignedWrap();
87       MadeChange = true;
88     }
89   }
90 
91   // TODO: Lots more we could do here:
92   //    If V is a phi node, we can call this on each of its operands.
93   //    "select cond, X, 0" can simplify to "X".
94 
95   return MadeChange ? V : nullptr;
96 }
97 
98 /// \brief A helper routine of InstCombiner::visitMul().
99 ///
100 /// If C is a scalar/vector of known powers of 2, then this function returns
101 /// a new scalar/vector obtained from logBase2 of C.
102 /// Return a null pointer otherwise.
103 static Constant *getLogBase2(Type *Ty, Constant *C) {
104   const APInt *IVal;
105   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106     return ConstantInt::get(Ty, IVal->logBase2());
107 
108   if (!Ty->isVectorTy())
109     return nullptr;
110 
111   SmallVector<Constant *, 4> Elts;
112   for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
113     Constant *Elt = C->getAggregateElement(I);
114     if (!Elt)
115       return nullptr;
116     if (isa<UndefValue>(Elt)) {
117       Elts.push_back(UndefValue::get(Ty->getScalarType()));
118       continue;
119     }
120     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
121       return nullptr;
122     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
123   }
124 
125   return ConstantVector::get(Elts);
126 }
127 
128 /// \brief Return true if we can prove that:
129 ///    (mul LHS, RHS)  === (mul nsw LHS, RHS)
130 bool InstCombiner::willNotOverflowSignedMul(const Value *LHS,
131                                             const Value *RHS,
132                                             const Instruction &CxtI) const {
133   // Multiplying n * m significant bits yields a result of n + m significant
134   // bits. If the total number of significant bits does not exceed the
135   // result bit width (minus 1), there is no overflow.
136   // This means if we have enough leading sign bits in the operands
137   // we can guarantee that the result does not overflow.
138   // Ref: "Hacker's Delight" by Henry Warren
139   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
140 
141   // Note that underestimating the number of sign bits gives a more
142   // conservative answer.
143   unsigned SignBits =
144       ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
145 
146   // First handle the easy case: if we have enough sign bits there's
147   // definitely no overflow.
148   if (SignBits > BitWidth + 1)
149     return true;
150 
151   // There are two ambiguous cases where there can be no overflow:
152   //   SignBits == BitWidth + 1    and
153   //   SignBits == BitWidth
154   // The second case is difficult to check, therefore we only handle the
155   // first case.
156   if (SignBits == BitWidth + 1) {
157     // It overflows only when both arguments are negative and the true
158     // product is exactly the minimum negative number.
159     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
160     // For simplicity we just check if at least one side is not negative.
161     KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI);
162     KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI);
163     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
164       return true;
165   }
166   return false;
167 }
168 
169 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
170   bool Changed = SimplifyAssociativeOrCommutative(I);
171   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
172 
173   if (Value *V = SimplifyVectorOp(I))
174     return replaceInstUsesWith(I, V);
175 
176   if (Value *V = SimplifyMulInst(Op0, Op1, SQ.getWithInstruction(&I)))
177     return replaceInstUsesWith(I, V);
178 
179   if (Value *V = SimplifyUsingDistributiveLaws(I))
180     return replaceInstUsesWith(I, V);
181 
182   // X * -1 == 0 - X
183   if (match(Op1, m_AllOnes())) {
184     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
185     if (I.hasNoSignedWrap())
186       BO->setHasNoSignedWrap();
187     return BO;
188   }
189 
190   // Also allow combining multiply instructions on vectors.
191   {
192     Value *NewOp;
193     Constant *C1, *C2;
194     const APInt *IVal;
195     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
196                         m_Constant(C1))) &&
197         match(C1, m_APInt(IVal))) {
198       // ((X << C2)*C1) == (X * (C1 << C2))
199       Constant *Shl = ConstantExpr::getShl(C1, C2);
200       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
201       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
202       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
203         BO->setHasNoUnsignedWrap();
204       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
205           Shl->isNotMinSignedValue())
206         BO->setHasNoSignedWrap();
207       return BO;
208     }
209 
210     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
211       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
212       if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
213         unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
214         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
215 
216         if (I.hasNoUnsignedWrap())
217           Shl->setHasNoUnsignedWrap();
218         if (I.hasNoSignedWrap()) {
219           const APInt *V;
220           if (match(NewCst, m_APInt(V)) && *V != Width - 1)
221             Shl->setHasNoSignedWrap();
222         }
223 
224         return Shl;
225       }
226     }
227   }
228 
229   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
230     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
231     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
232     // The "* (2**n)" thus becomes a potential shifting opportunity.
233     {
234       const APInt &   Val = CI->getValue();
235       const APInt &PosVal = Val.abs();
236       if (Val.isNegative() && PosVal.isPowerOf2()) {
237         Value *X = nullptr, *Y = nullptr;
238         if (Op0->hasOneUse()) {
239           ConstantInt *C1;
240           Value *Sub = nullptr;
241           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
242             Sub = Builder.CreateSub(X, Y, "suba");
243           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
244             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
245           if (Sub)
246             return
247               BinaryOperator::CreateMul(Sub,
248                                         ConstantInt::get(Y->getType(), PosVal));
249         }
250       }
251     }
252   }
253 
254   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
255     return FoldedMul;
256 
257   // Simplify mul instructions with a constant RHS.
258   if (isa<Constant>(Op1)) {
259     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
260     Value *X;
261     Constant *C1;
262     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
263       Value *Mul = Builder.CreateMul(C1, Op1);
264       // Only go forward with the transform if C1*CI simplifies to a tidier
265       // constant.
266       if (!match(Mul, m_Mul(m_Value(), m_Value())))
267         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
268     }
269   }
270 
271   // -X * C --> X * -C
272   Value *X, *Y;
273   Constant *Op1C;
274   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
275     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
276 
277   // -X * -Y --> X * Y
278   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
279     auto *NewMul = BinaryOperator::CreateMul(X, Y);
280     if (I.hasNoSignedWrap() &&
281         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
282         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
283       NewMul->setHasNoSignedWrap();
284     return NewMul;
285   }
286 
287   // (X / Y) *  Y = X - (X % Y)
288   // (X / Y) * -Y = (X % Y) - X
289   {
290     Value *Y = Op1;
291     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
292     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
293                  Div->getOpcode() != Instruction::SDiv)) {
294       Y = Op0;
295       Div = dyn_cast<BinaryOperator>(Op1);
296     }
297     Value *Neg = dyn_castNegVal(Y);
298     if (Div && Div->hasOneUse() &&
299         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
300         (Div->getOpcode() == Instruction::UDiv ||
301          Div->getOpcode() == Instruction::SDiv)) {
302       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
303 
304       // If the division is exact, X % Y is zero, so we end up with X or -X.
305       if (Div->isExact()) {
306         if (DivOp1 == Y)
307           return replaceInstUsesWith(I, X);
308         return BinaryOperator::CreateNeg(X);
309       }
310 
311       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
312                                                           : Instruction::SRem;
313       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
314       if (DivOp1 == Y)
315         return BinaryOperator::CreateSub(X, Rem);
316       return BinaryOperator::CreateSub(Rem, X);
317     }
318   }
319 
320   /// i1 mul -> i1 and.
321   if (I.getType()->isIntOrIntVectorTy(1))
322     return BinaryOperator::CreateAnd(Op0, Op1);
323 
324   // X*(1 << Y) --> X << Y
325   // (1 << Y)*X --> X << Y
326   {
327     Value *Y;
328     BinaryOperator *BO = nullptr;
329     bool ShlNSW = false;
330     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
331       BO = BinaryOperator::CreateShl(Op1, Y);
332       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
333     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
334       BO = BinaryOperator::CreateShl(Op0, Y);
335       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
336     }
337     if (BO) {
338       if (I.hasNoUnsignedWrap())
339         BO->setHasNoUnsignedWrap();
340       if (I.hasNoSignedWrap() && ShlNSW)
341         BO->setHasNoSignedWrap();
342       return BO;
343     }
344   }
345 
346   // (bool X) * Y --> X ? Y : 0
347   // Y * (bool X) --> X ? Y : 0
348   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
349     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
350   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
351     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
352 
353   // (lshr X, 31) * Y --> (ashr X, 31) & Y
354   // Y * (lshr X, 31) --> (ashr X, 31) & Y
355   // TODO: We are not checking one-use because the elimination of the multiply
356   //       is better for analysis?
357   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
358   //       more similar to what we're doing above.
359   const APInt *C;
360   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
361     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
362   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
363     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
364 
365   // Check for (mul (sext x), y), see if we can merge this into an
366   // integer mul followed by a sext.
367   if (SExtInst *Op0Conv = dyn_cast<SExtInst>(Op0)) {
368     // (mul (sext x), cst) --> (sext (mul x, cst'))
369     if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
370       if (Op0Conv->hasOneUse()) {
371         Constant *CI =
372             ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
373         if (ConstantExpr::getSExt(CI, I.getType()) == Op1C &&
374             willNotOverflowSignedMul(Op0Conv->getOperand(0), CI, I)) {
375           // Insert the new, smaller mul.
376           Value *NewMul =
377               Builder.CreateNSWMul(Op0Conv->getOperand(0), CI, "mulconv");
378           return new SExtInst(NewMul, I.getType());
379         }
380       }
381     }
382 
383     // (mul (sext x), (sext y)) --> (sext (mul int x, y))
384     if (SExtInst *Op1Conv = dyn_cast<SExtInst>(Op1)) {
385       // Only do this if x/y have the same type, if at last one of them has a
386       // single use (so we don't increase the number of sexts), and if the
387       // integer mul will not overflow.
388       if (Op0Conv->getOperand(0)->getType() ==
389               Op1Conv->getOperand(0)->getType() &&
390           (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
391           willNotOverflowSignedMul(Op0Conv->getOperand(0),
392                                    Op1Conv->getOperand(0), I)) {
393         // Insert the new integer mul.
394         Value *NewMul = Builder.CreateNSWMul(
395             Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
396         return new SExtInst(NewMul, I.getType());
397       }
398     }
399   }
400 
401   // Check for (mul (zext x), y), see if we can merge this into an
402   // integer mul followed by a zext.
403   if (auto *Op0Conv = dyn_cast<ZExtInst>(Op0)) {
404     // (mul (zext x), cst) --> (zext (mul x, cst'))
405     if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
406       if (Op0Conv->hasOneUse()) {
407         Constant *CI =
408             ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
409         if (ConstantExpr::getZExt(CI, I.getType()) == Op1C &&
410             willNotOverflowUnsignedMul(Op0Conv->getOperand(0), CI, I)) {
411           // Insert the new, smaller mul.
412           Value *NewMul =
413               Builder.CreateNUWMul(Op0Conv->getOperand(0), CI, "mulconv");
414           return new ZExtInst(NewMul, I.getType());
415         }
416       }
417     }
418 
419     // (mul (zext x), (zext y)) --> (zext (mul int x, y))
420     if (auto *Op1Conv = dyn_cast<ZExtInst>(Op1)) {
421       // Only do this if x/y have the same type, if at last one of them has a
422       // single use (so we don't increase the number of zexts), and if the
423       // integer mul will not overflow.
424       if (Op0Conv->getOperand(0)->getType() ==
425               Op1Conv->getOperand(0)->getType() &&
426           (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
427           willNotOverflowUnsignedMul(Op0Conv->getOperand(0),
428                                      Op1Conv->getOperand(0), I)) {
429         // Insert the new integer mul.
430         Value *NewMul = Builder.CreateNUWMul(
431             Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
432         return new ZExtInst(NewMul, I.getType());
433       }
434     }
435   }
436 
437   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
438     Changed = true;
439     I.setHasNoSignedWrap(true);
440   }
441 
442   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
443     Changed = true;
444     I.setHasNoUnsignedWrap(true);
445   }
446 
447   return Changed ? &I : nullptr;
448 }
449 
450 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
451   bool Changed = SimplifyAssociativeOrCommutative(I);
452   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
453 
454   if (Value *V = SimplifyVectorOp(I))
455     return replaceInstUsesWith(I, V);
456 
457   if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(),
458                                   SQ.getWithInstruction(&I)))
459     return replaceInstUsesWith(I, V);
460 
461   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
462     return FoldedMul;
463 
464   // X * -1.0 --> -X
465   if (match(Op1, m_SpecificFP(-1.0)))
466     return BinaryOperator::CreateFNegFMF(Op0, &I);
467 
468   // -X * -Y --> X * Y
469   Value *X, *Y;
470   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
471     return BinaryOperator::CreateFMulFMF(X, Y, &I);
472 
473   // -X * C --> X * -C
474   Constant *C;
475   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
476     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
477 
478   // Sink negation: -X * Y --> -(X * Y)
479   if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
480     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
481 
482   // Sink negation: Y * -X --> -(X * Y)
483   if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
484     return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
485 
486   // fabs(X) * fabs(X) -> X * X
487   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
488     return BinaryOperator::CreateFMulFMF(X, X, &I);
489 
490   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
491   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
492     return replaceInstUsesWith(I, V);
493 
494   if (I.hasAllowReassoc()) {
495     // Reassociate constant RHS with another constant to form constant
496     // expression.
497     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
498       Constant *C1;
499       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
500         // (C1 / X) * C --> (C * C1) / X
501         Constant *CC1 = ConstantExpr::getFMul(C, C1);
502         if (CC1->isNormalFP())
503           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
504       }
505       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
506         // (X / C1) * C --> X * (C / C1)
507         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
508         if (CDivC1->isNormalFP())
509           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
510 
511         // If the constant was a denormal, try reassociating differently.
512         // (X / C1) * C --> X / (C1 / C)
513         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
514         if (Op0->hasOneUse() && C1DivC->isNormalFP())
515           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
516       }
517 
518       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
519       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
520       // further folds and (X * C) + C2 is 'fma'.
521       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
522         // (X + C1) * C --> (X * C) + (C * C1)
523         Constant *CC1 = ConstantExpr::getFMul(C, C1);
524         Value *XC = Builder.CreateFMulFMF(X, C, &I);
525         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
526       }
527       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
528         // (C1 - X) * C --> (C * C1) - (X * C)
529         Constant *CC1 = ConstantExpr::getFMul(C, C1);
530         Value *XC = Builder.CreateFMulFMF(X, C, &I);
531         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
532       }
533     }
534 
535     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
536     // nnan disallows the possibility of returning a number if both operands are
537     // negative (in that case, we should return NaN).
538     if (I.hasNoNaNs() &&
539         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
540         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
541       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
542       Value *Sqrt = Builder.CreateIntrinsic(Intrinsic::sqrt, { XY }, &I);
543       return replaceInstUsesWith(I, Sqrt);
544     }
545 
546     // (X*Y) * X => (X*X) * Y where Y != X
547     //  The purpose is two-fold:
548     //   1) to form a power expression (of X).
549     //   2) potentially shorten the critical path: After transformation, the
550     //  latency of the instruction Y is amortized by the expression of X*X,
551     //  and therefore Y is in a "less critical" position compared to what it
552     //  was before the transformation.
553     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
554         Op1 != Y) {
555       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
556       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
557     }
558     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
559         Op0 != Y) {
560       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
561       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
562     }
563   }
564 
565   // log2(X * 0.5) * Y = log2(X) * Y - Y
566   if (I.isFast()) {
567     IntrinsicInst *Log2 = nullptr;
568     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
569             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
570       Log2 = cast<IntrinsicInst>(Op0);
571       Y = Op1;
572     }
573     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
574             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
575       Log2 = cast<IntrinsicInst>(Op1);
576       Y = Op0;
577     }
578     if (Log2) {
579       Log2->setArgOperand(0, X);
580       Log2->copyFastMathFlags(&I);
581       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
582       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
583     }
584   }
585 
586   return Changed ? &I : nullptr;
587 }
588 
589 /// Fold a divide or remainder with a select instruction divisor when one of the
590 /// select operands is zero. In that case, we can use the other select operand
591 /// because div/rem by zero is undefined.
592 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
593   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
594   if (!SI)
595     return false;
596 
597   int NonNullOperand;
598   if (match(SI->getTrueValue(), m_Zero()))
599     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
600     NonNullOperand = 2;
601   else if (match(SI->getFalseValue(), m_Zero()))
602     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
603     NonNullOperand = 1;
604   else
605     return false;
606 
607   // Change the div/rem to use 'Y' instead of the select.
608   I.setOperand(1, SI->getOperand(NonNullOperand));
609 
610   // Okay, we know we replace the operand of the div/rem with 'Y' with no
611   // problem.  However, the select, or the condition of the select may have
612   // multiple uses.  Based on our knowledge that the operand must be non-zero,
613   // propagate the known value for the select into other uses of it, and
614   // propagate a known value of the condition into its other users.
615 
616   // If the select and condition only have a single use, don't bother with this,
617   // early exit.
618   Value *SelectCond = SI->getCondition();
619   if (SI->use_empty() && SelectCond->hasOneUse())
620     return true;
621 
622   // Scan the current block backward, looking for other uses of SI.
623   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
624   Type *CondTy = SelectCond->getType();
625   while (BBI != BBFront) {
626     --BBI;
627     // If we found a call to a function, we can't assume it will return, so
628     // information from below it cannot be propagated above it.
629     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
630       break;
631 
632     // Replace uses of the select or its condition with the known values.
633     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
634          I != E; ++I) {
635       if (*I == SI) {
636         *I = SI->getOperand(NonNullOperand);
637         Worklist.Add(&*BBI);
638       } else if (*I == SelectCond) {
639         *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
640                                  : ConstantInt::getFalse(CondTy);
641         Worklist.Add(&*BBI);
642       }
643     }
644 
645     // If we past the instruction, quit looking for it.
646     if (&*BBI == SI)
647       SI = nullptr;
648     if (&*BBI == SelectCond)
649       SelectCond = nullptr;
650 
651     // If we ran out of things to eliminate, break out of the loop.
652     if (!SelectCond && !SI)
653       break;
654 
655   }
656   return true;
657 }
658 
659 /// True if the multiply can not be expressed in an int this size.
660 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
661                               bool IsSigned) {
662   bool Overflow;
663   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
664   return Overflow;
665 }
666 
667 /// True if C2 is a multiple of C1. Quotient contains C2/C1.
668 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
669                        bool IsSigned) {
670   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
671 
672   // Bail if we will divide by zero.
673   if (C2.isNullValue())
674     return false;
675 
676   // Bail if we would divide INT_MIN by -1.
677   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
678     return false;
679 
680   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
681   if (IsSigned)
682     APInt::sdivrem(C1, C2, Quotient, Remainder);
683   else
684     APInt::udivrem(C1, C2, Quotient, Remainder);
685 
686   return Remainder.isMinValue();
687 }
688 
689 /// This function implements the transforms common to both integer division
690 /// instructions (udiv and sdiv). It is called by the visitors to those integer
691 /// division instructions.
692 /// @brief Common integer divide transforms
693 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
694   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
695   bool IsSigned = I.getOpcode() == Instruction::SDiv;
696   Type *Ty = I.getType();
697 
698   // The RHS is known non-zero.
699   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
700     I.setOperand(1, V);
701     return &I;
702   }
703 
704   // Handle cases involving: [su]div X, (select Cond, Y, Z)
705   // This does not apply for fdiv.
706   if (simplifyDivRemOfSelectWithZeroOp(I))
707     return &I;
708 
709   const APInt *C2;
710   if (match(Op1, m_APInt(C2))) {
711     Value *X;
712     const APInt *C1;
713 
714     // (X / C1) / C2  -> X / (C1*C2)
715     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
716         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
717       APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
718       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
719         return BinaryOperator::Create(I.getOpcode(), X,
720                                       ConstantInt::get(Ty, Product));
721     }
722 
723     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
724         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
725       APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
726 
727       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
728       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
729         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
730                                               ConstantInt::get(Ty, Quotient));
731         NewDiv->setIsExact(I.isExact());
732         return NewDiv;
733       }
734 
735       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
736       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
737         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
738                                            ConstantInt::get(Ty, Quotient));
739         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
740         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
741         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
742         return Mul;
743       }
744     }
745 
746     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
747          *C1 != C1->getBitWidth() - 1) ||
748         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
749       APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
750       APInt C1Shifted = APInt::getOneBitSet(
751           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
752 
753       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
754       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
755         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
756                                           ConstantInt::get(Ty, Quotient));
757         BO->setIsExact(I.isExact());
758         return BO;
759       }
760 
761       // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
762       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
763         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
764                                            ConstantInt::get(Ty, Quotient));
765         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
766         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
767         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
768         return Mul;
769       }
770     }
771 
772     if (!C2->isNullValue()) // avoid X udiv 0
773       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
774         return FoldedDiv;
775   }
776 
777   if (match(Op0, m_One())) {
778     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
779     if (IsSigned) {
780       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
781       // result is one, if Op1 is -1 then the result is minus one, otherwise
782       // it's zero.
783       Value *Inc = Builder.CreateAdd(Op1, Op0);
784       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
785       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
786     } else {
787       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
788       // result is one, otherwise it's zero.
789       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
790     }
791   }
792 
793   // See if we can fold away this div instruction.
794   if (SimplifyDemandedInstructionBits(I))
795     return &I;
796 
797   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
798   Value *X, *Z;
799   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
800     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
801         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
802       return BinaryOperator::Create(I.getOpcode(), X, Op1);
803 
804   // (X << Y) / X -> 1 << Y
805   Value *Y;
806   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
807     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
808   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
809     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
810 
811   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
812   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
813     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
814     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
815     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
816       I.setOperand(0, ConstantInt::get(Ty, 1));
817       I.setOperand(1, Y);
818       return &I;
819     }
820   }
821 
822   return nullptr;
823 }
824 
825 static const unsigned MaxDepth = 6;
826 
827 namespace {
828 
829 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
830                                            const BinaryOperator &I,
831                                            InstCombiner &IC);
832 
833 /// \brief Used to maintain state for visitUDivOperand().
834 struct UDivFoldAction {
835   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
836   /// action joins two actions together.
837   FoldUDivOperandCb FoldAction;
838 
839   /// Which operand to fold.
840   Value *OperandToFold;
841 
842   union {
843     /// The instruction returned when FoldAction is invoked.
844     Instruction *FoldResult;
845 
846     /// Stores the LHS action index if this action joins two actions together.
847     size_t SelectLHSIdx;
848   };
849 
850   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
851       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
852   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
853       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
854 };
855 
856 } // end anonymous namespace
857 
858 // X udiv 2^C -> X >> C
859 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
860                                     const BinaryOperator &I, InstCombiner &IC) {
861   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
862   if (!C1)
863     llvm_unreachable("Failed to constant fold udiv -> logbase2");
864   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
865   if (I.isExact())
866     LShr->setIsExact();
867   return LShr;
868 }
869 
870 // X udiv C, where C >= signbit
871 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
872                                    const BinaryOperator &I, InstCombiner &IC) {
873   Value *ICI = IC.Builder.CreateICmpULT(Op0, cast<Constant>(Op1));
874   return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
875                             ConstantInt::get(I.getType(), 1));
876 }
877 
878 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
879 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
880 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
881                                 InstCombiner &IC) {
882   Value *ShiftLeft;
883   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
884     ShiftLeft = Op1;
885 
886   Constant *CI;
887   Value *N;
888   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
889     llvm_unreachable("match should never fail here!");
890   Constant *Log2Base = getLogBase2(N->getType(), CI);
891   if (!Log2Base)
892     llvm_unreachable("getLogBase2 should never fail here!");
893   N = IC.Builder.CreateAdd(N, Log2Base);
894   if (Op1 != ShiftLeft)
895     N = IC.Builder.CreateZExt(N, Op1->getType());
896   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
897   if (I.isExact())
898     LShr->setIsExact();
899   return LShr;
900 }
901 
902 // \brief Recursively visits the possible right hand operands of a udiv
903 // instruction, seeing through select instructions, to determine if we can
904 // replace the udiv with something simpler.  If we find that an operand is not
905 // able to simplify the udiv, we abort the entire transformation.
906 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
907                                SmallVectorImpl<UDivFoldAction> &Actions,
908                                unsigned Depth = 0) {
909   // Check to see if this is an unsigned division with an exact power of 2,
910   // if so, convert to a right shift.
911   if (match(Op1, m_Power2())) {
912     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
913     return Actions.size();
914   }
915 
916   // X udiv C, where C >= signbit
917   if (match(Op1, m_Negative())) {
918     Actions.push_back(UDivFoldAction(foldUDivNegCst, Op1));
919     return Actions.size();
920   }
921 
922   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
923   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
924       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
925     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
926     return Actions.size();
927   }
928 
929   // The remaining tests are all recursive, so bail out if we hit the limit.
930   if (Depth++ == MaxDepth)
931     return 0;
932 
933   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
934     if (size_t LHSIdx =
935             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
936       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
937         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
938         return Actions.size();
939       }
940 
941   return 0;
942 }
943 
944 /// If we have zero-extended operands of an unsigned div or rem, we may be able
945 /// to narrow the operation (sink the zext below the math).
946 static Instruction *narrowUDivURem(BinaryOperator &I,
947                                    InstCombiner::BuilderTy &Builder) {
948   Instruction::BinaryOps Opcode = I.getOpcode();
949   Value *N = I.getOperand(0);
950   Value *D = I.getOperand(1);
951   Type *Ty = I.getType();
952   Value *X, *Y;
953   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
954       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
955     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
956     // urem (zext X), (zext Y) --> zext (urem X, Y)
957     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
958     return new ZExtInst(NarrowOp, Ty);
959   }
960 
961   Constant *C;
962   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
963       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
964     // If the constant is the same in the smaller type, use the narrow version.
965     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
966     if (ConstantExpr::getZExt(TruncC, Ty) != C)
967       return nullptr;
968 
969     // udiv (zext X), C --> zext (udiv X, C')
970     // urem (zext X), C --> zext (urem X, C')
971     // udiv C, (zext X) --> zext (udiv C', X)
972     // urem C, (zext X) --> zext (urem C', X)
973     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
974                                        : Builder.CreateBinOp(Opcode, TruncC, X);
975     return new ZExtInst(NarrowOp, Ty);
976   }
977 
978   return nullptr;
979 }
980 
981 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
982   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
983 
984   if (Value *V = SimplifyVectorOp(I))
985     return replaceInstUsesWith(I, V);
986 
987   if (Value *V = SimplifyUDivInst(Op0, Op1, SQ.getWithInstruction(&I)))
988     return replaceInstUsesWith(I, V);
989 
990   // Handle the integer div common cases
991   if (Instruction *Common = commonIDivTransforms(I))
992     return Common;
993 
994   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
995   {
996     Value *X;
997     const APInt *C1, *C2;
998     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
999         match(Op1, m_APInt(C2))) {
1000       bool Overflow;
1001       APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1002       if (!Overflow) {
1003         bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1004         BinaryOperator *BO = BinaryOperator::CreateUDiv(
1005             X, ConstantInt::get(X->getType(), C2ShlC1));
1006         if (IsExact)
1007           BO->setIsExact();
1008         return BO;
1009       }
1010     }
1011   }
1012 
1013   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1014     return NarrowDiv;
1015 
1016   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1017   SmallVector<UDivFoldAction, 6> UDivActions;
1018   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1019     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1020       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1021       Value *ActionOp1 = UDivActions[i].OperandToFold;
1022       Instruction *Inst;
1023       if (Action)
1024         Inst = Action(Op0, ActionOp1, I, *this);
1025       else {
1026         // This action joins two actions together.  The RHS of this action is
1027         // simply the last action we processed, we saved the LHS action index in
1028         // the joining action.
1029         size_t SelectRHSIdx = i - 1;
1030         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1031         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1032         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1033         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1034                                   SelectLHS, SelectRHS);
1035       }
1036 
1037       // If this is the last action to process, return it to the InstCombiner.
1038       // Otherwise, we insert it before the UDiv and record it so that we may
1039       // use it as part of a joining action (i.e., a SelectInst).
1040       if (e - i != 1) {
1041         Inst->insertBefore(&I);
1042         UDivActions[i].FoldResult = Inst;
1043       } else
1044         return Inst;
1045     }
1046 
1047   return nullptr;
1048 }
1049 
1050 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1051   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1052 
1053   if (Value *V = SimplifyVectorOp(I))
1054     return replaceInstUsesWith(I, V);
1055 
1056   if (Value *V = SimplifySDivInst(Op0, Op1, SQ.getWithInstruction(&I)))
1057     return replaceInstUsesWith(I, V);
1058 
1059   // Handle the integer div common cases
1060   if (Instruction *Common = commonIDivTransforms(I))
1061     return Common;
1062 
1063   const APInt *Op1C;
1064   if (match(Op1, m_APInt(Op1C))) {
1065     // sdiv X, -1 == -X
1066     if (Op1C->isAllOnesValue())
1067       return BinaryOperator::CreateNeg(Op0);
1068 
1069     // sdiv exact X, C  -->  ashr exact X, log2(C)
1070     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1071       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1072       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1073     }
1074 
1075     // If the dividend is sign-extended and the constant divisor is small enough
1076     // to fit in the source type, shrink the division to the narrower type:
1077     // (sext X) sdiv C --> sext (X sdiv C)
1078     Value *Op0Src;
1079     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1080         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1081 
1082       // In the general case, we need to make sure that the dividend is not the
1083       // minimum signed value because dividing that by -1 is UB. But here, we
1084       // know that the -1 divisor case is already handled above.
1085 
1086       Constant *NarrowDivisor =
1087           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1088       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1089       return new SExtInst(NarrowOp, Op0->getType());
1090     }
1091   }
1092 
1093   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
1094     // X/INT_MIN -> X == INT_MIN
1095     if (RHS->isMinSignedValue())
1096       return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1097 
1098     // -X/C  -->  X/-C  provided the negation doesn't overflow.
1099     Value *X;
1100     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1101       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1102       BO->setIsExact(I.isExact());
1103       return BO;
1104     }
1105   }
1106 
1107   // If the sign bits of both operands are zero (i.e. we can prove they are
1108   // unsigned inputs), turn this into a udiv.
1109   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1110   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1111     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1112       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1113       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1114       BO->setIsExact(I.isExact());
1115       return BO;
1116     }
1117 
1118     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1119       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1120       // Safe because the only negative value (1 << Y) can take on is
1121       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1122       // the sign bit set.
1123       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1124       BO->setIsExact(I.isExact());
1125       return BO;
1126     }
1127   }
1128 
1129   return nullptr;
1130 }
1131 
1132 /// Remove negation and try to convert division into multiplication.
1133 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1134   Constant *C;
1135   if (!match(I.getOperand(1), m_Constant(C)))
1136     return nullptr;
1137 
1138   // -X / C --> X / -C
1139   Value *X;
1140   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1141     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1142 
1143   // If the constant divisor has an exact inverse, this is always safe. If not,
1144   // then we can still create a reciprocal if fast-math-flags allow it and the
1145   // constant is a regular number (not zero, infinite, or denormal).
1146   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1147     return nullptr;
1148 
1149   // Disallow denormal constants because we don't know what would happen
1150   // on all targets.
1151   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1152   // denorms are flushed?
1153   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1154   if (!RecipC->isNormalFP())
1155     return nullptr;
1156 
1157   // X / C --> X * (1 / C)
1158   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1159 }
1160 
1161 /// Remove negation and try to reassociate constant math.
1162 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1163   Constant *C;
1164   if (!match(I.getOperand(0), m_Constant(C)))
1165     return nullptr;
1166 
1167   // C / -X --> -C / X
1168   Value *X;
1169   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1170     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1171 
1172   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1173     return nullptr;
1174 
1175   // Try to reassociate C / X expressions where X includes another constant.
1176   Constant *C2, *NewC = nullptr;
1177   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1178     // C / (X * C2) --> (C / C2) / X
1179     NewC = ConstantExpr::getFDiv(C, C2);
1180   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1181     // C / (X / C2) --> (C * C2) / X
1182     NewC = ConstantExpr::getFMul(C, C2);
1183   }
1184   // Disallow denormal constants because we don't know what would happen
1185   // on all targets.
1186   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1187   // denorms are flushed?
1188   if (!NewC || !NewC->isNormalFP())
1189     return nullptr;
1190 
1191   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1192 }
1193 
1194 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1195   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1196 
1197   if (Value *V = SimplifyVectorOp(I))
1198     return replaceInstUsesWith(I, V);
1199 
1200   if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
1201                                   SQ.getWithInstruction(&I)))
1202     return replaceInstUsesWith(I, V);
1203 
1204   if (Instruction *R = foldFDivConstantDivisor(I))
1205     return R;
1206 
1207   if (Instruction *R = foldFDivConstantDividend(I))
1208     return R;
1209 
1210   if (isa<Constant>(Op0))
1211     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1212       if (Instruction *R = FoldOpIntoSelect(I, SI))
1213         return R;
1214 
1215   if (isa<Constant>(Op1))
1216     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1217       if (Instruction *R = FoldOpIntoSelect(I, SI))
1218         return R;
1219 
1220   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1221     Value *X, *Y;
1222     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1223         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1224       // (X / Y) / Z => X / (Y * Z)
1225       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1226       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1227     }
1228     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1229         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1230       // Z / (X / Y) => (Y * Z) / X
1231       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1232       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1233     }
1234   }
1235 
1236   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1237     // sin(X) / cos(X) -> tan(X)
1238     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1239     Value *X;
1240     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1241                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1242     bool IsCot =
1243         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1244                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1245 
1246     if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
1247                                             LibFunc_tanf, LibFunc_tanl)) {
1248       IRBuilder<> B(&I);
1249       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1250       B.setFastMathFlags(I.getFastMathFlags());
1251       AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
1252       Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
1253       if (IsCot)
1254         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1255       return replaceInstUsesWith(I, Res);
1256     }
1257   }
1258 
1259   // -X / -Y -> X / Y
1260   Value *X, *Y;
1261   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
1262     I.setOperand(0, X);
1263     I.setOperand(1, Y);
1264     return &I;
1265   }
1266 
1267   // X / (X * Y) --> 1.0 / Y
1268   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1269   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1270   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1271       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1272     I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
1273     I.setOperand(1, Y);
1274     return &I;
1275   }
1276 
1277   return nullptr;
1278 }
1279 
1280 /// This function implements the transforms common to both integer remainder
1281 /// instructions (urem and srem). It is called by the visitors to those integer
1282 /// remainder instructions.
1283 /// @brief Common integer remainder transforms
1284 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1285   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1286 
1287   // The RHS is known non-zero.
1288   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1289     I.setOperand(1, V);
1290     return &I;
1291   }
1292 
1293   // Handle cases involving: rem X, (select Cond, Y, Z)
1294   if (simplifyDivRemOfSelectWithZeroOp(I))
1295     return &I;
1296 
1297   if (isa<Constant>(Op1)) {
1298     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1299       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1300         if (Instruction *R = FoldOpIntoSelect(I, SI))
1301           return R;
1302       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1303         const APInt *Op1Int;
1304         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1305             (I.getOpcode() == Instruction::URem ||
1306              !Op1Int->isMinSignedValue())) {
1307           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1308           // predecessor blocks, so do this only if we know the srem or urem
1309           // will not fault.
1310           if (Instruction *NV = foldOpIntoPhi(I, PN))
1311             return NV;
1312         }
1313       }
1314 
1315       // See if we can fold away this rem instruction.
1316       if (SimplifyDemandedInstructionBits(I))
1317         return &I;
1318     }
1319   }
1320 
1321   return nullptr;
1322 }
1323 
1324 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1325   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1326 
1327   if (Value *V = SimplifyVectorOp(I))
1328     return replaceInstUsesWith(I, V);
1329 
1330   if (Value *V = SimplifyURemInst(Op0, Op1, SQ.getWithInstruction(&I)))
1331     return replaceInstUsesWith(I, V);
1332 
1333   if (Instruction *common = commonIRemTransforms(I))
1334     return common;
1335 
1336   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1337     return NarrowRem;
1338 
1339   // X urem Y -> X and Y-1, where Y is a power of 2,
1340   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1341     Constant *N1 = Constant::getAllOnesValue(I.getType());
1342     Value *Add = Builder.CreateAdd(Op1, N1);
1343     return BinaryOperator::CreateAnd(Op0, Add);
1344   }
1345 
1346   // 1 urem X -> zext(X != 1)
1347   if (match(Op0, m_One())) {
1348     Value *Cmp = Builder.CreateICmpNE(Op1, Op0);
1349     Value *Ext = Builder.CreateZExt(Cmp, I.getType());
1350     return replaceInstUsesWith(I, Ext);
1351   }
1352 
1353   // X urem C -> X < C ? X : X - C, where C >= signbit.
1354   if (match(Op1, m_Negative())) {
1355     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1356     Value *Sub = Builder.CreateSub(Op0, Op1);
1357     return SelectInst::Create(Cmp, Op0, Sub);
1358   }
1359 
1360   return nullptr;
1361 }
1362 
1363 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1364   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1365 
1366   if (Value *V = SimplifyVectorOp(I))
1367     return replaceInstUsesWith(I, V);
1368 
1369   if (Value *V = SimplifySRemInst(Op0, Op1, SQ.getWithInstruction(&I)))
1370     return replaceInstUsesWith(I, V);
1371 
1372   // Handle the integer rem common cases
1373   if (Instruction *Common = commonIRemTransforms(I))
1374     return Common;
1375 
1376   {
1377     const APInt *Y;
1378     // X % -Y -> X % Y
1379     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
1380       Worklist.AddValue(I.getOperand(1));
1381       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1382       return &I;
1383     }
1384   }
1385 
1386   // If the sign bits of both operands are zero (i.e. we can prove they are
1387   // unsigned inputs), turn this into a urem.
1388   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1389   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1390       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1391     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1392     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1393   }
1394 
1395   // If it's a constant vector, flip any negative values positive.
1396   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1397     Constant *C = cast<Constant>(Op1);
1398     unsigned VWidth = C->getType()->getVectorNumElements();
1399 
1400     bool hasNegative = false;
1401     bool hasMissing = false;
1402     for (unsigned i = 0; i != VWidth; ++i) {
1403       Constant *Elt = C->getAggregateElement(i);
1404       if (!Elt) {
1405         hasMissing = true;
1406         break;
1407       }
1408 
1409       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1410         if (RHS->isNegative())
1411           hasNegative = true;
1412     }
1413 
1414     if (hasNegative && !hasMissing) {
1415       SmallVector<Constant *, 16> Elts(VWidth);
1416       for (unsigned i = 0; i != VWidth; ++i) {
1417         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1418         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1419           if (RHS->isNegative())
1420             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1421         }
1422       }
1423 
1424       Constant *NewRHSV = ConstantVector::get(Elts);
1425       if (NewRHSV != C) {  // Don't loop on -MININT
1426         Worklist.AddValue(I.getOperand(1));
1427         I.setOperand(1, NewRHSV);
1428         return &I;
1429       }
1430     }
1431   }
1432 
1433   return nullptr;
1434 }
1435 
1436 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1437   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1438 
1439   if (Value *V = SimplifyVectorOp(I))
1440     return replaceInstUsesWith(I, V);
1441 
1442   if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
1443                                   SQ.getWithInstruction(&I)))
1444     return replaceInstUsesWith(I, V);
1445 
1446   return nullptr;
1447 }
1448