1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/InstrTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include <cassert>
35 
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Utils/InstructionWorklist.h"
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 /// The specific integer value is used in a context where it is known to be
43 /// non-zero.  If this allows us to simplify the computation, do so and return
44 /// the new operand, otherwise return null.
45 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
46                                         Instruction &CxtI) {
47   // If V has multiple uses, then we would have to do more analysis to determine
48   // if this is safe.  For example, the use could be in dynamically unreached
49   // code.
50   if (!V->hasOneUse()) return nullptr;
51 
52   bool MadeChange = false;
53 
54   // ((1 << A) >>u B) --> (1 << (A-B))
55   // Because V cannot be zero, we know that B is less than A.
56   Value *A = nullptr, *B = nullptr, *One = nullptr;
57   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
58       match(One, m_One())) {
59     A = IC.Builder.CreateSub(A, B);
60     return IC.Builder.CreateShl(One, A);
61   }
62 
63   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
64   // inexact.  Similarly for <<.
65   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
66   if (I && I->isLogicalShift() &&
67       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
68     // We know that this is an exact/nuw shift and that the input is a
69     // non-zero context as well.
70     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
71       IC.replaceOperand(*I, 0, V2);
72       MadeChange = true;
73     }
74 
75     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
76       I->setIsExact();
77       MadeChange = true;
78     }
79 
80     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
81       I->setHasNoUnsignedWrap();
82       MadeChange = true;
83     }
84   }
85 
86   // TODO: Lots more we could do here:
87   //    If V is a phi node, we can call this on each of its operands.
88   //    "select cond, X, 0" can simplify to "X".
89 
90   return MadeChange ? V : nullptr;
91 }
92 
93 // TODO: This is a specific form of a much more general pattern.
94 //       We could detect a select with any binop identity constant, or we
95 //       could use SimplifyBinOp to see if either arm of the select reduces.
96 //       But that needs to be done carefully and/or while removing potential
97 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
98 static Value *foldMulSelectToNegate(BinaryOperator &I,
99                                     InstCombiner::BuilderTy &Builder) {
100   Value *Cond, *OtherOp;
101 
102   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
103   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
104   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
105                         m_Value(OtherOp)))) {
106     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
107     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
108     return Builder.CreateSelect(Cond, OtherOp, Neg);
109   }
110   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
111   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
112   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
113                         m_Value(OtherOp)))) {
114     bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
115     Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
116     return Builder.CreateSelect(Cond, Neg, OtherOp);
117   }
118 
119   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
121   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
122                                            m_SpecificFP(-1.0))),
123                          m_Value(OtherOp)))) {
124     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
125     Builder.setFastMathFlags(I.getFastMathFlags());
126     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
127   }
128 
129   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
132                                            m_SpecificFP(1.0))),
133                          m_Value(OtherOp)))) {
134     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
135     Builder.setFastMathFlags(I.getFastMathFlags());
136     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
137   }
138 
139   return nullptr;
140 }
141 
142 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
143   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
144                                  SQ.getWithInstruction(&I)))
145     return replaceInstUsesWith(I, V);
146 
147   if (SimplifyAssociativeOrCommutative(I))
148     return &I;
149 
150   if (Instruction *X = foldVectorBinop(I))
151     return X;
152 
153   if (Instruction *Phi = foldBinopWithPhiOperands(I))
154     return Phi;
155 
156   if (Value *V = SimplifyUsingDistributiveLaws(I))
157     return replaceInstUsesWith(I, V);
158 
159   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
160   unsigned BitWidth = I.getType()->getScalarSizeInBits();
161 
162   // X * -1 == 0 - X
163   if (match(Op1, m_AllOnes())) {
164     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
165     if (I.hasNoSignedWrap())
166       BO->setHasNoSignedWrap();
167     return BO;
168   }
169 
170   // Also allow combining multiply instructions on vectors.
171   {
172     Value *NewOp;
173     Constant *C1, *C2;
174     const APInt *IVal;
175     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
176                         m_Constant(C1))) &&
177         match(C1, m_APInt(IVal))) {
178       // ((X << C2)*C1) == (X * (C1 << C2))
179       Constant *Shl = ConstantExpr::getShl(C1, C2);
180       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
181       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
182       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
183         BO->setHasNoUnsignedWrap();
184       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
185           Shl->isNotMinSignedValue())
186         BO->setHasNoSignedWrap();
187       return BO;
188     }
189 
190     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
191       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
192       if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
193         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
194 
195         if (I.hasNoUnsignedWrap())
196           Shl->setHasNoUnsignedWrap();
197         if (I.hasNoSignedWrap()) {
198           const APInt *V;
199           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
200             Shl->setHasNoSignedWrap();
201         }
202 
203         return Shl;
204       }
205     }
206   }
207 
208   if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
209     // Interpret  X * (-1<<C)  as  (-X) * (1<<C)  and try to sink the negation.
210     // The "* (1<<C)" thus becomes a potential shifting opportunity.
211     if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
212       return BinaryOperator::CreateMul(
213           NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
214   }
215 
216   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
217     return FoldedMul;
218 
219   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
220     return replaceInstUsesWith(I, FoldedMul);
221 
222   // Simplify mul instructions with a constant RHS.
223   if (isa<Constant>(Op1)) {
224     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
225     Value *X;
226     Constant *C1;
227     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
228       Value *Mul = Builder.CreateMul(C1, Op1);
229       // Only go forward with the transform if C1*CI simplifies to a tidier
230       // constant.
231       if (!match(Mul, m_Mul(m_Value(), m_Value())))
232         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
233     }
234   }
235 
236   // abs(X) * abs(X) -> X * X
237   // nabs(X) * nabs(X) -> X * X
238   if (Op0 == Op1) {
239     Value *X, *Y;
240     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
241     if (SPF == SPF_ABS || SPF == SPF_NABS)
242       return BinaryOperator::CreateMul(X, X);
243 
244     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
245       return BinaryOperator::CreateMul(X, X);
246   }
247 
248   // -X * C --> X * -C
249   Value *X, *Y;
250   Constant *Op1C;
251   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
252     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
253 
254   // -X * -Y --> X * Y
255   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
256     auto *NewMul = BinaryOperator::CreateMul(X, Y);
257     if (I.hasNoSignedWrap() &&
258         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
259         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
260       NewMul->setHasNoSignedWrap();
261     return NewMul;
262   }
263 
264   // -X * Y --> -(X * Y)
265   // X * -Y --> -(X * Y)
266   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
267     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
268 
269   // (X / Y) *  Y = X - (X % Y)
270   // (X / Y) * -Y = (X % Y) - X
271   {
272     Value *Y = Op1;
273     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
274     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
275                  Div->getOpcode() != Instruction::SDiv)) {
276       Y = Op0;
277       Div = dyn_cast<BinaryOperator>(Op1);
278     }
279     Value *Neg = dyn_castNegVal(Y);
280     if (Div && Div->hasOneUse() &&
281         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
282         (Div->getOpcode() == Instruction::UDiv ||
283          Div->getOpcode() == Instruction::SDiv)) {
284       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
285 
286       // If the division is exact, X % Y is zero, so we end up with X or -X.
287       if (Div->isExact()) {
288         if (DivOp1 == Y)
289           return replaceInstUsesWith(I, X);
290         return BinaryOperator::CreateNeg(X);
291       }
292 
293       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
294                                                           : Instruction::SRem;
295       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
296       if (DivOp1 == Y)
297         return BinaryOperator::CreateSub(X, Rem);
298       return BinaryOperator::CreateSub(Rem, X);
299     }
300   }
301 
302   /// i1 mul -> i1 and.
303   if (I.getType()->isIntOrIntVectorTy(1))
304     return BinaryOperator::CreateAnd(Op0, Op1);
305 
306   // X*(1 << Y) --> X << Y
307   // (1 << Y)*X --> X << Y
308   {
309     Value *Y;
310     BinaryOperator *BO = nullptr;
311     bool ShlNSW = false;
312     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
313       BO = BinaryOperator::CreateShl(Op1, Y);
314       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
315     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
316       BO = BinaryOperator::CreateShl(Op0, Y);
317       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
318     }
319     if (BO) {
320       if (I.hasNoUnsignedWrap())
321         BO->setHasNoUnsignedWrap();
322       if (I.hasNoSignedWrap() && ShlNSW)
323         BO->setHasNoSignedWrap();
324       return BO;
325     }
326   }
327 
328   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
329   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
330   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
331   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
332        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
333       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
334       (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
335     Value *And = Builder.CreateAnd(X, Y, "mulbool");
336     return CastInst::Create(Instruction::ZExt, And, I.getType());
337   }
338   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
339   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
340   // Note: -1 * 1 == 1 * -1  == -1
341   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
342        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
343       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
344       (Op0->hasOneUse() || Op1->hasOneUse())) {
345     Value *And = Builder.CreateAnd(X, Y, "mulbool");
346     return CastInst::Create(Instruction::SExt, And, I.getType());
347   }
348 
349   // (zext bool X) * Y --> X ? Y : 0
350   // Y * (zext bool X) --> X ? Y : 0
351   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
352     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
353   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
354     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
355 
356   // (sext bool X) * C --> X ? -C : 0
357   Constant *ImmC;
358   if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1) &&
359       match(Op1, m_ImmConstant(ImmC))) {
360     Constant *NegC = ConstantExpr::getNeg(ImmC);
361     return SelectInst::Create(X, NegC, ConstantInt::getNullValue(I.getType()));
362   }
363 
364   // (lshr X, 31) * Y --> (ashr X, 31) & Y
365   // Y * (lshr X, 31) --> (ashr X, 31) & Y
366   // TODO: We are not checking one-use because the elimination of the multiply
367   //       is better for analysis?
368   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
369   //       more similar to what we're doing above.
370   const APInt *C;
371   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
372     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
373   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
374     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
375 
376   // ((ashr X, 31) | 1) * X --> abs(X)
377   // X * ((ashr X, 31) | 1) --> abs(X)
378   if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
379                                     m_SpecificIntAllowUndef(BitWidth - 1)),
380                              m_One()),
381                         m_Deferred(X)))) {
382     Value *Abs = Builder.CreateBinaryIntrinsic(
383         Intrinsic::abs, X,
384         ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
385     Abs->takeName(&I);
386     return replaceInstUsesWith(I, Abs);
387   }
388 
389   if (Instruction *Ext = narrowMathIfNoOverflow(I))
390     return Ext;
391 
392   bool Changed = false;
393   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
394     Changed = true;
395     I.setHasNoSignedWrap(true);
396   }
397 
398   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
399     Changed = true;
400     I.setHasNoUnsignedWrap(true);
401   }
402 
403   return Changed ? &I : nullptr;
404 }
405 
406 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
407   BinaryOperator::BinaryOps Opcode = I.getOpcode();
408   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
409          "Expected fmul or fdiv");
410 
411   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
412   Value *X, *Y;
413 
414   // -X * -Y --> X * Y
415   // -X / -Y --> X / Y
416   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
417     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
418 
419   // fabs(X) * fabs(X) -> X * X
420   // fabs(X) / fabs(X) -> X / X
421   if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
422     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
423 
424   // fabs(X) * fabs(Y) --> fabs(X * Y)
425   // fabs(X) / fabs(Y) --> fabs(X / Y)
426   if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
427       (Op0->hasOneUse() || Op1->hasOneUse())) {
428     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
429     Builder.setFastMathFlags(I.getFastMathFlags());
430     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
431     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
432     Fabs->takeName(&I);
433     return replaceInstUsesWith(I, Fabs);
434   }
435 
436   return nullptr;
437 }
438 
439 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
440   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
441                                   I.getFastMathFlags(),
442                                   SQ.getWithInstruction(&I)))
443     return replaceInstUsesWith(I, V);
444 
445   if (SimplifyAssociativeOrCommutative(I))
446     return &I;
447 
448   if (Instruction *X = foldVectorBinop(I))
449     return X;
450 
451   if (Instruction *Phi = foldBinopWithPhiOperands(I))
452     return Phi;
453 
454   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
455     return FoldedMul;
456 
457   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
458     return replaceInstUsesWith(I, FoldedMul);
459 
460   if (Instruction *R = foldFPSignBitOps(I))
461     return R;
462 
463   // X * -1.0 --> -X
464   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
465   if (match(Op1, m_SpecificFP(-1.0)))
466     return UnaryOperator::CreateFNegFMF(Op0, &I);
467 
468   // -X * C --> X * -C
469   Value *X, *Y;
470   Constant *C;
471   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
472     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
473 
474   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
475   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
476     return replaceInstUsesWith(I, V);
477 
478   if (I.hasAllowReassoc()) {
479     // Reassociate constant RHS with another constant to form constant
480     // expression.
481     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
482       Constant *C1;
483       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
484         // (C1 / X) * C --> (C * C1) / X
485         Constant *CC1 = ConstantExpr::getFMul(C, C1);
486         if (CC1->isNormalFP())
487           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
488       }
489       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
490         // (X / C1) * C --> X * (C / C1)
491         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
492         if (CDivC1->isNormalFP())
493           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
494 
495         // If the constant was a denormal, try reassociating differently.
496         // (X / C1) * C --> X / (C1 / C)
497         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
498         if (Op0->hasOneUse() && C1DivC->isNormalFP())
499           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
500       }
501 
502       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
503       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
504       // further folds and (X * C) + C2 is 'fma'.
505       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
506         // (X + C1) * C --> (X * C) + (C * C1)
507         Constant *CC1 = ConstantExpr::getFMul(C, C1);
508         Value *XC = Builder.CreateFMulFMF(X, C, &I);
509         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
510       }
511       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
512         // (C1 - X) * C --> (C * C1) - (X * C)
513         Constant *CC1 = ConstantExpr::getFMul(C, C1);
514         Value *XC = Builder.CreateFMulFMF(X, C, &I);
515         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
516       }
517     }
518 
519     Value *Z;
520     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
521                            m_Value(Z)))) {
522       // Sink division: (X / Y) * Z --> (X * Z) / Y
523       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
524       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
525     }
526 
527     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
528     // nnan disallows the possibility of returning a number if both operands are
529     // negative (in that case, we should return NaN).
530     if (I.hasNoNaNs() &&
531         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
532         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
533       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
534       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
535       return replaceInstUsesWith(I, Sqrt);
536     }
537 
538     // The following transforms are done irrespective of the number of uses
539     // for the expression "1.0/sqrt(X)".
540     //  1) 1.0/sqrt(X) * X -> X/sqrt(X)
541     //  2) X * 1.0/sqrt(X) -> X/sqrt(X)
542     // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
543     // has the necessary (reassoc) fast-math-flags.
544     if (I.hasNoSignedZeros() &&
545         match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
546         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
547       return BinaryOperator::CreateFDivFMF(X, Y, &I);
548     if (I.hasNoSignedZeros() &&
549         match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
550         match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
551       return BinaryOperator::CreateFDivFMF(X, Y, &I);
552 
553     // Like the similar transform in instsimplify, this requires 'nsz' because
554     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
555     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
556         Op0->hasNUses(2)) {
557       // Peek through fdiv to find squaring of square root:
558       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
559       if (match(Op0, m_FDiv(m_Value(X),
560                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
561         Value *XX = Builder.CreateFMulFMF(X, X, &I);
562         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
563       }
564       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
565       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
566                             m_Value(X)))) {
567         Value *XX = Builder.CreateFMulFMF(X, X, &I);
568         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
569       }
570     }
571 
572     if (I.isOnlyUserOfAnyOperand()) {
573       // pow(x, y) * pow(x, z) -> pow(x, y + z)
574       if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
575           match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
576         auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
577         auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
578         return replaceInstUsesWith(I, NewPow);
579       }
580 
581       // powi(x, y) * powi(x, z) -> powi(x, y + z)
582       if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
583           match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
584           Y->getType() == Z->getType()) {
585         auto *YZ = Builder.CreateAdd(Y, Z);
586         auto *NewPow = Builder.CreateIntrinsic(
587             Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
588         return replaceInstUsesWith(I, NewPow);
589       }
590 
591       // exp(X) * exp(Y) -> exp(X + Y)
592       if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
593           match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
594         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
595         Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
596         return replaceInstUsesWith(I, Exp);
597       }
598 
599       // exp2(X) * exp2(Y) -> exp2(X + Y)
600       if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
601           match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
602         Value *XY = Builder.CreateFAddFMF(X, Y, &I);
603         Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
604         return replaceInstUsesWith(I, Exp2);
605       }
606     }
607 
608     // (X*Y) * X => (X*X) * Y where Y != X
609     //  The purpose is two-fold:
610     //   1) to form a power expression (of X).
611     //   2) potentially shorten the critical path: After transformation, the
612     //  latency of the instruction Y is amortized by the expression of X*X,
613     //  and therefore Y is in a "less critical" position compared to what it
614     //  was before the transformation.
615     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
616         Op1 != Y) {
617       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
618       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
619     }
620     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
621         Op0 != Y) {
622       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
623       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
624     }
625   }
626 
627   // log2(X * 0.5) * Y = log2(X) * Y - Y
628   if (I.isFast()) {
629     IntrinsicInst *Log2 = nullptr;
630     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
631             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
632       Log2 = cast<IntrinsicInst>(Op0);
633       Y = Op1;
634     }
635     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
636             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
637       Log2 = cast<IntrinsicInst>(Op1);
638       Y = Op0;
639     }
640     if (Log2) {
641       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
642       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
643       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
644     }
645   }
646 
647   return nullptr;
648 }
649 
650 /// Fold a divide or remainder with a select instruction divisor when one of the
651 /// select operands is zero. In that case, we can use the other select operand
652 /// because div/rem by zero is undefined.
653 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
654   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
655   if (!SI)
656     return false;
657 
658   int NonNullOperand;
659   if (match(SI->getTrueValue(), m_Zero()))
660     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
661     NonNullOperand = 2;
662   else if (match(SI->getFalseValue(), m_Zero()))
663     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
664     NonNullOperand = 1;
665   else
666     return false;
667 
668   // Change the div/rem to use 'Y' instead of the select.
669   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
670 
671   // Okay, we know we replace the operand of the div/rem with 'Y' with no
672   // problem.  However, the select, or the condition of the select may have
673   // multiple uses.  Based on our knowledge that the operand must be non-zero,
674   // propagate the known value for the select into other uses of it, and
675   // propagate a known value of the condition into its other users.
676 
677   // If the select and condition only have a single use, don't bother with this,
678   // early exit.
679   Value *SelectCond = SI->getCondition();
680   if (SI->use_empty() && SelectCond->hasOneUse())
681     return true;
682 
683   // Scan the current block backward, looking for other uses of SI.
684   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
685   Type *CondTy = SelectCond->getType();
686   while (BBI != BBFront) {
687     --BBI;
688     // If we found an instruction that we can't assume will return, so
689     // information from below it cannot be propagated above it.
690     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
691       break;
692 
693     // Replace uses of the select or its condition with the known values.
694     for (Use &Op : BBI->operands()) {
695       if (Op == SI) {
696         replaceUse(Op, SI->getOperand(NonNullOperand));
697         Worklist.push(&*BBI);
698       } else if (Op == SelectCond) {
699         replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
700                                            : ConstantInt::getFalse(CondTy));
701         Worklist.push(&*BBI);
702       }
703     }
704 
705     // If we past the instruction, quit looking for it.
706     if (&*BBI == SI)
707       SI = nullptr;
708     if (&*BBI == SelectCond)
709       SelectCond = nullptr;
710 
711     // If we ran out of things to eliminate, break out of the loop.
712     if (!SelectCond && !SI)
713       break;
714 
715   }
716   return true;
717 }
718 
719 /// True if the multiply can not be expressed in an int this size.
720 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
721                               bool IsSigned) {
722   bool Overflow;
723   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
724   return Overflow;
725 }
726 
727 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
728 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
729                        bool IsSigned) {
730   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
731 
732   // Bail if we will divide by zero.
733   if (C2.isZero())
734     return false;
735 
736   // Bail if we would divide INT_MIN by -1.
737   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
738     return false;
739 
740   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
741   if (IsSigned)
742     APInt::sdivrem(C1, C2, Quotient, Remainder);
743   else
744     APInt::udivrem(C1, C2, Quotient, Remainder);
745 
746   return Remainder.isMinValue();
747 }
748 
749 /// This function implements the transforms common to both integer division
750 /// instructions (udiv and sdiv). It is called by the visitors to those integer
751 /// division instructions.
752 /// Common integer divide transforms
753 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
754   if (Instruction *Phi = foldBinopWithPhiOperands(I))
755     return Phi;
756 
757   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
758   bool IsSigned = I.getOpcode() == Instruction::SDiv;
759   Type *Ty = I.getType();
760 
761   // The RHS is known non-zero.
762   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
763     return replaceOperand(I, 1, V);
764 
765   // Handle cases involving: [su]div X, (select Cond, Y, Z)
766   // This does not apply for fdiv.
767   if (simplifyDivRemOfSelectWithZeroOp(I))
768     return &I;
769 
770   // If the divisor is a select-of-constants, try to constant fold all div ops:
771   // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
772   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
773   if (match(Op0, m_ImmConstant()) &&
774       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
775     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
776                                           /*FoldWithMultiUse*/ true))
777       return R;
778   }
779 
780   const APInt *C2;
781   if (match(Op1, m_APInt(C2))) {
782     Value *X;
783     const APInt *C1;
784 
785     // (X / C1) / C2  -> X / (C1*C2)
786     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
787         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
788       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
789       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
790         return BinaryOperator::Create(I.getOpcode(), X,
791                                       ConstantInt::get(Ty, Product));
792     }
793 
794     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
795         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
796       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
797 
798       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
799       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
800         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
801                                               ConstantInt::get(Ty, Quotient));
802         NewDiv->setIsExact(I.isExact());
803         return NewDiv;
804       }
805 
806       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
807       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
808         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
809                                            ConstantInt::get(Ty, Quotient));
810         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
811         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
812         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
813         return Mul;
814       }
815     }
816 
817     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
818          C1->ult(C1->getBitWidth() - 1)) ||
819         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
820          C1->ult(C1->getBitWidth()))) {
821       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
822       APInt C1Shifted = APInt::getOneBitSet(
823           C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
824 
825       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
826       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
827         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
828                                           ConstantInt::get(Ty, Quotient));
829         BO->setIsExact(I.isExact());
830         return BO;
831       }
832 
833       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
834       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
835         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
836                                            ConstantInt::get(Ty, Quotient));
837         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
838         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
839         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
840         return Mul;
841       }
842     }
843 
844     if (!C2->isZero()) // avoid X udiv 0
845       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
846         return FoldedDiv;
847   }
848 
849   if (match(Op0, m_One())) {
850     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
851     if (IsSigned) {
852       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
853       // result is one, if Op1 is -1 then the result is minus one, otherwise
854       // it's zero.
855       Value *Inc = Builder.CreateAdd(Op1, Op0);
856       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
857       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
858     } else {
859       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
860       // result is one, otherwise it's zero.
861       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
862     }
863   }
864 
865   // See if we can fold away this div instruction.
866   if (SimplifyDemandedInstructionBits(I))
867     return &I;
868 
869   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
870   Value *X, *Z;
871   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
872     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
873         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
874       return BinaryOperator::Create(I.getOpcode(), X, Op1);
875 
876   // (X << Y) / X -> 1 << Y
877   Value *Y;
878   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
879     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
880   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
881     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
882 
883   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
884   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
885     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
886     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
887     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
888       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
889       replaceOperand(I, 1, Y);
890       return &I;
891     }
892   }
893 
894   return nullptr;
895 }
896 
897 static const unsigned MaxDepth = 6;
898 
899 // Take the exact integer log2 of the value. If DoFold is true, create the
900 // actual instructions, otherwise return a non-null dummy value. Return nullptr
901 // on failure.
902 static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
903                        bool DoFold) {
904   auto IfFold = [DoFold](function_ref<Value *()> Fn) {
905     if (!DoFold)
906       return reinterpret_cast<Value *>(-1);
907     return Fn();
908   };
909 
910   // FIXME: assert that Op1 isn't/doesn't contain undef.
911 
912   // log2(2^C) -> C
913   if (match(Op, m_Power2()))
914     return IfFold([&]() {
915       Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
916       if (!C)
917         llvm_unreachable("Failed to constant fold udiv -> logbase2");
918       return C;
919     });
920 
921   // The remaining tests are all recursive, so bail out if we hit the limit.
922   if (Depth++ == MaxDepth)
923     return nullptr;
924 
925   // log2(zext X) -> zext log2(X)
926   // FIXME: Require one use?
927   Value *X, *Y;
928   if (match(Op, m_ZExt(m_Value(X))))
929     if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
930       return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
931 
932   // log2(X << Y) -> log2(X) + Y
933   // FIXME: Require one use unless X is 1?
934   if (match(Op, m_Shl(m_Value(X), m_Value(Y))))
935     if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
936       return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
937 
938   // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
939   // FIXME: missed optimization: if one of the hands of select is/contains
940   //        undef, just directly pick the other one.
941   // FIXME: can both hands contain undef?
942   // FIXME: Require one use?
943   if (SelectInst *SI = dyn_cast<SelectInst>(Op))
944     if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth, DoFold))
945       if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth, DoFold))
946         return IfFold([&]() {
947           return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
948         });
949 
950   // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
951   // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
952   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
953   if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned())
954     if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth, DoFold))
955       if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth, DoFold))
956         return IfFold([&]() {
957           return Builder.CreateBinaryIntrinsic(
958               MinMax->getIntrinsicID(), LogX, LogY);
959         });
960 
961   return nullptr;
962 }
963 
964 /// If we have zero-extended operands of an unsigned div or rem, we may be able
965 /// to narrow the operation (sink the zext below the math).
966 static Instruction *narrowUDivURem(BinaryOperator &I,
967                                    InstCombiner::BuilderTy &Builder) {
968   Instruction::BinaryOps Opcode = I.getOpcode();
969   Value *N = I.getOperand(0);
970   Value *D = I.getOperand(1);
971   Type *Ty = I.getType();
972   Value *X, *Y;
973   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
974       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
975     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
976     // urem (zext X), (zext Y) --> zext (urem X, Y)
977     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
978     return new ZExtInst(NarrowOp, Ty);
979   }
980 
981   Constant *C;
982   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
983       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
984     // If the constant is the same in the smaller type, use the narrow version.
985     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
986     if (ConstantExpr::getZExt(TruncC, Ty) != C)
987       return nullptr;
988 
989     // udiv (zext X), C --> zext (udiv X, C')
990     // urem (zext X), C --> zext (urem X, C')
991     // udiv C, (zext X) --> zext (udiv C', X)
992     // urem C, (zext X) --> zext (urem C', X)
993     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
994                                        : Builder.CreateBinOp(Opcode, TruncC, X);
995     return new ZExtInst(NarrowOp, Ty);
996   }
997 
998   return nullptr;
999 }
1000 
1001 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1002   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1003                                   SQ.getWithInstruction(&I)))
1004     return replaceInstUsesWith(I, V);
1005 
1006   if (Instruction *X = foldVectorBinop(I))
1007     return X;
1008 
1009   // Handle the integer div common cases
1010   if (Instruction *Common = commonIDivTransforms(I))
1011     return Common;
1012 
1013   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1014   Value *X;
1015   const APInt *C1, *C2;
1016   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1017     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1018     bool Overflow;
1019     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1020     if (!Overflow) {
1021       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1022       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1023           X, ConstantInt::get(X->getType(), C2ShlC1));
1024       if (IsExact)
1025         BO->setIsExact();
1026       return BO;
1027     }
1028   }
1029 
1030   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1031   // TODO: Could use isKnownNegative() to handle non-constant values.
1032   Type *Ty = I.getType();
1033   if (match(Op1, m_Negative())) {
1034     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1035     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1036   }
1037   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1038   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1039     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1040     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1041   }
1042 
1043   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1044     return NarrowDiv;
1045 
1046   // If the udiv operands are non-overflowing multiplies with a common operand,
1047   // then eliminate the common factor:
1048   // (A * B) / (A * X) --> B / X (and commuted variants)
1049   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1050   // TODO: If -reassociation handled this generally, we could remove this.
1051   Value *A, *B;
1052   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1053     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1054         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1055       return BinaryOperator::CreateUDiv(B, X);
1056     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1057         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1058       return BinaryOperator::CreateUDiv(A, X);
1059   }
1060 
1061   // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
1062   if (takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/false)) {
1063     Value *Res = takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/true);
1064     return replaceInstUsesWith(
1065         I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1066   }
1067 
1068   return nullptr;
1069 }
1070 
1071 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1072   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1073                                   SQ.getWithInstruction(&I)))
1074     return replaceInstUsesWith(I, V);
1075 
1076   if (Instruction *X = foldVectorBinop(I))
1077     return X;
1078 
1079   // Handle the integer div common cases
1080   if (Instruction *Common = commonIDivTransforms(I))
1081     return Common;
1082 
1083   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1084   Type *Ty = I.getType();
1085   Value *X;
1086   // sdiv Op0, -1 --> -Op0
1087   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1088   if (match(Op1, m_AllOnes()) ||
1089       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1090     return BinaryOperator::CreateNeg(Op0);
1091 
1092   // X / INT_MIN --> X == INT_MIN
1093   if (match(Op1, m_SignMask()))
1094     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1095 
1096   // sdiv exact X,  1<<C  -->    ashr exact X, C   iff  1<<C  is non-negative
1097   // sdiv exact X, -1<<C  -->  -(ashr exact X, C)
1098   if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1099                       match(Op1, m_NegatedPower2()))) {
1100     bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1101     if (DivisorWasNegative)
1102       Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1103     auto *AShr = BinaryOperator::CreateExactAShr(
1104         Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1105     if (!DivisorWasNegative)
1106       return AShr;
1107     Builder.Insert(AShr);
1108     AShr->setName(I.getName() + ".neg");
1109     return BinaryOperator::CreateNeg(AShr, I.getName());
1110   }
1111 
1112   const APInt *Op1C;
1113   if (match(Op1, m_APInt(Op1C))) {
1114     // If the dividend is sign-extended and the constant divisor is small enough
1115     // to fit in the source type, shrink the division to the narrower type:
1116     // (sext X) sdiv C --> sext (X sdiv C)
1117     Value *Op0Src;
1118     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1119         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1120 
1121       // In the general case, we need to make sure that the dividend is not the
1122       // minimum signed value because dividing that by -1 is UB. But here, we
1123       // know that the -1 divisor case is already handled above.
1124 
1125       Constant *NarrowDivisor =
1126           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1127       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1128       return new SExtInst(NarrowOp, Ty);
1129     }
1130 
1131     // -X / C --> X / -C (if the negation doesn't overflow).
1132     // TODO: This could be enhanced to handle arbitrary vector constants by
1133     //       checking if all elements are not the min-signed-val.
1134     if (!Op1C->isMinSignedValue() &&
1135         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1136       Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1137       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1138       BO->setIsExact(I.isExact());
1139       return BO;
1140     }
1141   }
1142 
1143   // -X / Y --> -(X / Y)
1144   Value *Y;
1145   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1146     return BinaryOperator::CreateNSWNeg(
1147         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1148 
1149   // abs(X) / X --> X > -1 ? 1 : -1
1150   // X / abs(X) --> X > -1 ? 1 : -1
1151   if (match(&I, m_c_BinOp(
1152                     m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1153                     m_Deferred(X)))) {
1154     Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1155     Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1156     return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1157   }
1158 
1159   // If the sign bits of both operands are zero (i.e. we can prove they are
1160   // unsigned inputs), turn this into a udiv.
1161   APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1162   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1163     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1164       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1165       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1166       BO->setIsExact(I.isExact());
1167       return BO;
1168     }
1169 
1170     if (match(Op1, m_NegatedPower2())) {
1171       // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1172       //                    -> -(X udiv (1 << C)) -> -(X u>> C)
1173       Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
1174           ConstantExpr::getNeg(cast<Constant>(Op1)));
1175       Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1176       return BinaryOperator::CreateNeg(Shr);
1177     }
1178 
1179     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1180       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1181       // Safe because the only negative value (1 << Y) can take on is
1182       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1183       // the sign bit set.
1184       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1185       BO->setIsExact(I.isExact());
1186       return BO;
1187     }
1188   }
1189 
1190   return nullptr;
1191 }
1192 
1193 /// Remove negation and try to convert division into multiplication.
1194 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1195   Constant *C;
1196   if (!match(I.getOperand(1), m_Constant(C)))
1197     return nullptr;
1198 
1199   // -X / C --> X / -C
1200   Value *X;
1201   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1202     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1203 
1204   // If the constant divisor has an exact inverse, this is always safe. If not,
1205   // then we can still create a reciprocal if fast-math-flags allow it and the
1206   // constant is a regular number (not zero, infinite, or denormal).
1207   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1208     return nullptr;
1209 
1210   // Disallow denormal constants because we don't know what would happen
1211   // on all targets.
1212   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1213   // denorms are flushed?
1214   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1215   if (!RecipC->isNormalFP())
1216     return nullptr;
1217 
1218   // X / C --> X * (1 / C)
1219   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1220 }
1221 
1222 /// Remove negation and try to reassociate constant math.
1223 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1224   Constant *C;
1225   if (!match(I.getOperand(0), m_Constant(C)))
1226     return nullptr;
1227 
1228   // C / -X --> -C / X
1229   Value *X;
1230   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1231     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1232 
1233   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1234     return nullptr;
1235 
1236   // Try to reassociate C / X expressions where X includes another constant.
1237   Constant *C2, *NewC = nullptr;
1238   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1239     // C / (X * C2) --> (C / C2) / X
1240     NewC = ConstantExpr::getFDiv(C, C2);
1241   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1242     // C / (X / C2) --> (C * C2) / X
1243     NewC = ConstantExpr::getFMul(C, C2);
1244   }
1245   // Disallow denormal constants because we don't know what would happen
1246   // on all targets.
1247   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1248   // denorms are flushed?
1249   if (!NewC || !NewC->isNormalFP())
1250     return nullptr;
1251 
1252   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1253 }
1254 
1255 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1256 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1257                                        InstCombiner::BuilderTy &Builder) {
1258   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1259   auto *II = dyn_cast<IntrinsicInst>(Op1);
1260   if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1261       !I.hasAllowReciprocal())
1262     return nullptr;
1263 
1264   // Z / pow(X, Y) --> Z * pow(X, -Y)
1265   // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1266   // In the general case, this creates an extra instruction, but fmul allows
1267   // for better canonicalization and optimization than fdiv.
1268   Intrinsic::ID IID = II->getIntrinsicID();
1269   SmallVector<Value *> Args;
1270   switch (IID) {
1271   case Intrinsic::pow:
1272     Args.push_back(II->getArgOperand(0));
1273     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1274     break;
1275   case Intrinsic::powi: {
1276     // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1277     // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1278     // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1279     // non-standard results, so this corner case should be acceptable if the
1280     // code rules out INF values.
1281     if (!I.hasNoInfs())
1282       return nullptr;
1283     Args.push_back(II->getArgOperand(0));
1284     Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1285     Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1286     Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1287     return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1288   }
1289   case Intrinsic::exp:
1290   case Intrinsic::exp2:
1291     Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1292     break;
1293   default:
1294     return nullptr;
1295   }
1296   Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1297   return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1298 }
1299 
1300 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1301   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1302                                   I.getFastMathFlags(),
1303                                   SQ.getWithInstruction(&I)))
1304     return replaceInstUsesWith(I, V);
1305 
1306   if (Instruction *X = foldVectorBinop(I))
1307     return X;
1308 
1309   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1310     return Phi;
1311 
1312   if (Instruction *R = foldFDivConstantDivisor(I))
1313     return R;
1314 
1315   if (Instruction *R = foldFDivConstantDividend(I))
1316     return R;
1317 
1318   if (Instruction *R = foldFPSignBitOps(I))
1319     return R;
1320 
1321   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1322   if (isa<Constant>(Op0))
1323     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1324       if (Instruction *R = FoldOpIntoSelect(I, SI))
1325         return R;
1326 
1327   if (isa<Constant>(Op1))
1328     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1329       if (Instruction *R = FoldOpIntoSelect(I, SI))
1330         return R;
1331 
1332   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1333     Value *X, *Y;
1334     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1335         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1336       // (X / Y) / Z => X / (Y * Z)
1337       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1338       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1339     }
1340     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1341         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1342       // Z / (X / Y) => (Y * Z) / X
1343       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1344       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1345     }
1346     // Z / (1.0 / Y) => (Y * Z)
1347     //
1348     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1349     // m_OneUse check is avoided because even in the case of the multiple uses
1350     // for 1.0/Y, the number of instructions remain the same and a division is
1351     // replaced by a multiplication.
1352     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1353       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1354   }
1355 
1356   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1357     // sin(X) / cos(X) -> tan(X)
1358     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1359     Value *X;
1360     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1361                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1362     bool IsCot =
1363         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1364                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1365 
1366     if ((IsTan || IsCot) &&
1367         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1368       IRBuilder<> B(&I);
1369       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1370       B.setFastMathFlags(I.getFastMathFlags());
1371       AttributeList Attrs =
1372           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1373       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1374                                         LibFunc_tanl, B, Attrs);
1375       if (IsCot)
1376         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1377       return replaceInstUsesWith(I, Res);
1378     }
1379   }
1380 
1381   // X / (X * Y) --> 1.0 / Y
1382   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1383   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1384   Value *X, *Y;
1385   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1386       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1387     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1388     replaceOperand(I, 1, Y);
1389     return &I;
1390   }
1391 
1392   // X / fabs(X) -> copysign(1.0, X)
1393   // fabs(X) / X -> copysign(1.0, X)
1394   if (I.hasNoNaNs() && I.hasNoInfs() &&
1395       (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1396        match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1397     Value *V = Builder.CreateBinaryIntrinsic(
1398         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1399     return replaceInstUsesWith(I, V);
1400   }
1401 
1402   if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1403     return Mul;
1404 
1405   return nullptr;
1406 }
1407 
1408 /// This function implements the transforms common to both integer remainder
1409 /// instructions (urem and srem). It is called by the visitors to those integer
1410 /// remainder instructions.
1411 /// Common integer remainder transforms
1412 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1413   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1414     return Phi;
1415 
1416   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1417 
1418   // The RHS is known non-zero.
1419   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1420     return replaceOperand(I, 1, V);
1421 
1422   // Handle cases involving: rem X, (select Cond, Y, Z)
1423   if (simplifyDivRemOfSelectWithZeroOp(I))
1424     return &I;
1425 
1426   // If the divisor is a select-of-constants, try to constant fold all rem ops:
1427   // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
1428   // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1429   if (match(Op0, m_ImmConstant()) &&
1430       match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1431     if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1432                                           /*FoldWithMultiUse*/ true))
1433       return R;
1434   }
1435 
1436   if (isa<Constant>(Op1)) {
1437     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1438       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1439         if (Instruction *R = FoldOpIntoSelect(I, SI))
1440           return R;
1441       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1442         const APInt *Op1Int;
1443         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1444             (I.getOpcode() == Instruction::URem ||
1445              !Op1Int->isMinSignedValue())) {
1446           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1447           // predecessor blocks, so do this only if we know the srem or urem
1448           // will not fault.
1449           if (Instruction *NV = foldOpIntoPhi(I, PN))
1450             return NV;
1451         }
1452       }
1453 
1454       // See if we can fold away this rem instruction.
1455       if (SimplifyDemandedInstructionBits(I))
1456         return &I;
1457     }
1458   }
1459 
1460   return nullptr;
1461 }
1462 
1463 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1464   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1465                                   SQ.getWithInstruction(&I)))
1466     return replaceInstUsesWith(I, V);
1467 
1468   if (Instruction *X = foldVectorBinop(I))
1469     return X;
1470 
1471   if (Instruction *common = commonIRemTransforms(I))
1472     return common;
1473 
1474   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1475     return NarrowRem;
1476 
1477   // X urem Y -> X and Y-1, where Y is a power of 2,
1478   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1479   Type *Ty = I.getType();
1480   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1481     // This may increase instruction count, we don't enforce that Y is a
1482     // constant.
1483     Constant *N1 = Constant::getAllOnesValue(Ty);
1484     Value *Add = Builder.CreateAdd(Op1, N1);
1485     return BinaryOperator::CreateAnd(Op0, Add);
1486   }
1487 
1488   // 1 urem X -> zext(X != 1)
1489   if (match(Op0, m_One())) {
1490     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1491     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1492   }
1493 
1494   // X urem C -> X < C ? X : X - C, where C >= signbit.
1495   if (match(Op1, m_Negative())) {
1496     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1497     Value *Sub = Builder.CreateSub(Op0, Op1);
1498     return SelectInst::Create(Cmp, Op0, Sub);
1499   }
1500 
1501   // If the divisor is a sext of a boolean, then the divisor must be max
1502   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1503   // max unsigned value. In that case, the remainder is 0:
1504   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1505   Value *X;
1506   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1507     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1508     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1509   }
1510 
1511   return nullptr;
1512 }
1513 
1514 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1515   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1516                                   SQ.getWithInstruction(&I)))
1517     return replaceInstUsesWith(I, V);
1518 
1519   if (Instruction *X = foldVectorBinop(I))
1520     return X;
1521 
1522   // Handle the integer rem common cases
1523   if (Instruction *Common = commonIRemTransforms(I))
1524     return Common;
1525 
1526   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1527   {
1528     const APInt *Y;
1529     // X % -Y -> X % Y
1530     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1531       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1532   }
1533 
1534   // -X srem Y --> -(X srem Y)
1535   Value *X, *Y;
1536   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1537     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1538 
1539   // If the sign bits of both operands are zero (i.e. we can prove they are
1540   // unsigned inputs), turn this into a urem.
1541   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1542   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1543       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1544     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1545     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1546   }
1547 
1548   // If it's a constant vector, flip any negative values positive.
1549   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1550     Constant *C = cast<Constant>(Op1);
1551     unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1552 
1553     bool hasNegative = false;
1554     bool hasMissing = false;
1555     for (unsigned i = 0; i != VWidth; ++i) {
1556       Constant *Elt = C->getAggregateElement(i);
1557       if (!Elt) {
1558         hasMissing = true;
1559         break;
1560       }
1561 
1562       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1563         if (RHS->isNegative())
1564           hasNegative = true;
1565     }
1566 
1567     if (hasNegative && !hasMissing) {
1568       SmallVector<Constant *, 16> Elts(VWidth);
1569       for (unsigned i = 0; i != VWidth; ++i) {
1570         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1571         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1572           if (RHS->isNegative())
1573             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1574         }
1575       }
1576 
1577       Constant *NewRHSV = ConstantVector::get(Elts);
1578       if (NewRHSV != C)  // Don't loop on -MININT
1579         return replaceOperand(I, 1, NewRHSV);
1580     }
1581   }
1582 
1583   return nullptr;
1584 }
1585 
1586 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1587   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1588                                   I.getFastMathFlags(),
1589                                   SQ.getWithInstruction(&I)))
1590     return replaceInstUsesWith(I, V);
1591 
1592   if (Instruction *X = foldVectorBinop(I))
1593     return X;
1594 
1595   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1596     return Phi;
1597 
1598   return nullptr;
1599 }
1600