1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLFunctionalExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/InstCombine/InstCombiner.h"
68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <utility>
75 #include <vector>
76 
77 #define DEBUG_TYPE "instcombine"
78 #include "llvm/Transforms/Utils/InstructionWorklist.h"
79 
80 using namespace llvm;
81 using namespace PatternMatch;
82 
83 STATISTIC(NumSimplified, "Number of library calls simplified");
84 
85 static cl::opt<unsigned> GuardWideningWindow(
86     "instcombine-guard-widening-window",
87     cl::init(3),
88     cl::desc("How wide an instruction window to bypass looking for "
89              "another guard"));
90 
91 namespace llvm {
92 /// enable preservation of attributes in assume like:
93 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
94 extern cl::opt<bool> EnableKnowledgeRetention;
95 } // namespace llvm
96 
97 /// Return the specified type promoted as it would be to pass though a va_arg
98 /// area.
99 static Type *getPromotedType(Type *Ty) {
100   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
101     if (ITy->getBitWidth() < 32)
102       return Type::getInt32Ty(Ty->getContext());
103   }
104   return Ty;
105 }
106 
107 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
108 /// TODO: This should probably be integrated with visitAllocSites, but that
109 /// requires a deeper change to allow either unread or unwritten objects.
110 static bool hasUndefSource(AnyMemTransferInst *MI) {
111   auto *Src = MI->getRawSource();
112   while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
113     if (!Src->hasOneUse())
114       return false;
115     Src = cast<Instruction>(Src)->getOperand(0);
116   }
117   return isa<AllocaInst>(Src) && Src->hasOneUse();
118 }
119 
120 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
121   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
122   MaybeAlign CopyDstAlign = MI->getDestAlign();
123   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
124     MI->setDestAlignment(DstAlign);
125     return MI;
126   }
127 
128   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
129   MaybeAlign CopySrcAlign = MI->getSourceAlign();
130   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
131     MI->setSourceAlignment(SrcAlign);
132     return MI;
133   }
134 
135   // If we have a store to a location which is known constant, we can conclude
136   // that the store must be storing the constant value (else the memory
137   // wouldn't be constant), and this must be a noop.
138   if (AA->pointsToConstantMemory(MI->getDest())) {
139     // Set the size of the copy to 0, it will be deleted on the next iteration.
140     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
141     return MI;
142   }
143 
144   // If the source is provably undef, the memcpy/memmove doesn't do anything
145   // (unless the transfer is volatile).
146   if (hasUndefSource(MI) && !MI->isVolatile()) {
147     // Set the size of the copy to 0, it will be deleted on the next iteration.
148     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
149     return MI;
150   }
151 
152   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
153   // load/store.
154   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
155   if (!MemOpLength) return nullptr;
156 
157   // Source and destination pointer types are always "i8*" for intrinsic.  See
158   // if the size is something we can handle with a single primitive load/store.
159   // A single load+store correctly handles overlapping memory in the memmove
160   // case.
161   uint64_t Size = MemOpLength->getLimitedValue();
162   assert(Size && "0-sized memory transferring should be removed already.");
163 
164   if (Size > 8 || (Size&(Size-1)))
165     return nullptr;  // If not 1/2/4/8 bytes, exit.
166 
167   // If it is an atomic and alignment is less than the size then we will
168   // introduce the unaligned memory access which will be later transformed
169   // into libcall in CodeGen. This is not evident performance gain so disable
170   // it now.
171   if (isa<AtomicMemTransferInst>(MI))
172     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
173       return nullptr;
174 
175   // Use an integer load+store unless we can find something better.
176   unsigned SrcAddrSp =
177     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
178   unsigned DstAddrSp =
179     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
180 
181   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
182   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
183   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
184 
185   // If the memcpy has metadata describing the members, see if we can get the
186   // TBAA tag describing our copy.
187   MDNode *CopyMD = nullptr;
188   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
189     CopyMD = M;
190   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
191     if (M->getNumOperands() == 3 && M->getOperand(0) &&
192         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
193         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
194         M->getOperand(1) &&
195         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
196         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
197         Size &&
198         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
199       CopyMD = cast<MDNode>(M->getOperand(2));
200   }
201 
202   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
203   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
204   LoadInst *L = Builder.CreateLoad(IntType, Src);
205   // Alignment from the mem intrinsic will be better, so use it.
206   L->setAlignment(*CopySrcAlign);
207   if (CopyMD)
208     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
209   MDNode *LoopMemParallelMD =
210     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
211   if (LoopMemParallelMD)
212     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
213   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
214   if (AccessGroupMD)
215     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
216 
217   StoreInst *S = Builder.CreateStore(L, Dest);
218   // Alignment from the mem intrinsic will be better, so use it.
219   S->setAlignment(*CopyDstAlign);
220   if (CopyMD)
221     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
222   if (LoopMemParallelMD)
223     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
224   if (AccessGroupMD)
225     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
226 
227   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
228     // non-atomics can be volatile
229     L->setVolatile(MT->isVolatile());
230     S->setVolatile(MT->isVolatile());
231   }
232   if (isa<AtomicMemTransferInst>(MI)) {
233     // atomics have to be unordered
234     L->setOrdering(AtomicOrdering::Unordered);
235     S->setOrdering(AtomicOrdering::Unordered);
236   }
237 
238   // Set the size of the copy to 0, it will be deleted on the next iteration.
239   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
240   return MI;
241 }
242 
243 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
244   const Align KnownAlignment =
245       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
246   MaybeAlign MemSetAlign = MI->getDestAlign();
247   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
248     MI->setDestAlignment(KnownAlignment);
249     return MI;
250   }
251 
252   // If we have a store to a location which is known constant, we can conclude
253   // that the store must be storing the constant value (else the memory
254   // wouldn't be constant), and this must be a noop.
255   if (AA->pointsToConstantMemory(MI->getDest())) {
256     // Set the size of the copy to 0, it will be deleted on the next iteration.
257     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
258     return MI;
259   }
260 
261   // Remove memset with an undef value.
262   // FIXME: This is technically incorrect because it might overwrite a poison
263   // value. Change to PoisonValue once #52930 is resolved.
264   if (isa<UndefValue>(MI->getValue())) {
265     // Set the size of the copy to 0, it will be deleted on the next iteration.
266     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
267     return MI;
268   }
269 
270   // Extract the length and alignment and fill if they are constant.
271   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
272   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
273   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
274     return nullptr;
275   const uint64_t Len = LenC->getLimitedValue();
276   assert(Len && "0-sized memory setting should be removed already.");
277   const Align Alignment = MI->getDestAlign().valueOrOne();
278 
279   // If it is an atomic and alignment is less than the size then we will
280   // introduce the unaligned memory access which will be later transformed
281   // into libcall in CodeGen. This is not evident performance gain so disable
282   // it now.
283   if (isa<AtomicMemSetInst>(MI))
284     if (Alignment < Len)
285       return nullptr;
286 
287   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
288   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
289     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
290 
291     Value *Dest = MI->getDest();
292     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
293     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
294     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
295 
296     // Extract the fill value and store.
297     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
298     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
299                                        MI->isVolatile());
300     S->setAlignment(Alignment);
301     if (isa<AtomicMemSetInst>(MI))
302       S->setOrdering(AtomicOrdering::Unordered);
303 
304     // Set the size of the copy to 0, it will be deleted on the next iteration.
305     MI->setLength(Constant::getNullValue(LenC->getType()));
306     return MI;
307   }
308 
309   return nullptr;
310 }
311 
312 // TODO, Obvious Missing Transforms:
313 // * Narrow width by halfs excluding zero/undef lanes
314 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
315   Value *LoadPtr = II.getArgOperand(0);
316   const Align Alignment =
317       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
318 
319   // If the mask is all ones or undefs, this is a plain vector load of the 1st
320   // argument.
321   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
322     LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
323                                             "unmaskedload");
324     L->copyMetadata(II);
325     return L;
326   }
327 
328   // If we can unconditionally load from this address, replace with a
329   // load/select idiom. TODO: use DT for context sensitive query
330   if (isDereferenceablePointer(LoadPtr, II.getType(),
331                                II.getModule()->getDataLayout(), &II, nullptr)) {
332     LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
333                                              "unmaskedload");
334     LI->copyMetadata(II);
335     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
336   }
337 
338   return nullptr;
339 }
340 
341 // TODO, Obvious Missing Transforms:
342 // * Single constant active lane -> store
343 // * Narrow width by halfs excluding zero/undef lanes
344 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
345   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
346   if (!ConstMask)
347     return nullptr;
348 
349   // If the mask is all zeros, this instruction does nothing.
350   if (ConstMask->isNullValue())
351     return eraseInstFromFunction(II);
352 
353   // If the mask is all ones, this is a plain vector store of the 1st argument.
354   if (ConstMask->isAllOnesValue()) {
355     Value *StorePtr = II.getArgOperand(1);
356     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
357     StoreInst *S =
358         new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
359     S->copyMetadata(II);
360     return S;
361   }
362 
363   if (isa<ScalableVectorType>(ConstMask->getType()))
364     return nullptr;
365 
366   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
367   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
368   APInt UndefElts(DemandedElts.getBitWidth(), 0);
369   if (Value *V =
370           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
371     return replaceOperand(II, 0, V);
372 
373   return nullptr;
374 }
375 
376 // TODO, Obvious Missing Transforms:
377 // * Single constant active lane load -> load
378 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
379 // * Adjacent vector addresses -> masked.load
380 // * Narrow width by halfs excluding zero/undef lanes
381 // * Vector incrementing address -> vector masked load
382 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
383   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
384   if (!ConstMask)
385     return nullptr;
386 
387   // Vector splat address w/known mask -> scalar load
388   // Fold the gather to load the source vector first lane
389   // because it is reloading the same value each time
390   if (ConstMask->isAllOnesValue())
391     if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
392       auto *VecTy = cast<VectorType>(II.getType());
393       const Align Alignment =
394           cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
395       LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
396                                               Alignment, "load.scalar");
397       Value *Shuf =
398           Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
399       return replaceInstUsesWith(II, cast<Instruction>(Shuf));
400     }
401 
402   return nullptr;
403 }
404 
405 // TODO, Obvious Missing Transforms:
406 // * Single constant active lane -> store
407 // * Adjacent vector addresses -> masked.store
408 // * Narrow store width by halfs excluding zero/undef lanes
409 // * Vector incrementing address -> vector masked store
410 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
411   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
412   if (!ConstMask)
413     return nullptr;
414 
415   // If the mask is all zeros, a scatter does nothing.
416   if (ConstMask->isNullValue())
417     return eraseInstFromFunction(II);
418 
419   // Vector splat address -> scalar store
420   if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
421     // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
422     if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
423       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
424       StoreInst *S =
425           new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment);
426       S->copyMetadata(II);
427       return S;
428     }
429     // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
430     // lastlane), ptr
431     if (ConstMask->isAllOnesValue()) {
432       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
433       VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
434       ElementCount VF = WideLoadTy->getElementCount();
435       Constant *EC =
436           ConstantInt::get(Builder.getInt32Ty(), VF.getKnownMinValue());
437       Value *RunTimeVF = VF.isScalable() ? Builder.CreateVScale(EC) : EC;
438       Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
439       Value *Extract =
440           Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
441       StoreInst *S =
442           new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
443       S->copyMetadata(II);
444       return S;
445     }
446   }
447   if (isa<ScalableVectorType>(ConstMask->getType()))
448     return nullptr;
449 
450   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
451   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
452   APInt UndefElts(DemandedElts.getBitWidth(), 0);
453   if (Value *V =
454           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
455     return replaceOperand(II, 0, V);
456   if (Value *V =
457           SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
458     return replaceOperand(II, 1, V);
459 
460   return nullptr;
461 }
462 
463 /// This function transforms launder.invariant.group and strip.invariant.group
464 /// like:
465 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
466 /// launder(strip(%x)) -> launder(%x)
467 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
468 /// strip(launder(%x)) -> strip(%x)
469 /// This is legal because it preserves the most recent information about
470 /// the presence or absence of invariant.group.
471 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
472                                                     InstCombinerImpl &IC) {
473   auto *Arg = II.getArgOperand(0);
474   auto *StrippedArg = Arg->stripPointerCasts();
475   auto *StrippedInvariantGroupsArg = StrippedArg;
476   while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
477     if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
478         Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
479       break;
480     StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
481   }
482   if (StrippedArg == StrippedInvariantGroupsArg)
483     return nullptr; // No launders/strips to remove.
484 
485   Value *Result = nullptr;
486 
487   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
488     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
489   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
490     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
491   else
492     llvm_unreachable(
493         "simplifyInvariantGroupIntrinsic only handles launder and strip");
494   if (Result->getType()->getPointerAddressSpace() !=
495       II.getType()->getPointerAddressSpace())
496     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
497   if (Result->getType() != II.getType())
498     Result = IC.Builder.CreateBitCast(Result, II.getType());
499 
500   return cast<Instruction>(Result);
501 }
502 
503 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
504   assert((II.getIntrinsicID() == Intrinsic::cttz ||
505           II.getIntrinsicID() == Intrinsic::ctlz) &&
506          "Expected cttz or ctlz intrinsic");
507   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
508   Value *Op0 = II.getArgOperand(0);
509   Value *Op1 = II.getArgOperand(1);
510   Value *X;
511   // ctlz(bitreverse(x)) -> cttz(x)
512   // cttz(bitreverse(x)) -> ctlz(x)
513   if (match(Op0, m_BitReverse(m_Value(X)))) {
514     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
515     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
516     return CallInst::Create(F, {X, II.getArgOperand(1)});
517   }
518 
519   if (II.getType()->isIntOrIntVectorTy(1)) {
520     // ctlz/cttz i1 Op0 --> not Op0
521     if (match(Op1, m_Zero()))
522       return BinaryOperator::CreateNot(Op0);
523     // If zero is poison, then the input can be assumed to be "true", so the
524     // instruction simplifies to "false".
525     assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
526     return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
527   }
528 
529   // If the operand is a select with constant arm(s), try to hoist ctlz/cttz.
530   if (auto *Sel = dyn_cast<SelectInst>(Op0))
531     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
532       return R;
533 
534   if (IsTZ) {
535     // cttz(-x) -> cttz(x)
536     if (match(Op0, m_Neg(m_Value(X))))
537       return IC.replaceOperand(II, 0, X);
538 
539     // cttz(sext(x)) -> cttz(zext(x))
540     if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
541       auto *Zext = IC.Builder.CreateZExt(X, II.getType());
542       auto *CttzZext =
543           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
544       return IC.replaceInstUsesWith(II, CttzZext);
545     }
546 
547     // Zext doesn't change the number of trailing zeros, so narrow:
548     // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
549     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
550       auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
551                                                     IC.Builder.getTrue());
552       auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
553       return IC.replaceInstUsesWith(II, ZextCttz);
554     }
555 
556     // cttz(abs(x)) -> cttz(x)
557     // cttz(nabs(x)) -> cttz(x)
558     Value *Y;
559     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
560     if (SPF == SPF_ABS || SPF == SPF_NABS)
561       return IC.replaceOperand(II, 0, X);
562 
563     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
564       return IC.replaceOperand(II, 0, X);
565   }
566 
567   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
568 
569   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
570   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
571                                 : Known.countMaxLeadingZeros();
572   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
573                                 : Known.countMinLeadingZeros();
574 
575   // If all bits above (ctlz) or below (cttz) the first known one are known
576   // zero, this value is constant.
577   // FIXME: This should be in InstSimplify because we're replacing an
578   // instruction with a constant.
579   if (PossibleZeros == DefiniteZeros) {
580     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
581     return IC.replaceInstUsesWith(II, C);
582   }
583 
584   // If the input to cttz/ctlz is known to be non-zero,
585   // then change the 'ZeroIsPoison' parameter to 'true'
586   // because we know the zero behavior can't affect the result.
587   if (!Known.One.isZero() ||
588       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
589                      &IC.getDominatorTree())) {
590     if (!match(II.getArgOperand(1), m_One()))
591       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
592   }
593 
594   // Add range metadata since known bits can't completely reflect what we know.
595   // TODO: Handle splat vectors.
596   auto *IT = dyn_cast<IntegerType>(Op0->getType());
597   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
598     Metadata *LowAndHigh[] = {
599         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
600         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
601     II.setMetadata(LLVMContext::MD_range,
602                    MDNode::get(II.getContext(), LowAndHigh));
603     return &II;
604   }
605 
606   return nullptr;
607 }
608 
609 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
610   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
611          "Expected ctpop intrinsic");
612   Type *Ty = II.getType();
613   unsigned BitWidth = Ty->getScalarSizeInBits();
614   Value *Op0 = II.getArgOperand(0);
615   Value *X, *Y;
616 
617   // ctpop(bitreverse(x)) -> ctpop(x)
618   // ctpop(bswap(x)) -> ctpop(x)
619   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
620     return IC.replaceOperand(II, 0, X);
621 
622   // ctpop(rot(x)) -> ctpop(x)
623   if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
624        match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
625       X == Y)
626     return IC.replaceOperand(II, 0, X);
627 
628   // ctpop(x | -x) -> bitwidth - cttz(x, false)
629   if (Op0->hasOneUse() &&
630       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
631     Function *F =
632         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
633     auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
634     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
635     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
636   }
637 
638   // ctpop(~x & (x - 1)) -> cttz(x, false)
639   if (match(Op0,
640             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
641     Function *F =
642         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
643     return CallInst::Create(F, {X, IC.Builder.getFalse()});
644   }
645 
646   // Zext doesn't change the number of set bits, so narrow:
647   // ctpop (zext X) --> zext (ctpop X)
648   if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
649     Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
650     return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
651   }
652 
653   // If the operand is a select with constant arm(s), try to hoist ctpop.
654   if (auto *Sel = dyn_cast<SelectInst>(Op0))
655     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
656       return R;
657 
658   KnownBits Known(BitWidth);
659   IC.computeKnownBits(Op0, Known, 0, &II);
660 
661   // If all bits are zero except for exactly one fixed bit, then the result
662   // must be 0 or 1, and we can get that answer by shifting to LSB:
663   // ctpop (X & 32) --> (X & 32) >> 5
664   if ((~Known.Zero).isPowerOf2())
665     return BinaryOperator::CreateLShr(
666         Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
667 
668   // FIXME: Try to simplify vectors of integers.
669   auto *IT = dyn_cast<IntegerType>(Ty);
670   if (!IT)
671     return nullptr;
672 
673   // Add range metadata since known bits can't completely reflect what we know.
674   unsigned MinCount = Known.countMinPopulation();
675   unsigned MaxCount = Known.countMaxPopulation();
676   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
677     Metadata *LowAndHigh[] = {
678         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
679         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
680     II.setMetadata(LLVMContext::MD_range,
681                    MDNode::get(II.getContext(), LowAndHigh));
682     return &II;
683   }
684 
685   return nullptr;
686 }
687 
688 /// Convert a table lookup to shufflevector if the mask is constant.
689 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
690 /// which case we could lower the shufflevector with rev64 instructions
691 /// as it's actually a byte reverse.
692 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
693                                InstCombiner::BuilderTy &Builder) {
694   // Bail out if the mask is not a constant.
695   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
696   if (!C)
697     return nullptr;
698 
699   auto *VecTy = cast<FixedVectorType>(II.getType());
700   unsigned NumElts = VecTy->getNumElements();
701 
702   // Only perform this transformation for <8 x i8> vector types.
703   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
704     return nullptr;
705 
706   int Indexes[8];
707 
708   for (unsigned I = 0; I < NumElts; ++I) {
709     Constant *COp = C->getAggregateElement(I);
710 
711     if (!COp || !isa<ConstantInt>(COp))
712       return nullptr;
713 
714     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
715 
716     // Make sure the mask indices are in range.
717     if ((unsigned)Indexes[I] >= NumElts)
718       return nullptr;
719   }
720 
721   auto *V1 = II.getArgOperand(0);
722   auto *V2 = Constant::getNullValue(V1->getType());
723   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
724 }
725 
726 // Returns true iff the 2 intrinsics have the same operands, limiting the
727 // comparison to the first NumOperands.
728 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
729                              unsigned NumOperands) {
730   assert(I.arg_size() >= NumOperands && "Not enough operands");
731   assert(E.arg_size() >= NumOperands && "Not enough operands");
732   for (unsigned i = 0; i < NumOperands; i++)
733     if (I.getArgOperand(i) != E.getArgOperand(i))
734       return false;
735   return true;
736 }
737 
738 // Remove trivially empty start/end intrinsic ranges, i.e. a start
739 // immediately followed by an end (ignoring debuginfo or other
740 // start/end intrinsics in between). As this handles only the most trivial
741 // cases, tracking the nesting level is not needed:
742 //
743 //   call @llvm.foo.start(i1 0)
744 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
745 //   call @llvm.foo.end(i1 0)
746 //   call @llvm.foo.end(i1 0) ; &I
747 static bool
748 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
749                           std::function<bool(const IntrinsicInst &)> IsStart) {
750   // We start from the end intrinsic and scan backwards, so that InstCombine
751   // has already processed (and potentially removed) all the instructions
752   // before the end intrinsic.
753   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
754   for (; BI != BE; ++BI) {
755     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
756       if (I->isDebugOrPseudoInst() ||
757           I->getIntrinsicID() == EndI.getIntrinsicID())
758         continue;
759       if (IsStart(*I)) {
760         if (haveSameOperands(EndI, *I, EndI.arg_size())) {
761           IC.eraseInstFromFunction(*I);
762           IC.eraseInstFromFunction(EndI);
763           return true;
764         }
765         // Skip start intrinsics that don't pair with this end intrinsic.
766         continue;
767       }
768     }
769     break;
770   }
771 
772   return false;
773 }
774 
775 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
776   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
777     return I.getIntrinsicID() == Intrinsic::vastart ||
778            I.getIntrinsicID() == Intrinsic::vacopy;
779   });
780   return nullptr;
781 }
782 
783 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
784   assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
785   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
786   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
787     Call.setArgOperand(0, Arg1);
788     Call.setArgOperand(1, Arg0);
789     return &Call;
790   }
791   return nullptr;
792 }
793 
794 /// Creates a result tuple for an overflow intrinsic \p II with a given
795 /// \p Result and a constant \p Overflow value.
796 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
797                                         Constant *Overflow) {
798   Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
799   StructType *ST = cast<StructType>(II->getType());
800   Constant *Struct = ConstantStruct::get(ST, V);
801   return InsertValueInst::Create(Struct, Result, 0);
802 }
803 
804 Instruction *
805 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
806   WithOverflowInst *WO = cast<WithOverflowInst>(II);
807   Value *OperationResult = nullptr;
808   Constant *OverflowResult = nullptr;
809   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
810                             WO->getRHS(), *WO, OperationResult, OverflowResult))
811     return createOverflowTuple(WO, OperationResult, OverflowResult);
812   return nullptr;
813 }
814 
815 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
816                                    const DataLayout &DL, AssumptionCache *AC,
817                                    DominatorTree *DT) {
818   KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
819   if (Known.isNonNegative())
820     return false;
821   if (Known.isNegative())
822     return true;
823 
824   Value *X, *Y;
825   if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
826     return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL);
827 
828   return isImpliedByDomCondition(
829       ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
830 }
831 
832 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
833 /// can trigger other combines.
834 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
835                                        InstCombiner::BuilderTy &Builder) {
836   Intrinsic::ID MinMaxID = II->getIntrinsicID();
837   assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
838           MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
839          "Expected a min or max intrinsic");
840 
841   // TODO: Match vectors with undef elements, but undef may not propagate.
842   Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
843   Value *X;
844   const APInt *C0, *C1;
845   if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
846       !match(Op1, m_APInt(C1)))
847     return nullptr;
848 
849   // Check for necessary no-wrap and overflow constraints.
850   bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
851   auto *Add = cast<BinaryOperator>(Op0);
852   if ((IsSigned && !Add->hasNoSignedWrap()) ||
853       (!IsSigned && !Add->hasNoUnsignedWrap()))
854     return nullptr;
855 
856   // If the constant difference overflows, then instsimplify should reduce the
857   // min/max to the add or C1.
858   bool Overflow;
859   APInt CDiff =
860       IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
861   assert(!Overflow && "Expected simplify of min/max");
862 
863   // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
864   // Note: the "mismatched" no-overflow setting does not propagate.
865   Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
866   Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
867   return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
868                   : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
869 }
870 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
871 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
872   Type *Ty = MinMax1.getType();
873 
874   // We are looking for a tree of:
875   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
876   // Where the min and max could be reversed
877   Instruction *MinMax2;
878   BinaryOperator *AddSub;
879   const APInt *MinValue, *MaxValue;
880   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
881     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
882       return nullptr;
883   } else if (match(&MinMax1,
884                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
885     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
886       return nullptr;
887   } else
888     return nullptr;
889 
890   // Check that the constants clamp a saturate, and that the new type would be
891   // sensible to convert to.
892   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
893     return nullptr;
894   // In what bitwidth can this be treated as saturating arithmetics?
895   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
896   // FIXME: This isn't quite right for vectors, but using the scalar type is a
897   // good first approximation for what should be done there.
898   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
899     return nullptr;
900 
901   // Also make sure that the inner min/max and the add/sub have one use.
902   if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
903     return nullptr;
904 
905   // Create the new type (which can be a vector type)
906   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
907 
908   Intrinsic::ID IntrinsicID;
909   if (AddSub->getOpcode() == Instruction::Add)
910     IntrinsicID = Intrinsic::sadd_sat;
911   else if (AddSub->getOpcode() == Instruction::Sub)
912     IntrinsicID = Intrinsic::ssub_sat;
913   else
914     return nullptr;
915 
916   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
917   // is usually achieved via a sext from a smaller type.
918   if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
919           NewBitWidth ||
920       ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
921     return nullptr;
922 
923   // Finally create and return the sat intrinsic, truncated to the new type
924   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
925   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
926   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
927   Value *Sat = Builder.CreateCall(F, {AT, BT});
928   return CastInst::Create(Instruction::SExt, Sat, Ty);
929 }
930 
931 
932 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
933 /// can only be one of two possible constant values -- turn that into a select
934 /// of constants.
935 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
936                                         InstCombiner::BuilderTy &Builder) {
937   Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
938   Value *X;
939   const APInt *C0, *C1;
940   if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
941     return nullptr;
942 
943   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
944   switch (II->getIntrinsicID()) {
945   case Intrinsic::smax:
946     if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
947       Pred = ICmpInst::ICMP_SGT;
948     break;
949   case Intrinsic::smin:
950     if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
951       Pred = ICmpInst::ICMP_SLT;
952     break;
953   case Intrinsic::umax:
954     if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
955       Pred = ICmpInst::ICMP_UGT;
956     break;
957   case Intrinsic::umin:
958     if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
959       Pred = ICmpInst::ICMP_ULT;
960     break;
961   default:
962     llvm_unreachable("Expected min/max intrinsic");
963   }
964   if (Pred == CmpInst::BAD_ICMP_PREDICATE)
965     return nullptr;
966 
967   // max (min X, 42), 41 --> X > 41 ? 42 : 41
968   // min (max X, 42), 43 --> X < 43 ? 42 : 43
969   Value *Cmp = Builder.CreateICmp(Pred, X, I1);
970   return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
971 }
972 
973 /// If this min/max has a constant operand and an operand that is a matching
974 /// min/max with a constant operand, constant-fold the 2 constant operands.
975 static Instruction *reassociateMinMaxWithConstants(IntrinsicInst *II) {
976   Intrinsic::ID MinMaxID = II->getIntrinsicID();
977   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
978   if (!LHS || LHS->getIntrinsicID() != MinMaxID)
979     return nullptr;
980 
981   Constant *C0, *C1;
982   if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
983       !match(II->getArgOperand(1), m_ImmConstant(C1)))
984     return nullptr;
985 
986   // max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC
987   ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
988   Constant *CondC = ConstantExpr::getICmp(Pred, C0, C1);
989   Constant *NewC = ConstantExpr::getSelect(CondC, C0, C1);
990 
991   Module *Mod = II->getModule();
992   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
993   return CallInst::Create(MinMax, {LHS->getArgOperand(0), NewC});
994 }
995 
996 /// If this min/max has a matching min/max operand with a constant, try to push
997 /// the constant operand into this instruction. This can enable more folds.
998 static Instruction *
999 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1000                                        InstCombiner::BuilderTy &Builder) {
1001   // Match and capture a min/max operand candidate.
1002   Value *X, *Y;
1003   Constant *C;
1004   Instruction *Inner;
1005   if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1006                                   m_Instruction(Inner),
1007                                   m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1008                               m_Value(Y))))
1009     return nullptr;
1010 
1011   // The inner op must match. Check for constants to avoid infinite loops.
1012   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1013   auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1014   if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1015       match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1016     return nullptr;
1017 
1018   // max (max X, C), Y --> max (max X, Y), C
1019   Function *MinMax =
1020       Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1021   Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1022   NewInner->takeName(Inner);
1023   return CallInst::Create(MinMax, {NewInner, C});
1024 }
1025 
1026 /// Reduce a sequence of min/max intrinsics with a common operand.
1027 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1028   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1029   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1030   auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1031   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1032   if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1033       RHS->getIntrinsicID() != MinMaxID ||
1034       (!LHS->hasOneUse() && !RHS->hasOneUse()))
1035     return nullptr;
1036 
1037   Value *A = LHS->getArgOperand(0);
1038   Value *B = LHS->getArgOperand(1);
1039   Value *C = RHS->getArgOperand(0);
1040   Value *D = RHS->getArgOperand(1);
1041 
1042   // Look for a common operand.
1043   Value *MinMaxOp = nullptr;
1044   Value *ThirdOp = nullptr;
1045   if (LHS->hasOneUse()) {
1046     // If the LHS is only used in this chain and the RHS is used outside of it,
1047     // reuse the RHS min/max because that will eliminate the LHS.
1048     if (D == A || C == A) {
1049       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1050       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1051       MinMaxOp = RHS;
1052       ThirdOp = B;
1053     } else if (D == B || C == B) {
1054       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1055       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1056       MinMaxOp = RHS;
1057       ThirdOp = A;
1058     }
1059   } else {
1060     assert(RHS->hasOneUse() && "Expected one-use operand");
1061     // Reuse the LHS. This will eliminate the RHS.
1062     if (D == A || D == B) {
1063       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1064       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1065       MinMaxOp = LHS;
1066       ThirdOp = C;
1067     } else if (C == A || C == B) {
1068       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1069       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1070       MinMaxOp = LHS;
1071       ThirdOp = D;
1072     }
1073   }
1074 
1075   if (!MinMaxOp || !ThirdOp)
1076     return nullptr;
1077 
1078   Module *Mod = II->getModule();
1079   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1080   return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1081 }
1082 
1083 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1084 /// try to shuffle after the intrinsic.
1085 static Instruction *
1086 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1087                               InstCombiner::BuilderTy &Builder) {
1088   // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1089   //       etc. Use llvm::isTriviallyVectorizable() and related to determine
1090   //       which intrinsics are safe to shuffle?
1091   switch (II->getIntrinsicID()) {
1092   case Intrinsic::smax:
1093   case Intrinsic::smin:
1094   case Intrinsic::umax:
1095   case Intrinsic::umin:
1096   case Intrinsic::fma:
1097   case Intrinsic::fshl:
1098   case Intrinsic::fshr:
1099     break;
1100   default:
1101     return nullptr;
1102   }
1103 
1104   Value *X;
1105   ArrayRef<int> Mask;
1106   if (!match(II->getArgOperand(0),
1107              m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1108     return nullptr;
1109 
1110   // At least 1 operand must have 1 use because we are creating 2 instructions.
1111   if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1112     return nullptr;
1113 
1114   // See if all arguments are shuffled with the same mask.
1115   SmallVector<Value *, 4> NewArgs(II->arg_size());
1116   NewArgs[0] = X;
1117   Type *SrcTy = X->getType();
1118   for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1119     if (!match(II->getArgOperand(i),
1120                m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1121         X->getType() != SrcTy)
1122       return nullptr;
1123     NewArgs[i] = X;
1124   }
1125 
1126   // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1127   Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1128   Value *NewIntrinsic =
1129       Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1130   return new ShuffleVectorInst(NewIntrinsic, Mask);
1131 }
1132 
1133 /// CallInst simplification. This mostly only handles folding of intrinsic
1134 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1135 /// lifting.
1136 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1137   // Don't try to simplify calls without uses. It will not do anything useful,
1138   // but will result in the following folds being skipped.
1139   if (!CI.use_empty())
1140     if (Value *V = simplifyCall(&CI, SQ.getWithInstruction(&CI)))
1141       return replaceInstUsesWith(CI, V);
1142 
1143   if (isFreeCall(&CI, &TLI))
1144     return visitFree(CI);
1145 
1146   // If the caller function (i.e. us, the function that contains this CallInst)
1147   // is nounwind, mark the call as nounwind, even if the callee isn't.
1148   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1149     CI.setDoesNotThrow();
1150     return &CI;
1151   }
1152 
1153   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1154   if (!II) return visitCallBase(CI);
1155 
1156   // For atomic unordered mem intrinsics if len is not a positive or
1157   // not a multiple of element size then behavior is undefined.
1158   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1159     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1160       if (NumBytes->getSExtValue() < 0 ||
1161           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1162         CreateNonTerminatorUnreachable(AMI);
1163         assert(AMI->getType()->isVoidTy() &&
1164                "non void atomic unordered mem intrinsic");
1165         return eraseInstFromFunction(*AMI);
1166       }
1167 
1168   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1169   // instead of in visitCallBase.
1170   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1171     bool Changed = false;
1172 
1173     // memmove/cpy/set of zero bytes is a noop.
1174     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1175       if (NumBytes->isNullValue())
1176         return eraseInstFromFunction(CI);
1177     }
1178 
1179     // No other transformations apply to volatile transfers.
1180     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1181       if (M->isVolatile())
1182         return nullptr;
1183 
1184     // If we have a memmove and the source operation is a constant global,
1185     // then the source and dest pointers can't alias, so we can change this
1186     // into a call to memcpy.
1187     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1188       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1189         if (GVSrc->isConstant()) {
1190           Module *M = CI.getModule();
1191           Intrinsic::ID MemCpyID =
1192               isa<AtomicMemMoveInst>(MMI)
1193                   ? Intrinsic::memcpy_element_unordered_atomic
1194                   : Intrinsic::memcpy;
1195           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1196                            CI.getArgOperand(1)->getType(),
1197                            CI.getArgOperand(2)->getType() };
1198           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1199           Changed = true;
1200         }
1201     }
1202 
1203     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1204       // memmove(x,x,size) -> noop.
1205       if (MTI->getSource() == MTI->getDest())
1206         return eraseInstFromFunction(CI);
1207     }
1208 
1209     // If we can determine a pointer alignment that is bigger than currently
1210     // set, update the alignment.
1211     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1212       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1213         return I;
1214     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1215       if (Instruction *I = SimplifyAnyMemSet(MSI))
1216         return I;
1217     }
1218 
1219     if (Changed) return II;
1220   }
1221 
1222   // For fixed width vector result intrinsics, use the generic demanded vector
1223   // support.
1224   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1225     auto VWidth = IIFVTy->getNumElements();
1226     APInt UndefElts(VWidth, 0);
1227     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1228     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1229       if (V != II)
1230         return replaceInstUsesWith(*II, V);
1231       return II;
1232     }
1233   }
1234 
1235   if (II->isCommutative()) {
1236     if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1237       return NewCall;
1238   }
1239 
1240   // Unused constrained FP intrinsic calls may have declared side effect, which
1241   // prevents it from being removed. In some cases however the side effect is
1242   // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1243   // returns a replacement, the call may be removed.
1244   if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1245     if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1246       return eraseInstFromFunction(CI);
1247   }
1248 
1249   Intrinsic::ID IID = II->getIntrinsicID();
1250   switch (IID) {
1251   case Intrinsic::objectsize:
1252     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false))
1253       return replaceInstUsesWith(CI, V);
1254     return nullptr;
1255   case Intrinsic::abs: {
1256     Value *IIOperand = II->getArgOperand(0);
1257     bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1258 
1259     // abs(-x) -> abs(x)
1260     // TODO: Copy nsw if it was present on the neg?
1261     Value *X;
1262     if (match(IIOperand, m_Neg(m_Value(X))))
1263       return replaceOperand(*II, 0, X);
1264     if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1265       return replaceOperand(*II, 0, X);
1266     if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1267       return replaceOperand(*II, 0, X);
1268 
1269     if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
1270       // abs(x) -> x if x >= 0
1271       if (!*Sign)
1272         return replaceInstUsesWith(*II, IIOperand);
1273 
1274       // abs(x) -> -x if x < 0
1275       if (IntMinIsPoison)
1276         return BinaryOperator::CreateNSWNeg(IIOperand);
1277       return BinaryOperator::CreateNeg(IIOperand);
1278     }
1279 
1280     // abs (sext X) --> zext (abs X*)
1281     // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1282     if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1283       Value *NarrowAbs =
1284           Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1285       return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1286     }
1287 
1288     // Match a complicated way to check if a number is odd/even:
1289     // abs (srem X, 2) --> and X, 1
1290     const APInt *C;
1291     if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1292       return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1293 
1294     break;
1295   }
1296   case Intrinsic::umin: {
1297     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1298     // umin(x, 1) == zext(x != 0)
1299     if (match(I1, m_One())) {
1300       Value *Zero = Constant::getNullValue(I0->getType());
1301       Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1302       return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1303     }
1304     LLVM_FALLTHROUGH;
1305   }
1306   case Intrinsic::umax: {
1307     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1308     Value *X, *Y;
1309     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1310         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1311       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1312       return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1313     }
1314     Constant *C;
1315     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1316         I0->hasOneUse()) {
1317       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1318       if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
1319         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1320         return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1321       }
1322     }
1323     // If both operands of unsigned min/max are sign-extended, it is still ok
1324     // to narrow the operation.
1325     LLVM_FALLTHROUGH;
1326   }
1327   case Intrinsic::smax:
1328   case Intrinsic::smin: {
1329     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1330     Value *X, *Y;
1331     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1332         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1333       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1334       return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1335     }
1336 
1337     Constant *C;
1338     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1339         I0->hasOneUse()) {
1340       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1341       if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
1342         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1343         return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1344       }
1345     }
1346 
1347     if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1348       // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1349       // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1350       // TODO: Canonicalize neg after min/max if I1 is constant.
1351       if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1352           (I0->hasOneUse() || I1->hasOneUse())) {
1353         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1354         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1355         return BinaryOperator::CreateNSWNeg(InvMaxMin);
1356       }
1357     }
1358 
1359     // If we can eliminate ~A and Y is free to invert:
1360     // max ~A, Y --> ~(min A, ~Y)
1361     //
1362     // Examples:
1363     // max ~A, ~Y --> ~(min A, Y)
1364     // max ~A, C --> ~(min A, ~C)
1365     // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1366     auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1367       Value *A;
1368       if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1369           !isFreeToInvert(A, A->hasOneUse()) &&
1370           isFreeToInvert(Y, Y->hasOneUse())) {
1371         Value *NotY = Builder.CreateNot(Y);
1372         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1373         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1374         return BinaryOperator::CreateNot(InvMaxMin);
1375       }
1376       return nullptr;
1377     };
1378 
1379     if (Instruction *I = moveNotAfterMinMax(I0, I1))
1380       return I;
1381     if (Instruction *I = moveNotAfterMinMax(I1, I0))
1382       return I;
1383 
1384     if (Instruction *I = moveAddAfterMinMax(II, Builder))
1385       return I;
1386 
1387     // smax(X, -X) --> abs(X)
1388     // smin(X, -X) --> -abs(X)
1389     // umax(X, -X) --> -abs(X)
1390     // umin(X, -X) --> abs(X)
1391     if (isKnownNegation(I0, I1)) {
1392       // We can choose either operand as the input to abs(), but if we can
1393       // eliminate the only use of a value, that's better for subsequent
1394       // transforms/analysis.
1395       if (I0->hasOneUse() && !I1->hasOneUse())
1396         std::swap(I0, I1);
1397 
1398       // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1399       // operation and potentially its negation.
1400       bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1401       Value *Abs = Builder.CreateBinaryIntrinsic(
1402           Intrinsic::abs, I0,
1403           ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1404 
1405       // We don't have a "nabs" intrinsic, so negate if needed based on the
1406       // max/min operation.
1407       if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1408         Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1409       return replaceInstUsesWith(CI, Abs);
1410     }
1411 
1412     if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1413       return Sel;
1414 
1415     if (Instruction *SAdd = matchSAddSubSat(*II))
1416       return SAdd;
1417 
1418     if (match(I1, m_ImmConstant()))
1419       if (auto *Sel = dyn_cast<SelectInst>(I0))
1420         if (Instruction *R = FoldOpIntoSelect(*II, Sel))
1421           return R;
1422 
1423     if (Instruction *NewMinMax = reassociateMinMaxWithConstants(II))
1424       return NewMinMax;
1425 
1426     if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1427       return R;
1428 
1429     if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1430        return NewMinMax;
1431 
1432     break;
1433   }
1434   case Intrinsic::bswap: {
1435     Value *IIOperand = II->getArgOperand(0);
1436 
1437     // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1438     // inverse-shift-of-bswap:
1439     // bswap (shl X, Y) --> lshr (bswap X), Y
1440     // bswap (lshr X, Y) --> shl (bswap X), Y
1441     Value *X, *Y;
1442     if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1443       // The transform allows undef vector elements, so try a constant match
1444       // first. If knownbits can handle that case, that clause could be removed.
1445       unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1446       const APInt *C;
1447       if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
1448           MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
1449         Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1450         BinaryOperator::BinaryOps InverseShift =
1451             cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1452                 ? Instruction::LShr
1453                 : Instruction::Shl;
1454         return BinaryOperator::Create(InverseShift, NewSwap, Y);
1455       }
1456     }
1457 
1458     KnownBits Known = computeKnownBits(IIOperand, 0, II);
1459     uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1460     uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1461     unsigned BW = Known.getBitWidth();
1462 
1463     // bswap(x) -> shift(x) if x has exactly one "active byte"
1464     if (BW - LZ - TZ == 8) {
1465       assert(LZ != TZ && "active byte cannot be in the middle");
1466       if (LZ > TZ)  // -> shl(x) if the "active byte" is in the low part of x
1467         return BinaryOperator::CreateNUWShl(
1468             IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1469       // -> lshr(x) if the "active byte" is in the high part of x
1470       return BinaryOperator::CreateExactLShr(
1471             IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1472     }
1473 
1474     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1475     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1476       unsigned C = X->getType()->getScalarSizeInBits() - BW;
1477       Value *CV = ConstantInt::get(X->getType(), C);
1478       Value *V = Builder.CreateLShr(X, CV);
1479       return new TruncInst(V, IIOperand->getType());
1480     }
1481     break;
1482   }
1483   case Intrinsic::masked_load:
1484     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1485       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1486     break;
1487   case Intrinsic::masked_store:
1488     return simplifyMaskedStore(*II);
1489   case Intrinsic::masked_gather:
1490     return simplifyMaskedGather(*II);
1491   case Intrinsic::masked_scatter:
1492     return simplifyMaskedScatter(*II);
1493   case Intrinsic::launder_invariant_group:
1494   case Intrinsic::strip_invariant_group:
1495     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1496       return replaceInstUsesWith(*II, SkippedBarrier);
1497     break;
1498   case Intrinsic::powi:
1499     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1500       // 0 and 1 are handled in instsimplify
1501       // powi(x, -1) -> 1/x
1502       if (Power->isMinusOne())
1503         return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1504                                              II->getArgOperand(0), II);
1505       // powi(x, 2) -> x*x
1506       if (Power->equalsInt(2))
1507         return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1508                                              II->getArgOperand(0), II);
1509 
1510       if (!Power->getValue()[0]) {
1511         Value *X;
1512         // If power is even:
1513         // powi(-x, p) -> powi(x, p)
1514         // powi(fabs(x), p) -> powi(x, p)
1515         // powi(copysign(x, y), p) -> powi(x, p)
1516         if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1517             match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1518             match(II->getArgOperand(0),
1519                   m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1520           return replaceOperand(*II, 0, X);
1521       }
1522     }
1523     break;
1524 
1525   case Intrinsic::cttz:
1526   case Intrinsic::ctlz:
1527     if (auto *I = foldCttzCtlz(*II, *this))
1528       return I;
1529     break;
1530 
1531   case Intrinsic::ctpop:
1532     if (auto *I = foldCtpop(*II, *this))
1533       return I;
1534     break;
1535 
1536   case Intrinsic::fshl:
1537   case Intrinsic::fshr: {
1538     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1539     Type *Ty = II->getType();
1540     unsigned BitWidth = Ty->getScalarSizeInBits();
1541     Constant *ShAmtC;
1542     if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) &&
1543         !ShAmtC->containsConstantExpression()) {
1544       // Canonicalize a shift amount constant operand to modulo the bit-width.
1545       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1546       Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1547       if (ModuloC != ShAmtC)
1548         return replaceOperand(*II, 2, ModuloC);
1549 
1550       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1551                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1552              "Shift amount expected to be modulo bitwidth");
1553 
1554       // Canonicalize funnel shift right by constant to funnel shift left. This
1555       // is not entirely arbitrary. For historical reasons, the backend may
1556       // recognize rotate left patterns but miss rotate right patterns.
1557       if (IID == Intrinsic::fshr) {
1558         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1559         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1560         Module *Mod = II->getModule();
1561         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1562         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1563       }
1564       assert(IID == Intrinsic::fshl &&
1565              "All funnel shifts by simple constants should go left");
1566 
1567       // fshl(X, 0, C) --> shl X, C
1568       // fshl(X, undef, C) --> shl X, C
1569       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1570         return BinaryOperator::CreateShl(Op0, ShAmtC);
1571 
1572       // fshl(0, X, C) --> lshr X, (BW-C)
1573       // fshl(undef, X, C) --> lshr X, (BW-C)
1574       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1575         return BinaryOperator::CreateLShr(Op1,
1576                                           ConstantExpr::getSub(WidthC, ShAmtC));
1577 
1578       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1579       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1580         Module *Mod = II->getModule();
1581         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1582         return CallInst::Create(Bswap, { Op0 });
1583       }
1584     }
1585 
1586     // Left or right might be masked.
1587     if (SimplifyDemandedInstructionBits(*II))
1588       return &CI;
1589 
1590     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1591     // so only the low bits of the shift amount are demanded if the bitwidth is
1592     // a power-of-2.
1593     if (!isPowerOf2_32(BitWidth))
1594       break;
1595     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1596     KnownBits Op2Known(BitWidth);
1597     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1598       return &CI;
1599     break;
1600   }
1601   case Intrinsic::uadd_with_overflow:
1602   case Intrinsic::sadd_with_overflow: {
1603     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1604       return I;
1605 
1606     // Given 2 constant operands whose sum does not overflow:
1607     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1608     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1609     Value *X;
1610     const APInt *C0, *C1;
1611     Value *Arg0 = II->getArgOperand(0);
1612     Value *Arg1 = II->getArgOperand(1);
1613     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1614     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1615                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1616     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1617       bool Overflow;
1618       APInt NewC =
1619           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1620       if (!Overflow)
1621         return replaceInstUsesWith(
1622             *II, Builder.CreateBinaryIntrinsic(
1623                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1624     }
1625     break;
1626   }
1627 
1628   case Intrinsic::umul_with_overflow:
1629   case Intrinsic::smul_with_overflow:
1630   case Intrinsic::usub_with_overflow:
1631     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1632       return I;
1633     break;
1634 
1635   case Intrinsic::ssub_with_overflow: {
1636     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1637       return I;
1638 
1639     Constant *C;
1640     Value *Arg0 = II->getArgOperand(0);
1641     Value *Arg1 = II->getArgOperand(1);
1642     // Given a constant C that is not the minimum signed value
1643     // for an integer of a given bit width:
1644     //
1645     // ssubo X, C -> saddo X, -C
1646     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1647       Value *NegVal = ConstantExpr::getNeg(C);
1648       // Build a saddo call that is equivalent to the discovered
1649       // ssubo call.
1650       return replaceInstUsesWith(
1651           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1652                                              Arg0, NegVal));
1653     }
1654 
1655     break;
1656   }
1657 
1658   case Intrinsic::uadd_sat:
1659   case Intrinsic::sadd_sat:
1660   case Intrinsic::usub_sat:
1661   case Intrinsic::ssub_sat: {
1662     SaturatingInst *SI = cast<SaturatingInst>(II);
1663     Type *Ty = SI->getType();
1664     Value *Arg0 = SI->getLHS();
1665     Value *Arg1 = SI->getRHS();
1666 
1667     // Make use of known overflow information.
1668     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1669                                         Arg0, Arg1, SI);
1670     switch (OR) {
1671       case OverflowResult::MayOverflow:
1672         break;
1673       case OverflowResult::NeverOverflows:
1674         if (SI->isSigned())
1675           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1676         else
1677           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1678       case OverflowResult::AlwaysOverflowsLow: {
1679         unsigned BitWidth = Ty->getScalarSizeInBits();
1680         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1681         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1682       }
1683       case OverflowResult::AlwaysOverflowsHigh: {
1684         unsigned BitWidth = Ty->getScalarSizeInBits();
1685         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1686         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1687       }
1688     }
1689 
1690     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1691     Constant *C;
1692     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1693         C->isNotMinSignedValue()) {
1694       Value *NegVal = ConstantExpr::getNeg(C);
1695       return replaceInstUsesWith(
1696           *II, Builder.CreateBinaryIntrinsic(
1697               Intrinsic::sadd_sat, Arg0, NegVal));
1698     }
1699 
1700     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1701     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1702     // if Val and Val2 have the same sign
1703     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1704       Value *X;
1705       const APInt *Val, *Val2;
1706       APInt NewVal;
1707       bool IsUnsigned =
1708           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1709       if (Other->getIntrinsicID() == IID &&
1710           match(Arg1, m_APInt(Val)) &&
1711           match(Other->getArgOperand(0), m_Value(X)) &&
1712           match(Other->getArgOperand(1), m_APInt(Val2))) {
1713         if (IsUnsigned)
1714           NewVal = Val->uadd_sat(*Val2);
1715         else if (Val->isNonNegative() == Val2->isNonNegative()) {
1716           bool Overflow;
1717           NewVal = Val->sadd_ov(*Val2, Overflow);
1718           if (Overflow) {
1719             // Both adds together may add more than SignedMaxValue
1720             // without saturating the final result.
1721             break;
1722           }
1723         } else {
1724           // Cannot fold saturated addition with different signs.
1725           break;
1726         }
1727 
1728         return replaceInstUsesWith(
1729             *II, Builder.CreateBinaryIntrinsic(
1730                      IID, X, ConstantInt::get(II->getType(), NewVal)));
1731       }
1732     }
1733     break;
1734   }
1735 
1736   case Intrinsic::minnum:
1737   case Intrinsic::maxnum:
1738   case Intrinsic::minimum:
1739   case Intrinsic::maximum: {
1740     Value *Arg0 = II->getArgOperand(0);
1741     Value *Arg1 = II->getArgOperand(1);
1742     Value *X, *Y;
1743     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1744         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1745       // If both operands are negated, invert the call and negate the result:
1746       // min(-X, -Y) --> -(max(X, Y))
1747       // max(-X, -Y) --> -(min(X, Y))
1748       Intrinsic::ID NewIID;
1749       switch (IID) {
1750       case Intrinsic::maxnum:
1751         NewIID = Intrinsic::minnum;
1752         break;
1753       case Intrinsic::minnum:
1754         NewIID = Intrinsic::maxnum;
1755         break;
1756       case Intrinsic::maximum:
1757         NewIID = Intrinsic::minimum;
1758         break;
1759       case Intrinsic::minimum:
1760         NewIID = Intrinsic::maximum;
1761         break;
1762       default:
1763         llvm_unreachable("unexpected intrinsic ID");
1764       }
1765       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1766       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1767       FNeg->copyIRFlags(II);
1768       return FNeg;
1769     }
1770 
1771     // m(m(X, C2), C1) -> m(X, C)
1772     const APFloat *C1, *C2;
1773     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1774       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1775           ((match(M->getArgOperand(0), m_Value(X)) &&
1776             match(M->getArgOperand(1), m_APFloat(C2))) ||
1777            (match(M->getArgOperand(1), m_Value(X)) &&
1778             match(M->getArgOperand(0), m_APFloat(C2))))) {
1779         APFloat Res(0.0);
1780         switch (IID) {
1781         case Intrinsic::maxnum:
1782           Res = maxnum(*C1, *C2);
1783           break;
1784         case Intrinsic::minnum:
1785           Res = minnum(*C1, *C2);
1786           break;
1787         case Intrinsic::maximum:
1788           Res = maximum(*C1, *C2);
1789           break;
1790         case Intrinsic::minimum:
1791           Res = minimum(*C1, *C2);
1792           break;
1793         default:
1794           llvm_unreachable("unexpected intrinsic ID");
1795         }
1796         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1797             IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1798         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1799         //       was a simplification (so Arg0 and its original flags could
1800         //       propagate?)
1801         NewCall->andIRFlags(M);
1802         return replaceInstUsesWith(*II, NewCall);
1803       }
1804     }
1805 
1806     // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
1807     if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
1808         match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
1809         X->getType() == Y->getType()) {
1810       Value *NewCall =
1811           Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
1812       return new FPExtInst(NewCall, II->getType());
1813     }
1814 
1815     // max X, -X --> fabs X
1816     // min X, -X --> -(fabs X)
1817     // TODO: Remove one-use limitation? That is obviously better for max.
1818     //       It would be an extra instruction for min (fnabs), but that is
1819     //       still likely better for analysis and codegen.
1820     if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
1821         (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
1822       Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
1823       if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
1824         R = Builder.CreateFNegFMF(R, II);
1825       return replaceInstUsesWith(*II, R);
1826     }
1827 
1828     break;
1829   }
1830   case Intrinsic::fmuladd: {
1831     // Canonicalize fast fmuladd to the separate fmul + fadd.
1832     if (II->isFast()) {
1833       BuilderTy::FastMathFlagGuard Guard(Builder);
1834       Builder.setFastMathFlags(II->getFastMathFlags());
1835       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1836                                       II->getArgOperand(1));
1837       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1838       Add->takeName(II);
1839       return replaceInstUsesWith(*II, Add);
1840     }
1841 
1842     // Try to simplify the underlying FMul.
1843     if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1844                                     II->getFastMathFlags(),
1845                                     SQ.getWithInstruction(II))) {
1846       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1847       FAdd->copyFastMathFlags(II);
1848       return FAdd;
1849     }
1850 
1851     LLVM_FALLTHROUGH;
1852   }
1853   case Intrinsic::fma: {
1854     // fma fneg(x), fneg(y), z -> fma x, y, z
1855     Value *Src0 = II->getArgOperand(0);
1856     Value *Src1 = II->getArgOperand(1);
1857     Value *X, *Y;
1858     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1859       replaceOperand(*II, 0, X);
1860       replaceOperand(*II, 1, Y);
1861       return II;
1862     }
1863 
1864     // fma fabs(x), fabs(x), z -> fma x, x, z
1865     if (match(Src0, m_FAbs(m_Value(X))) &&
1866         match(Src1, m_FAbs(m_Specific(X)))) {
1867       replaceOperand(*II, 0, X);
1868       replaceOperand(*II, 1, X);
1869       return II;
1870     }
1871 
1872     // Try to simplify the underlying FMul. We can only apply simplifications
1873     // that do not require rounding.
1874     if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1875                                    II->getFastMathFlags(),
1876                                    SQ.getWithInstruction(II))) {
1877       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1878       FAdd->copyFastMathFlags(II);
1879       return FAdd;
1880     }
1881 
1882     // fma x, y, 0 -> fmul x, y
1883     // This is always valid for -0.0, but requires nsz for +0.0 as
1884     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1885     if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1886         (match(II->getArgOperand(2), m_PosZeroFP()) &&
1887          II->getFastMathFlags().noSignedZeros()))
1888       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1889 
1890     break;
1891   }
1892   case Intrinsic::copysign: {
1893     Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1894     if (SignBitMustBeZero(Sign, &TLI)) {
1895       // If we know that the sign argument is positive, reduce to FABS:
1896       // copysign Mag, +Sign --> fabs Mag
1897       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1898       return replaceInstUsesWith(*II, Fabs);
1899     }
1900     // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1901     const APFloat *C;
1902     if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1903       // If we know that the sign argument is negative, reduce to FNABS:
1904       // copysign Mag, -Sign --> fneg (fabs Mag)
1905       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1906       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1907     }
1908 
1909     // Propagate sign argument through nested calls:
1910     // copysign Mag, (copysign ?, X) --> copysign Mag, X
1911     Value *X;
1912     if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
1913       return replaceOperand(*II, 1, X);
1914 
1915     // Peek through changes of magnitude's sign-bit. This call rewrites those:
1916     // copysign (fabs X), Sign --> copysign X, Sign
1917     // copysign (fneg X), Sign --> copysign X, Sign
1918     if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
1919       return replaceOperand(*II, 0, X);
1920 
1921     break;
1922   }
1923   case Intrinsic::fabs: {
1924     Value *Cond, *TVal, *FVal;
1925     if (match(II->getArgOperand(0),
1926               m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
1927       // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
1928       if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
1929         CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
1930         CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
1931         return SelectInst::Create(Cond, AbsT, AbsF);
1932       }
1933       // fabs (select Cond, -FVal, FVal) --> fabs FVal
1934       if (match(TVal, m_FNeg(m_Specific(FVal))))
1935         return replaceOperand(*II, 0, FVal);
1936       // fabs (select Cond, TVal, -TVal) --> fabs TVal
1937       if (match(FVal, m_FNeg(m_Specific(TVal))))
1938         return replaceOperand(*II, 0, TVal);
1939     }
1940 
1941     LLVM_FALLTHROUGH;
1942   }
1943   case Intrinsic::ceil:
1944   case Intrinsic::floor:
1945   case Intrinsic::round:
1946   case Intrinsic::roundeven:
1947   case Intrinsic::nearbyint:
1948   case Intrinsic::rint:
1949   case Intrinsic::trunc: {
1950     Value *ExtSrc;
1951     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
1952       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
1953       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
1954       return new FPExtInst(NarrowII, II->getType());
1955     }
1956     break;
1957   }
1958   case Intrinsic::cos:
1959   case Intrinsic::amdgcn_cos: {
1960     Value *X;
1961     Value *Src = II->getArgOperand(0);
1962     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
1963       // cos(-x) -> cos(x)
1964       // cos(fabs(x)) -> cos(x)
1965       return replaceOperand(*II, 0, X);
1966     }
1967     break;
1968   }
1969   case Intrinsic::sin: {
1970     Value *X;
1971     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
1972       // sin(-x) --> -sin(x)
1973       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
1974       Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
1975       FNeg->copyFastMathFlags(II);
1976       return FNeg;
1977     }
1978     break;
1979   }
1980 
1981   case Intrinsic::arm_neon_vtbl1:
1982   case Intrinsic::aarch64_neon_tbl1:
1983     if (Value *V = simplifyNeonTbl1(*II, Builder))
1984       return replaceInstUsesWith(*II, V);
1985     break;
1986 
1987   case Intrinsic::arm_neon_vmulls:
1988   case Intrinsic::arm_neon_vmullu:
1989   case Intrinsic::aarch64_neon_smull:
1990   case Intrinsic::aarch64_neon_umull: {
1991     Value *Arg0 = II->getArgOperand(0);
1992     Value *Arg1 = II->getArgOperand(1);
1993 
1994     // Handle mul by zero first:
1995     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1996       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1997     }
1998 
1999     // Check for constant LHS & RHS - in this case we just simplify.
2000     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2001                  IID == Intrinsic::aarch64_neon_umull);
2002     VectorType *NewVT = cast<VectorType>(II->getType());
2003     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2004       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2005         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
2006         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
2007 
2008         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
2009       }
2010 
2011       // Couldn't simplify - canonicalize constant to the RHS.
2012       std::swap(Arg0, Arg1);
2013     }
2014 
2015     // Handle mul by one:
2016     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2017       if (ConstantInt *Splat =
2018               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2019         if (Splat->isOne())
2020           return CastInst::CreateIntegerCast(Arg0, II->getType(),
2021                                              /*isSigned=*/!Zext);
2022 
2023     break;
2024   }
2025   case Intrinsic::arm_neon_aesd:
2026   case Intrinsic::arm_neon_aese:
2027   case Intrinsic::aarch64_crypto_aesd:
2028   case Intrinsic::aarch64_crypto_aese: {
2029     Value *DataArg = II->getArgOperand(0);
2030     Value *KeyArg  = II->getArgOperand(1);
2031 
2032     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2033     Value *Data, *Key;
2034     if (match(KeyArg, m_ZeroInt()) &&
2035         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2036       replaceOperand(*II, 0, Data);
2037       replaceOperand(*II, 1, Key);
2038       return II;
2039     }
2040     break;
2041   }
2042   case Intrinsic::hexagon_V6_vandvrt:
2043   case Intrinsic::hexagon_V6_vandvrt_128B: {
2044     // Simplify Q -> V -> Q conversion.
2045     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2046       Intrinsic::ID ID0 = Op0->getIntrinsicID();
2047       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2048           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2049         break;
2050       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2051       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2052       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2053       // Check if every byte has common bits in Bytes and Mask.
2054       uint64_t C = Bytes1 & Mask1;
2055       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2056         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2057     }
2058     break;
2059   }
2060   case Intrinsic::stackrestore: {
2061     enum class ClassifyResult {
2062       None,
2063       Alloca,
2064       StackRestore,
2065       CallWithSideEffects,
2066     };
2067     auto Classify = [](const Instruction *I) {
2068       if (isa<AllocaInst>(I))
2069         return ClassifyResult::Alloca;
2070 
2071       if (auto *CI = dyn_cast<CallInst>(I)) {
2072         if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2073           if (II->getIntrinsicID() == Intrinsic::stackrestore)
2074             return ClassifyResult::StackRestore;
2075 
2076           if (II->mayHaveSideEffects())
2077             return ClassifyResult::CallWithSideEffects;
2078         } else {
2079           // Consider all non-intrinsic calls to be side effects
2080           return ClassifyResult::CallWithSideEffects;
2081         }
2082       }
2083 
2084       return ClassifyResult::None;
2085     };
2086 
2087     // If the stacksave and the stackrestore are in the same BB, and there is
2088     // no intervening call, alloca, or stackrestore of a different stacksave,
2089     // remove the restore. This can happen when variable allocas are DCE'd.
2090     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2091       if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2092           SS->getParent() == II->getParent()) {
2093         BasicBlock::iterator BI(SS);
2094         bool CannotRemove = false;
2095         for (++BI; &*BI != II; ++BI) {
2096           switch (Classify(&*BI)) {
2097           case ClassifyResult::None:
2098             // So far so good, look at next instructions.
2099             break;
2100 
2101           case ClassifyResult::StackRestore:
2102             // If we found an intervening stackrestore for a different
2103             // stacksave, we can't remove the stackrestore. Otherwise, continue.
2104             if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2105               CannotRemove = true;
2106             break;
2107 
2108           case ClassifyResult::Alloca:
2109           case ClassifyResult::CallWithSideEffects:
2110             // If we found an alloca, a non-intrinsic call, or an intrinsic
2111             // call with side effects, we can't remove the stackrestore.
2112             CannotRemove = true;
2113             break;
2114           }
2115           if (CannotRemove)
2116             break;
2117         }
2118 
2119         if (!CannotRemove)
2120           return eraseInstFromFunction(CI);
2121       }
2122     }
2123 
2124     // Scan down this block to see if there is another stack restore in the
2125     // same block without an intervening call/alloca.
2126     BasicBlock::iterator BI(II);
2127     Instruction *TI = II->getParent()->getTerminator();
2128     bool CannotRemove = false;
2129     for (++BI; &*BI != TI; ++BI) {
2130       switch (Classify(&*BI)) {
2131       case ClassifyResult::None:
2132         // So far so good, look at next instructions.
2133         break;
2134 
2135       case ClassifyResult::StackRestore:
2136         // If there is a stackrestore below this one, remove this one.
2137         return eraseInstFromFunction(CI);
2138 
2139       case ClassifyResult::Alloca:
2140       case ClassifyResult::CallWithSideEffects:
2141         // If we found an alloca, a non-intrinsic call, or an intrinsic call
2142         // with side effects (such as llvm.stacksave and llvm.read_register),
2143         // we can't remove the stack restore.
2144         CannotRemove = true;
2145         break;
2146       }
2147       if (CannotRemove)
2148         break;
2149     }
2150 
2151     // If the stack restore is in a return, resume, or unwind block and if there
2152     // are no allocas or calls between the restore and the return, nuke the
2153     // restore.
2154     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2155       return eraseInstFromFunction(CI);
2156     break;
2157   }
2158   case Intrinsic::lifetime_end:
2159     // Asan needs to poison memory to detect invalid access which is possible
2160     // even for empty lifetime range.
2161     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2162         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2163         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2164       break;
2165 
2166     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2167           return I.getIntrinsicID() == Intrinsic::lifetime_start;
2168         }))
2169       return nullptr;
2170     break;
2171   case Intrinsic::assume: {
2172     Value *IIOperand = II->getArgOperand(0);
2173     SmallVector<OperandBundleDef, 4> OpBundles;
2174     II->getOperandBundlesAsDefs(OpBundles);
2175 
2176     /// This will remove the boolean Condition from the assume given as
2177     /// argument and remove the assume if it becomes useless.
2178     /// always returns nullptr for use as a return values.
2179     auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2180       assert(isa<AssumeInst>(Assume));
2181       if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2182         return eraseInstFromFunction(CI);
2183       replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
2184       return nullptr;
2185     };
2186     // Remove an assume if it is followed by an identical assume.
2187     // TODO: Do we need this? Unless there are conflicting assumptions, the
2188     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2189     Instruction *Next = II->getNextNonDebugInstruction();
2190     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2191       return RemoveConditionFromAssume(Next);
2192 
2193     // Canonicalize assume(a && b) -> assume(a); assume(b);
2194     // Note: New assumption intrinsics created here are registered by
2195     // the InstCombineIRInserter object.
2196     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2197     Value *AssumeIntrinsic = II->getCalledOperand();
2198     Value *A, *B;
2199     if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
2200       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
2201                          II->getName());
2202       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
2203       return eraseInstFromFunction(*II);
2204     }
2205     // assume(!(a || b)) -> assume(!a); assume(!b);
2206     if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
2207       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2208                          Builder.CreateNot(A), OpBundles, II->getName());
2209       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2210                          Builder.CreateNot(B), II->getName());
2211       return eraseInstFromFunction(*II);
2212     }
2213 
2214     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2215     // (if assume is valid at the load)
2216     CmpInst::Predicate Pred;
2217     Instruction *LHS;
2218     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
2219         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2220         LHS->getType()->isPointerTy() &&
2221         isValidAssumeForContext(II, LHS, &DT)) {
2222       MDNode *MD = MDNode::get(II->getContext(), None);
2223       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2224       return RemoveConditionFromAssume(II);
2225 
2226       // TODO: apply nonnull return attributes to calls and invokes
2227       // TODO: apply range metadata for range check patterns?
2228     }
2229 
2230     // Convert nonnull assume like:
2231     // %A = icmp ne i32* %PTR, null
2232     // call void @llvm.assume(i1 %A)
2233     // into
2234     // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2235     if (EnableKnowledgeRetention &&
2236         match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2237         Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2238       if (auto *Replacement = buildAssumeFromKnowledge(
2239               {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2240 
2241         Replacement->insertBefore(Next);
2242         AC.registerAssumption(Replacement);
2243         return RemoveConditionFromAssume(II);
2244       }
2245     }
2246 
2247     // Convert alignment assume like:
2248     // %B = ptrtoint i32* %A to i64
2249     // %C = and i64 %B, Constant
2250     // %D = icmp eq i64 %C, 0
2251     // call void @llvm.assume(i1 %D)
2252     // into
2253     // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64  Constant + 1)]
2254     uint64_t AlignMask;
2255     if (EnableKnowledgeRetention &&
2256         match(IIOperand,
2257               m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2258                     m_Zero())) &&
2259         Pred == CmpInst::ICMP_EQ) {
2260       if (isPowerOf2_64(AlignMask + 1)) {
2261         uint64_t Offset = 0;
2262         match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
2263         if (match(A, m_PtrToInt(m_Value(A)))) {
2264           /// Note: this doesn't preserve the offset information but merges
2265           /// offset and alignment.
2266           /// TODO: we can generate a GEP instead of merging the alignment with
2267           /// the offset.
2268           RetainedKnowledge RK{Attribute::Alignment,
2269                                (unsigned)MinAlign(Offset, AlignMask + 1), A};
2270           if (auto *Replacement =
2271                   buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2272 
2273             Replacement->insertAfter(II);
2274             AC.registerAssumption(Replacement);
2275           }
2276           return RemoveConditionFromAssume(II);
2277         }
2278       }
2279     }
2280 
2281     /// Canonicalize Knowledge in operand bundles.
2282     if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2283       for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2284         auto &BOI = II->bundle_op_info_begin()[Idx];
2285         RetainedKnowledge RK =
2286           llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2287         if (BOI.End - BOI.Begin > 2)
2288           continue; // Prevent reducing knowledge in an align with offset since
2289                     // extracting a RetainedKnowledge form them looses offset
2290                     // information
2291         RetainedKnowledge CanonRK =
2292           llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2293                                           &getAssumptionCache(),
2294                                           &getDominatorTree());
2295         if (CanonRK == RK)
2296           continue;
2297         if (!CanonRK) {
2298           if (BOI.End - BOI.Begin > 0) {
2299             Worklist.pushValue(II->op_begin()[BOI.Begin]);
2300             Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2301           }
2302           continue;
2303         }
2304         assert(RK.AttrKind == CanonRK.AttrKind);
2305         if (BOI.End - BOI.Begin > 0)
2306           II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2307         if (BOI.End - BOI.Begin > 1)
2308           II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2309               Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2310         if (RK.WasOn)
2311           Worklist.pushValue(RK.WasOn);
2312         return II;
2313       }
2314     }
2315 
2316     // If there is a dominating assume with the same condition as this one,
2317     // then this one is redundant, and should be removed.
2318     KnownBits Known(1);
2319     computeKnownBits(IIOperand, Known, 0, II);
2320     if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2321       return eraseInstFromFunction(*II);
2322 
2323     // Update the cache of affected values for this assumption (we might be
2324     // here because we just simplified the condition).
2325     AC.updateAffectedValues(cast<AssumeInst>(II));
2326     break;
2327   }
2328   case Intrinsic::experimental_guard: {
2329     // Is this guard followed by another guard?  We scan forward over a small
2330     // fixed window of instructions to handle common cases with conditions
2331     // computed between guards.
2332     Instruction *NextInst = II->getNextNonDebugInstruction();
2333     for (unsigned i = 0; i < GuardWideningWindow; i++) {
2334       // Note: Using context-free form to avoid compile time blow up
2335       if (!isSafeToSpeculativelyExecute(NextInst))
2336         break;
2337       NextInst = NextInst->getNextNonDebugInstruction();
2338     }
2339     Value *NextCond = nullptr;
2340     if (match(NextInst,
2341               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2342       Value *CurrCond = II->getArgOperand(0);
2343 
2344       // Remove a guard that it is immediately preceded by an identical guard.
2345       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
2346       if (CurrCond != NextCond) {
2347         Instruction *MoveI = II->getNextNonDebugInstruction();
2348         while (MoveI != NextInst) {
2349           auto *Temp = MoveI;
2350           MoveI = MoveI->getNextNonDebugInstruction();
2351           Temp->moveBefore(II);
2352         }
2353         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
2354       }
2355       eraseInstFromFunction(*NextInst);
2356       return II;
2357     }
2358     break;
2359   }
2360   case Intrinsic::experimental_vector_insert: {
2361     Value *Vec = II->getArgOperand(0);
2362     Value *SubVec = II->getArgOperand(1);
2363     Value *Idx = II->getArgOperand(2);
2364     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2365     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2366     auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
2367 
2368     // Only canonicalize if the destination vector, Vec, and SubVec are all
2369     // fixed vectors.
2370     if (DstTy && VecTy && SubVecTy) {
2371       unsigned DstNumElts = DstTy->getNumElements();
2372       unsigned VecNumElts = VecTy->getNumElements();
2373       unsigned SubVecNumElts = SubVecTy->getNumElements();
2374       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2375 
2376       // An insert that entirely overwrites Vec with SubVec is a nop.
2377       if (VecNumElts == SubVecNumElts)
2378         return replaceInstUsesWith(CI, SubVec);
2379 
2380       // Widen SubVec into a vector of the same width as Vec, since
2381       // shufflevector requires the two input vectors to be the same width.
2382       // Elements beyond the bounds of SubVec within the widened vector are
2383       // undefined.
2384       SmallVector<int, 8> WidenMask;
2385       unsigned i;
2386       for (i = 0; i != SubVecNumElts; ++i)
2387         WidenMask.push_back(i);
2388       for (; i != VecNumElts; ++i)
2389         WidenMask.push_back(UndefMaskElem);
2390 
2391       Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
2392 
2393       SmallVector<int, 8> Mask;
2394       for (unsigned i = 0; i != IdxN; ++i)
2395         Mask.push_back(i);
2396       for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
2397         Mask.push_back(i);
2398       for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
2399         Mask.push_back(i);
2400 
2401       Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
2402       return replaceInstUsesWith(CI, Shuffle);
2403     }
2404     break;
2405   }
2406   case Intrinsic::experimental_vector_extract: {
2407     Value *Vec = II->getArgOperand(0);
2408     Value *Idx = II->getArgOperand(1);
2409 
2410     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2411     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2412 
2413     // Only canonicalize if the the destination vector and Vec are fixed
2414     // vectors.
2415     if (DstTy && VecTy) {
2416       unsigned DstNumElts = DstTy->getNumElements();
2417       unsigned VecNumElts = VecTy->getNumElements();
2418       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2419 
2420       // Extracting the entirety of Vec is a nop.
2421       if (VecNumElts == DstNumElts) {
2422         replaceInstUsesWith(CI, Vec);
2423         return eraseInstFromFunction(CI);
2424       }
2425 
2426       SmallVector<int, 8> Mask;
2427       for (unsigned i = 0; i != DstNumElts; ++i)
2428         Mask.push_back(IdxN + i);
2429 
2430       Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
2431       return replaceInstUsesWith(CI, Shuffle);
2432     }
2433     break;
2434   }
2435   case Intrinsic::experimental_vector_reverse: {
2436     Value *BO0, *BO1, *X, *Y;
2437     Value *Vec = II->getArgOperand(0);
2438     if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
2439       auto *OldBinOp = cast<BinaryOperator>(Vec);
2440       if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2441                          m_Value(X)))) {
2442         // rev(binop rev(X), rev(Y)) --> binop X, Y
2443         if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2444                            m_Value(Y))))
2445           return replaceInstUsesWith(CI,
2446                                      BinaryOperator::CreateWithCopiedFlags(
2447                                          OldBinOp->getOpcode(), X, Y, OldBinOp,
2448                                          OldBinOp->getName(), II));
2449         // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
2450         if (isSplatValue(BO1))
2451           return replaceInstUsesWith(CI,
2452                                      BinaryOperator::CreateWithCopiedFlags(
2453                                          OldBinOp->getOpcode(), X, BO1,
2454                                          OldBinOp, OldBinOp->getName(), II));
2455       }
2456       // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
2457       if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2458                          m_Value(Y))) &&
2459           isSplatValue(BO0))
2460         return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
2461                                            OldBinOp->getOpcode(), BO0, Y,
2462                                            OldBinOp, OldBinOp->getName(), II));
2463     }
2464     // rev(unop rev(X)) --> unop X
2465     if (match(Vec, m_OneUse(m_UnOp(
2466                        m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2467                            m_Value(X)))))) {
2468       auto *OldUnOp = cast<UnaryOperator>(Vec);
2469       auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
2470           OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
2471       return replaceInstUsesWith(CI, NewUnOp);
2472     }
2473     break;
2474   }
2475   case Intrinsic::vector_reduce_or:
2476   case Intrinsic::vector_reduce_and: {
2477     // Canonicalize logical or/and reductions:
2478     // Or reduction for i1 is represented as:
2479     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2480     // %res = cmp ne iReduxWidth %val, 0
2481     // And reduction for i1 is represented as:
2482     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2483     // %res = cmp eq iReduxWidth %val, 11111
2484     Value *Arg = II->getArgOperand(0);
2485     Value *Vect;
2486     if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2487       if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2488         if (FTy->getElementType() == Builder.getInt1Ty()) {
2489           Value *Res = Builder.CreateBitCast(
2490               Vect, Builder.getIntNTy(FTy->getNumElements()));
2491           if (IID == Intrinsic::vector_reduce_and) {
2492             Res = Builder.CreateICmpEQ(
2493                 Res, ConstantInt::getAllOnesValue(Res->getType()));
2494           } else {
2495             assert(IID == Intrinsic::vector_reduce_or &&
2496                    "Expected or reduction.");
2497             Res = Builder.CreateIsNotNull(Res);
2498           }
2499           if (Arg != Vect)
2500             Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2501                                      II->getType());
2502           return replaceInstUsesWith(CI, Res);
2503         }
2504     }
2505     LLVM_FALLTHROUGH;
2506   }
2507   case Intrinsic::vector_reduce_add: {
2508     if (IID == Intrinsic::vector_reduce_add) {
2509       // Convert vector_reduce_add(ZExt(<n x i1>)) to
2510       // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2511       // Convert vector_reduce_add(SExt(<n x i1>)) to
2512       // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2513       // Convert vector_reduce_add(<n x i1>) to
2514       // Trunc(ctpop(bitcast <n x i1> to in)).
2515       Value *Arg = II->getArgOperand(0);
2516       Value *Vect;
2517       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2518         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2519           if (FTy->getElementType() == Builder.getInt1Ty()) {
2520             Value *V = Builder.CreateBitCast(
2521                 Vect, Builder.getIntNTy(FTy->getNumElements()));
2522             Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
2523             if (Res->getType() != II->getType())
2524               Res = Builder.CreateZExtOrTrunc(Res, II->getType());
2525             if (Arg != Vect &&
2526                 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
2527               Res = Builder.CreateNeg(Res);
2528             return replaceInstUsesWith(CI, Res);
2529           }
2530       }
2531     }
2532     LLVM_FALLTHROUGH;
2533   }
2534   case Intrinsic::vector_reduce_xor: {
2535     if (IID == Intrinsic::vector_reduce_xor) {
2536       // Exclusive disjunction reduction over the vector with
2537       // (potentially-extended) i1 element type is actually a
2538       // (potentially-extended) arithmetic `add` reduction over the original
2539       // non-extended value:
2540       //   vector_reduce_xor(?ext(<n x i1>))
2541       //     -->
2542       //   ?ext(vector_reduce_add(<n x i1>))
2543       Value *Arg = II->getArgOperand(0);
2544       Value *Vect;
2545       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2546         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2547           if (FTy->getElementType() == Builder.getInt1Ty()) {
2548             Value *Res = Builder.CreateAddReduce(Vect);
2549             if (Arg != Vect)
2550               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2551                                        II->getType());
2552             return replaceInstUsesWith(CI, Res);
2553           }
2554       }
2555     }
2556     LLVM_FALLTHROUGH;
2557   }
2558   case Intrinsic::vector_reduce_mul: {
2559     if (IID == Intrinsic::vector_reduce_mul) {
2560       // Multiplicative reduction over the vector with (potentially-extended)
2561       // i1 element type is actually a (potentially zero-extended)
2562       // logical `and` reduction over the original non-extended value:
2563       //   vector_reduce_mul(?ext(<n x i1>))
2564       //     -->
2565       //   zext(vector_reduce_and(<n x i1>))
2566       Value *Arg = II->getArgOperand(0);
2567       Value *Vect;
2568       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2569         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2570           if (FTy->getElementType() == Builder.getInt1Ty()) {
2571             Value *Res = Builder.CreateAndReduce(Vect);
2572             if (Res->getType() != II->getType())
2573               Res = Builder.CreateZExt(Res, II->getType());
2574             return replaceInstUsesWith(CI, Res);
2575           }
2576       }
2577     }
2578     LLVM_FALLTHROUGH;
2579   }
2580   case Intrinsic::vector_reduce_umin:
2581   case Intrinsic::vector_reduce_umax: {
2582     if (IID == Intrinsic::vector_reduce_umin ||
2583         IID == Intrinsic::vector_reduce_umax) {
2584       // UMin/UMax reduction over the vector with (potentially-extended)
2585       // i1 element type is actually a (potentially-extended)
2586       // logical `and`/`or` reduction over the original non-extended value:
2587       //   vector_reduce_u{min,max}(?ext(<n x i1>))
2588       //     -->
2589       //   ?ext(vector_reduce_{and,or}(<n x i1>))
2590       Value *Arg = II->getArgOperand(0);
2591       Value *Vect;
2592       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2593         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2594           if (FTy->getElementType() == Builder.getInt1Ty()) {
2595             Value *Res = IID == Intrinsic::vector_reduce_umin
2596                              ? Builder.CreateAndReduce(Vect)
2597                              : Builder.CreateOrReduce(Vect);
2598             if (Arg != Vect)
2599               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2600                                        II->getType());
2601             return replaceInstUsesWith(CI, Res);
2602           }
2603       }
2604     }
2605     LLVM_FALLTHROUGH;
2606   }
2607   case Intrinsic::vector_reduce_smin:
2608   case Intrinsic::vector_reduce_smax: {
2609     if (IID == Intrinsic::vector_reduce_smin ||
2610         IID == Intrinsic::vector_reduce_smax) {
2611       // SMin/SMax reduction over the vector with (potentially-extended)
2612       // i1 element type is actually a (potentially-extended)
2613       // logical `and`/`or` reduction over the original non-extended value:
2614       //   vector_reduce_s{min,max}(<n x i1>)
2615       //     -->
2616       //   vector_reduce_{or,and}(<n x i1>)
2617       // and
2618       //   vector_reduce_s{min,max}(sext(<n x i1>))
2619       //     -->
2620       //   sext(vector_reduce_{or,and}(<n x i1>))
2621       // and
2622       //   vector_reduce_s{min,max}(zext(<n x i1>))
2623       //     -->
2624       //   zext(vector_reduce_{and,or}(<n x i1>))
2625       Value *Arg = II->getArgOperand(0);
2626       Value *Vect;
2627       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2628         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2629           if (FTy->getElementType() == Builder.getInt1Ty()) {
2630             Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
2631             if (Arg != Vect)
2632               ExtOpc = cast<CastInst>(Arg)->getOpcode();
2633             Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
2634                           (ExtOpc == Instruction::CastOps::ZExt))
2635                              ? Builder.CreateAndReduce(Vect)
2636                              : Builder.CreateOrReduce(Vect);
2637             if (Arg != Vect)
2638               Res = Builder.CreateCast(ExtOpc, Res, II->getType());
2639             return replaceInstUsesWith(CI, Res);
2640           }
2641       }
2642     }
2643     LLVM_FALLTHROUGH;
2644   }
2645   case Intrinsic::vector_reduce_fmax:
2646   case Intrinsic::vector_reduce_fmin:
2647   case Intrinsic::vector_reduce_fadd:
2648   case Intrinsic::vector_reduce_fmul: {
2649     bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
2650                               IID != Intrinsic::vector_reduce_fmul) ||
2651                              II->hasAllowReassoc();
2652     const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
2653                              IID == Intrinsic::vector_reduce_fmul)
2654                                 ? 1
2655                                 : 0;
2656     Value *Arg = II->getArgOperand(ArgIdx);
2657     Value *V;
2658     ArrayRef<int> Mask;
2659     if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
2660         !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
2661         !cast<ShuffleVectorInst>(Arg)->isSingleSource())
2662       break;
2663     int Sz = Mask.size();
2664     SmallBitVector UsedIndices(Sz);
2665     for (int Idx : Mask) {
2666       if (Idx == UndefMaskElem || UsedIndices.test(Idx))
2667         break;
2668       UsedIndices.set(Idx);
2669     }
2670     // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
2671     // other changes.
2672     if (UsedIndices.all()) {
2673       replaceUse(II->getOperandUse(ArgIdx), V);
2674       return nullptr;
2675     }
2676     break;
2677   }
2678   default: {
2679     // Handle target specific intrinsics
2680     Optional<Instruction *> V = targetInstCombineIntrinsic(*II);
2681     if (V.hasValue())
2682       return V.getValue();
2683     break;
2684   }
2685   }
2686 
2687   if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
2688     return Shuf;
2689 
2690   // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
2691   // context, so it is handled in visitCallBase and we should trigger it.
2692   return visitCallBase(*II);
2693 }
2694 
2695 // Fence instruction simplification
2696 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
2697   auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
2698   // This check is solely here to handle arbitrary target-dependent syncscopes.
2699   // TODO: Can remove if does not matter in practice.
2700   if (NFI && FI.isIdenticalTo(NFI))
2701     return eraseInstFromFunction(FI);
2702 
2703   // Returns true if FI1 is identical or stronger fence than FI2.
2704   auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
2705     auto FI1SyncScope = FI1->getSyncScopeID();
2706     // Consider same scope, where scope is global or single-thread.
2707     if (FI1SyncScope != FI2->getSyncScopeID() ||
2708         (FI1SyncScope != SyncScope::System &&
2709          FI1SyncScope != SyncScope::SingleThread))
2710       return false;
2711 
2712     return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
2713   };
2714   if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
2715     return eraseInstFromFunction(FI);
2716 
2717   if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
2718     if (isIdenticalOrStrongerFence(PFI, &FI))
2719       return eraseInstFromFunction(FI);
2720   return nullptr;
2721 }
2722 
2723 // InvokeInst simplification
2724 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
2725   return visitCallBase(II);
2726 }
2727 
2728 // CallBrInst simplification
2729 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2730   return visitCallBase(CBI);
2731 }
2732 
2733 /// If this cast does not affect the value passed through the varargs area, we
2734 /// can eliminate the use of the cast.
2735 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2736                                          const DataLayout &DL,
2737                                          const CastInst *const CI,
2738                                          const int ix) {
2739   if (!CI->isLosslessCast())
2740     return false;
2741 
2742   // If this is a GC intrinsic, avoid munging types.  We need types for
2743   // statepoint reconstruction in SelectionDAG.
2744   // TODO: This is probably something which should be expanded to all
2745   // intrinsics since the entire point of intrinsics is that
2746   // they are understandable by the optimizer.
2747   if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2748       isa<GCResultInst>(Call))
2749     return false;
2750 
2751   // Opaque pointers are compatible with any byval types.
2752   PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType());
2753   if (SrcTy->isOpaque())
2754     return true;
2755 
2756   // The size of ByVal or InAlloca arguments is derived from the type, so we
2757   // can't change to a type with a different size.  If the size were
2758   // passed explicitly we could avoid this check.
2759   if (!Call.isPassPointeeByValueArgument(ix))
2760     return true;
2761 
2762   // The transform currently only handles type replacement for byval, not other
2763   // type-carrying attributes.
2764   if (!Call.isByValArgument(ix))
2765     return false;
2766 
2767   Type *SrcElemTy = SrcTy->getNonOpaquePointerElementType();
2768   Type *DstElemTy = Call.getParamByValType(ix);
2769   if (!SrcElemTy->isSized() || !DstElemTy->isSized())
2770     return false;
2771   if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy))
2772     return false;
2773   return true;
2774 }
2775 
2776 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2777   if (!CI->getCalledFunction()) return nullptr;
2778 
2779   // Skip optimizing notail and musttail calls so
2780   // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
2781   // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
2782   if (CI->isMustTailCall() || CI->isNoTailCall())
2783     return nullptr;
2784 
2785   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2786     replaceInstUsesWith(*From, With);
2787   };
2788   auto InstCombineErase = [this](Instruction *I) {
2789     eraseInstFromFunction(*I);
2790   };
2791   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2792                                InstCombineErase);
2793   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2794     ++NumSimplified;
2795     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2796   }
2797 
2798   return nullptr;
2799 }
2800 
2801 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2802   // Strip off at most one level of pointer casts, looking for an alloca.  This
2803   // is good enough in practice and simpler than handling any number of casts.
2804   Value *Underlying = TrampMem->stripPointerCasts();
2805   if (Underlying != TrampMem &&
2806       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2807     return nullptr;
2808   if (!isa<AllocaInst>(Underlying))
2809     return nullptr;
2810 
2811   IntrinsicInst *InitTrampoline = nullptr;
2812   for (User *U : TrampMem->users()) {
2813     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2814     if (!II)
2815       return nullptr;
2816     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2817       if (InitTrampoline)
2818         // More than one init_trampoline writes to this value.  Give up.
2819         return nullptr;
2820       InitTrampoline = II;
2821       continue;
2822     }
2823     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2824       // Allow any number of calls to adjust.trampoline.
2825       continue;
2826     return nullptr;
2827   }
2828 
2829   // No call to init.trampoline found.
2830   if (!InitTrampoline)
2831     return nullptr;
2832 
2833   // Check that the alloca is being used in the expected way.
2834   if (InitTrampoline->getOperand(0) != TrampMem)
2835     return nullptr;
2836 
2837   return InitTrampoline;
2838 }
2839 
2840 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2841                                                Value *TrampMem) {
2842   // Visit all the previous instructions in the basic block, and try to find a
2843   // init.trampoline which has a direct path to the adjust.trampoline.
2844   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2845                             E = AdjustTramp->getParent()->begin();
2846        I != E;) {
2847     Instruction *Inst = &*--I;
2848     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2849       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2850           II->getOperand(0) == TrampMem)
2851         return II;
2852     if (Inst->mayWriteToMemory())
2853       return nullptr;
2854   }
2855   return nullptr;
2856 }
2857 
2858 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2859 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2860 // to a direct call to a function.  Otherwise return NULL.
2861 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2862   Callee = Callee->stripPointerCasts();
2863   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2864   if (!AdjustTramp ||
2865       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2866     return nullptr;
2867 
2868   Value *TrampMem = AdjustTramp->getOperand(0);
2869 
2870   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2871     return IT;
2872   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2873     return IT;
2874   return nullptr;
2875 }
2876 
2877 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
2878                                             const TargetLibraryInfo *TLI) {
2879   // Note: We only handle cases which can't be driven from generic attributes
2880   // here.  So, for example, nonnull and noalias (which are common properties
2881   // of some allocation functions) are expected to be handled via annotation
2882   // of the respective allocator declaration with generic attributes.
2883   bool Changed = false;
2884 
2885   if (isAllocationFn(&Call, TLI)) {
2886     uint64_t Size;
2887     ObjectSizeOpts Opts;
2888     if (getObjectSize(&Call, Size, DL, TLI, Opts) && Size > 0) {
2889       // TODO: We really should just emit deref_or_null here and then
2890       // let the generic inference code combine that with nonnull.
2891       if (Call.hasRetAttr(Attribute::NonNull)) {
2892         Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
2893         Call.addRetAttr(
2894             Attribute::getWithDereferenceableBytes(Call.getContext(), Size));
2895       } else {
2896         Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
2897         Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2898             Call.getContext(), Size));
2899       }
2900     }
2901   }
2902 
2903   // Add alignment attribute if alignment is a power of two constant.
2904   Value *Alignment = getAllocAlignment(&Call, TLI);
2905   if (!Alignment)
2906     return Changed;
2907 
2908   ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
2909   if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
2910     uint64_t AlignmentVal = AlignOpC->getZExtValue();
2911     if (llvm::isPowerOf2_64(AlignmentVal)) {
2912       Align ExistingAlign = Call.getRetAlign().valueOrOne();
2913       Align NewAlign = Align(AlignmentVal);
2914       if (NewAlign > ExistingAlign) {
2915         Call.addRetAttr(
2916             Attribute::getWithAlignment(Call.getContext(), NewAlign));
2917         Changed = true;
2918       }
2919     }
2920   }
2921   return Changed;
2922 }
2923 
2924 /// Improvements for call, callbr and invoke instructions.
2925 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
2926   bool Changed = annotateAnyAllocSite(Call, &TLI);
2927 
2928   // Mark any parameters that are known to be non-null with the nonnull
2929   // attribute.  This is helpful for inlining calls to functions with null
2930   // checks on their arguments.
2931   SmallVector<unsigned, 4> ArgNos;
2932   unsigned ArgNo = 0;
2933 
2934   for (Value *V : Call.args()) {
2935     if (V->getType()->isPointerTy() &&
2936         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
2937         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
2938       ArgNos.push_back(ArgNo);
2939     ArgNo++;
2940   }
2941 
2942   assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
2943 
2944   if (!ArgNos.empty()) {
2945     AttributeList AS = Call.getAttributes();
2946     LLVMContext &Ctx = Call.getContext();
2947     AS = AS.addParamAttribute(Ctx, ArgNos,
2948                               Attribute::get(Ctx, Attribute::NonNull));
2949     Call.setAttributes(AS);
2950     Changed = true;
2951   }
2952 
2953   // If the callee is a pointer to a function, attempt to move any casts to the
2954   // arguments of the call/callbr/invoke.
2955   Value *Callee = Call.getCalledOperand();
2956   Function *CalleeF = dyn_cast<Function>(Callee);
2957   if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
2958       transformConstExprCastCall(Call))
2959     return nullptr;
2960 
2961   if (CalleeF) {
2962     // Remove the convergent attr on calls when the callee is not convergent.
2963     if (Call.isConvergent() && !CalleeF->isConvergent() &&
2964         !CalleeF->isIntrinsic()) {
2965       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
2966                         << "\n");
2967       Call.setNotConvergent();
2968       return &Call;
2969     }
2970 
2971     // If the call and callee calling conventions don't match, and neither one
2972     // of the calling conventions is compatible with C calling convention
2973     // this call must be unreachable, as the call is undefined.
2974     if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
2975          !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
2976            TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
2977          !(Call.getCallingConv() == llvm::CallingConv::C &&
2978            TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
2979         // Only do this for calls to a function with a body.  A prototype may
2980         // not actually end up matching the implementation's calling conv for a
2981         // variety of reasons (e.g. it may be written in assembly).
2982         !CalleeF->isDeclaration()) {
2983       Instruction *OldCall = &Call;
2984       CreateNonTerminatorUnreachable(OldCall);
2985       // If OldCall does not return void then replaceInstUsesWith poison.
2986       // This allows ValueHandlers and custom metadata to adjust itself.
2987       if (!OldCall->getType()->isVoidTy())
2988         replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
2989       if (isa<CallInst>(OldCall))
2990         return eraseInstFromFunction(*OldCall);
2991 
2992       // We cannot remove an invoke or a callbr, because it would change thexi
2993       // CFG, just change the callee to a null pointer.
2994       cast<CallBase>(OldCall)->setCalledFunction(
2995           CalleeF->getFunctionType(),
2996           Constant::getNullValue(CalleeF->getType()));
2997       return nullptr;
2998     }
2999   }
3000 
3001   // Calling a null function pointer is undefined if a null address isn't
3002   // dereferenceable.
3003   if ((isa<ConstantPointerNull>(Callee) &&
3004        !NullPointerIsDefined(Call.getFunction())) ||
3005       isa<UndefValue>(Callee)) {
3006     // If Call does not return void then replaceInstUsesWith poison.
3007     // This allows ValueHandlers and custom metadata to adjust itself.
3008     if (!Call.getType()->isVoidTy())
3009       replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3010 
3011     if (Call.isTerminator()) {
3012       // Can't remove an invoke or callbr because we cannot change the CFG.
3013       return nullptr;
3014     }
3015 
3016     // This instruction is not reachable, just remove it.
3017     CreateNonTerminatorUnreachable(&Call);
3018     return eraseInstFromFunction(Call);
3019   }
3020 
3021   if (IntrinsicInst *II = findInitTrampoline(Callee))
3022     return transformCallThroughTrampoline(Call, *II);
3023 
3024   // TODO: Drop this transform once opaque pointer transition is done.
3025   FunctionType *FTy = Call.getFunctionType();
3026   if (FTy->isVarArg()) {
3027     int ix = FTy->getNumParams();
3028     // See if we can optimize any arguments passed through the varargs area of
3029     // the call.
3030     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
3031          I != E; ++I, ++ix) {
3032       CastInst *CI = dyn_cast<CastInst>(*I);
3033       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
3034         replaceUse(*I, CI->getOperand(0));
3035 
3036         // Update the byval type to match the pointer type.
3037         // Not necessary for opaque pointers.
3038         PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType());
3039         if (!NewTy->isOpaque() && Call.isByValArgument(ix)) {
3040           Call.removeParamAttr(ix, Attribute::ByVal);
3041           Call.addParamAttr(ix, Attribute::getWithByValType(
3042                                     Call.getContext(),
3043                                     NewTy->getNonOpaquePointerElementType()));
3044         }
3045         Changed = true;
3046       }
3047     }
3048   }
3049 
3050   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3051     InlineAsm *IA = cast<InlineAsm>(Callee);
3052     if (!IA->canThrow()) {
3053       // Normal inline asm calls cannot throw - mark them
3054       // 'nounwind'.
3055       Call.setDoesNotThrow();
3056       Changed = true;
3057     }
3058   }
3059 
3060   // Try to optimize the call if possible, we require DataLayout for most of
3061   // this.  None of these calls are seen as possibly dead so go ahead and
3062   // delete the instruction now.
3063   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3064     Instruction *I = tryOptimizeCall(CI);
3065     // If we changed something return the result, etc. Otherwise let
3066     // the fallthrough check.
3067     if (I) return eraseInstFromFunction(*I);
3068   }
3069 
3070   if (!Call.use_empty() && !Call.isMustTailCall())
3071     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3072       Type *CallTy = Call.getType();
3073       Type *RetArgTy = ReturnedArg->getType();
3074       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3075         return replaceInstUsesWith(
3076             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3077     }
3078 
3079   if (isAllocationFn(&Call, &TLI) &&
3080       isAllocRemovable(&cast<CallBase>(Call), &TLI))
3081     return visitAllocSite(Call);
3082 
3083   // Handle intrinsics which can be used in both call and invoke context.
3084   switch (Call.getIntrinsicID()) {
3085   case Intrinsic::experimental_gc_statepoint: {
3086     GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3087     SmallPtrSet<Value *, 32> LiveGcValues;
3088     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3089       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3090 
3091       // Remove the relocation if unused.
3092       if (GCR.use_empty()) {
3093         eraseInstFromFunction(GCR);
3094         continue;
3095       }
3096 
3097       Value *DerivedPtr = GCR.getDerivedPtr();
3098       Value *BasePtr = GCR.getBasePtr();
3099 
3100       // Undef is undef, even after relocation.
3101       if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3102         replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
3103         eraseInstFromFunction(GCR);
3104         continue;
3105       }
3106 
3107       if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3108         // The relocation of null will be null for most any collector.
3109         // TODO: provide a hook for this in GCStrategy.  There might be some
3110         // weird collector this property does not hold for.
3111         if (isa<ConstantPointerNull>(DerivedPtr)) {
3112           // Use null-pointer of gc_relocate's type to replace it.
3113           replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
3114           eraseInstFromFunction(GCR);
3115           continue;
3116         }
3117 
3118         // isKnownNonNull -> nonnull attribute
3119         if (!GCR.hasRetAttr(Attribute::NonNull) &&
3120             isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
3121           GCR.addRetAttr(Attribute::NonNull);
3122           // We discovered new fact, re-check users.
3123           Worklist.pushUsersToWorkList(GCR);
3124         }
3125       }
3126 
3127       // If we have two copies of the same pointer in the statepoint argument
3128       // list, canonicalize to one.  This may let us common gc.relocates.
3129       if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3130           GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3131         auto *OpIntTy = GCR.getOperand(2)->getType();
3132         GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3133       }
3134 
3135       // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3136       // Canonicalize on the type from the uses to the defs
3137 
3138       // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3139       LiveGcValues.insert(BasePtr);
3140       LiveGcValues.insert(DerivedPtr);
3141     }
3142     Optional<OperandBundleUse> Bundle =
3143         GCSP.getOperandBundle(LLVMContext::OB_gc_live);
3144     unsigned NumOfGCLives = LiveGcValues.size();
3145     if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size())
3146       break;
3147     // We can reduce the size of gc live bundle.
3148     DenseMap<Value *, unsigned> Val2Idx;
3149     std::vector<Value *> NewLiveGc;
3150     for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) {
3151       Value *V = Bundle->Inputs[I];
3152       if (Val2Idx.count(V))
3153         continue;
3154       if (LiveGcValues.count(V)) {
3155         Val2Idx[V] = NewLiveGc.size();
3156         NewLiveGc.push_back(V);
3157       } else
3158         Val2Idx[V] = NumOfGCLives;
3159     }
3160     // Update all gc.relocates
3161     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3162       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3163       Value *BasePtr = GCR.getBasePtr();
3164       assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3165              "Missed live gc for base pointer");
3166       auto *OpIntTy1 = GCR.getOperand(1)->getType();
3167       GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
3168       Value *DerivedPtr = GCR.getDerivedPtr();
3169       assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3170              "Missed live gc for derived pointer");
3171       auto *OpIntTy2 = GCR.getOperand(2)->getType();
3172       GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
3173     }
3174     // Create new statepoint instruction.
3175     OperandBundleDef NewBundle("gc-live", NewLiveGc);
3176     return CallBase::Create(&Call, NewBundle);
3177   }
3178   default: { break; }
3179   }
3180 
3181   return Changed ? &Call : nullptr;
3182 }
3183 
3184 /// If the callee is a constexpr cast of a function, attempt to move the cast to
3185 /// the arguments of the call/callbr/invoke.
3186 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3187   auto *Callee =
3188       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3189   if (!Callee)
3190     return false;
3191 
3192   // If this is a call to a thunk function, don't remove the cast. Thunks are
3193   // used to transparently forward all incoming parameters and outgoing return
3194   // values, so it's important to leave the cast in place.
3195   if (Callee->hasFnAttribute("thunk"))
3196     return false;
3197 
3198   // If this is a musttail call, the callee's prototype must match the caller's
3199   // prototype with the exception of pointee types. The code below doesn't
3200   // implement that, so we can't do this transform.
3201   // TODO: Do the transform if it only requires adding pointer casts.
3202   if (Call.isMustTailCall())
3203     return false;
3204 
3205   Instruction *Caller = &Call;
3206   const AttributeList &CallerPAL = Call.getAttributes();
3207 
3208   // Okay, this is a cast from a function to a different type.  Unless doing so
3209   // would cause a type conversion of one of our arguments, change this call to
3210   // be a direct call with arguments casted to the appropriate types.
3211   FunctionType *FT = Callee->getFunctionType();
3212   Type *OldRetTy = Caller->getType();
3213   Type *NewRetTy = FT->getReturnType();
3214 
3215   // Check to see if we are changing the return type...
3216   if (OldRetTy != NewRetTy) {
3217 
3218     if (NewRetTy->isStructTy())
3219       return false; // TODO: Handle multiple return values.
3220 
3221     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
3222       if (Callee->isDeclaration())
3223         return false;   // Cannot transform this return value.
3224 
3225       if (!Caller->use_empty() &&
3226           // void -> non-void is handled specially
3227           !NewRetTy->isVoidTy())
3228         return false;   // Cannot transform this return value.
3229     }
3230 
3231     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3232       AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3233       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
3234         return false;   // Attribute not compatible with transformed value.
3235     }
3236 
3237     // If the callbase is an invoke/callbr instruction, and the return value is
3238     // used by a PHI node in a successor, we cannot change the return type of
3239     // the call because there is no place to put the cast instruction (without
3240     // breaking the critical edge).  Bail out in this case.
3241     if (!Caller->use_empty()) {
3242       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
3243         for (User *U : II->users())
3244           if (PHINode *PN = dyn_cast<PHINode>(U))
3245             if (PN->getParent() == II->getNormalDest() ||
3246                 PN->getParent() == II->getUnwindDest())
3247               return false;
3248       // FIXME: Be conservative for callbr to avoid a quadratic search.
3249       if (isa<CallBrInst>(Caller))
3250         return false;
3251     }
3252   }
3253 
3254   unsigned NumActualArgs = Call.arg_size();
3255   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3256 
3257   // Prevent us turning:
3258   // declare void @takes_i32_inalloca(i32* inalloca)
3259   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3260   //
3261   // into:
3262   //  call void @takes_i32_inalloca(i32* null)
3263   //
3264   //  Similarly, avoid folding away bitcasts of byval calls.
3265   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3266       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
3267     return false;
3268 
3269   auto AI = Call.arg_begin();
3270   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
3271     Type *ParamTy = FT->getParamType(i);
3272     Type *ActTy = (*AI)->getType();
3273 
3274     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
3275       return false;   // Cannot transform this parameter value.
3276 
3277     // Check if there are any incompatible attributes we cannot drop safely.
3278     if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
3279             .overlaps(AttributeFuncs::typeIncompatible(
3280                 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
3281       return false;   // Attribute not compatible with transformed value.
3282 
3283     if (Call.isInAllocaArgument(i) ||
3284         CallerPAL.hasParamAttr(i, Attribute::Preallocated))
3285       return false; // Cannot transform to and from inalloca/preallocated.
3286 
3287     if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
3288       return false;
3289 
3290     // If the parameter is passed as a byval argument, then we have to have a
3291     // sized type and the sized type has to have the same size as the old type.
3292     if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
3293       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
3294       if (!ParamPTy)
3295         return false;
3296 
3297       if (!ParamPTy->isOpaque()) {
3298         Type *ParamElTy = ParamPTy->getNonOpaquePointerElementType();
3299         if (!ParamElTy->isSized())
3300           return false;
3301 
3302         Type *CurElTy = Call.getParamByValType(i);
3303         if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(ParamElTy))
3304           return false;
3305       }
3306     }
3307   }
3308 
3309   if (Callee->isDeclaration()) {
3310     // Do not delete arguments unless we have a function body.
3311     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3312       return false;
3313 
3314     // If the callee is just a declaration, don't change the varargsness of the
3315     // call.  We don't want to introduce a varargs call where one doesn't
3316     // already exist.
3317     if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
3318       return false;
3319 
3320     // If both the callee and the cast type are varargs, we still have to make
3321     // sure the number of fixed parameters are the same or we have the same
3322     // ABI issues as if we introduce a varargs call.
3323     if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
3324         FT->getNumParams() != Call.getFunctionType()->getNumParams())
3325       return false;
3326   }
3327 
3328   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3329       !CallerPAL.isEmpty()) {
3330     // In this case we have more arguments than the new function type, but we
3331     // won't be dropping them.  Check that these extra arguments have attributes
3332     // that are compatible with being a vararg call argument.
3333     unsigned SRetIdx;
3334     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3335         SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3336       return false;
3337   }
3338 
3339   // Okay, we decided that this is a safe thing to do: go ahead and start
3340   // inserting cast instructions as necessary.
3341   SmallVector<Value *, 8> Args;
3342   SmallVector<AttributeSet, 8> ArgAttrs;
3343   Args.reserve(NumActualArgs);
3344   ArgAttrs.reserve(NumActualArgs);
3345 
3346   // Get any return attributes.
3347   AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3348 
3349   // If the return value is not being used, the type may not be compatible
3350   // with the existing attributes.  Wipe out any problematic attributes.
3351   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
3352 
3353   LLVMContext &Ctx = Call.getContext();
3354   AI = Call.arg_begin();
3355   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
3356     Type *ParamTy = FT->getParamType(i);
3357 
3358     Value *NewArg = *AI;
3359     if ((*AI)->getType() != ParamTy)
3360       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
3361     Args.push_back(NewArg);
3362 
3363     // Add any parameter attributes except the ones incompatible with the new
3364     // type. Note that we made sure all incompatible ones are safe to drop.
3365     AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
3366         ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
3367     if (CallerPAL.hasParamAttr(i, Attribute::ByVal) &&
3368         !ParamTy->isOpaquePointerTy()) {
3369       AttrBuilder AB(Ctx, CallerPAL.getParamAttrs(i).removeAttributes(
3370                               Ctx, IncompatibleAttrs));
3371       AB.addByValAttr(ParamTy->getNonOpaquePointerElementType());
3372       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
3373     } else {
3374       ArgAttrs.push_back(
3375           CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
3376     }
3377   }
3378 
3379   // If the function takes more arguments than the call was taking, add them
3380   // now.
3381   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
3382     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
3383     ArgAttrs.push_back(AttributeSet());
3384   }
3385 
3386   // If we are removing arguments to the function, emit an obnoxious warning.
3387   if (FT->getNumParams() < NumActualArgs) {
3388     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
3389     if (FT->isVarArg()) {
3390       // Add all of the arguments in their promoted form to the arg list.
3391       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
3392         Type *PTy = getPromotedType((*AI)->getType());
3393         Value *NewArg = *AI;
3394         if (PTy != (*AI)->getType()) {
3395           // Must promote to pass through va_arg area!
3396           Instruction::CastOps opcode =
3397             CastInst::getCastOpcode(*AI, false, PTy, false);
3398           NewArg = Builder.CreateCast(opcode, *AI, PTy);
3399         }
3400         Args.push_back(NewArg);
3401 
3402         // Add any parameter attributes.
3403         ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3404       }
3405     }
3406   }
3407 
3408   AttributeSet FnAttrs = CallerPAL.getFnAttrs();
3409 
3410   if (NewRetTy->isVoidTy())
3411     Caller->setName("");   // Void type should not have a name.
3412 
3413   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
3414          "missing argument attributes");
3415   AttributeList NewCallerPAL = AttributeList::get(
3416       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
3417 
3418   SmallVector<OperandBundleDef, 1> OpBundles;
3419   Call.getOperandBundlesAsDefs(OpBundles);
3420 
3421   CallBase *NewCall;
3422   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3423     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
3424                                    II->getUnwindDest(), Args, OpBundles);
3425   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3426     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
3427                                    CBI->getIndirectDests(), Args, OpBundles);
3428   } else {
3429     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
3430     cast<CallInst>(NewCall)->setTailCallKind(
3431         cast<CallInst>(Caller)->getTailCallKind());
3432   }
3433   NewCall->takeName(Caller);
3434   NewCall->setCallingConv(Call.getCallingConv());
3435   NewCall->setAttributes(NewCallerPAL);
3436 
3437   // Preserve prof metadata if any.
3438   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
3439 
3440   // Insert a cast of the return type as necessary.
3441   Instruction *NC = NewCall;
3442   Value *NV = NC;
3443   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
3444     if (!NV->getType()->isVoidTy()) {
3445       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
3446       NC->setDebugLoc(Caller->getDebugLoc());
3447 
3448       // If this is an invoke/callbr instruction, we should insert it after the
3449       // first non-phi instruction in the normal successor block.
3450       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3451         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
3452         InsertNewInstBefore(NC, *I);
3453       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3454         BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
3455         InsertNewInstBefore(NC, *I);
3456       } else {
3457         // Otherwise, it's a call, just insert cast right after the call.
3458         InsertNewInstBefore(NC, *Caller);
3459       }
3460       Worklist.pushUsersToWorkList(*Caller);
3461     } else {
3462       NV = UndefValue::get(Caller->getType());
3463     }
3464   }
3465 
3466   if (!Caller->use_empty())
3467     replaceInstUsesWith(*Caller, NV);
3468   else if (Caller->hasValueHandle()) {
3469     if (OldRetTy == NV->getType())
3470       ValueHandleBase::ValueIsRAUWd(Caller, NV);
3471     else
3472       // We cannot call ValueIsRAUWd with a different type, and the
3473       // actual tracked value will disappear.
3474       ValueHandleBase::ValueIsDeleted(Caller);
3475   }
3476 
3477   eraseInstFromFunction(*Caller);
3478   return true;
3479 }
3480 
3481 /// Turn a call to a function created by init_trampoline / adjust_trampoline
3482 /// intrinsic pair into a direct call to the underlying function.
3483 Instruction *
3484 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
3485                                                  IntrinsicInst &Tramp) {
3486   Value *Callee = Call.getCalledOperand();
3487   Type *CalleeTy = Callee->getType();
3488   FunctionType *FTy = Call.getFunctionType();
3489   AttributeList Attrs = Call.getAttributes();
3490 
3491   // If the call already has the 'nest' attribute somewhere then give up -
3492   // otherwise 'nest' would occur twice after splicing in the chain.
3493   if (Attrs.hasAttrSomewhere(Attribute::Nest))
3494     return nullptr;
3495 
3496   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
3497   FunctionType *NestFTy = NestF->getFunctionType();
3498 
3499   AttributeList NestAttrs = NestF->getAttributes();
3500   if (!NestAttrs.isEmpty()) {
3501     unsigned NestArgNo = 0;
3502     Type *NestTy = nullptr;
3503     AttributeSet NestAttr;
3504 
3505     // Look for a parameter marked with the 'nest' attribute.
3506     for (FunctionType::param_iterator I = NestFTy->param_begin(),
3507                                       E = NestFTy->param_end();
3508          I != E; ++NestArgNo, ++I) {
3509       AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
3510       if (AS.hasAttribute(Attribute::Nest)) {
3511         // Record the parameter type and any other attributes.
3512         NestTy = *I;
3513         NestAttr = AS;
3514         break;
3515       }
3516     }
3517 
3518     if (NestTy) {
3519       std::vector<Value*> NewArgs;
3520       std::vector<AttributeSet> NewArgAttrs;
3521       NewArgs.reserve(Call.arg_size() + 1);
3522       NewArgAttrs.reserve(Call.arg_size());
3523 
3524       // Insert the nest argument into the call argument list, which may
3525       // mean appending it.  Likewise for attributes.
3526 
3527       {
3528         unsigned ArgNo = 0;
3529         auto I = Call.arg_begin(), E = Call.arg_end();
3530         do {
3531           if (ArgNo == NestArgNo) {
3532             // Add the chain argument and attributes.
3533             Value *NestVal = Tramp.getArgOperand(2);
3534             if (NestVal->getType() != NestTy)
3535               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
3536             NewArgs.push_back(NestVal);
3537             NewArgAttrs.push_back(NestAttr);
3538           }
3539 
3540           if (I == E)
3541             break;
3542 
3543           // Add the original argument and attributes.
3544           NewArgs.push_back(*I);
3545           NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
3546 
3547           ++ArgNo;
3548           ++I;
3549         } while (true);
3550       }
3551 
3552       // The trampoline may have been bitcast to a bogus type (FTy).
3553       // Handle this by synthesizing a new function type, equal to FTy
3554       // with the chain parameter inserted.
3555 
3556       std::vector<Type*> NewTypes;
3557       NewTypes.reserve(FTy->getNumParams()+1);
3558 
3559       // Insert the chain's type into the list of parameter types, which may
3560       // mean appending it.
3561       {
3562         unsigned ArgNo = 0;
3563         FunctionType::param_iterator I = FTy->param_begin(),
3564           E = FTy->param_end();
3565 
3566         do {
3567           if (ArgNo == NestArgNo)
3568             // Add the chain's type.
3569             NewTypes.push_back(NestTy);
3570 
3571           if (I == E)
3572             break;
3573 
3574           // Add the original type.
3575           NewTypes.push_back(*I);
3576 
3577           ++ArgNo;
3578           ++I;
3579         } while (true);
3580       }
3581 
3582       // Replace the trampoline call with a direct call.  Let the generic
3583       // code sort out any function type mismatches.
3584       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3585                                                 FTy->isVarArg());
3586       Constant *NewCallee =
3587         NestF->getType() == PointerType::getUnqual(NewFTy) ?
3588         NestF : ConstantExpr::getBitCast(NestF,
3589                                          PointerType::getUnqual(NewFTy));
3590       AttributeList NewPAL =
3591           AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
3592                              Attrs.getRetAttrs(), NewArgAttrs);
3593 
3594       SmallVector<OperandBundleDef, 1> OpBundles;
3595       Call.getOperandBundlesAsDefs(OpBundles);
3596 
3597       Instruction *NewCaller;
3598       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
3599         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
3600                                        II->getNormalDest(), II->getUnwindDest(),
3601                                        NewArgs, OpBundles);
3602         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3603         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3604       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
3605         NewCaller =
3606             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
3607                                CBI->getIndirectDests(), NewArgs, OpBundles);
3608         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
3609         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
3610       } else {
3611         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
3612         cast<CallInst>(NewCaller)->setTailCallKind(
3613             cast<CallInst>(Call).getTailCallKind());
3614         cast<CallInst>(NewCaller)->setCallingConv(
3615             cast<CallInst>(Call).getCallingConv());
3616         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3617       }
3618       NewCaller->setDebugLoc(Call.getDebugLoc());
3619 
3620       return NewCaller;
3621     }
3622   }
3623 
3624   // Replace the trampoline call with a direct call.  Since there is no 'nest'
3625   // parameter, there is no need to adjust the argument list.  Let the generic
3626   // code sort out any function type mismatches.
3627   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
3628   Call.setCalledFunction(FTy, NewCallee);
3629   return &Call;
3630 }
3631