1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLFunctionalExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/InstCombine/InstCombiner.h"
68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <utility>
75 #include <vector>
76
77 #define DEBUG_TYPE "instcombine"
78 #include "llvm/Transforms/Utils/InstructionWorklist.h"
79
80 using namespace llvm;
81 using namespace PatternMatch;
82
83 STATISTIC(NumSimplified, "Number of library calls simplified");
84
85 static cl::opt<unsigned> GuardWideningWindow(
86 "instcombine-guard-widening-window",
87 cl::init(3),
88 cl::desc("How wide an instruction window to bypass looking for "
89 "another guard"));
90
91 namespace llvm {
92 /// enable preservation of attributes in assume like:
93 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
94 extern cl::opt<bool> EnableKnowledgeRetention;
95 } // namespace llvm
96
97 /// Return the specified type promoted as it would be to pass though a va_arg
98 /// area.
getPromotedType(Type * Ty)99 static Type *getPromotedType(Type *Ty) {
100 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
101 if (ITy->getBitWidth() < 32)
102 return Type::getInt32Ty(Ty->getContext());
103 }
104 return Ty;
105 }
106
107 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
108 /// TODO: This should probably be integrated with visitAllocSites, but that
109 /// requires a deeper change to allow either unread or unwritten objects.
hasUndefSource(AnyMemTransferInst * MI)110 static bool hasUndefSource(AnyMemTransferInst *MI) {
111 auto *Src = MI->getRawSource();
112 while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
113 if (!Src->hasOneUse())
114 return false;
115 Src = cast<Instruction>(Src)->getOperand(0);
116 }
117 return isa<AllocaInst>(Src) && Src->hasOneUse();
118 }
119
SimplifyAnyMemTransfer(AnyMemTransferInst * MI)120 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
121 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
122 MaybeAlign CopyDstAlign = MI->getDestAlign();
123 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
124 MI->setDestAlignment(DstAlign);
125 return MI;
126 }
127
128 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
129 MaybeAlign CopySrcAlign = MI->getSourceAlign();
130 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
131 MI->setSourceAlignment(SrcAlign);
132 return MI;
133 }
134
135 // If we have a store to a location which is known constant, we can conclude
136 // that the store must be storing the constant value (else the memory
137 // wouldn't be constant), and this must be a noop.
138 if (AA->pointsToConstantMemory(MI->getDest())) {
139 // Set the size of the copy to 0, it will be deleted on the next iteration.
140 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
141 return MI;
142 }
143
144 // If the source is provably undef, the memcpy/memmove doesn't do anything
145 // (unless the transfer is volatile).
146 if (hasUndefSource(MI) && !MI->isVolatile()) {
147 // Set the size of the copy to 0, it will be deleted on the next iteration.
148 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
149 return MI;
150 }
151
152 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
153 // load/store.
154 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
155 if (!MemOpLength) return nullptr;
156
157 // Source and destination pointer types are always "i8*" for intrinsic. See
158 // if the size is something we can handle with a single primitive load/store.
159 // A single load+store correctly handles overlapping memory in the memmove
160 // case.
161 uint64_t Size = MemOpLength->getLimitedValue();
162 assert(Size && "0-sized memory transferring should be removed already.");
163
164 if (Size > 8 || (Size&(Size-1)))
165 return nullptr; // If not 1/2/4/8 bytes, exit.
166
167 // If it is an atomic and alignment is less than the size then we will
168 // introduce the unaligned memory access which will be later transformed
169 // into libcall in CodeGen. This is not evident performance gain so disable
170 // it now.
171 if (isa<AtomicMemTransferInst>(MI))
172 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
173 return nullptr;
174
175 // Use an integer load+store unless we can find something better.
176 unsigned SrcAddrSp =
177 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
178 unsigned DstAddrSp =
179 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
180
181 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
182 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
183 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
184
185 // If the memcpy has metadata describing the members, see if we can get the
186 // TBAA tag describing our copy.
187 MDNode *CopyMD = nullptr;
188 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
189 CopyMD = M;
190 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
191 if (M->getNumOperands() == 3 && M->getOperand(0) &&
192 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
193 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
194 M->getOperand(1) &&
195 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
196 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
197 Size &&
198 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
199 CopyMD = cast<MDNode>(M->getOperand(2));
200 }
201
202 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
203 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
204 LoadInst *L = Builder.CreateLoad(IntType, Src);
205 // Alignment from the mem intrinsic will be better, so use it.
206 L->setAlignment(*CopySrcAlign);
207 if (CopyMD)
208 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
209 MDNode *LoopMemParallelMD =
210 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
211 if (LoopMemParallelMD)
212 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
213 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
214 if (AccessGroupMD)
215 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
216
217 StoreInst *S = Builder.CreateStore(L, Dest);
218 // Alignment from the mem intrinsic will be better, so use it.
219 S->setAlignment(*CopyDstAlign);
220 if (CopyMD)
221 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
222 if (LoopMemParallelMD)
223 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
224 if (AccessGroupMD)
225 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
226
227 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
228 // non-atomics can be volatile
229 L->setVolatile(MT->isVolatile());
230 S->setVolatile(MT->isVolatile());
231 }
232 if (isa<AtomicMemTransferInst>(MI)) {
233 // atomics have to be unordered
234 L->setOrdering(AtomicOrdering::Unordered);
235 S->setOrdering(AtomicOrdering::Unordered);
236 }
237
238 // Set the size of the copy to 0, it will be deleted on the next iteration.
239 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
240 return MI;
241 }
242
SimplifyAnyMemSet(AnyMemSetInst * MI)243 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
244 const Align KnownAlignment =
245 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
246 MaybeAlign MemSetAlign = MI->getDestAlign();
247 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
248 MI->setDestAlignment(KnownAlignment);
249 return MI;
250 }
251
252 // If we have a store to a location which is known constant, we can conclude
253 // that the store must be storing the constant value (else the memory
254 // wouldn't be constant), and this must be a noop.
255 if (AA->pointsToConstantMemory(MI->getDest())) {
256 // Set the size of the copy to 0, it will be deleted on the next iteration.
257 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
258 return MI;
259 }
260
261 // Remove memset with an undef value.
262 // FIXME: This is technically incorrect because it might overwrite a poison
263 // value. Change to PoisonValue once #52930 is resolved.
264 if (isa<UndefValue>(MI->getValue())) {
265 // Set the size of the copy to 0, it will be deleted on the next iteration.
266 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
267 return MI;
268 }
269
270 // Extract the length and alignment and fill if they are constant.
271 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
272 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
273 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
274 return nullptr;
275 const uint64_t Len = LenC->getLimitedValue();
276 assert(Len && "0-sized memory setting should be removed already.");
277 const Align Alignment = MI->getDestAlign().valueOrOne();
278
279 // If it is an atomic and alignment is less than the size then we will
280 // introduce the unaligned memory access which will be later transformed
281 // into libcall in CodeGen. This is not evident performance gain so disable
282 // it now.
283 if (isa<AtomicMemSetInst>(MI))
284 if (Alignment < Len)
285 return nullptr;
286
287 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
288 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
289 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
290
291 Value *Dest = MI->getDest();
292 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
293 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
294 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
295
296 // Extract the fill value and store.
297 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
298 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
299 MI->isVolatile());
300 S->setAlignment(Alignment);
301 if (isa<AtomicMemSetInst>(MI))
302 S->setOrdering(AtomicOrdering::Unordered);
303
304 // Set the size of the copy to 0, it will be deleted on the next iteration.
305 MI->setLength(Constant::getNullValue(LenC->getType()));
306 return MI;
307 }
308
309 return nullptr;
310 }
311
312 // TODO, Obvious Missing Transforms:
313 // * Narrow width by halfs excluding zero/undef lanes
simplifyMaskedLoad(IntrinsicInst & II)314 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
315 Value *LoadPtr = II.getArgOperand(0);
316 const Align Alignment =
317 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
318
319 // If the mask is all ones or undefs, this is a plain vector load of the 1st
320 // argument.
321 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
322 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
323 "unmaskedload");
324 L->copyMetadata(II);
325 return L;
326 }
327
328 // If we can unconditionally load from this address, replace with a
329 // load/select idiom. TODO: use DT for context sensitive query
330 if (isDereferenceablePointer(LoadPtr, II.getType(),
331 II.getModule()->getDataLayout(), &II, nullptr)) {
332 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
333 "unmaskedload");
334 LI->copyMetadata(II);
335 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
336 }
337
338 return nullptr;
339 }
340
341 // TODO, Obvious Missing Transforms:
342 // * Single constant active lane -> store
343 // * Narrow width by halfs excluding zero/undef lanes
simplifyMaskedStore(IntrinsicInst & II)344 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
345 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
346 if (!ConstMask)
347 return nullptr;
348
349 // If the mask is all zeros, this instruction does nothing.
350 if (ConstMask->isNullValue())
351 return eraseInstFromFunction(II);
352
353 // If the mask is all ones, this is a plain vector store of the 1st argument.
354 if (ConstMask->isAllOnesValue()) {
355 Value *StorePtr = II.getArgOperand(1);
356 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
357 StoreInst *S =
358 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
359 S->copyMetadata(II);
360 return S;
361 }
362
363 if (isa<ScalableVectorType>(ConstMask->getType()))
364 return nullptr;
365
366 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
367 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
368 APInt UndefElts(DemandedElts.getBitWidth(), 0);
369 if (Value *V =
370 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
371 return replaceOperand(II, 0, V);
372
373 return nullptr;
374 }
375
376 // TODO, Obvious Missing Transforms:
377 // * Single constant active lane load -> load
378 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
379 // * Adjacent vector addresses -> masked.load
380 // * Narrow width by halfs excluding zero/undef lanes
381 // * Vector incrementing address -> vector masked load
simplifyMaskedGather(IntrinsicInst & II)382 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
383 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
384 if (!ConstMask)
385 return nullptr;
386
387 // Vector splat address w/known mask -> scalar load
388 // Fold the gather to load the source vector first lane
389 // because it is reloading the same value each time
390 if (ConstMask->isAllOnesValue())
391 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
392 auto *VecTy = cast<VectorType>(II.getType());
393 const Align Alignment =
394 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
395 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
396 Alignment, "load.scalar");
397 Value *Shuf =
398 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
399 return replaceInstUsesWith(II, cast<Instruction>(Shuf));
400 }
401
402 return nullptr;
403 }
404
405 // TODO, Obvious Missing Transforms:
406 // * Single constant active lane -> store
407 // * Adjacent vector addresses -> masked.store
408 // * Narrow store width by halfs excluding zero/undef lanes
409 // * Vector incrementing address -> vector masked store
simplifyMaskedScatter(IntrinsicInst & II)410 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
411 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
412 if (!ConstMask)
413 return nullptr;
414
415 // If the mask is all zeros, a scatter does nothing.
416 if (ConstMask->isNullValue())
417 return eraseInstFromFunction(II);
418
419 // Vector splat address -> scalar store
420 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
421 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
422 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
423 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
424 StoreInst *S =
425 new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment);
426 S->copyMetadata(II);
427 return S;
428 }
429 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
430 // lastlane), ptr
431 if (ConstMask->isAllOnesValue()) {
432 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
433 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
434 ElementCount VF = WideLoadTy->getElementCount();
435 Constant *EC =
436 ConstantInt::get(Builder.getInt32Ty(), VF.getKnownMinValue());
437 Value *RunTimeVF = VF.isScalable() ? Builder.CreateVScale(EC) : EC;
438 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
439 Value *Extract =
440 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
441 StoreInst *S =
442 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
443 S->copyMetadata(II);
444 return S;
445 }
446 }
447 if (isa<ScalableVectorType>(ConstMask->getType()))
448 return nullptr;
449
450 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
451 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
452 APInt UndefElts(DemandedElts.getBitWidth(), 0);
453 if (Value *V =
454 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
455 return replaceOperand(II, 0, V);
456 if (Value *V =
457 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
458 return replaceOperand(II, 1, V);
459
460 return nullptr;
461 }
462
463 /// This function transforms launder.invariant.group and strip.invariant.group
464 /// like:
465 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
466 /// launder(strip(%x)) -> launder(%x)
467 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
468 /// strip(launder(%x)) -> strip(%x)
469 /// This is legal because it preserves the most recent information about
470 /// the presence or absence of invariant.group.
simplifyInvariantGroupIntrinsic(IntrinsicInst & II,InstCombinerImpl & IC)471 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
472 InstCombinerImpl &IC) {
473 auto *Arg = II.getArgOperand(0);
474 auto *StrippedArg = Arg->stripPointerCasts();
475 auto *StrippedInvariantGroupsArg = StrippedArg;
476 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
477 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
478 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
479 break;
480 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
481 }
482 if (StrippedArg == StrippedInvariantGroupsArg)
483 return nullptr; // No launders/strips to remove.
484
485 Value *Result = nullptr;
486
487 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
488 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
489 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
490 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
491 else
492 llvm_unreachable(
493 "simplifyInvariantGroupIntrinsic only handles launder and strip");
494 if (Result->getType()->getPointerAddressSpace() !=
495 II.getType()->getPointerAddressSpace())
496 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
497 if (Result->getType() != II.getType())
498 Result = IC.Builder.CreateBitCast(Result, II.getType());
499
500 return cast<Instruction>(Result);
501 }
502
foldCttzCtlz(IntrinsicInst & II,InstCombinerImpl & IC)503 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
504 assert((II.getIntrinsicID() == Intrinsic::cttz ||
505 II.getIntrinsicID() == Intrinsic::ctlz) &&
506 "Expected cttz or ctlz intrinsic");
507 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
508 Value *Op0 = II.getArgOperand(0);
509 Value *Op1 = II.getArgOperand(1);
510 Value *X;
511 // ctlz(bitreverse(x)) -> cttz(x)
512 // cttz(bitreverse(x)) -> ctlz(x)
513 if (match(Op0, m_BitReverse(m_Value(X)))) {
514 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
515 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
516 return CallInst::Create(F, {X, II.getArgOperand(1)});
517 }
518
519 if (II.getType()->isIntOrIntVectorTy(1)) {
520 // ctlz/cttz i1 Op0 --> not Op0
521 if (match(Op1, m_Zero()))
522 return BinaryOperator::CreateNot(Op0);
523 // If zero is poison, then the input can be assumed to be "true", so the
524 // instruction simplifies to "false".
525 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
526 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
527 }
528
529 // If the operand is a select with constant arm(s), try to hoist ctlz/cttz.
530 if (auto *Sel = dyn_cast<SelectInst>(Op0))
531 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
532 return R;
533
534 if (IsTZ) {
535 // cttz(-x) -> cttz(x)
536 if (match(Op0, m_Neg(m_Value(X))))
537 return IC.replaceOperand(II, 0, X);
538
539 // cttz(sext(x)) -> cttz(zext(x))
540 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
541 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
542 auto *CttzZext =
543 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
544 return IC.replaceInstUsesWith(II, CttzZext);
545 }
546
547 // Zext doesn't change the number of trailing zeros, so narrow:
548 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
549 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
550 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
551 IC.Builder.getTrue());
552 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
553 return IC.replaceInstUsesWith(II, ZextCttz);
554 }
555
556 // cttz(abs(x)) -> cttz(x)
557 // cttz(nabs(x)) -> cttz(x)
558 Value *Y;
559 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
560 if (SPF == SPF_ABS || SPF == SPF_NABS)
561 return IC.replaceOperand(II, 0, X);
562
563 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
564 return IC.replaceOperand(II, 0, X);
565 }
566
567 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
568
569 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
570 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
571 : Known.countMaxLeadingZeros();
572 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
573 : Known.countMinLeadingZeros();
574
575 // If all bits above (ctlz) or below (cttz) the first known one are known
576 // zero, this value is constant.
577 // FIXME: This should be in InstSimplify because we're replacing an
578 // instruction with a constant.
579 if (PossibleZeros == DefiniteZeros) {
580 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
581 return IC.replaceInstUsesWith(II, C);
582 }
583
584 // If the input to cttz/ctlz is known to be non-zero,
585 // then change the 'ZeroIsPoison' parameter to 'true'
586 // because we know the zero behavior can't affect the result.
587 if (!Known.One.isZero() ||
588 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
589 &IC.getDominatorTree())) {
590 if (!match(II.getArgOperand(1), m_One()))
591 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
592 }
593
594 // Add range metadata since known bits can't completely reflect what we know.
595 // TODO: Handle splat vectors.
596 auto *IT = dyn_cast<IntegerType>(Op0->getType());
597 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
598 Metadata *LowAndHigh[] = {
599 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
600 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
601 II.setMetadata(LLVMContext::MD_range,
602 MDNode::get(II.getContext(), LowAndHigh));
603 return &II;
604 }
605
606 return nullptr;
607 }
608
foldCtpop(IntrinsicInst & II,InstCombinerImpl & IC)609 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
610 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
611 "Expected ctpop intrinsic");
612 Type *Ty = II.getType();
613 unsigned BitWidth = Ty->getScalarSizeInBits();
614 Value *Op0 = II.getArgOperand(0);
615 Value *X, *Y;
616
617 // ctpop(bitreverse(x)) -> ctpop(x)
618 // ctpop(bswap(x)) -> ctpop(x)
619 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
620 return IC.replaceOperand(II, 0, X);
621
622 // ctpop(rot(x)) -> ctpop(x)
623 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
624 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
625 X == Y)
626 return IC.replaceOperand(II, 0, X);
627
628 // ctpop(x | -x) -> bitwidth - cttz(x, false)
629 if (Op0->hasOneUse() &&
630 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
631 Function *F =
632 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
633 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
634 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
635 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
636 }
637
638 // ctpop(~x & (x - 1)) -> cttz(x, false)
639 if (match(Op0,
640 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
641 Function *F =
642 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
643 return CallInst::Create(F, {X, IC.Builder.getFalse()});
644 }
645
646 // Zext doesn't change the number of set bits, so narrow:
647 // ctpop (zext X) --> zext (ctpop X)
648 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
649 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
650 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
651 }
652
653 // If the operand is a select with constant arm(s), try to hoist ctpop.
654 if (auto *Sel = dyn_cast<SelectInst>(Op0))
655 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
656 return R;
657
658 KnownBits Known(BitWidth);
659 IC.computeKnownBits(Op0, Known, 0, &II);
660
661 // If all bits are zero except for exactly one fixed bit, then the result
662 // must be 0 or 1, and we can get that answer by shifting to LSB:
663 // ctpop (X & 32) --> (X & 32) >> 5
664 if ((~Known.Zero).isPowerOf2())
665 return BinaryOperator::CreateLShr(
666 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
667
668 // FIXME: Try to simplify vectors of integers.
669 auto *IT = dyn_cast<IntegerType>(Ty);
670 if (!IT)
671 return nullptr;
672
673 // Add range metadata since known bits can't completely reflect what we know.
674 unsigned MinCount = Known.countMinPopulation();
675 unsigned MaxCount = Known.countMaxPopulation();
676 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
677 Metadata *LowAndHigh[] = {
678 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
679 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
680 II.setMetadata(LLVMContext::MD_range,
681 MDNode::get(II.getContext(), LowAndHigh));
682 return &II;
683 }
684
685 return nullptr;
686 }
687
688 /// Convert a table lookup to shufflevector if the mask is constant.
689 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
690 /// which case we could lower the shufflevector with rev64 instructions
691 /// as it's actually a byte reverse.
simplifyNeonTbl1(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)692 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
693 InstCombiner::BuilderTy &Builder) {
694 // Bail out if the mask is not a constant.
695 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
696 if (!C)
697 return nullptr;
698
699 auto *VecTy = cast<FixedVectorType>(II.getType());
700 unsigned NumElts = VecTy->getNumElements();
701
702 // Only perform this transformation for <8 x i8> vector types.
703 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
704 return nullptr;
705
706 int Indexes[8];
707
708 for (unsigned I = 0; I < NumElts; ++I) {
709 Constant *COp = C->getAggregateElement(I);
710
711 if (!COp || !isa<ConstantInt>(COp))
712 return nullptr;
713
714 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
715
716 // Make sure the mask indices are in range.
717 if ((unsigned)Indexes[I] >= NumElts)
718 return nullptr;
719 }
720
721 auto *V1 = II.getArgOperand(0);
722 auto *V2 = Constant::getNullValue(V1->getType());
723 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
724 }
725
726 // Returns true iff the 2 intrinsics have the same operands, limiting the
727 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)728 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
729 unsigned NumOperands) {
730 assert(I.arg_size() >= NumOperands && "Not enough operands");
731 assert(E.arg_size() >= NumOperands && "Not enough operands");
732 for (unsigned i = 0; i < NumOperands; i++)
733 if (I.getArgOperand(i) != E.getArgOperand(i))
734 return false;
735 return true;
736 }
737
738 // Remove trivially empty start/end intrinsic ranges, i.e. a start
739 // immediately followed by an end (ignoring debuginfo or other
740 // start/end intrinsics in between). As this handles only the most trivial
741 // cases, tracking the nesting level is not needed:
742 //
743 // call @llvm.foo.start(i1 0)
744 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
745 // call @llvm.foo.end(i1 0)
746 // call @llvm.foo.end(i1 0) ; &I
747 static bool
removeTriviallyEmptyRange(IntrinsicInst & EndI,InstCombinerImpl & IC,std::function<bool (const IntrinsicInst &)> IsStart)748 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
749 std::function<bool(const IntrinsicInst &)> IsStart) {
750 // We start from the end intrinsic and scan backwards, so that InstCombine
751 // has already processed (and potentially removed) all the instructions
752 // before the end intrinsic.
753 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
754 for (; BI != BE; ++BI) {
755 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
756 if (I->isDebugOrPseudoInst() ||
757 I->getIntrinsicID() == EndI.getIntrinsicID())
758 continue;
759 if (IsStart(*I)) {
760 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
761 IC.eraseInstFromFunction(*I);
762 IC.eraseInstFromFunction(EndI);
763 return true;
764 }
765 // Skip start intrinsics that don't pair with this end intrinsic.
766 continue;
767 }
768 }
769 break;
770 }
771
772 return false;
773 }
774
visitVAEndInst(VAEndInst & I)775 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
776 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
777 return I.getIntrinsicID() == Intrinsic::vastart ||
778 I.getIntrinsicID() == Intrinsic::vacopy;
779 });
780 return nullptr;
781 }
782
canonicalizeConstantArg0ToArg1(CallInst & Call)783 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
784 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
785 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
786 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
787 Call.setArgOperand(0, Arg1);
788 Call.setArgOperand(1, Arg0);
789 return &Call;
790 }
791 return nullptr;
792 }
793
794 /// Creates a result tuple for an overflow intrinsic \p II with a given
795 /// \p Result and a constant \p Overflow value.
createOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)796 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
797 Constant *Overflow) {
798 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
799 StructType *ST = cast<StructType>(II->getType());
800 Constant *Struct = ConstantStruct::get(ST, V);
801 return InsertValueInst::Create(Struct, Result, 0);
802 }
803
804 Instruction *
foldIntrinsicWithOverflowCommon(IntrinsicInst * II)805 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
806 WithOverflowInst *WO = cast<WithOverflowInst>(II);
807 Value *OperationResult = nullptr;
808 Constant *OverflowResult = nullptr;
809 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
810 WO->getRHS(), *WO, OperationResult, OverflowResult))
811 return createOverflowTuple(WO, OperationResult, OverflowResult);
812 return nullptr;
813 }
814
getKnownSign(Value * Op,Instruction * CxtI,const DataLayout & DL,AssumptionCache * AC,DominatorTree * DT)815 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
816 const DataLayout &DL, AssumptionCache *AC,
817 DominatorTree *DT) {
818 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
819 if (Known.isNonNegative())
820 return false;
821 if (Known.isNegative())
822 return true;
823
824 Value *X, *Y;
825 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
826 return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL);
827
828 return isImpliedByDomCondition(
829 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
830 }
831
832 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
833 /// can trigger other combines.
moveAddAfterMinMax(IntrinsicInst * II,InstCombiner::BuilderTy & Builder)834 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
835 InstCombiner::BuilderTy &Builder) {
836 Intrinsic::ID MinMaxID = II->getIntrinsicID();
837 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
838 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
839 "Expected a min or max intrinsic");
840
841 // TODO: Match vectors with undef elements, but undef may not propagate.
842 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
843 Value *X;
844 const APInt *C0, *C1;
845 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
846 !match(Op1, m_APInt(C1)))
847 return nullptr;
848
849 // Check for necessary no-wrap and overflow constraints.
850 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
851 auto *Add = cast<BinaryOperator>(Op0);
852 if ((IsSigned && !Add->hasNoSignedWrap()) ||
853 (!IsSigned && !Add->hasNoUnsignedWrap()))
854 return nullptr;
855
856 // If the constant difference overflows, then instsimplify should reduce the
857 // min/max to the add or C1.
858 bool Overflow;
859 APInt CDiff =
860 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
861 assert(!Overflow && "Expected simplify of min/max");
862
863 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
864 // Note: the "mismatched" no-overflow setting does not propagate.
865 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
866 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
867 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
868 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
869 }
870 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
matchSAddSubSat(IntrinsicInst & MinMax1)871 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
872 Type *Ty = MinMax1.getType();
873
874 // We are looking for a tree of:
875 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
876 // Where the min and max could be reversed
877 Instruction *MinMax2;
878 BinaryOperator *AddSub;
879 const APInt *MinValue, *MaxValue;
880 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
881 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
882 return nullptr;
883 } else if (match(&MinMax1,
884 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
885 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
886 return nullptr;
887 } else
888 return nullptr;
889
890 // Check that the constants clamp a saturate, and that the new type would be
891 // sensible to convert to.
892 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
893 return nullptr;
894 // In what bitwidth can this be treated as saturating arithmetics?
895 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
896 // FIXME: This isn't quite right for vectors, but using the scalar type is a
897 // good first approximation for what should be done there.
898 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
899 return nullptr;
900
901 // Also make sure that the inner min/max and the add/sub have one use.
902 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
903 return nullptr;
904
905 // Create the new type (which can be a vector type)
906 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
907
908 Intrinsic::ID IntrinsicID;
909 if (AddSub->getOpcode() == Instruction::Add)
910 IntrinsicID = Intrinsic::sadd_sat;
911 else if (AddSub->getOpcode() == Instruction::Sub)
912 IntrinsicID = Intrinsic::ssub_sat;
913 else
914 return nullptr;
915
916 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
917 // is usually achieved via a sext from a smaller type.
918 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
919 NewBitWidth ||
920 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
921 return nullptr;
922
923 // Finally create and return the sat intrinsic, truncated to the new type
924 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
925 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
926 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
927 Value *Sat = Builder.CreateCall(F, {AT, BT});
928 return CastInst::Create(Instruction::SExt, Sat, Ty);
929 }
930
931
932 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
933 /// can only be one of two possible constant values -- turn that into a select
934 /// of constants.
foldClampRangeOfTwo(IntrinsicInst * II,InstCombiner::BuilderTy & Builder)935 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
936 InstCombiner::BuilderTy &Builder) {
937 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
938 Value *X;
939 const APInt *C0, *C1;
940 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
941 return nullptr;
942
943 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
944 switch (II->getIntrinsicID()) {
945 case Intrinsic::smax:
946 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
947 Pred = ICmpInst::ICMP_SGT;
948 break;
949 case Intrinsic::smin:
950 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
951 Pred = ICmpInst::ICMP_SLT;
952 break;
953 case Intrinsic::umax:
954 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
955 Pred = ICmpInst::ICMP_UGT;
956 break;
957 case Intrinsic::umin:
958 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
959 Pred = ICmpInst::ICMP_ULT;
960 break;
961 default:
962 llvm_unreachable("Expected min/max intrinsic");
963 }
964 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
965 return nullptr;
966
967 // max (min X, 42), 41 --> X > 41 ? 42 : 41
968 // min (max X, 42), 43 --> X < 43 ? 42 : 43
969 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
970 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
971 }
972
973 /// If this min/max has a constant operand and an operand that is a matching
974 /// min/max with a constant operand, constant-fold the 2 constant operands.
reassociateMinMaxWithConstants(IntrinsicInst * II)975 static Instruction *reassociateMinMaxWithConstants(IntrinsicInst *II) {
976 Intrinsic::ID MinMaxID = II->getIntrinsicID();
977 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
978 if (!LHS || LHS->getIntrinsicID() != MinMaxID)
979 return nullptr;
980
981 Constant *C0, *C1;
982 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
983 !match(II->getArgOperand(1), m_ImmConstant(C1)))
984 return nullptr;
985
986 // max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC
987 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
988 Constant *CondC = ConstantExpr::getICmp(Pred, C0, C1);
989 Constant *NewC = ConstantExpr::getSelect(CondC, C0, C1);
990
991 Module *Mod = II->getModule();
992 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
993 return CallInst::Create(MinMax, {LHS->getArgOperand(0), NewC});
994 }
995
996 /// If this min/max has a matching min/max operand with a constant, try to push
997 /// the constant operand into this instruction. This can enable more folds.
998 static Instruction *
reassociateMinMaxWithConstantInOperand(IntrinsicInst * II,InstCombiner::BuilderTy & Builder)999 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1000 InstCombiner::BuilderTy &Builder) {
1001 // Match and capture a min/max operand candidate.
1002 Value *X, *Y;
1003 Constant *C;
1004 Instruction *Inner;
1005 if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1006 m_Instruction(Inner),
1007 m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1008 m_Value(Y))))
1009 return nullptr;
1010
1011 // The inner op must match. Check for constants to avoid infinite loops.
1012 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1013 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1014 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1015 match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1016 return nullptr;
1017
1018 // max (max X, C), Y --> max (max X, Y), C
1019 Function *MinMax =
1020 Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1021 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1022 NewInner->takeName(Inner);
1023 return CallInst::Create(MinMax, {NewInner, C});
1024 }
1025
1026 /// Reduce a sequence of min/max intrinsics with a common operand.
factorizeMinMaxTree(IntrinsicInst * II)1027 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1028 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1029 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1030 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1031 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1032 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1033 RHS->getIntrinsicID() != MinMaxID ||
1034 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1035 return nullptr;
1036
1037 Value *A = LHS->getArgOperand(0);
1038 Value *B = LHS->getArgOperand(1);
1039 Value *C = RHS->getArgOperand(0);
1040 Value *D = RHS->getArgOperand(1);
1041
1042 // Look for a common operand.
1043 Value *MinMaxOp = nullptr;
1044 Value *ThirdOp = nullptr;
1045 if (LHS->hasOneUse()) {
1046 // If the LHS is only used in this chain and the RHS is used outside of it,
1047 // reuse the RHS min/max because that will eliminate the LHS.
1048 if (D == A || C == A) {
1049 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1050 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1051 MinMaxOp = RHS;
1052 ThirdOp = B;
1053 } else if (D == B || C == B) {
1054 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1055 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1056 MinMaxOp = RHS;
1057 ThirdOp = A;
1058 }
1059 } else {
1060 assert(RHS->hasOneUse() && "Expected one-use operand");
1061 // Reuse the LHS. This will eliminate the RHS.
1062 if (D == A || D == B) {
1063 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1064 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1065 MinMaxOp = LHS;
1066 ThirdOp = C;
1067 } else if (C == A || C == B) {
1068 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1069 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1070 MinMaxOp = LHS;
1071 ThirdOp = D;
1072 }
1073 }
1074
1075 if (!MinMaxOp || !ThirdOp)
1076 return nullptr;
1077
1078 Module *Mod = II->getModule();
1079 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1080 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1081 }
1082
1083 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1084 /// try to shuffle after the intrinsic.
1085 static Instruction *
foldShuffledIntrinsicOperands(IntrinsicInst * II,InstCombiner::BuilderTy & Builder)1086 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1087 InstCombiner::BuilderTy &Builder) {
1088 // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1089 // etc. Use llvm::isTriviallyVectorizable() and related to determine
1090 // which intrinsics are safe to shuffle?
1091 switch (II->getIntrinsicID()) {
1092 case Intrinsic::smax:
1093 case Intrinsic::smin:
1094 case Intrinsic::umax:
1095 case Intrinsic::umin:
1096 case Intrinsic::fma:
1097 case Intrinsic::fshl:
1098 case Intrinsic::fshr:
1099 break;
1100 default:
1101 return nullptr;
1102 }
1103
1104 Value *X;
1105 ArrayRef<int> Mask;
1106 if (!match(II->getArgOperand(0),
1107 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1108 return nullptr;
1109
1110 // At least 1 operand must have 1 use because we are creating 2 instructions.
1111 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1112 return nullptr;
1113
1114 // See if all arguments are shuffled with the same mask.
1115 SmallVector<Value *, 4> NewArgs(II->arg_size());
1116 NewArgs[0] = X;
1117 Type *SrcTy = X->getType();
1118 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1119 if (!match(II->getArgOperand(i),
1120 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1121 X->getType() != SrcTy)
1122 return nullptr;
1123 NewArgs[i] = X;
1124 }
1125
1126 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1127 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1128 Value *NewIntrinsic =
1129 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1130 return new ShuffleVectorInst(NewIntrinsic, Mask);
1131 }
1132
1133 /// CallInst simplification. This mostly only handles folding of intrinsic
1134 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1135 /// lifting.
visitCallInst(CallInst & CI)1136 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1137 // Don't try to simplify calls without uses. It will not do anything useful,
1138 // but will result in the following folds being skipped.
1139 if (!CI.use_empty())
1140 if (Value *V = simplifyCall(&CI, SQ.getWithInstruction(&CI)))
1141 return replaceInstUsesWith(CI, V);
1142
1143 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1144 return visitFree(CI, FreedOp);
1145
1146 // If the caller function (i.e. us, the function that contains this CallInst)
1147 // is nounwind, mark the call as nounwind, even if the callee isn't.
1148 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1149 CI.setDoesNotThrow();
1150 return &CI;
1151 }
1152
1153 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1154 if (!II) return visitCallBase(CI);
1155
1156 // For atomic unordered mem intrinsics if len is not a positive or
1157 // not a multiple of element size then behavior is undefined.
1158 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1159 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1160 if (NumBytes->getSExtValue() < 0 ||
1161 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1162 CreateNonTerminatorUnreachable(AMI);
1163 assert(AMI->getType()->isVoidTy() &&
1164 "non void atomic unordered mem intrinsic");
1165 return eraseInstFromFunction(*AMI);
1166 }
1167
1168 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1169 // instead of in visitCallBase.
1170 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1171 bool Changed = false;
1172
1173 // memmove/cpy/set of zero bytes is a noop.
1174 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1175 if (NumBytes->isNullValue())
1176 return eraseInstFromFunction(CI);
1177 }
1178
1179 // No other transformations apply to volatile transfers.
1180 if (auto *M = dyn_cast<MemIntrinsic>(MI))
1181 if (M->isVolatile())
1182 return nullptr;
1183
1184 // If we have a memmove and the source operation is a constant global,
1185 // then the source and dest pointers can't alias, so we can change this
1186 // into a call to memcpy.
1187 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1188 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1189 if (GVSrc->isConstant()) {
1190 Module *M = CI.getModule();
1191 Intrinsic::ID MemCpyID =
1192 isa<AtomicMemMoveInst>(MMI)
1193 ? Intrinsic::memcpy_element_unordered_atomic
1194 : Intrinsic::memcpy;
1195 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1196 CI.getArgOperand(1)->getType(),
1197 CI.getArgOperand(2)->getType() };
1198 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1199 Changed = true;
1200 }
1201 }
1202
1203 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1204 // memmove(x,x,size) -> noop.
1205 if (MTI->getSource() == MTI->getDest())
1206 return eraseInstFromFunction(CI);
1207 }
1208
1209 // If we can determine a pointer alignment that is bigger than currently
1210 // set, update the alignment.
1211 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1212 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1213 return I;
1214 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1215 if (Instruction *I = SimplifyAnyMemSet(MSI))
1216 return I;
1217 }
1218
1219 if (Changed) return II;
1220 }
1221
1222 // For fixed width vector result intrinsics, use the generic demanded vector
1223 // support.
1224 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1225 auto VWidth = IIFVTy->getNumElements();
1226 APInt UndefElts(VWidth, 0);
1227 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1228 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1229 if (V != II)
1230 return replaceInstUsesWith(*II, V);
1231 return II;
1232 }
1233 }
1234
1235 if (II->isCommutative()) {
1236 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1237 return NewCall;
1238 }
1239
1240 // Unused constrained FP intrinsic calls may have declared side effect, which
1241 // prevents it from being removed. In some cases however the side effect is
1242 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1243 // returns a replacement, the call may be removed.
1244 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1245 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1246 return eraseInstFromFunction(CI);
1247 }
1248
1249 Intrinsic::ID IID = II->getIntrinsicID();
1250 switch (IID) {
1251 case Intrinsic::objectsize:
1252 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false))
1253 return replaceInstUsesWith(CI, V);
1254 return nullptr;
1255 case Intrinsic::abs: {
1256 Value *IIOperand = II->getArgOperand(0);
1257 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1258
1259 // abs(-x) -> abs(x)
1260 // TODO: Copy nsw if it was present on the neg?
1261 Value *X;
1262 if (match(IIOperand, m_Neg(m_Value(X))))
1263 return replaceOperand(*II, 0, X);
1264 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1265 return replaceOperand(*II, 0, X);
1266 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1267 return replaceOperand(*II, 0, X);
1268
1269 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
1270 // abs(x) -> x if x >= 0
1271 if (!*Sign)
1272 return replaceInstUsesWith(*II, IIOperand);
1273
1274 // abs(x) -> -x if x < 0
1275 if (IntMinIsPoison)
1276 return BinaryOperator::CreateNSWNeg(IIOperand);
1277 return BinaryOperator::CreateNeg(IIOperand);
1278 }
1279
1280 // abs (sext X) --> zext (abs X*)
1281 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1282 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1283 Value *NarrowAbs =
1284 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1285 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1286 }
1287
1288 // Match a complicated way to check if a number is odd/even:
1289 // abs (srem X, 2) --> and X, 1
1290 const APInt *C;
1291 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1292 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1293
1294 break;
1295 }
1296 case Intrinsic::umin: {
1297 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1298 // umin(x, 1) == zext(x != 0)
1299 if (match(I1, m_One())) {
1300 Value *Zero = Constant::getNullValue(I0->getType());
1301 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1302 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1303 }
1304 LLVM_FALLTHROUGH;
1305 }
1306 case Intrinsic::umax: {
1307 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1308 Value *X, *Y;
1309 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1310 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1311 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1312 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1313 }
1314 Constant *C;
1315 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1316 I0->hasOneUse()) {
1317 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1318 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
1319 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1320 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1321 }
1322 }
1323 // If both operands of unsigned min/max are sign-extended, it is still ok
1324 // to narrow the operation.
1325 LLVM_FALLTHROUGH;
1326 }
1327 case Intrinsic::smax:
1328 case Intrinsic::smin: {
1329 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1330 Value *X, *Y;
1331 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1332 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1333 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1334 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1335 }
1336
1337 Constant *C;
1338 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1339 I0->hasOneUse()) {
1340 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1341 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
1342 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1343 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1344 }
1345 }
1346
1347 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1348 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1349 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1350 // TODO: Canonicalize neg after min/max if I1 is constant.
1351 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1352 (I0->hasOneUse() || I1->hasOneUse())) {
1353 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1354 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1355 return BinaryOperator::CreateNSWNeg(InvMaxMin);
1356 }
1357 }
1358
1359 // If we can eliminate ~A and Y is free to invert:
1360 // max ~A, Y --> ~(min A, ~Y)
1361 //
1362 // Examples:
1363 // max ~A, ~Y --> ~(min A, Y)
1364 // max ~A, C --> ~(min A, ~C)
1365 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1366 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1367 Value *A;
1368 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1369 !isFreeToInvert(A, A->hasOneUse()) &&
1370 isFreeToInvert(Y, Y->hasOneUse())) {
1371 Value *NotY = Builder.CreateNot(Y);
1372 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1373 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1374 return BinaryOperator::CreateNot(InvMaxMin);
1375 }
1376 return nullptr;
1377 };
1378
1379 if (Instruction *I = moveNotAfterMinMax(I0, I1))
1380 return I;
1381 if (Instruction *I = moveNotAfterMinMax(I1, I0))
1382 return I;
1383
1384 if (Instruction *I = moveAddAfterMinMax(II, Builder))
1385 return I;
1386
1387 // smax(X, -X) --> abs(X)
1388 // smin(X, -X) --> -abs(X)
1389 // umax(X, -X) --> -abs(X)
1390 // umin(X, -X) --> abs(X)
1391 if (isKnownNegation(I0, I1)) {
1392 // We can choose either operand as the input to abs(), but if we can
1393 // eliminate the only use of a value, that's better for subsequent
1394 // transforms/analysis.
1395 if (I0->hasOneUse() && !I1->hasOneUse())
1396 std::swap(I0, I1);
1397
1398 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1399 // operation and potentially its negation.
1400 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1401 Value *Abs = Builder.CreateBinaryIntrinsic(
1402 Intrinsic::abs, I0,
1403 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1404
1405 // We don't have a "nabs" intrinsic, so negate if needed based on the
1406 // max/min operation.
1407 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1408 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1409 return replaceInstUsesWith(CI, Abs);
1410 }
1411
1412 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1413 return Sel;
1414
1415 if (Instruction *SAdd = matchSAddSubSat(*II))
1416 return SAdd;
1417
1418 if (match(I1, m_ImmConstant()))
1419 if (auto *Sel = dyn_cast<SelectInst>(I0))
1420 if (Instruction *R = FoldOpIntoSelect(*II, Sel))
1421 return R;
1422
1423 if (Instruction *NewMinMax = reassociateMinMaxWithConstants(II))
1424 return NewMinMax;
1425
1426 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1427 return R;
1428
1429 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1430 return NewMinMax;
1431
1432 break;
1433 }
1434 case Intrinsic::bswap: {
1435 Value *IIOperand = II->getArgOperand(0);
1436
1437 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1438 // inverse-shift-of-bswap:
1439 // bswap (shl X, Y) --> lshr (bswap X), Y
1440 // bswap (lshr X, Y) --> shl (bswap X), Y
1441 Value *X, *Y;
1442 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1443 // The transform allows undef vector elements, so try a constant match
1444 // first. If knownbits can handle that case, that clause could be removed.
1445 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1446 const APInt *C;
1447 if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
1448 MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
1449 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1450 BinaryOperator::BinaryOps InverseShift =
1451 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1452 ? Instruction::LShr
1453 : Instruction::Shl;
1454 return BinaryOperator::Create(InverseShift, NewSwap, Y);
1455 }
1456 }
1457
1458 KnownBits Known = computeKnownBits(IIOperand, 0, II);
1459 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1460 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1461 unsigned BW = Known.getBitWidth();
1462
1463 // bswap(x) -> shift(x) if x has exactly one "active byte"
1464 if (BW - LZ - TZ == 8) {
1465 assert(LZ != TZ && "active byte cannot be in the middle");
1466 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
1467 return BinaryOperator::CreateNUWShl(
1468 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1469 // -> lshr(x) if the "active byte" is in the high part of x
1470 return BinaryOperator::CreateExactLShr(
1471 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1472 }
1473
1474 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1475 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1476 unsigned C = X->getType()->getScalarSizeInBits() - BW;
1477 Value *CV = ConstantInt::get(X->getType(), C);
1478 Value *V = Builder.CreateLShr(X, CV);
1479 return new TruncInst(V, IIOperand->getType());
1480 }
1481 break;
1482 }
1483 case Intrinsic::masked_load:
1484 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1485 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1486 break;
1487 case Intrinsic::masked_store:
1488 return simplifyMaskedStore(*II);
1489 case Intrinsic::masked_gather:
1490 return simplifyMaskedGather(*II);
1491 case Intrinsic::masked_scatter:
1492 return simplifyMaskedScatter(*II);
1493 case Intrinsic::launder_invariant_group:
1494 case Intrinsic::strip_invariant_group:
1495 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1496 return replaceInstUsesWith(*II, SkippedBarrier);
1497 break;
1498 case Intrinsic::powi:
1499 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1500 // 0 and 1 are handled in instsimplify
1501 // powi(x, -1) -> 1/x
1502 if (Power->isMinusOne())
1503 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1504 II->getArgOperand(0), II);
1505 // powi(x, 2) -> x*x
1506 if (Power->equalsInt(2))
1507 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1508 II->getArgOperand(0), II);
1509
1510 if (!Power->getValue()[0]) {
1511 Value *X;
1512 // If power is even:
1513 // powi(-x, p) -> powi(x, p)
1514 // powi(fabs(x), p) -> powi(x, p)
1515 // powi(copysign(x, y), p) -> powi(x, p)
1516 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1517 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1518 match(II->getArgOperand(0),
1519 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1520 return replaceOperand(*II, 0, X);
1521 }
1522 }
1523 break;
1524
1525 case Intrinsic::cttz:
1526 case Intrinsic::ctlz:
1527 if (auto *I = foldCttzCtlz(*II, *this))
1528 return I;
1529 break;
1530
1531 case Intrinsic::ctpop:
1532 if (auto *I = foldCtpop(*II, *this))
1533 return I;
1534 break;
1535
1536 case Intrinsic::fshl:
1537 case Intrinsic::fshr: {
1538 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1539 Type *Ty = II->getType();
1540 unsigned BitWidth = Ty->getScalarSizeInBits();
1541 Constant *ShAmtC;
1542 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
1543 // Canonicalize a shift amount constant operand to modulo the bit-width.
1544 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1545 Constant *ModuloC =
1546 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
1547 if (!ModuloC)
1548 return nullptr;
1549 if (ModuloC != ShAmtC)
1550 return replaceOperand(*II, 2, ModuloC);
1551
1552 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1553 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1554 "Shift amount expected to be modulo bitwidth");
1555
1556 // Canonicalize funnel shift right by constant to funnel shift left. This
1557 // is not entirely arbitrary. For historical reasons, the backend may
1558 // recognize rotate left patterns but miss rotate right patterns.
1559 if (IID == Intrinsic::fshr) {
1560 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1561 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1562 Module *Mod = II->getModule();
1563 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1564 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1565 }
1566 assert(IID == Intrinsic::fshl &&
1567 "All funnel shifts by simple constants should go left");
1568
1569 // fshl(X, 0, C) --> shl X, C
1570 // fshl(X, undef, C) --> shl X, C
1571 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1572 return BinaryOperator::CreateShl(Op0, ShAmtC);
1573
1574 // fshl(0, X, C) --> lshr X, (BW-C)
1575 // fshl(undef, X, C) --> lshr X, (BW-C)
1576 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1577 return BinaryOperator::CreateLShr(Op1,
1578 ConstantExpr::getSub(WidthC, ShAmtC));
1579
1580 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1581 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1582 Module *Mod = II->getModule();
1583 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1584 return CallInst::Create(Bswap, { Op0 });
1585 }
1586 }
1587
1588 // Left or right might be masked.
1589 if (SimplifyDemandedInstructionBits(*II))
1590 return &CI;
1591
1592 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1593 // so only the low bits of the shift amount are demanded if the bitwidth is
1594 // a power-of-2.
1595 if (!isPowerOf2_32(BitWidth))
1596 break;
1597 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1598 KnownBits Op2Known(BitWidth);
1599 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1600 return &CI;
1601 break;
1602 }
1603 case Intrinsic::uadd_with_overflow:
1604 case Intrinsic::sadd_with_overflow: {
1605 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1606 return I;
1607
1608 // Given 2 constant operands whose sum does not overflow:
1609 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1610 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1611 Value *X;
1612 const APInt *C0, *C1;
1613 Value *Arg0 = II->getArgOperand(0);
1614 Value *Arg1 = II->getArgOperand(1);
1615 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1616 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1617 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1618 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1619 bool Overflow;
1620 APInt NewC =
1621 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1622 if (!Overflow)
1623 return replaceInstUsesWith(
1624 *II, Builder.CreateBinaryIntrinsic(
1625 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1626 }
1627 break;
1628 }
1629
1630 case Intrinsic::umul_with_overflow:
1631 case Intrinsic::smul_with_overflow:
1632 case Intrinsic::usub_with_overflow:
1633 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1634 return I;
1635 break;
1636
1637 case Intrinsic::ssub_with_overflow: {
1638 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1639 return I;
1640
1641 Constant *C;
1642 Value *Arg0 = II->getArgOperand(0);
1643 Value *Arg1 = II->getArgOperand(1);
1644 // Given a constant C that is not the minimum signed value
1645 // for an integer of a given bit width:
1646 //
1647 // ssubo X, C -> saddo X, -C
1648 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1649 Value *NegVal = ConstantExpr::getNeg(C);
1650 // Build a saddo call that is equivalent to the discovered
1651 // ssubo call.
1652 return replaceInstUsesWith(
1653 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1654 Arg0, NegVal));
1655 }
1656
1657 break;
1658 }
1659
1660 case Intrinsic::uadd_sat:
1661 case Intrinsic::sadd_sat:
1662 case Intrinsic::usub_sat:
1663 case Intrinsic::ssub_sat: {
1664 SaturatingInst *SI = cast<SaturatingInst>(II);
1665 Type *Ty = SI->getType();
1666 Value *Arg0 = SI->getLHS();
1667 Value *Arg1 = SI->getRHS();
1668
1669 // Make use of known overflow information.
1670 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1671 Arg0, Arg1, SI);
1672 switch (OR) {
1673 case OverflowResult::MayOverflow:
1674 break;
1675 case OverflowResult::NeverOverflows:
1676 if (SI->isSigned())
1677 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1678 else
1679 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1680 case OverflowResult::AlwaysOverflowsLow: {
1681 unsigned BitWidth = Ty->getScalarSizeInBits();
1682 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1683 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1684 }
1685 case OverflowResult::AlwaysOverflowsHigh: {
1686 unsigned BitWidth = Ty->getScalarSizeInBits();
1687 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1688 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1689 }
1690 }
1691
1692 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1693 Constant *C;
1694 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1695 C->isNotMinSignedValue()) {
1696 Value *NegVal = ConstantExpr::getNeg(C);
1697 return replaceInstUsesWith(
1698 *II, Builder.CreateBinaryIntrinsic(
1699 Intrinsic::sadd_sat, Arg0, NegVal));
1700 }
1701
1702 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1703 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1704 // if Val and Val2 have the same sign
1705 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1706 Value *X;
1707 const APInt *Val, *Val2;
1708 APInt NewVal;
1709 bool IsUnsigned =
1710 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1711 if (Other->getIntrinsicID() == IID &&
1712 match(Arg1, m_APInt(Val)) &&
1713 match(Other->getArgOperand(0), m_Value(X)) &&
1714 match(Other->getArgOperand(1), m_APInt(Val2))) {
1715 if (IsUnsigned)
1716 NewVal = Val->uadd_sat(*Val2);
1717 else if (Val->isNonNegative() == Val2->isNonNegative()) {
1718 bool Overflow;
1719 NewVal = Val->sadd_ov(*Val2, Overflow);
1720 if (Overflow) {
1721 // Both adds together may add more than SignedMaxValue
1722 // without saturating the final result.
1723 break;
1724 }
1725 } else {
1726 // Cannot fold saturated addition with different signs.
1727 break;
1728 }
1729
1730 return replaceInstUsesWith(
1731 *II, Builder.CreateBinaryIntrinsic(
1732 IID, X, ConstantInt::get(II->getType(), NewVal)));
1733 }
1734 }
1735 break;
1736 }
1737
1738 case Intrinsic::minnum:
1739 case Intrinsic::maxnum:
1740 case Intrinsic::minimum:
1741 case Intrinsic::maximum: {
1742 Value *Arg0 = II->getArgOperand(0);
1743 Value *Arg1 = II->getArgOperand(1);
1744 Value *X, *Y;
1745 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1746 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1747 // If both operands are negated, invert the call and negate the result:
1748 // min(-X, -Y) --> -(max(X, Y))
1749 // max(-X, -Y) --> -(min(X, Y))
1750 Intrinsic::ID NewIID;
1751 switch (IID) {
1752 case Intrinsic::maxnum:
1753 NewIID = Intrinsic::minnum;
1754 break;
1755 case Intrinsic::minnum:
1756 NewIID = Intrinsic::maxnum;
1757 break;
1758 case Intrinsic::maximum:
1759 NewIID = Intrinsic::minimum;
1760 break;
1761 case Intrinsic::minimum:
1762 NewIID = Intrinsic::maximum;
1763 break;
1764 default:
1765 llvm_unreachable("unexpected intrinsic ID");
1766 }
1767 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1768 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1769 FNeg->copyIRFlags(II);
1770 return FNeg;
1771 }
1772
1773 // m(m(X, C2), C1) -> m(X, C)
1774 const APFloat *C1, *C2;
1775 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1776 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1777 ((match(M->getArgOperand(0), m_Value(X)) &&
1778 match(M->getArgOperand(1), m_APFloat(C2))) ||
1779 (match(M->getArgOperand(1), m_Value(X)) &&
1780 match(M->getArgOperand(0), m_APFloat(C2))))) {
1781 APFloat Res(0.0);
1782 switch (IID) {
1783 case Intrinsic::maxnum:
1784 Res = maxnum(*C1, *C2);
1785 break;
1786 case Intrinsic::minnum:
1787 Res = minnum(*C1, *C2);
1788 break;
1789 case Intrinsic::maximum:
1790 Res = maximum(*C1, *C2);
1791 break;
1792 case Intrinsic::minimum:
1793 Res = minimum(*C1, *C2);
1794 break;
1795 default:
1796 llvm_unreachable("unexpected intrinsic ID");
1797 }
1798 Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1799 IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1800 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1801 // was a simplification (so Arg0 and its original flags could
1802 // propagate?)
1803 NewCall->andIRFlags(M);
1804 return replaceInstUsesWith(*II, NewCall);
1805 }
1806 }
1807
1808 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
1809 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
1810 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
1811 X->getType() == Y->getType()) {
1812 Value *NewCall =
1813 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
1814 return new FPExtInst(NewCall, II->getType());
1815 }
1816
1817 // max X, -X --> fabs X
1818 // min X, -X --> -(fabs X)
1819 // TODO: Remove one-use limitation? That is obviously better for max.
1820 // It would be an extra instruction for min (fnabs), but that is
1821 // still likely better for analysis and codegen.
1822 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
1823 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
1824 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
1825 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
1826 R = Builder.CreateFNegFMF(R, II);
1827 return replaceInstUsesWith(*II, R);
1828 }
1829
1830 break;
1831 }
1832 case Intrinsic::fmuladd: {
1833 // Canonicalize fast fmuladd to the separate fmul + fadd.
1834 if (II->isFast()) {
1835 BuilderTy::FastMathFlagGuard Guard(Builder);
1836 Builder.setFastMathFlags(II->getFastMathFlags());
1837 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1838 II->getArgOperand(1));
1839 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1840 Add->takeName(II);
1841 return replaceInstUsesWith(*II, Add);
1842 }
1843
1844 // Try to simplify the underlying FMul.
1845 if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1846 II->getFastMathFlags(),
1847 SQ.getWithInstruction(II))) {
1848 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1849 FAdd->copyFastMathFlags(II);
1850 return FAdd;
1851 }
1852
1853 LLVM_FALLTHROUGH;
1854 }
1855 case Intrinsic::fma: {
1856 // fma fneg(x), fneg(y), z -> fma x, y, z
1857 Value *Src0 = II->getArgOperand(0);
1858 Value *Src1 = II->getArgOperand(1);
1859 Value *X, *Y;
1860 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1861 replaceOperand(*II, 0, X);
1862 replaceOperand(*II, 1, Y);
1863 return II;
1864 }
1865
1866 // fma fabs(x), fabs(x), z -> fma x, x, z
1867 if (match(Src0, m_FAbs(m_Value(X))) &&
1868 match(Src1, m_FAbs(m_Specific(X)))) {
1869 replaceOperand(*II, 0, X);
1870 replaceOperand(*II, 1, X);
1871 return II;
1872 }
1873
1874 // Try to simplify the underlying FMul. We can only apply simplifications
1875 // that do not require rounding.
1876 if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1877 II->getFastMathFlags(),
1878 SQ.getWithInstruction(II))) {
1879 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1880 FAdd->copyFastMathFlags(II);
1881 return FAdd;
1882 }
1883
1884 // fma x, y, 0 -> fmul x, y
1885 // This is always valid for -0.0, but requires nsz for +0.0 as
1886 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1887 if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1888 (match(II->getArgOperand(2), m_PosZeroFP()) &&
1889 II->getFastMathFlags().noSignedZeros()))
1890 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1891
1892 break;
1893 }
1894 case Intrinsic::copysign: {
1895 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1896 if (SignBitMustBeZero(Sign, &TLI)) {
1897 // If we know that the sign argument is positive, reduce to FABS:
1898 // copysign Mag, +Sign --> fabs Mag
1899 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1900 return replaceInstUsesWith(*II, Fabs);
1901 }
1902 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1903 const APFloat *C;
1904 if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1905 // If we know that the sign argument is negative, reduce to FNABS:
1906 // copysign Mag, -Sign --> fneg (fabs Mag)
1907 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1908 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1909 }
1910
1911 // Propagate sign argument through nested calls:
1912 // copysign Mag, (copysign ?, X) --> copysign Mag, X
1913 Value *X;
1914 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
1915 return replaceOperand(*II, 1, X);
1916
1917 // Peek through changes of magnitude's sign-bit. This call rewrites those:
1918 // copysign (fabs X), Sign --> copysign X, Sign
1919 // copysign (fneg X), Sign --> copysign X, Sign
1920 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
1921 return replaceOperand(*II, 0, X);
1922
1923 break;
1924 }
1925 case Intrinsic::fabs: {
1926 Value *Cond, *TVal, *FVal;
1927 if (match(II->getArgOperand(0),
1928 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
1929 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
1930 if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
1931 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
1932 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
1933 return SelectInst::Create(Cond, AbsT, AbsF);
1934 }
1935 // fabs (select Cond, -FVal, FVal) --> fabs FVal
1936 if (match(TVal, m_FNeg(m_Specific(FVal))))
1937 return replaceOperand(*II, 0, FVal);
1938 // fabs (select Cond, TVal, -TVal) --> fabs TVal
1939 if (match(FVal, m_FNeg(m_Specific(TVal))))
1940 return replaceOperand(*II, 0, TVal);
1941 }
1942
1943 LLVM_FALLTHROUGH;
1944 }
1945 case Intrinsic::ceil:
1946 case Intrinsic::floor:
1947 case Intrinsic::round:
1948 case Intrinsic::roundeven:
1949 case Intrinsic::nearbyint:
1950 case Intrinsic::rint:
1951 case Intrinsic::trunc: {
1952 Value *ExtSrc;
1953 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
1954 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
1955 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
1956 return new FPExtInst(NarrowII, II->getType());
1957 }
1958 break;
1959 }
1960 case Intrinsic::cos:
1961 case Intrinsic::amdgcn_cos: {
1962 Value *X;
1963 Value *Src = II->getArgOperand(0);
1964 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
1965 // cos(-x) -> cos(x)
1966 // cos(fabs(x)) -> cos(x)
1967 return replaceOperand(*II, 0, X);
1968 }
1969 break;
1970 }
1971 case Intrinsic::sin: {
1972 Value *X;
1973 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
1974 // sin(-x) --> -sin(x)
1975 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
1976 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
1977 FNeg->copyFastMathFlags(II);
1978 return FNeg;
1979 }
1980 break;
1981 }
1982
1983 case Intrinsic::arm_neon_vtbl1:
1984 case Intrinsic::aarch64_neon_tbl1:
1985 if (Value *V = simplifyNeonTbl1(*II, Builder))
1986 return replaceInstUsesWith(*II, V);
1987 break;
1988
1989 case Intrinsic::arm_neon_vmulls:
1990 case Intrinsic::arm_neon_vmullu:
1991 case Intrinsic::aarch64_neon_smull:
1992 case Intrinsic::aarch64_neon_umull: {
1993 Value *Arg0 = II->getArgOperand(0);
1994 Value *Arg1 = II->getArgOperand(1);
1995
1996 // Handle mul by zero first:
1997 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1998 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1999 }
2000
2001 // Check for constant LHS & RHS - in this case we just simplify.
2002 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2003 IID == Intrinsic::aarch64_neon_umull);
2004 VectorType *NewVT = cast<VectorType>(II->getType());
2005 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2006 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2007 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
2008 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
2009
2010 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
2011 }
2012
2013 // Couldn't simplify - canonicalize constant to the RHS.
2014 std::swap(Arg0, Arg1);
2015 }
2016
2017 // Handle mul by one:
2018 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2019 if (ConstantInt *Splat =
2020 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2021 if (Splat->isOne())
2022 return CastInst::CreateIntegerCast(Arg0, II->getType(),
2023 /*isSigned=*/!Zext);
2024
2025 break;
2026 }
2027 case Intrinsic::arm_neon_aesd:
2028 case Intrinsic::arm_neon_aese:
2029 case Intrinsic::aarch64_crypto_aesd:
2030 case Intrinsic::aarch64_crypto_aese: {
2031 Value *DataArg = II->getArgOperand(0);
2032 Value *KeyArg = II->getArgOperand(1);
2033
2034 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2035 Value *Data, *Key;
2036 if (match(KeyArg, m_ZeroInt()) &&
2037 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2038 replaceOperand(*II, 0, Data);
2039 replaceOperand(*II, 1, Key);
2040 return II;
2041 }
2042 break;
2043 }
2044 case Intrinsic::hexagon_V6_vandvrt:
2045 case Intrinsic::hexagon_V6_vandvrt_128B: {
2046 // Simplify Q -> V -> Q conversion.
2047 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2048 Intrinsic::ID ID0 = Op0->getIntrinsicID();
2049 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2050 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2051 break;
2052 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2053 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2054 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2055 // Check if every byte has common bits in Bytes and Mask.
2056 uint64_t C = Bytes1 & Mask1;
2057 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2058 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2059 }
2060 break;
2061 }
2062 case Intrinsic::stackrestore: {
2063 enum class ClassifyResult {
2064 None,
2065 Alloca,
2066 StackRestore,
2067 CallWithSideEffects,
2068 };
2069 auto Classify = [](const Instruction *I) {
2070 if (isa<AllocaInst>(I))
2071 return ClassifyResult::Alloca;
2072
2073 if (auto *CI = dyn_cast<CallInst>(I)) {
2074 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2075 if (II->getIntrinsicID() == Intrinsic::stackrestore)
2076 return ClassifyResult::StackRestore;
2077
2078 if (II->mayHaveSideEffects())
2079 return ClassifyResult::CallWithSideEffects;
2080 } else {
2081 // Consider all non-intrinsic calls to be side effects
2082 return ClassifyResult::CallWithSideEffects;
2083 }
2084 }
2085
2086 return ClassifyResult::None;
2087 };
2088
2089 // If the stacksave and the stackrestore are in the same BB, and there is
2090 // no intervening call, alloca, or stackrestore of a different stacksave,
2091 // remove the restore. This can happen when variable allocas are DCE'd.
2092 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2093 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2094 SS->getParent() == II->getParent()) {
2095 BasicBlock::iterator BI(SS);
2096 bool CannotRemove = false;
2097 for (++BI; &*BI != II; ++BI) {
2098 switch (Classify(&*BI)) {
2099 case ClassifyResult::None:
2100 // So far so good, look at next instructions.
2101 break;
2102
2103 case ClassifyResult::StackRestore:
2104 // If we found an intervening stackrestore for a different
2105 // stacksave, we can't remove the stackrestore. Otherwise, continue.
2106 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2107 CannotRemove = true;
2108 break;
2109
2110 case ClassifyResult::Alloca:
2111 case ClassifyResult::CallWithSideEffects:
2112 // If we found an alloca, a non-intrinsic call, or an intrinsic
2113 // call with side effects, we can't remove the stackrestore.
2114 CannotRemove = true;
2115 break;
2116 }
2117 if (CannotRemove)
2118 break;
2119 }
2120
2121 if (!CannotRemove)
2122 return eraseInstFromFunction(CI);
2123 }
2124 }
2125
2126 // Scan down this block to see if there is another stack restore in the
2127 // same block without an intervening call/alloca.
2128 BasicBlock::iterator BI(II);
2129 Instruction *TI = II->getParent()->getTerminator();
2130 bool CannotRemove = false;
2131 for (++BI; &*BI != TI; ++BI) {
2132 switch (Classify(&*BI)) {
2133 case ClassifyResult::None:
2134 // So far so good, look at next instructions.
2135 break;
2136
2137 case ClassifyResult::StackRestore:
2138 // If there is a stackrestore below this one, remove this one.
2139 return eraseInstFromFunction(CI);
2140
2141 case ClassifyResult::Alloca:
2142 case ClassifyResult::CallWithSideEffects:
2143 // If we found an alloca, a non-intrinsic call, or an intrinsic call
2144 // with side effects (such as llvm.stacksave and llvm.read_register),
2145 // we can't remove the stack restore.
2146 CannotRemove = true;
2147 break;
2148 }
2149 if (CannotRemove)
2150 break;
2151 }
2152
2153 // If the stack restore is in a return, resume, or unwind block and if there
2154 // are no allocas or calls between the restore and the return, nuke the
2155 // restore.
2156 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2157 return eraseInstFromFunction(CI);
2158 break;
2159 }
2160 case Intrinsic::lifetime_end:
2161 // Asan needs to poison memory to detect invalid access which is possible
2162 // even for empty lifetime range.
2163 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2164 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2165 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2166 break;
2167
2168 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2169 return I.getIntrinsicID() == Intrinsic::lifetime_start;
2170 }))
2171 return nullptr;
2172 break;
2173 case Intrinsic::assume: {
2174 Value *IIOperand = II->getArgOperand(0);
2175 SmallVector<OperandBundleDef, 4> OpBundles;
2176 II->getOperandBundlesAsDefs(OpBundles);
2177
2178 /// This will remove the boolean Condition from the assume given as
2179 /// argument and remove the assume if it becomes useless.
2180 /// always returns nullptr for use as a return values.
2181 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2182 assert(isa<AssumeInst>(Assume));
2183 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2184 return eraseInstFromFunction(CI);
2185 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
2186 return nullptr;
2187 };
2188 // Remove an assume if it is followed by an identical assume.
2189 // TODO: Do we need this? Unless there are conflicting assumptions, the
2190 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2191 Instruction *Next = II->getNextNonDebugInstruction();
2192 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2193 return RemoveConditionFromAssume(Next);
2194
2195 // Canonicalize assume(a && b) -> assume(a); assume(b);
2196 // Note: New assumption intrinsics created here are registered by
2197 // the InstCombineIRInserter object.
2198 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2199 Value *AssumeIntrinsic = II->getCalledOperand();
2200 Value *A, *B;
2201 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
2202 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
2203 II->getName());
2204 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
2205 return eraseInstFromFunction(*II);
2206 }
2207 // assume(!(a || b)) -> assume(!a); assume(!b);
2208 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
2209 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2210 Builder.CreateNot(A), OpBundles, II->getName());
2211 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2212 Builder.CreateNot(B), II->getName());
2213 return eraseInstFromFunction(*II);
2214 }
2215
2216 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2217 // (if assume is valid at the load)
2218 CmpInst::Predicate Pred;
2219 Instruction *LHS;
2220 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
2221 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2222 LHS->getType()->isPointerTy() &&
2223 isValidAssumeForContext(II, LHS, &DT)) {
2224 MDNode *MD = MDNode::get(II->getContext(), None);
2225 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2226 return RemoveConditionFromAssume(II);
2227
2228 // TODO: apply nonnull return attributes to calls and invokes
2229 // TODO: apply range metadata for range check patterns?
2230 }
2231
2232 // Convert nonnull assume like:
2233 // %A = icmp ne i32* %PTR, null
2234 // call void @llvm.assume(i1 %A)
2235 // into
2236 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2237 if (EnableKnowledgeRetention &&
2238 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2239 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2240 if (auto *Replacement = buildAssumeFromKnowledge(
2241 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2242
2243 Replacement->insertBefore(Next);
2244 AC.registerAssumption(Replacement);
2245 return RemoveConditionFromAssume(II);
2246 }
2247 }
2248
2249 // Convert alignment assume like:
2250 // %B = ptrtoint i32* %A to i64
2251 // %C = and i64 %B, Constant
2252 // %D = icmp eq i64 %C, 0
2253 // call void @llvm.assume(i1 %D)
2254 // into
2255 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
2256 uint64_t AlignMask;
2257 if (EnableKnowledgeRetention &&
2258 match(IIOperand,
2259 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2260 m_Zero())) &&
2261 Pred == CmpInst::ICMP_EQ) {
2262 if (isPowerOf2_64(AlignMask + 1)) {
2263 uint64_t Offset = 0;
2264 match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
2265 if (match(A, m_PtrToInt(m_Value(A)))) {
2266 /// Note: this doesn't preserve the offset information but merges
2267 /// offset and alignment.
2268 /// TODO: we can generate a GEP instead of merging the alignment with
2269 /// the offset.
2270 RetainedKnowledge RK{Attribute::Alignment,
2271 (unsigned)MinAlign(Offset, AlignMask + 1), A};
2272 if (auto *Replacement =
2273 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2274
2275 Replacement->insertAfter(II);
2276 AC.registerAssumption(Replacement);
2277 }
2278 return RemoveConditionFromAssume(II);
2279 }
2280 }
2281 }
2282
2283 /// Canonicalize Knowledge in operand bundles.
2284 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2285 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2286 auto &BOI = II->bundle_op_info_begin()[Idx];
2287 RetainedKnowledge RK =
2288 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2289 if (BOI.End - BOI.Begin > 2)
2290 continue; // Prevent reducing knowledge in an align with offset since
2291 // extracting a RetainedKnowledge form them looses offset
2292 // information
2293 RetainedKnowledge CanonRK =
2294 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2295 &getAssumptionCache(),
2296 &getDominatorTree());
2297 if (CanonRK == RK)
2298 continue;
2299 if (!CanonRK) {
2300 if (BOI.End - BOI.Begin > 0) {
2301 Worklist.pushValue(II->op_begin()[BOI.Begin]);
2302 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2303 }
2304 continue;
2305 }
2306 assert(RK.AttrKind == CanonRK.AttrKind);
2307 if (BOI.End - BOI.Begin > 0)
2308 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2309 if (BOI.End - BOI.Begin > 1)
2310 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2311 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2312 if (RK.WasOn)
2313 Worklist.pushValue(RK.WasOn);
2314 return II;
2315 }
2316 }
2317
2318 // If there is a dominating assume with the same condition as this one,
2319 // then this one is redundant, and should be removed.
2320 KnownBits Known(1);
2321 computeKnownBits(IIOperand, Known, 0, II);
2322 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2323 return eraseInstFromFunction(*II);
2324
2325 // Update the cache of affected values for this assumption (we might be
2326 // here because we just simplified the condition).
2327 AC.updateAffectedValues(cast<AssumeInst>(II));
2328 break;
2329 }
2330 case Intrinsic::experimental_guard: {
2331 // Is this guard followed by another guard? We scan forward over a small
2332 // fixed window of instructions to handle common cases with conditions
2333 // computed between guards.
2334 Instruction *NextInst = II->getNextNonDebugInstruction();
2335 for (unsigned i = 0; i < GuardWideningWindow; i++) {
2336 // Note: Using context-free form to avoid compile time blow up
2337 if (!isSafeToSpeculativelyExecute(NextInst))
2338 break;
2339 NextInst = NextInst->getNextNonDebugInstruction();
2340 }
2341 Value *NextCond = nullptr;
2342 if (match(NextInst,
2343 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2344 Value *CurrCond = II->getArgOperand(0);
2345
2346 // Remove a guard that it is immediately preceded by an identical guard.
2347 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
2348 if (CurrCond != NextCond) {
2349 Instruction *MoveI = II->getNextNonDebugInstruction();
2350 while (MoveI != NextInst) {
2351 auto *Temp = MoveI;
2352 MoveI = MoveI->getNextNonDebugInstruction();
2353 Temp->moveBefore(II);
2354 }
2355 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
2356 }
2357 eraseInstFromFunction(*NextInst);
2358 return II;
2359 }
2360 break;
2361 }
2362 case Intrinsic::vector_insert: {
2363 Value *Vec = II->getArgOperand(0);
2364 Value *SubVec = II->getArgOperand(1);
2365 Value *Idx = II->getArgOperand(2);
2366 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2367 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2368 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
2369
2370 // Only canonicalize if the destination vector, Vec, and SubVec are all
2371 // fixed vectors.
2372 if (DstTy && VecTy && SubVecTy) {
2373 unsigned DstNumElts = DstTy->getNumElements();
2374 unsigned VecNumElts = VecTy->getNumElements();
2375 unsigned SubVecNumElts = SubVecTy->getNumElements();
2376 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2377
2378 // An insert that entirely overwrites Vec with SubVec is a nop.
2379 if (VecNumElts == SubVecNumElts)
2380 return replaceInstUsesWith(CI, SubVec);
2381
2382 // Widen SubVec into a vector of the same width as Vec, since
2383 // shufflevector requires the two input vectors to be the same width.
2384 // Elements beyond the bounds of SubVec within the widened vector are
2385 // undefined.
2386 SmallVector<int, 8> WidenMask;
2387 unsigned i;
2388 for (i = 0; i != SubVecNumElts; ++i)
2389 WidenMask.push_back(i);
2390 for (; i != VecNumElts; ++i)
2391 WidenMask.push_back(UndefMaskElem);
2392
2393 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
2394
2395 SmallVector<int, 8> Mask;
2396 for (unsigned i = 0; i != IdxN; ++i)
2397 Mask.push_back(i);
2398 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
2399 Mask.push_back(i);
2400 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
2401 Mask.push_back(i);
2402
2403 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
2404 return replaceInstUsesWith(CI, Shuffle);
2405 }
2406 break;
2407 }
2408 case Intrinsic::vector_extract: {
2409 Value *Vec = II->getArgOperand(0);
2410 Value *Idx = II->getArgOperand(1);
2411
2412 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2413 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2414
2415 // Only canonicalize if the the destination vector and Vec are fixed
2416 // vectors.
2417 if (DstTy && VecTy) {
2418 unsigned DstNumElts = DstTy->getNumElements();
2419 unsigned VecNumElts = VecTy->getNumElements();
2420 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2421
2422 // Extracting the entirety of Vec is a nop.
2423 if (VecNumElts == DstNumElts) {
2424 replaceInstUsesWith(CI, Vec);
2425 return eraseInstFromFunction(CI);
2426 }
2427
2428 SmallVector<int, 8> Mask;
2429 for (unsigned i = 0; i != DstNumElts; ++i)
2430 Mask.push_back(IdxN + i);
2431
2432 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
2433 return replaceInstUsesWith(CI, Shuffle);
2434 }
2435 break;
2436 }
2437 case Intrinsic::experimental_vector_reverse: {
2438 Value *BO0, *BO1, *X, *Y;
2439 Value *Vec = II->getArgOperand(0);
2440 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
2441 auto *OldBinOp = cast<BinaryOperator>(Vec);
2442 if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2443 m_Value(X)))) {
2444 // rev(binop rev(X), rev(Y)) --> binop X, Y
2445 if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2446 m_Value(Y))))
2447 return replaceInstUsesWith(CI,
2448 BinaryOperator::CreateWithCopiedFlags(
2449 OldBinOp->getOpcode(), X, Y, OldBinOp,
2450 OldBinOp->getName(), II));
2451 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
2452 if (isSplatValue(BO1))
2453 return replaceInstUsesWith(CI,
2454 BinaryOperator::CreateWithCopiedFlags(
2455 OldBinOp->getOpcode(), X, BO1,
2456 OldBinOp, OldBinOp->getName(), II));
2457 }
2458 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
2459 if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2460 m_Value(Y))) &&
2461 isSplatValue(BO0))
2462 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
2463 OldBinOp->getOpcode(), BO0, Y,
2464 OldBinOp, OldBinOp->getName(), II));
2465 }
2466 // rev(unop rev(X)) --> unop X
2467 if (match(Vec, m_OneUse(m_UnOp(
2468 m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2469 m_Value(X)))))) {
2470 auto *OldUnOp = cast<UnaryOperator>(Vec);
2471 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
2472 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
2473 return replaceInstUsesWith(CI, NewUnOp);
2474 }
2475 break;
2476 }
2477 case Intrinsic::vector_reduce_or:
2478 case Intrinsic::vector_reduce_and: {
2479 // Canonicalize logical or/and reductions:
2480 // Or reduction for i1 is represented as:
2481 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2482 // %res = cmp ne iReduxWidth %val, 0
2483 // And reduction for i1 is represented as:
2484 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2485 // %res = cmp eq iReduxWidth %val, 11111
2486 Value *Arg = II->getArgOperand(0);
2487 Value *Vect;
2488 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2489 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2490 if (FTy->getElementType() == Builder.getInt1Ty()) {
2491 Value *Res = Builder.CreateBitCast(
2492 Vect, Builder.getIntNTy(FTy->getNumElements()));
2493 if (IID == Intrinsic::vector_reduce_and) {
2494 Res = Builder.CreateICmpEQ(
2495 Res, ConstantInt::getAllOnesValue(Res->getType()));
2496 } else {
2497 assert(IID == Intrinsic::vector_reduce_or &&
2498 "Expected or reduction.");
2499 Res = Builder.CreateIsNotNull(Res);
2500 }
2501 if (Arg != Vect)
2502 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2503 II->getType());
2504 return replaceInstUsesWith(CI, Res);
2505 }
2506 }
2507 LLVM_FALLTHROUGH;
2508 }
2509 case Intrinsic::vector_reduce_add: {
2510 if (IID == Intrinsic::vector_reduce_add) {
2511 // Convert vector_reduce_add(ZExt(<n x i1>)) to
2512 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2513 // Convert vector_reduce_add(SExt(<n x i1>)) to
2514 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2515 // Convert vector_reduce_add(<n x i1>) to
2516 // Trunc(ctpop(bitcast <n x i1> to in)).
2517 Value *Arg = II->getArgOperand(0);
2518 Value *Vect;
2519 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2520 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2521 if (FTy->getElementType() == Builder.getInt1Ty()) {
2522 Value *V = Builder.CreateBitCast(
2523 Vect, Builder.getIntNTy(FTy->getNumElements()));
2524 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
2525 if (Res->getType() != II->getType())
2526 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
2527 if (Arg != Vect &&
2528 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
2529 Res = Builder.CreateNeg(Res);
2530 return replaceInstUsesWith(CI, Res);
2531 }
2532 }
2533 }
2534 LLVM_FALLTHROUGH;
2535 }
2536 case Intrinsic::vector_reduce_xor: {
2537 if (IID == Intrinsic::vector_reduce_xor) {
2538 // Exclusive disjunction reduction over the vector with
2539 // (potentially-extended) i1 element type is actually a
2540 // (potentially-extended) arithmetic `add` reduction over the original
2541 // non-extended value:
2542 // vector_reduce_xor(?ext(<n x i1>))
2543 // -->
2544 // ?ext(vector_reduce_add(<n x i1>))
2545 Value *Arg = II->getArgOperand(0);
2546 Value *Vect;
2547 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2548 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2549 if (FTy->getElementType() == Builder.getInt1Ty()) {
2550 Value *Res = Builder.CreateAddReduce(Vect);
2551 if (Arg != Vect)
2552 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2553 II->getType());
2554 return replaceInstUsesWith(CI, Res);
2555 }
2556 }
2557 }
2558 LLVM_FALLTHROUGH;
2559 }
2560 case Intrinsic::vector_reduce_mul: {
2561 if (IID == Intrinsic::vector_reduce_mul) {
2562 // Multiplicative reduction over the vector with (potentially-extended)
2563 // i1 element type is actually a (potentially zero-extended)
2564 // logical `and` reduction over the original non-extended value:
2565 // vector_reduce_mul(?ext(<n x i1>))
2566 // -->
2567 // zext(vector_reduce_and(<n x i1>))
2568 Value *Arg = II->getArgOperand(0);
2569 Value *Vect;
2570 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2571 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2572 if (FTy->getElementType() == Builder.getInt1Ty()) {
2573 Value *Res = Builder.CreateAndReduce(Vect);
2574 if (Res->getType() != II->getType())
2575 Res = Builder.CreateZExt(Res, II->getType());
2576 return replaceInstUsesWith(CI, Res);
2577 }
2578 }
2579 }
2580 LLVM_FALLTHROUGH;
2581 }
2582 case Intrinsic::vector_reduce_umin:
2583 case Intrinsic::vector_reduce_umax: {
2584 if (IID == Intrinsic::vector_reduce_umin ||
2585 IID == Intrinsic::vector_reduce_umax) {
2586 // UMin/UMax reduction over the vector with (potentially-extended)
2587 // i1 element type is actually a (potentially-extended)
2588 // logical `and`/`or` reduction over the original non-extended value:
2589 // vector_reduce_u{min,max}(?ext(<n x i1>))
2590 // -->
2591 // ?ext(vector_reduce_{and,or}(<n x i1>))
2592 Value *Arg = II->getArgOperand(0);
2593 Value *Vect;
2594 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2595 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2596 if (FTy->getElementType() == Builder.getInt1Ty()) {
2597 Value *Res = IID == Intrinsic::vector_reduce_umin
2598 ? Builder.CreateAndReduce(Vect)
2599 : Builder.CreateOrReduce(Vect);
2600 if (Arg != Vect)
2601 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2602 II->getType());
2603 return replaceInstUsesWith(CI, Res);
2604 }
2605 }
2606 }
2607 LLVM_FALLTHROUGH;
2608 }
2609 case Intrinsic::vector_reduce_smin:
2610 case Intrinsic::vector_reduce_smax: {
2611 if (IID == Intrinsic::vector_reduce_smin ||
2612 IID == Intrinsic::vector_reduce_smax) {
2613 // SMin/SMax reduction over the vector with (potentially-extended)
2614 // i1 element type is actually a (potentially-extended)
2615 // logical `and`/`or` reduction over the original non-extended value:
2616 // vector_reduce_s{min,max}(<n x i1>)
2617 // -->
2618 // vector_reduce_{or,and}(<n x i1>)
2619 // and
2620 // vector_reduce_s{min,max}(sext(<n x i1>))
2621 // -->
2622 // sext(vector_reduce_{or,and}(<n x i1>))
2623 // and
2624 // vector_reduce_s{min,max}(zext(<n x i1>))
2625 // -->
2626 // zext(vector_reduce_{and,or}(<n x i1>))
2627 Value *Arg = II->getArgOperand(0);
2628 Value *Vect;
2629 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2630 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2631 if (FTy->getElementType() == Builder.getInt1Ty()) {
2632 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
2633 if (Arg != Vect)
2634 ExtOpc = cast<CastInst>(Arg)->getOpcode();
2635 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
2636 (ExtOpc == Instruction::CastOps::ZExt))
2637 ? Builder.CreateAndReduce(Vect)
2638 : Builder.CreateOrReduce(Vect);
2639 if (Arg != Vect)
2640 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
2641 return replaceInstUsesWith(CI, Res);
2642 }
2643 }
2644 }
2645 LLVM_FALLTHROUGH;
2646 }
2647 case Intrinsic::vector_reduce_fmax:
2648 case Intrinsic::vector_reduce_fmin:
2649 case Intrinsic::vector_reduce_fadd:
2650 case Intrinsic::vector_reduce_fmul: {
2651 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
2652 IID != Intrinsic::vector_reduce_fmul) ||
2653 II->hasAllowReassoc();
2654 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
2655 IID == Intrinsic::vector_reduce_fmul)
2656 ? 1
2657 : 0;
2658 Value *Arg = II->getArgOperand(ArgIdx);
2659 Value *V;
2660 ArrayRef<int> Mask;
2661 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
2662 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
2663 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
2664 break;
2665 int Sz = Mask.size();
2666 SmallBitVector UsedIndices(Sz);
2667 for (int Idx : Mask) {
2668 if (Idx == UndefMaskElem || UsedIndices.test(Idx))
2669 break;
2670 UsedIndices.set(Idx);
2671 }
2672 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
2673 // other changes.
2674 if (UsedIndices.all()) {
2675 replaceUse(II->getOperandUse(ArgIdx), V);
2676 return nullptr;
2677 }
2678 break;
2679 }
2680 default: {
2681 // Handle target specific intrinsics
2682 Optional<Instruction *> V = targetInstCombineIntrinsic(*II);
2683 if (V)
2684 return V.value();
2685 break;
2686 }
2687 }
2688
2689 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
2690 return Shuf;
2691
2692 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
2693 // context, so it is handled in visitCallBase and we should trigger it.
2694 return visitCallBase(*II);
2695 }
2696
2697 // Fence instruction simplification
visitFenceInst(FenceInst & FI)2698 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
2699 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
2700 // This check is solely here to handle arbitrary target-dependent syncscopes.
2701 // TODO: Can remove if does not matter in practice.
2702 if (NFI && FI.isIdenticalTo(NFI))
2703 return eraseInstFromFunction(FI);
2704
2705 // Returns true if FI1 is identical or stronger fence than FI2.
2706 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
2707 auto FI1SyncScope = FI1->getSyncScopeID();
2708 // Consider same scope, where scope is global or single-thread.
2709 if (FI1SyncScope != FI2->getSyncScopeID() ||
2710 (FI1SyncScope != SyncScope::System &&
2711 FI1SyncScope != SyncScope::SingleThread))
2712 return false;
2713
2714 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
2715 };
2716 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
2717 return eraseInstFromFunction(FI);
2718
2719 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
2720 if (isIdenticalOrStrongerFence(PFI, &FI))
2721 return eraseInstFromFunction(FI);
2722 return nullptr;
2723 }
2724
2725 // InvokeInst simplification
visitInvokeInst(InvokeInst & II)2726 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
2727 return visitCallBase(II);
2728 }
2729
2730 // CallBrInst simplification
visitCallBrInst(CallBrInst & CBI)2731 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2732 return visitCallBase(CBI);
2733 }
2734
2735 /// If this cast does not affect the value passed through the varargs area, we
2736 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallBase & Call,const DataLayout & DL,const CastInst * const CI,const int ix)2737 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2738 const DataLayout &DL,
2739 const CastInst *const CI,
2740 const int ix) {
2741 if (!CI->isLosslessCast())
2742 return false;
2743
2744 // If this is a GC intrinsic, avoid munging types. We need types for
2745 // statepoint reconstruction in SelectionDAG.
2746 // TODO: This is probably something which should be expanded to all
2747 // intrinsics since the entire point of intrinsics is that
2748 // they are understandable by the optimizer.
2749 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2750 isa<GCResultInst>(Call))
2751 return false;
2752
2753 // Opaque pointers are compatible with any byval types.
2754 PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType());
2755 if (SrcTy->isOpaque())
2756 return true;
2757
2758 // The size of ByVal or InAlloca arguments is derived from the type, so we
2759 // can't change to a type with a different size. If the size were
2760 // passed explicitly we could avoid this check.
2761 if (!Call.isPassPointeeByValueArgument(ix))
2762 return true;
2763
2764 // The transform currently only handles type replacement for byval, not other
2765 // type-carrying attributes.
2766 if (!Call.isByValArgument(ix))
2767 return false;
2768
2769 Type *SrcElemTy = SrcTy->getNonOpaquePointerElementType();
2770 Type *DstElemTy = Call.getParamByValType(ix);
2771 if (!SrcElemTy->isSized() || !DstElemTy->isSized())
2772 return false;
2773 if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy))
2774 return false;
2775 return true;
2776 }
2777
tryOptimizeCall(CallInst * CI)2778 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2779 if (!CI->getCalledFunction()) return nullptr;
2780
2781 // Skip optimizing notail and musttail calls so
2782 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
2783 // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
2784 if (CI->isMustTailCall() || CI->isNoTailCall())
2785 return nullptr;
2786
2787 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2788 replaceInstUsesWith(*From, With);
2789 };
2790 auto InstCombineErase = [this](Instruction *I) {
2791 eraseInstFromFunction(*I);
2792 };
2793 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2794 InstCombineErase);
2795 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2796 ++NumSimplified;
2797 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2798 }
2799
2800 return nullptr;
2801 }
2802
findInitTrampolineFromAlloca(Value * TrampMem)2803 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2804 // Strip off at most one level of pointer casts, looking for an alloca. This
2805 // is good enough in practice and simpler than handling any number of casts.
2806 Value *Underlying = TrampMem->stripPointerCasts();
2807 if (Underlying != TrampMem &&
2808 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2809 return nullptr;
2810 if (!isa<AllocaInst>(Underlying))
2811 return nullptr;
2812
2813 IntrinsicInst *InitTrampoline = nullptr;
2814 for (User *U : TrampMem->users()) {
2815 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2816 if (!II)
2817 return nullptr;
2818 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2819 if (InitTrampoline)
2820 // More than one init_trampoline writes to this value. Give up.
2821 return nullptr;
2822 InitTrampoline = II;
2823 continue;
2824 }
2825 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2826 // Allow any number of calls to adjust.trampoline.
2827 continue;
2828 return nullptr;
2829 }
2830
2831 // No call to init.trampoline found.
2832 if (!InitTrampoline)
2833 return nullptr;
2834
2835 // Check that the alloca is being used in the expected way.
2836 if (InitTrampoline->getOperand(0) != TrampMem)
2837 return nullptr;
2838
2839 return InitTrampoline;
2840 }
2841
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)2842 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2843 Value *TrampMem) {
2844 // Visit all the previous instructions in the basic block, and try to find a
2845 // init.trampoline which has a direct path to the adjust.trampoline.
2846 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2847 E = AdjustTramp->getParent()->begin();
2848 I != E;) {
2849 Instruction *Inst = &*--I;
2850 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2851 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2852 II->getOperand(0) == TrampMem)
2853 return II;
2854 if (Inst->mayWriteToMemory())
2855 return nullptr;
2856 }
2857 return nullptr;
2858 }
2859
2860 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2861 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2862 // to a direct call to a function. Otherwise return NULL.
findInitTrampoline(Value * Callee)2863 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2864 Callee = Callee->stripPointerCasts();
2865 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2866 if (!AdjustTramp ||
2867 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2868 return nullptr;
2869
2870 Value *TrampMem = AdjustTramp->getOperand(0);
2871
2872 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2873 return IT;
2874 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2875 return IT;
2876 return nullptr;
2877 }
2878
annotateAnyAllocSite(CallBase & Call,const TargetLibraryInfo * TLI)2879 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
2880 const TargetLibraryInfo *TLI) {
2881 // Note: We only handle cases which can't be driven from generic attributes
2882 // here. So, for example, nonnull and noalias (which are common properties
2883 // of some allocation functions) are expected to be handled via annotation
2884 // of the respective allocator declaration with generic attributes.
2885 bool Changed = false;
2886
2887 if (!Call.getType()->isPointerTy())
2888 return Changed;
2889
2890 Optional<APInt> Size = getAllocSize(&Call, TLI);
2891 if (Size && *Size != 0) {
2892 // TODO: We really should just emit deref_or_null here and then
2893 // let the generic inference code combine that with nonnull.
2894 if (Call.hasRetAttr(Attribute::NonNull)) {
2895 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
2896 Call.addRetAttr(Attribute::getWithDereferenceableBytes(
2897 Call.getContext(), Size->getLimitedValue()));
2898 } else {
2899 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
2900 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2901 Call.getContext(), Size->getLimitedValue()));
2902 }
2903 }
2904
2905 // Add alignment attribute if alignment is a power of two constant.
2906 Value *Alignment = getAllocAlignment(&Call, TLI);
2907 if (!Alignment)
2908 return Changed;
2909
2910 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
2911 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
2912 uint64_t AlignmentVal = AlignOpC->getZExtValue();
2913 if (llvm::isPowerOf2_64(AlignmentVal)) {
2914 Align ExistingAlign = Call.getRetAlign().valueOrOne();
2915 Align NewAlign = Align(AlignmentVal);
2916 if (NewAlign > ExistingAlign) {
2917 Call.addRetAttr(
2918 Attribute::getWithAlignment(Call.getContext(), NewAlign));
2919 Changed = true;
2920 }
2921 }
2922 }
2923 return Changed;
2924 }
2925
2926 /// Improvements for call, callbr and invoke instructions.
visitCallBase(CallBase & Call)2927 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
2928 bool Changed = annotateAnyAllocSite(Call, &TLI);
2929
2930 // Mark any parameters that are known to be non-null with the nonnull
2931 // attribute. This is helpful for inlining calls to functions with null
2932 // checks on their arguments.
2933 SmallVector<unsigned, 4> ArgNos;
2934 unsigned ArgNo = 0;
2935
2936 for (Value *V : Call.args()) {
2937 if (V->getType()->isPointerTy() &&
2938 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
2939 isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
2940 ArgNos.push_back(ArgNo);
2941 ArgNo++;
2942 }
2943
2944 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
2945
2946 if (!ArgNos.empty()) {
2947 AttributeList AS = Call.getAttributes();
2948 LLVMContext &Ctx = Call.getContext();
2949 AS = AS.addParamAttribute(Ctx, ArgNos,
2950 Attribute::get(Ctx, Attribute::NonNull));
2951 Call.setAttributes(AS);
2952 Changed = true;
2953 }
2954
2955 // If the callee is a pointer to a function, attempt to move any casts to the
2956 // arguments of the call/callbr/invoke.
2957 Value *Callee = Call.getCalledOperand();
2958 Function *CalleeF = dyn_cast<Function>(Callee);
2959 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
2960 transformConstExprCastCall(Call))
2961 return nullptr;
2962
2963 if (CalleeF) {
2964 // Remove the convergent attr on calls when the callee is not convergent.
2965 if (Call.isConvergent() && !CalleeF->isConvergent() &&
2966 !CalleeF->isIntrinsic()) {
2967 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
2968 << "\n");
2969 Call.setNotConvergent();
2970 return &Call;
2971 }
2972
2973 // If the call and callee calling conventions don't match, and neither one
2974 // of the calling conventions is compatible with C calling convention
2975 // this call must be unreachable, as the call is undefined.
2976 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
2977 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
2978 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
2979 !(Call.getCallingConv() == llvm::CallingConv::C &&
2980 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
2981 // Only do this for calls to a function with a body. A prototype may
2982 // not actually end up matching the implementation's calling conv for a
2983 // variety of reasons (e.g. it may be written in assembly).
2984 !CalleeF->isDeclaration()) {
2985 Instruction *OldCall = &Call;
2986 CreateNonTerminatorUnreachable(OldCall);
2987 // If OldCall does not return void then replaceInstUsesWith poison.
2988 // This allows ValueHandlers and custom metadata to adjust itself.
2989 if (!OldCall->getType()->isVoidTy())
2990 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
2991 if (isa<CallInst>(OldCall))
2992 return eraseInstFromFunction(*OldCall);
2993
2994 // We cannot remove an invoke or a callbr, because it would change thexi
2995 // CFG, just change the callee to a null pointer.
2996 cast<CallBase>(OldCall)->setCalledFunction(
2997 CalleeF->getFunctionType(),
2998 Constant::getNullValue(CalleeF->getType()));
2999 return nullptr;
3000 }
3001 }
3002
3003 // Calling a null function pointer is undefined if a null address isn't
3004 // dereferenceable.
3005 if ((isa<ConstantPointerNull>(Callee) &&
3006 !NullPointerIsDefined(Call.getFunction())) ||
3007 isa<UndefValue>(Callee)) {
3008 // If Call does not return void then replaceInstUsesWith poison.
3009 // This allows ValueHandlers and custom metadata to adjust itself.
3010 if (!Call.getType()->isVoidTy())
3011 replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3012
3013 if (Call.isTerminator()) {
3014 // Can't remove an invoke or callbr because we cannot change the CFG.
3015 return nullptr;
3016 }
3017
3018 // This instruction is not reachable, just remove it.
3019 CreateNonTerminatorUnreachable(&Call);
3020 return eraseInstFromFunction(Call);
3021 }
3022
3023 if (IntrinsicInst *II = findInitTrampoline(Callee))
3024 return transformCallThroughTrampoline(Call, *II);
3025
3026 // TODO: Drop this transform once opaque pointer transition is done.
3027 FunctionType *FTy = Call.getFunctionType();
3028 if (FTy->isVarArg()) {
3029 int ix = FTy->getNumParams();
3030 // See if we can optimize any arguments passed through the varargs area of
3031 // the call.
3032 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
3033 I != E; ++I, ++ix) {
3034 CastInst *CI = dyn_cast<CastInst>(*I);
3035 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
3036 replaceUse(*I, CI->getOperand(0));
3037
3038 // Update the byval type to match the pointer type.
3039 // Not necessary for opaque pointers.
3040 PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType());
3041 if (!NewTy->isOpaque() && Call.isByValArgument(ix)) {
3042 Call.removeParamAttr(ix, Attribute::ByVal);
3043 Call.addParamAttr(ix, Attribute::getWithByValType(
3044 Call.getContext(),
3045 NewTy->getNonOpaquePointerElementType()));
3046 }
3047 Changed = true;
3048 }
3049 }
3050 }
3051
3052 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3053 InlineAsm *IA = cast<InlineAsm>(Callee);
3054 if (!IA->canThrow()) {
3055 // Normal inline asm calls cannot throw - mark them
3056 // 'nounwind'.
3057 Call.setDoesNotThrow();
3058 Changed = true;
3059 }
3060 }
3061
3062 // Try to optimize the call if possible, we require DataLayout for most of
3063 // this. None of these calls are seen as possibly dead so go ahead and
3064 // delete the instruction now.
3065 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3066 Instruction *I = tryOptimizeCall(CI);
3067 // If we changed something return the result, etc. Otherwise let
3068 // the fallthrough check.
3069 if (I) return eraseInstFromFunction(*I);
3070 }
3071
3072 if (!Call.use_empty() && !Call.isMustTailCall())
3073 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3074 Type *CallTy = Call.getType();
3075 Type *RetArgTy = ReturnedArg->getType();
3076 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3077 return replaceInstUsesWith(
3078 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3079 }
3080
3081 if (isRemovableAlloc(&Call, &TLI))
3082 return visitAllocSite(Call);
3083
3084 // Handle intrinsics which can be used in both call and invoke context.
3085 switch (Call.getIntrinsicID()) {
3086 case Intrinsic::experimental_gc_statepoint: {
3087 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3088 SmallPtrSet<Value *, 32> LiveGcValues;
3089 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3090 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3091
3092 // Remove the relocation if unused.
3093 if (GCR.use_empty()) {
3094 eraseInstFromFunction(GCR);
3095 continue;
3096 }
3097
3098 Value *DerivedPtr = GCR.getDerivedPtr();
3099 Value *BasePtr = GCR.getBasePtr();
3100
3101 // Undef is undef, even after relocation.
3102 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3103 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
3104 eraseInstFromFunction(GCR);
3105 continue;
3106 }
3107
3108 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3109 // The relocation of null will be null for most any collector.
3110 // TODO: provide a hook for this in GCStrategy. There might be some
3111 // weird collector this property does not hold for.
3112 if (isa<ConstantPointerNull>(DerivedPtr)) {
3113 // Use null-pointer of gc_relocate's type to replace it.
3114 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
3115 eraseInstFromFunction(GCR);
3116 continue;
3117 }
3118
3119 // isKnownNonNull -> nonnull attribute
3120 if (!GCR.hasRetAttr(Attribute::NonNull) &&
3121 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
3122 GCR.addRetAttr(Attribute::NonNull);
3123 // We discovered new fact, re-check users.
3124 Worklist.pushUsersToWorkList(GCR);
3125 }
3126 }
3127
3128 // If we have two copies of the same pointer in the statepoint argument
3129 // list, canonicalize to one. This may let us common gc.relocates.
3130 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3131 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3132 auto *OpIntTy = GCR.getOperand(2)->getType();
3133 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3134 }
3135
3136 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3137 // Canonicalize on the type from the uses to the defs
3138
3139 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3140 LiveGcValues.insert(BasePtr);
3141 LiveGcValues.insert(DerivedPtr);
3142 }
3143 Optional<OperandBundleUse> Bundle =
3144 GCSP.getOperandBundle(LLVMContext::OB_gc_live);
3145 unsigned NumOfGCLives = LiveGcValues.size();
3146 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
3147 break;
3148 // We can reduce the size of gc live bundle.
3149 DenseMap<Value *, unsigned> Val2Idx;
3150 std::vector<Value *> NewLiveGc;
3151 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) {
3152 Value *V = Bundle->Inputs[I];
3153 if (Val2Idx.count(V))
3154 continue;
3155 if (LiveGcValues.count(V)) {
3156 Val2Idx[V] = NewLiveGc.size();
3157 NewLiveGc.push_back(V);
3158 } else
3159 Val2Idx[V] = NumOfGCLives;
3160 }
3161 // Update all gc.relocates
3162 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3163 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3164 Value *BasePtr = GCR.getBasePtr();
3165 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3166 "Missed live gc for base pointer");
3167 auto *OpIntTy1 = GCR.getOperand(1)->getType();
3168 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
3169 Value *DerivedPtr = GCR.getDerivedPtr();
3170 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3171 "Missed live gc for derived pointer");
3172 auto *OpIntTy2 = GCR.getOperand(2)->getType();
3173 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
3174 }
3175 // Create new statepoint instruction.
3176 OperandBundleDef NewBundle("gc-live", NewLiveGc);
3177 return CallBase::Create(&Call, NewBundle);
3178 }
3179 default: { break; }
3180 }
3181
3182 return Changed ? &Call : nullptr;
3183 }
3184
3185 /// If the callee is a constexpr cast of a function, attempt to move the cast to
3186 /// the arguments of the call/callbr/invoke.
transformConstExprCastCall(CallBase & Call)3187 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3188 auto *Callee =
3189 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3190 if (!Callee)
3191 return false;
3192
3193 // If this is a call to a thunk function, don't remove the cast. Thunks are
3194 // used to transparently forward all incoming parameters and outgoing return
3195 // values, so it's important to leave the cast in place.
3196 if (Callee->hasFnAttribute("thunk"))
3197 return false;
3198
3199 // If this is a musttail call, the callee's prototype must match the caller's
3200 // prototype with the exception of pointee types. The code below doesn't
3201 // implement that, so we can't do this transform.
3202 // TODO: Do the transform if it only requires adding pointer casts.
3203 if (Call.isMustTailCall())
3204 return false;
3205
3206 Instruction *Caller = &Call;
3207 const AttributeList &CallerPAL = Call.getAttributes();
3208
3209 // Okay, this is a cast from a function to a different type. Unless doing so
3210 // would cause a type conversion of one of our arguments, change this call to
3211 // be a direct call with arguments casted to the appropriate types.
3212 FunctionType *FT = Callee->getFunctionType();
3213 Type *OldRetTy = Caller->getType();
3214 Type *NewRetTy = FT->getReturnType();
3215
3216 // Check to see if we are changing the return type...
3217 if (OldRetTy != NewRetTy) {
3218
3219 if (NewRetTy->isStructTy())
3220 return false; // TODO: Handle multiple return values.
3221
3222 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
3223 if (Callee->isDeclaration())
3224 return false; // Cannot transform this return value.
3225
3226 if (!Caller->use_empty() &&
3227 // void -> non-void is handled specially
3228 !NewRetTy->isVoidTy())
3229 return false; // Cannot transform this return value.
3230 }
3231
3232 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3233 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3234 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
3235 return false; // Attribute not compatible with transformed value.
3236 }
3237
3238 // If the callbase is an invoke/callbr instruction, and the return value is
3239 // used by a PHI node in a successor, we cannot change the return type of
3240 // the call because there is no place to put the cast instruction (without
3241 // breaking the critical edge). Bail out in this case.
3242 if (!Caller->use_empty()) {
3243 BasicBlock *PhisNotSupportedBlock = nullptr;
3244 if (auto *II = dyn_cast<InvokeInst>(Caller))
3245 PhisNotSupportedBlock = II->getNormalDest();
3246 if (auto *CB = dyn_cast<CallBrInst>(Caller))
3247 PhisNotSupportedBlock = CB->getDefaultDest();
3248 if (PhisNotSupportedBlock)
3249 for (User *U : Caller->users())
3250 if (PHINode *PN = dyn_cast<PHINode>(U))
3251 if (PN->getParent() == PhisNotSupportedBlock)
3252 return false;
3253 }
3254 }
3255
3256 unsigned NumActualArgs = Call.arg_size();
3257 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3258
3259 // Prevent us turning:
3260 // declare void @takes_i32_inalloca(i32* inalloca)
3261 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3262 //
3263 // into:
3264 // call void @takes_i32_inalloca(i32* null)
3265 //
3266 // Similarly, avoid folding away bitcasts of byval calls.
3267 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3268 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
3269 return false;
3270
3271 auto AI = Call.arg_begin();
3272 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
3273 Type *ParamTy = FT->getParamType(i);
3274 Type *ActTy = (*AI)->getType();
3275
3276 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
3277 return false; // Cannot transform this parameter value.
3278
3279 // Check if there are any incompatible attributes we cannot drop safely.
3280 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
3281 .overlaps(AttributeFuncs::typeIncompatible(
3282 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
3283 return false; // Attribute not compatible with transformed value.
3284
3285 if (Call.isInAllocaArgument(i) ||
3286 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
3287 return false; // Cannot transform to and from inalloca/preallocated.
3288
3289 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
3290 return false;
3291
3292 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
3293 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
3294 return false; // Cannot transform to or from byval.
3295
3296 // If the parameter is passed as a byval argument, then we have to have a
3297 // sized type and the sized type has to have the same size as the old type.
3298 if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
3299 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
3300 if (!ParamPTy)
3301 return false;
3302
3303 if (!ParamPTy->isOpaque()) {
3304 Type *ParamElTy = ParamPTy->getNonOpaquePointerElementType();
3305 if (!ParamElTy->isSized())
3306 return false;
3307
3308 Type *CurElTy = Call.getParamByValType(i);
3309 if (DL.getTypeAllocSize(CurElTy) != DL.getTypeAllocSize(ParamElTy))
3310 return false;
3311 }
3312 }
3313 }
3314
3315 if (Callee->isDeclaration()) {
3316 // Do not delete arguments unless we have a function body.
3317 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3318 return false;
3319
3320 // If the callee is just a declaration, don't change the varargsness of the
3321 // call. We don't want to introduce a varargs call where one doesn't
3322 // already exist.
3323 if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
3324 return false;
3325
3326 // If both the callee and the cast type are varargs, we still have to make
3327 // sure the number of fixed parameters are the same or we have the same
3328 // ABI issues as if we introduce a varargs call.
3329 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
3330 FT->getNumParams() != Call.getFunctionType()->getNumParams())
3331 return false;
3332 }
3333
3334 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3335 !CallerPAL.isEmpty()) {
3336 // In this case we have more arguments than the new function type, but we
3337 // won't be dropping them. Check that these extra arguments have attributes
3338 // that are compatible with being a vararg call argument.
3339 unsigned SRetIdx;
3340 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3341 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3342 return false;
3343 }
3344
3345 // Okay, we decided that this is a safe thing to do: go ahead and start
3346 // inserting cast instructions as necessary.
3347 SmallVector<Value *, 8> Args;
3348 SmallVector<AttributeSet, 8> ArgAttrs;
3349 Args.reserve(NumActualArgs);
3350 ArgAttrs.reserve(NumActualArgs);
3351
3352 // Get any return attributes.
3353 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3354
3355 // If the return value is not being used, the type may not be compatible
3356 // with the existing attributes. Wipe out any problematic attributes.
3357 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
3358
3359 LLVMContext &Ctx = Call.getContext();
3360 AI = Call.arg_begin();
3361 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
3362 Type *ParamTy = FT->getParamType(i);
3363
3364 Value *NewArg = *AI;
3365 if ((*AI)->getType() != ParamTy)
3366 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
3367 Args.push_back(NewArg);
3368
3369 // Add any parameter attributes except the ones incompatible with the new
3370 // type. Note that we made sure all incompatible ones are safe to drop.
3371 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
3372 ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
3373 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) &&
3374 !ParamTy->isOpaquePointerTy()) {
3375 AttrBuilder AB(Ctx, CallerPAL.getParamAttrs(i).removeAttributes(
3376 Ctx, IncompatibleAttrs));
3377 AB.addByValAttr(ParamTy->getNonOpaquePointerElementType());
3378 ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
3379 } else {
3380 ArgAttrs.push_back(
3381 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
3382 }
3383 }
3384
3385 // If the function takes more arguments than the call was taking, add them
3386 // now.
3387 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
3388 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
3389 ArgAttrs.push_back(AttributeSet());
3390 }
3391
3392 // If we are removing arguments to the function, emit an obnoxious warning.
3393 if (FT->getNumParams() < NumActualArgs) {
3394 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
3395 if (FT->isVarArg()) {
3396 // Add all of the arguments in their promoted form to the arg list.
3397 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
3398 Type *PTy = getPromotedType((*AI)->getType());
3399 Value *NewArg = *AI;
3400 if (PTy != (*AI)->getType()) {
3401 // Must promote to pass through va_arg area!
3402 Instruction::CastOps opcode =
3403 CastInst::getCastOpcode(*AI, false, PTy, false);
3404 NewArg = Builder.CreateCast(opcode, *AI, PTy);
3405 }
3406 Args.push_back(NewArg);
3407
3408 // Add any parameter attributes.
3409 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3410 }
3411 }
3412 }
3413
3414 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
3415
3416 if (NewRetTy->isVoidTy())
3417 Caller->setName(""); // Void type should not have a name.
3418
3419 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
3420 "missing argument attributes");
3421 AttributeList NewCallerPAL = AttributeList::get(
3422 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
3423
3424 SmallVector<OperandBundleDef, 1> OpBundles;
3425 Call.getOperandBundlesAsDefs(OpBundles);
3426
3427 CallBase *NewCall;
3428 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3429 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
3430 II->getUnwindDest(), Args, OpBundles);
3431 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3432 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
3433 CBI->getIndirectDests(), Args, OpBundles);
3434 } else {
3435 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
3436 cast<CallInst>(NewCall)->setTailCallKind(
3437 cast<CallInst>(Caller)->getTailCallKind());
3438 }
3439 NewCall->takeName(Caller);
3440 NewCall->setCallingConv(Call.getCallingConv());
3441 NewCall->setAttributes(NewCallerPAL);
3442
3443 // Preserve prof metadata if any.
3444 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
3445
3446 // Insert a cast of the return type as necessary.
3447 Instruction *NC = NewCall;
3448 Value *NV = NC;
3449 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
3450 if (!NV->getType()->isVoidTy()) {
3451 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
3452 NC->setDebugLoc(Caller->getDebugLoc());
3453
3454 // If this is an invoke/callbr instruction, we should insert it after the
3455 // first non-phi instruction in the normal successor block.
3456 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3457 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
3458 InsertNewInstBefore(NC, *I);
3459 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3460 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
3461 InsertNewInstBefore(NC, *I);
3462 } else {
3463 // Otherwise, it's a call, just insert cast right after the call.
3464 InsertNewInstBefore(NC, *Caller);
3465 }
3466 Worklist.pushUsersToWorkList(*Caller);
3467 } else {
3468 NV = UndefValue::get(Caller->getType());
3469 }
3470 }
3471
3472 if (!Caller->use_empty())
3473 replaceInstUsesWith(*Caller, NV);
3474 else if (Caller->hasValueHandle()) {
3475 if (OldRetTy == NV->getType())
3476 ValueHandleBase::ValueIsRAUWd(Caller, NV);
3477 else
3478 // We cannot call ValueIsRAUWd with a different type, and the
3479 // actual tracked value will disappear.
3480 ValueHandleBase::ValueIsDeleted(Caller);
3481 }
3482
3483 eraseInstFromFunction(*Caller);
3484 return true;
3485 }
3486
3487 /// Turn a call to a function created by init_trampoline / adjust_trampoline
3488 /// intrinsic pair into a direct call to the underlying function.
3489 Instruction *
transformCallThroughTrampoline(CallBase & Call,IntrinsicInst & Tramp)3490 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
3491 IntrinsicInst &Tramp) {
3492 Value *Callee = Call.getCalledOperand();
3493 Type *CalleeTy = Callee->getType();
3494 FunctionType *FTy = Call.getFunctionType();
3495 AttributeList Attrs = Call.getAttributes();
3496
3497 // If the call already has the 'nest' attribute somewhere then give up -
3498 // otherwise 'nest' would occur twice after splicing in the chain.
3499 if (Attrs.hasAttrSomewhere(Attribute::Nest))
3500 return nullptr;
3501
3502 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
3503 FunctionType *NestFTy = NestF->getFunctionType();
3504
3505 AttributeList NestAttrs = NestF->getAttributes();
3506 if (!NestAttrs.isEmpty()) {
3507 unsigned NestArgNo = 0;
3508 Type *NestTy = nullptr;
3509 AttributeSet NestAttr;
3510
3511 // Look for a parameter marked with the 'nest' attribute.
3512 for (FunctionType::param_iterator I = NestFTy->param_begin(),
3513 E = NestFTy->param_end();
3514 I != E; ++NestArgNo, ++I) {
3515 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
3516 if (AS.hasAttribute(Attribute::Nest)) {
3517 // Record the parameter type and any other attributes.
3518 NestTy = *I;
3519 NestAttr = AS;
3520 break;
3521 }
3522 }
3523
3524 if (NestTy) {
3525 std::vector<Value*> NewArgs;
3526 std::vector<AttributeSet> NewArgAttrs;
3527 NewArgs.reserve(Call.arg_size() + 1);
3528 NewArgAttrs.reserve(Call.arg_size());
3529
3530 // Insert the nest argument into the call argument list, which may
3531 // mean appending it. Likewise for attributes.
3532
3533 {
3534 unsigned ArgNo = 0;
3535 auto I = Call.arg_begin(), E = Call.arg_end();
3536 do {
3537 if (ArgNo == NestArgNo) {
3538 // Add the chain argument and attributes.
3539 Value *NestVal = Tramp.getArgOperand(2);
3540 if (NestVal->getType() != NestTy)
3541 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
3542 NewArgs.push_back(NestVal);
3543 NewArgAttrs.push_back(NestAttr);
3544 }
3545
3546 if (I == E)
3547 break;
3548
3549 // Add the original argument and attributes.
3550 NewArgs.push_back(*I);
3551 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
3552
3553 ++ArgNo;
3554 ++I;
3555 } while (true);
3556 }
3557
3558 // The trampoline may have been bitcast to a bogus type (FTy).
3559 // Handle this by synthesizing a new function type, equal to FTy
3560 // with the chain parameter inserted.
3561
3562 std::vector<Type*> NewTypes;
3563 NewTypes.reserve(FTy->getNumParams()+1);
3564
3565 // Insert the chain's type into the list of parameter types, which may
3566 // mean appending it.
3567 {
3568 unsigned ArgNo = 0;
3569 FunctionType::param_iterator I = FTy->param_begin(),
3570 E = FTy->param_end();
3571
3572 do {
3573 if (ArgNo == NestArgNo)
3574 // Add the chain's type.
3575 NewTypes.push_back(NestTy);
3576
3577 if (I == E)
3578 break;
3579
3580 // Add the original type.
3581 NewTypes.push_back(*I);
3582
3583 ++ArgNo;
3584 ++I;
3585 } while (true);
3586 }
3587
3588 // Replace the trampoline call with a direct call. Let the generic
3589 // code sort out any function type mismatches.
3590 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3591 FTy->isVarArg());
3592 Constant *NewCallee =
3593 NestF->getType() == PointerType::getUnqual(NewFTy) ?
3594 NestF : ConstantExpr::getBitCast(NestF,
3595 PointerType::getUnqual(NewFTy));
3596 AttributeList NewPAL =
3597 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
3598 Attrs.getRetAttrs(), NewArgAttrs);
3599
3600 SmallVector<OperandBundleDef, 1> OpBundles;
3601 Call.getOperandBundlesAsDefs(OpBundles);
3602
3603 Instruction *NewCaller;
3604 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
3605 NewCaller = InvokeInst::Create(NewFTy, NewCallee,
3606 II->getNormalDest(), II->getUnwindDest(),
3607 NewArgs, OpBundles);
3608 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3609 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3610 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
3611 NewCaller =
3612 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
3613 CBI->getIndirectDests(), NewArgs, OpBundles);
3614 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
3615 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
3616 } else {
3617 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
3618 cast<CallInst>(NewCaller)->setTailCallKind(
3619 cast<CallInst>(Call).getTailCallKind());
3620 cast<CallInst>(NewCaller)->setCallingConv(
3621 cast<CallInst>(Call).getCallingConv());
3622 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3623 }
3624 NewCaller->setDebugLoc(Call.getDebugLoc());
3625
3626 return NewCaller;
3627 }
3628 }
3629
3630 // Replace the trampoline call with a direct call. Since there is no 'nest'
3631 // parameter, there is no need to adjust the argument list. Let the generic
3632 // code sort out any function type mismatches.
3633 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
3634 Call.setCalledFunction(FTy, NewCallee);
3635 return &Call;
3636 }
3637