1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallBitVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/IntrinsicsAArch64.h" 50 #include "llvm/IR/IntrinsicsAMDGPU.h" 51 #include "llvm/IR/IntrinsicsARM.h" 52 #include "llvm/IR/IntrinsicsHexagon.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Statepoint.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/InstCombine/InstCombiner.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <cstring> 78 #include <utility> 79 #include <vector> 80 81 #define DEBUG_TYPE "instcombine" 82 #include "llvm/Transforms/Utils/InstructionWorklist.h" 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 STATISTIC(NumSimplified, "Number of library calls simplified"); 88 89 static cl::opt<unsigned> GuardWideningWindow( 90 "instcombine-guard-widening-window", 91 cl::init(3), 92 cl::desc("How wide an instruction window to bypass looking for " 93 "another guard")); 94 95 namespace llvm { 96 /// enable preservation of attributes in assume like: 97 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 98 extern cl::opt<bool> EnableKnowledgeRetention; 99 } // namespace llvm 100 101 /// Return the specified type promoted as it would be to pass though a va_arg 102 /// area. 103 static Type *getPromotedType(Type *Ty) { 104 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 105 if (ITy->getBitWidth() < 32) 106 return Type::getInt32Ty(Ty->getContext()); 107 } 108 return Ty; 109 } 110 111 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 112 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 113 MaybeAlign CopyDstAlign = MI->getDestAlign(); 114 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 115 MI->setDestAlignment(DstAlign); 116 return MI; 117 } 118 119 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 120 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 121 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 122 MI->setSourceAlignment(SrcAlign); 123 return MI; 124 } 125 126 // If we have a store to a location which is known constant, we can conclude 127 // that the store must be storing the constant value (else the memory 128 // wouldn't be constant), and this must be a noop. 129 if (AA->pointsToConstantMemory(MI->getDest())) { 130 // Set the size of the copy to 0, it will be deleted on the next iteration. 131 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 132 return MI; 133 } 134 135 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 136 // load/store. 137 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 138 if (!MemOpLength) return nullptr; 139 140 // Source and destination pointer types are always "i8*" for intrinsic. See 141 // if the size is something we can handle with a single primitive load/store. 142 // A single load+store correctly handles overlapping memory in the memmove 143 // case. 144 uint64_t Size = MemOpLength->getLimitedValue(); 145 assert(Size && "0-sized memory transferring should be removed already."); 146 147 if (Size > 8 || (Size&(Size-1))) 148 return nullptr; // If not 1/2/4/8 bytes, exit. 149 150 // If it is an atomic and alignment is less than the size then we will 151 // introduce the unaligned memory access which will be later transformed 152 // into libcall in CodeGen. This is not evident performance gain so disable 153 // it now. 154 if (isa<AtomicMemTransferInst>(MI)) 155 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 156 return nullptr; 157 158 // Use an integer load+store unless we can find something better. 159 unsigned SrcAddrSp = 160 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); 161 unsigned DstAddrSp = 162 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); 163 164 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 165 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); 166 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); 167 168 // If the memcpy has metadata describing the members, see if we can get the 169 // TBAA tag describing our copy. 170 MDNode *CopyMD = nullptr; 171 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { 172 CopyMD = M; 173 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { 174 if (M->getNumOperands() == 3 && M->getOperand(0) && 175 mdconst::hasa<ConstantInt>(M->getOperand(0)) && 176 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && 177 M->getOperand(1) && 178 mdconst::hasa<ConstantInt>(M->getOperand(1)) && 179 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == 180 Size && 181 M->getOperand(2) && isa<MDNode>(M->getOperand(2))) 182 CopyMD = cast<MDNode>(M->getOperand(2)); 183 } 184 185 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); 186 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); 187 LoadInst *L = Builder.CreateLoad(IntType, Src); 188 // Alignment from the mem intrinsic will be better, so use it. 189 L->setAlignment(*CopySrcAlign); 190 if (CopyMD) 191 L->setMetadata(LLVMContext::MD_tbaa, CopyMD); 192 MDNode *LoopMemParallelMD = 193 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 194 if (LoopMemParallelMD) 195 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 196 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 197 if (AccessGroupMD) 198 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 199 200 StoreInst *S = Builder.CreateStore(L, Dest); 201 // Alignment from the mem intrinsic will be better, so use it. 202 S->setAlignment(*CopyDstAlign); 203 if (CopyMD) 204 S->setMetadata(LLVMContext::MD_tbaa, CopyMD); 205 if (LoopMemParallelMD) 206 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 207 if (AccessGroupMD) 208 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 209 210 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 211 // non-atomics can be volatile 212 L->setVolatile(MT->isVolatile()); 213 S->setVolatile(MT->isVolatile()); 214 } 215 if (isa<AtomicMemTransferInst>(MI)) { 216 // atomics have to be unordered 217 L->setOrdering(AtomicOrdering::Unordered); 218 S->setOrdering(AtomicOrdering::Unordered); 219 } 220 221 // Set the size of the copy to 0, it will be deleted on the next iteration. 222 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 223 return MI; 224 } 225 226 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 227 const Align KnownAlignment = 228 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 229 MaybeAlign MemSetAlign = MI->getDestAlign(); 230 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 231 MI->setDestAlignment(KnownAlignment); 232 return MI; 233 } 234 235 // If we have a store to a location which is known constant, we can conclude 236 // that the store must be storing the constant value (else the memory 237 // wouldn't be constant), and this must be a noop. 238 if (AA->pointsToConstantMemory(MI->getDest())) { 239 // Set the size of the copy to 0, it will be deleted on the next iteration. 240 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 241 return MI; 242 } 243 244 // Extract the length and alignment and fill if they are constant. 245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 248 return nullptr; 249 const uint64_t Len = LenC->getLimitedValue(); 250 assert(Len && "0-sized memory setting should be removed already."); 251 const Align Alignment = assumeAligned(MI->getDestAlignment()); 252 253 // If it is an atomic and alignment is less than the size then we will 254 // introduce the unaligned memory access which will be later transformed 255 // into libcall in CodeGen. This is not evident performance gain so disable 256 // it now. 257 if (isa<AtomicMemSetInst>(MI)) 258 if (Alignment < Len) 259 return nullptr; 260 261 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 264 265 Value *Dest = MI->getDest(); 266 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); 267 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); 268 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); 269 270 // Extract the fill value and store. 271 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 272 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, 273 MI->isVolatile()); 274 S->setAlignment(Alignment); 275 if (isa<AtomicMemSetInst>(MI)) 276 S->setOrdering(AtomicOrdering::Unordered); 277 278 // Set the size of the copy to 0, it will be deleted on the next iteration. 279 MI->setLength(Constant::getNullValue(LenC->getType())); 280 return MI; 281 } 282 283 return nullptr; 284 } 285 286 // TODO, Obvious Missing Transforms: 287 // * Narrow width by halfs excluding zero/undef lanes 288 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 289 Value *LoadPtr = II.getArgOperand(0); 290 const Align Alignment = 291 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 292 293 // If the mask is all ones or undefs, this is a plain vector load of the 1st 294 // argument. 295 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 296 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 297 "unmaskedload"); 298 L->copyMetadata(II); 299 return L; 300 } 301 302 // If we can unconditionally load from this address, replace with a 303 // load/select idiom. TODO: use DT for context sensitive query 304 if (isDereferenceablePointer(LoadPtr, II.getType(), 305 II.getModule()->getDataLayout(), &II, nullptr)) { 306 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 307 "unmaskedload"); 308 LI->copyMetadata(II); 309 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 310 } 311 312 return nullptr; 313 } 314 315 // TODO, Obvious Missing Transforms: 316 // * Single constant active lane -> store 317 // * Narrow width by halfs excluding zero/undef lanes 318 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 319 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 320 if (!ConstMask) 321 return nullptr; 322 323 // If the mask is all zeros, this instruction does nothing. 324 if (ConstMask->isNullValue()) 325 return eraseInstFromFunction(II); 326 327 // If the mask is all ones, this is a plain vector store of the 1st argument. 328 if (ConstMask->isAllOnesValue()) { 329 Value *StorePtr = II.getArgOperand(1); 330 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 331 StoreInst *S = 332 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 333 S->copyMetadata(II); 334 return S; 335 } 336 337 if (isa<ScalableVectorType>(ConstMask->getType())) 338 return nullptr; 339 340 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 341 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 342 APInt UndefElts(DemandedElts.getBitWidth(), 0); 343 if (Value *V = 344 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 345 return replaceOperand(II, 0, V); 346 347 return nullptr; 348 } 349 350 // TODO, Obvious Missing Transforms: 351 // * Single constant active lane load -> load 352 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 353 // * Adjacent vector addresses -> masked.load 354 // * Narrow width by halfs excluding zero/undef lanes 355 // * Vector splat address w/known mask -> scalar load 356 // * Vector incrementing address -> vector masked load 357 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 358 return nullptr; 359 } 360 361 // TODO, Obvious Missing Transforms: 362 // * Single constant active lane -> store 363 // * Adjacent vector addresses -> masked.store 364 // * Narrow store width by halfs excluding zero/undef lanes 365 // * Vector incrementing address -> vector masked store 366 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 367 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 368 if (!ConstMask) 369 return nullptr; 370 371 // If the mask is all zeros, a scatter does nothing. 372 if (ConstMask->isNullValue()) 373 return eraseInstFromFunction(II); 374 375 // Vector splat address -> scalar store 376 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) { 377 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr 378 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) { 379 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 380 StoreInst *S = 381 new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment); 382 S->copyMetadata(II); 383 return S; 384 } 385 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector, 386 // lastlane), ptr 387 if (ConstMask->isAllOnesValue()) { 388 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 389 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType()); 390 ElementCount VF = WideLoadTy->getElementCount(); 391 Constant *EC = 392 ConstantInt::get(Builder.getInt32Ty(), VF.getKnownMinValue()); 393 Value *RunTimeVF = VF.isScalable() ? Builder.CreateVScale(EC) : EC; 394 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1)); 395 Value *Extract = 396 Builder.CreateExtractElement(II.getArgOperand(0), LastLane); 397 StoreInst *S = 398 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment); 399 S->copyMetadata(II); 400 return S; 401 } 402 } 403 if (isa<ScalableVectorType>(ConstMask->getType())) 404 return nullptr; 405 406 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 407 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 408 APInt UndefElts(DemandedElts.getBitWidth(), 0); 409 if (Value *V = 410 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 411 return replaceOperand(II, 0, V); 412 if (Value *V = 413 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts)) 414 return replaceOperand(II, 1, V); 415 416 return nullptr; 417 } 418 419 /// This function transforms launder.invariant.group and strip.invariant.group 420 /// like: 421 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 422 /// launder(strip(%x)) -> launder(%x) 423 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 424 /// strip(launder(%x)) -> strip(%x) 425 /// This is legal because it preserves the most recent information about 426 /// the presence or absence of invariant.group. 427 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 428 InstCombinerImpl &IC) { 429 auto *Arg = II.getArgOperand(0); 430 auto *StrippedArg = Arg->stripPointerCasts(); 431 auto *StrippedInvariantGroupsArg = StrippedArg; 432 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 433 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 434 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 435 break; 436 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 437 } 438 if (StrippedArg == StrippedInvariantGroupsArg) 439 return nullptr; // No launders/strips to remove. 440 441 Value *Result = nullptr; 442 443 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 444 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 445 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 446 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 447 else 448 llvm_unreachable( 449 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 450 if (Result->getType()->getPointerAddressSpace() != 451 II.getType()->getPointerAddressSpace()) 452 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 453 if (Result->getType() != II.getType()) 454 Result = IC.Builder.CreateBitCast(Result, II.getType()); 455 456 return cast<Instruction>(Result); 457 } 458 459 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 460 assert((II.getIntrinsicID() == Intrinsic::cttz || 461 II.getIntrinsicID() == Intrinsic::ctlz) && 462 "Expected cttz or ctlz intrinsic"); 463 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 464 Value *Op0 = II.getArgOperand(0); 465 Value *Op1 = II.getArgOperand(1); 466 Value *X; 467 // ctlz(bitreverse(x)) -> cttz(x) 468 // cttz(bitreverse(x)) -> ctlz(x) 469 if (match(Op0, m_BitReverse(m_Value(X)))) { 470 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 471 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 472 return CallInst::Create(F, {X, II.getArgOperand(1)}); 473 } 474 475 if (II.getType()->isIntOrIntVectorTy(1)) { 476 // ctlz/cttz i1 Op0 --> not Op0 477 if (match(Op1, m_Zero())) 478 return BinaryOperator::CreateNot(Op0); 479 // If zero is undef, then the input can be assumed to be "true", so the 480 // instruction simplifies to "false". 481 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); 482 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); 483 } 484 485 // If the operand is a select with constant arm(s), try to hoist ctlz/cttz. 486 if (auto *Sel = dyn_cast<SelectInst>(Op0)) 487 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) 488 return R; 489 490 if (IsTZ) { 491 // cttz(-x) -> cttz(x) 492 if (match(Op0, m_Neg(m_Value(X)))) 493 return IC.replaceOperand(II, 0, X); 494 495 // cttz(sext(x)) -> cttz(zext(x)) 496 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 497 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 498 auto *CttzZext = 499 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 500 return IC.replaceInstUsesWith(II, CttzZext); 501 } 502 503 // Zext doesn't change the number of trailing zeros, so narrow: 504 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'. 505 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 506 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 507 IC.Builder.getTrue()); 508 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 509 return IC.replaceInstUsesWith(II, ZextCttz); 510 } 511 512 // cttz(abs(x)) -> cttz(x) 513 // cttz(nabs(x)) -> cttz(x) 514 Value *Y; 515 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 516 if (SPF == SPF_ABS || SPF == SPF_NABS) 517 return IC.replaceOperand(II, 0, X); 518 519 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 520 return IC.replaceOperand(II, 0, X); 521 } 522 523 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 524 525 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 526 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 527 : Known.countMaxLeadingZeros(); 528 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 529 : Known.countMinLeadingZeros(); 530 531 // If all bits above (ctlz) or below (cttz) the first known one are known 532 // zero, this value is constant. 533 // FIXME: This should be in InstSimplify because we're replacing an 534 // instruction with a constant. 535 if (PossibleZeros == DefiniteZeros) { 536 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 537 return IC.replaceInstUsesWith(II, C); 538 } 539 540 // If the input to cttz/ctlz is known to be non-zero, 541 // then change the 'ZeroIsUndef' parameter to 'true' 542 // because we know the zero behavior can't affect the result. 543 if (!Known.One.isZero() || 544 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, 545 &IC.getDominatorTree())) { 546 if (!match(II.getArgOperand(1), m_One())) 547 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 548 } 549 550 // Add range metadata since known bits can't completely reflect what we know. 551 // TODO: Handle splat vectors. 552 auto *IT = dyn_cast<IntegerType>(Op0->getType()); 553 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 554 Metadata *LowAndHigh[] = { 555 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), 556 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; 557 II.setMetadata(LLVMContext::MD_range, 558 MDNode::get(II.getContext(), LowAndHigh)); 559 return &II; 560 } 561 562 return nullptr; 563 } 564 565 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 566 assert(II.getIntrinsicID() == Intrinsic::ctpop && 567 "Expected ctpop intrinsic"); 568 Type *Ty = II.getType(); 569 unsigned BitWidth = Ty->getScalarSizeInBits(); 570 Value *Op0 = II.getArgOperand(0); 571 Value *X, *Y; 572 573 // ctpop(bitreverse(x)) -> ctpop(x) 574 // ctpop(bswap(x)) -> ctpop(x) 575 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 576 return IC.replaceOperand(II, 0, X); 577 578 // ctpop(rot(x)) -> ctpop(x) 579 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 580 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 581 X == Y) 582 return IC.replaceOperand(II, 0, X); 583 584 // ctpop(x | -x) -> bitwidth - cttz(x, false) 585 if (Op0->hasOneUse() && 586 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 587 Function *F = 588 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 589 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); 590 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 591 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 592 } 593 594 // ctpop(~x & (x - 1)) -> cttz(x, false) 595 if (match(Op0, 596 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 597 Function *F = 598 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 599 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 600 } 601 602 // Zext doesn't change the number of set bits, so narrow: 603 // ctpop (zext X) --> zext (ctpop X) 604 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 605 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 606 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 607 } 608 609 // If the operand is a select with constant arm(s), try to hoist ctpop. 610 if (auto *Sel = dyn_cast<SelectInst>(Op0)) 611 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) 612 return R; 613 614 KnownBits Known(BitWidth); 615 IC.computeKnownBits(Op0, Known, 0, &II); 616 617 // If all bits are zero except for exactly one fixed bit, then the result 618 // must be 0 or 1, and we can get that answer by shifting to LSB: 619 // ctpop (X & 32) --> (X & 32) >> 5 620 if ((~Known.Zero).isPowerOf2()) 621 return BinaryOperator::CreateLShr( 622 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 623 624 // FIXME: Try to simplify vectors of integers. 625 auto *IT = dyn_cast<IntegerType>(Ty); 626 if (!IT) 627 return nullptr; 628 629 // Add range metadata since known bits can't completely reflect what we know. 630 unsigned MinCount = Known.countMinPopulation(); 631 unsigned MaxCount = Known.countMaxPopulation(); 632 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 633 Metadata *LowAndHigh[] = { 634 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), 635 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; 636 II.setMetadata(LLVMContext::MD_range, 637 MDNode::get(II.getContext(), LowAndHigh)); 638 return &II; 639 } 640 641 return nullptr; 642 } 643 644 /// Convert a table lookup to shufflevector if the mask is constant. 645 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 646 /// which case we could lower the shufflevector with rev64 instructions 647 /// as it's actually a byte reverse. 648 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 649 InstCombiner::BuilderTy &Builder) { 650 // Bail out if the mask is not a constant. 651 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 652 if (!C) 653 return nullptr; 654 655 auto *VecTy = cast<FixedVectorType>(II.getType()); 656 unsigned NumElts = VecTy->getNumElements(); 657 658 // Only perform this transformation for <8 x i8> vector types. 659 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 660 return nullptr; 661 662 int Indexes[8]; 663 664 for (unsigned I = 0; I < NumElts; ++I) { 665 Constant *COp = C->getAggregateElement(I); 666 667 if (!COp || !isa<ConstantInt>(COp)) 668 return nullptr; 669 670 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 671 672 // Make sure the mask indices are in range. 673 if ((unsigned)Indexes[I] >= NumElts) 674 return nullptr; 675 } 676 677 auto *V1 = II.getArgOperand(0); 678 auto *V2 = Constant::getNullValue(V1->getType()); 679 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes)); 680 } 681 682 // Returns true iff the 2 intrinsics have the same operands, limiting the 683 // comparison to the first NumOperands. 684 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 685 unsigned NumOperands) { 686 assert(I.arg_size() >= NumOperands && "Not enough operands"); 687 assert(E.arg_size() >= NumOperands && "Not enough operands"); 688 for (unsigned i = 0; i < NumOperands; i++) 689 if (I.getArgOperand(i) != E.getArgOperand(i)) 690 return false; 691 return true; 692 } 693 694 // Remove trivially empty start/end intrinsic ranges, i.e. a start 695 // immediately followed by an end (ignoring debuginfo or other 696 // start/end intrinsics in between). As this handles only the most trivial 697 // cases, tracking the nesting level is not needed: 698 // 699 // call @llvm.foo.start(i1 0) 700 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 701 // call @llvm.foo.end(i1 0) 702 // call @llvm.foo.end(i1 0) ; &I 703 static bool 704 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 705 std::function<bool(const IntrinsicInst &)> IsStart) { 706 // We start from the end intrinsic and scan backwards, so that InstCombine 707 // has already processed (and potentially removed) all the instructions 708 // before the end intrinsic. 709 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 710 for (; BI != BE; ++BI) { 711 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 712 if (I->isDebugOrPseudoInst() || 713 I->getIntrinsicID() == EndI.getIntrinsicID()) 714 continue; 715 if (IsStart(*I)) { 716 if (haveSameOperands(EndI, *I, EndI.arg_size())) { 717 IC.eraseInstFromFunction(*I); 718 IC.eraseInstFromFunction(EndI); 719 return true; 720 } 721 // Skip start intrinsics that don't pair with this end intrinsic. 722 continue; 723 } 724 } 725 break; 726 } 727 728 return false; 729 } 730 731 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 732 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 733 return I.getIntrinsicID() == Intrinsic::vastart || 734 I.getIntrinsicID() == Intrinsic::vacopy; 735 }); 736 return nullptr; 737 } 738 739 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 740 assert(Call.arg_size() > 1 && "Need at least 2 args to swap"); 741 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 742 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 743 Call.setArgOperand(0, Arg1); 744 Call.setArgOperand(1, Arg0); 745 return &Call; 746 } 747 return nullptr; 748 } 749 750 /// Creates a result tuple for an overflow intrinsic \p II with a given 751 /// \p Result and a constant \p Overflow value. 752 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 753 Constant *Overflow) { 754 Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; 755 StructType *ST = cast<StructType>(II->getType()); 756 Constant *Struct = ConstantStruct::get(ST, V); 757 return InsertValueInst::Create(Struct, Result, 0); 758 } 759 760 Instruction * 761 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 762 WithOverflowInst *WO = cast<WithOverflowInst>(II); 763 Value *OperationResult = nullptr; 764 Constant *OverflowResult = nullptr; 765 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 766 WO->getRHS(), *WO, OperationResult, OverflowResult)) 767 return createOverflowTuple(WO, OperationResult, OverflowResult); 768 return nullptr; 769 } 770 771 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI, 772 const DataLayout &DL, AssumptionCache *AC, 773 DominatorTree *DT) { 774 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT); 775 if (Known.isNonNegative()) 776 return false; 777 if (Known.isNegative()) 778 return true; 779 780 return isImpliedByDomCondition( 781 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL); 782 } 783 784 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This 785 /// can trigger other combines. 786 static Instruction *moveAddAfterMinMax(IntrinsicInst *II, 787 InstCombiner::BuilderTy &Builder) { 788 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 789 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin || 790 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) && 791 "Expected a min or max intrinsic"); 792 793 // TODO: Match vectors with undef elements, but undef may not propagate. 794 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 795 Value *X; 796 const APInt *C0, *C1; 797 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) || 798 !match(Op1, m_APInt(C1))) 799 return nullptr; 800 801 // Check for necessary no-wrap and overflow constraints. 802 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin; 803 auto *Add = cast<BinaryOperator>(Op0); 804 if ((IsSigned && !Add->hasNoSignedWrap()) || 805 (!IsSigned && !Add->hasNoUnsignedWrap())) 806 return nullptr; 807 808 // If the constant difference overflows, then instsimplify should reduce the 809 // min/max to the add or C1. 810 bool Overflow; 811 APInt CDiff = 812 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow); 813 assert(!Overflow && "Expected simplify of min/max"); 814 815 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0 816 // Note: the "mismatched" no-overflow setting does not propagate. 817 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff); 818 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC); 819 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1)) 820 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1)); 821 } 822 823 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 824 /// can only be one of two possible constant values -- turn that into a select 825 /// of constants. 826 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 827 InstCombiner::BuilderTy &Builder) { 828 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 829 Value *X; 830 const APInt *C0, *C1; 831 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 832 return nullptr; 833 834 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 835 switch (II->getIntrinsicID()) { 836 case Intrinsic::smax: 837 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 838 Pred = ICmpInst::ICMP_SGT; 839 break; 840 case Intrinsic::smin: 841 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 842 Pred = ICmpInst::ICMP_SLT; 843 break; 844 case Intrinsic::umax: 845 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 846 Pred = ICmpInst::ICMP_UGT; 847 break; 848 case Intrinsic::umin: 849 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 850 Pred = ICmpInst::ICMP_ULT; 851 break; 852 default: 853 llvm_unreachable("Expected min/max intrinsic"); 854 } 855 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 856 return nullptr; 857 858 // max (min X, 42), 41 --> X > 41 ? 42 : 41 859 // min (max X, 42), 43 --> X < 43 ? 42 : 43 860 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 861 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 862 } 863 864 /// Reduce a sequence of min/max intrinsics with a common operand. 865 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) { 866 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 867 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 868 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1)); 869 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 870 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID || 871 RHS->getIntrinsicID() != MinMaxID || 872 (!LHS->hasOneUse() && !RHS->hasOneUse())) 873 return nullptr; 874 875 Value *A = LHS->getArgOperand(0); 876 Value *B = LHS->getArgOperand(1); 877 Value *C = RHS->getArgOperand(0); 878 Value *D = RHS->getArgOperand(1); 879 880 // Look for a common operand. 881 Value *MinMaxOp = nullptr; 882 Value *ThirdOp = nullptr; 883 if (LHS->hasOneUse()) { 884 // If the LHS is only used in this chain and the RHS is used outside of it, 885 // reuse the RHS min/max because that will eliminate the LHS. 886 if (D == A || C == A) { 887 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 888 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 889 MinMaxOp = RHS; 890 ThirdOp = B; 891 } else if (D == B || C == B) { 892 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 893 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 894 MinMaxOp = RHS; 895 ThirdOp = A; 896 } 897 } else { 898 assert(RHS->hasOneUse() && "Expected one-use operand"); 899 // Reuse the LHS. This will eliminate the RHS. 900 if (D == A || D == B) { 901 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 902 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 903 MinMaxOp = LHS; 904 ThirdOp = C; 905 } else if (C == A || C == B) { 906 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 907 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 908 MinMaxOp = LHS; 909 ThirdOp = D; 910 } 911 } 912 913 if (!MinMaxOp || !ThirdOp) 914 return nullptr; 915 916 Module *Mod = II->getModule(); 917 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType()); 918 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp }); 919 } 920 921 /// CallInst simplification. This mostly only handles folding of intrinsic 922 /// instructions. For normal calls, it allows visitCallBase to do the heavy 923 /// lifting. 924 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 925 // Don't try to simplify calls without uses. It will not do anything useful, 926 // but will result in the following folds being skipped. 927 if (!CI.use_empty()) 928 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) 929 return replaceInstUsesWith(CI, V); 930 931 if (isFreeCall(&CI, &TLI)) 932 return visitFree(CI); 933 934 // If the caller function is nounwind, mark the call as nounwind, even if the 935 // callee isn't. 936 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 937 CI.setDoesNotThrow(); 938 return &CI; 939 } 940 941 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 942 if (!II) return visitCallBase(CI); 943 944 // For atomic unordered mem intrinsics if len is not a positive or 945 // not a multiple of element size then behavior is undefined. 946 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 947 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 948 if (NumBytes->getSExtValue() < 0 || 949 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 950 CreateNonTerminatorUnreachable(AMI); 951 assert(AMI->getType()->isVoidTy() && 952 "non void atomic unordered mem intrinsic"); 953 return eraseInstFromFunction(*AMI); 954 } 955 956 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 957 // instead of in visitCallBase. 958 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 959 bool Changed = false; 960 961 // memmove/cpy/set of zero bytes is a noop. 962 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 963 if (NumBytes->isNullValue()) 964 return eraseInstFromFunction(CI); 965 966 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) 967 if (CI->getZExtValue() == 1) { 968 // Replace the instruction with just byte operations. We would 969 // transform other cases to loads/stores, but we don't know if 970 // alignment is sufficient. 971 } 972 } 973 974 // No other transformations apply to volatile transfers. 975 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 976 if (M->isVolatile()) 977 return nullptr; 978 979 // If we have a memmove and the source operation is a constant global, 980 // then the source and dest pointers can't alias, so we can change this 981 // into a call to memcpy. 982 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 983 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 984 if (GVSrc->isConstant()) { 985 Module *M = CI.getModule(); 986 Intrinsic::ID MemCpyID = 987 isa<AtomicMemMoveInst>(MMI) 988 ? Intrinsic::memcpy_element_unordered_atomic 989 : Intrinsic::memcpy; 990 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 991 CI.getArgOperand(1)->getType(), 992 CI.getArgOperand(2)->getType() }; 993 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 994 Changed = true; 995 } 996 } 997 998 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 999 // memmove(x,x,size) -> noop. 1000 if (MTI->getSource() == MTI->getDest()) 1001 return eraseInstFromFunction(CI); 1002 } 1003 1004 // If we can determine a pointer alignment that is bigger than currently 1005 // set, update the alignment. 1006 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1007 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 1008 return I; 1009 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 1010 if (Instruction *I = SimplifyAnyMemSet(MSI)) 1011 return I; 1012 } 1013 1014 if (Changed) return II; 1015 } 1016 1017 // For fixed width vector result intrinsics, use the generic demanded vector 1018 // support. 1019 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 1020 auto VWidth = IIFVTy->getNumElements(); 1021 APInt UndefElts(VWidth, 0); 1022 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1023 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { 1024 if (V != II) 1025 return replaceInstUsesWith(*II, V); 1026 return II; 1027 } 1028 } 1029 1030 if (II->isCommutative()) { 1031 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 1032 return NewCall; 1033 } 1034 1035 Intrinsic::ID IID = II->getIntrinsicID(); 1036 switch (IID) { 1037 case Intrinsic::objectsize: 1038 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) 1039 return replaceInstUsesWith(CI, V); 1040 return nullptr; 1041 case Intrinsic::abs: { 1042 Value *IIOperand = II->getArgOperand(0); 1043 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 1044 1045 // abs(-x) -> abs(x) 1046 // TODO: Copy nsw if it was present on the neg? 1047 Value *X; 1048 if (match(IIOperand, m_Neg(m_Value(X)))) 1049 return replaceOperand(*II, 0, X); 1050 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) 1051 return replaceOperand(*II, 0, X); 1052 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) 1053 return replaceOperand(*II, 0, X); 1054 1055 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) { 1056 // abs(x) -> x if x >= 0 1057 if (!*Sign) 1058 return replaceInstUsesWith(*II, IIOperand); 1059 1060 // abs(x) -> -x if x < 0 1061 if (IntMinIsPoison) 1062 return BinaryOperator::CreateNSWNeg(IIOperand); 1063 return BinaryOperator::CreateNeg(IIOperand); 1064 } 1065 1066 // abs (sext X) --> zext (abs X*) 1067 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 1068 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 1069 Value *NarrowAbs = 1070 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 1071 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 1072 } 1073 1074 // Match a complicated way to check if a number is odd/even: 1075 // abs (srem X, 2) --> and X, 1 1076 const APInt *C; 1077 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 1078 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 1079 1080 break; 1081 } 1082 case Intrinsic::umin: { 1083 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1084 // umin(x, 1) == zext(x != 0) 1085 if (match(I1, m_One())) { 1086 Value *Zero = Constant::getNullValue(I0->getType()); 1087 Value *Cmp = Builder.CreateICmpNE(I0, Zero); 1088 return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); 1089 } 1090 LLVM_FALLTHROUGH; 1091 } 1092 case Intrinsic::umax: { 1093 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1094 Value *X, *Y; 1095 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 1096 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1097 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1098 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1099 } 1100 Constant *C; 1101 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 1102 I0->hasOneUse()) { 1103 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 1104 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) { 1105 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1106 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1107 } 1108 } 1109 // If both operands of unsigned min/max are sign-extended, it is still ok 1110 // to narrow the operation. 1111 LLVM_FALLTHROUGH; 1112 } 1113 case Intrinsic::smax: 1114 case Intrinsic::smin: { 1115 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1116 Value *X, *Y; 1117 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 1118 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1119 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1120 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1121 } 1122 1123 Constant *C; 1124 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 1125 I0->hasOneUse()) { 1126 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 1127 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) { 1128 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1129 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1130 } 1131 } 1132 1133 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1134 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y) 1135 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y) 1136 // TODO: Canonicalize neg after min/max if I1 is constant. 1137 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) && 1138 (I0->hasOneUse() || I1->hasOneUse())) { 1139 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1140 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 1141 return BinaryOperator::CreateNSWNeg(InvMaxMin); 1142 } 1143 } 1144 1145 // If we can eliminate ~A and Y is free to invert: 1146 // max ~A, Y --> ~(min A, ~Y) 1147 // 1148 // Examples: 1149 // max ~A, ~Y --> ~(min A, Y) 1150 // max ~A, C --> ~(min A, ~C) 1151 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z)) 1152 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1153 Value *A; 1154 if (match(X, m_OneUse(m_Not(m_Value(A)))) && 1155 !isFreeToInvert(A, A->hasOneUse()) && 1156 isFreeToInvert(Y, Y->hasOneUse())) { 1157 Value *NotY = Builder.CreateNot(Y); 1158 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1159 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY); 1160 return BinaryOperator::CreateNot(InvMaxMin); 1161 } 1162 return nullptr; 1163 }; 1164 1165 if (Instruction *I = moveNotAfterMinMax(I0, I1)) 1166 return I; 1167 if (Instruction *I = moveNotAfterMinMax(I1, I0)) 1168 return I; 1169 1170 if (Instruction *I = moveAddAfterMinMax(II, Builder)) 1171 return I; 1172 1173 // smax(X, -X) --> abs(X) 1174 // smin(X, -X) --> -abs(X) 1175 // umax(X, -X) --> -abs(X) 1176 // umin(X, -X) --> abs(X) 1177 if (isKnownNegation(I0, I1)) { 1178 // We can choose either operand as the input to abs(), but if we can 1179 // eliminate the only use of a value, that's better for subsequent 1180 // transforms/analysis. 1181 if (I0->hasOneUse() && !I1->hasOneUse()) 1182 std::swap(I0, I1); 1183 1184 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 1185 // operation and potentially its negation. 1186 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 1187 Value *Abs = Builder.CreateBinaryIntrinsic( 1188 Intrinsic::abs, I0, 1189 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 1190 1191 // We don't have a "nabs" intrinsic, so negate if needed based on the 1192 // max/min operation. 1193 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 1194 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison); 1195 return replaceInstUsesWith(CI, Abs); 1196 } 1197 1198 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 1199 return Sel; 1200 1201 if (Instruction *SAdd = matchSAddSubSat(*II)) 1202 return SAdd; 1203 1204 if (match(I1, m_ImmConstant())) 1205 if (auto *Sel = dyn_cast<SelectInst>(I0)) 1206 if (Instruction *R = FoldOpIntoSelect(*II, Sel)) 1207 return R; 1208 1209 if (Instruction *NewMinMax = factorizeMinMaxTree(II)) 1210 return NewMinMax; 1211 1212 break; 1213 } 1214 case Intrinsic::bswap: { 1215 Value *IIOperand = II->getArgOperand(0); 1216 Value *X = nullptr; 1217 1218 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1219 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1220 unsigned C = X->getType()->getScalarSizeInBits() - 1221 IIOperand->getType()->getScalarSizeInBits(); 1222 Value *CV = ConstantInt::get(X->getType(), C); 1223 Value *V = Builder.CreateLShr(X, CV); 1224 return new TruncInst(V, IIOperand->getType()); 1225 } 1226 break; 1227 } 1228 case Intrinsic::masked_load: 1229 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1230 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1231 break; 1232 case Intrinsic::masked_store: 1233 return simplifyMaskedStore(*II); 1234 case Intrinsic::masked_gather: 1235 return simplifyMaskedGather(*II); 1236 case Intrinsic::masked_scatter: 1237 return simplifyMaskedScatter(*II); 1238 case Intrinsic::launder_invariant_group: 1239 case Intrinsic::strip_invariant_group: 1240 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1241 return replaceInstUsesWith(*II, SkippedBarrier); 1242 break; 1243 case Intrinsic::powi: 1244 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 1245 // 0 and 1 are handled in instsimplify 1246 // powi(x, -1) -> 1/x 1247 if (Power->isMinusOne()) 1248 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 1249 II->getArgOperand(0), II); 1250 // powi(x, 2) -> x*x 1251 if (Power->equalsInt(2)) 1252 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 1253 II->getArgOperand(0), II); 1254 1255 if (!Power->getValue()[0]) { 1256 Value *X; 1257 // If power is even: 1258 // powi(-x, p) -> powi(x, p) 1259 // powi(fabs(x), p) -> powi(x, p) 1260 // powi(copysign(x, y), p) -> powi(x, p) 1261 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) || 1262 match(II->getArgOperand(0), m_FAbs(m_Value(X))) || 1263 match(II->getArgOperand(0), 1264 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value()))) 1265 return replaceOperand(*II, 0, X); 1266 } 1267 } 1268 break; 1269 1270 case Intrinsic::cttz: 1271 case Intrinsic::ctlz: 1272 if (auto *I = foldCttzCtlz(*II, *this)) 1273 return I; 1274 break; 1275 1276 case Intrinsic::ctpop: 1277 if (auto *I = foldCtpop(*II, *this)) 1278 return I; 1279 break; 1280 1281 case Intrinsic::fshl: 1282 case Intrinsic::fshr: { 1283 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1284 Type *Ty = II->getType(); 1285 unsigned BitWidth = Ty->getScalarSizeInBits(); 1286 Constant *ShAmtC; 1287 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) && 1288 !ShAmtC->containsConstantExpression()) { 1289 // Canonicalize a shift amount constant operand to modulo the bit-width. 1290 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 1291 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); 1292 if (ModuloC != ShAmtC) 1293 return replaceOperand(*II, 2, ModuloC); 1294 1295 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == 1296 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && 1297 "Shift amount expected to be modulo bitwidth"); 1298 1299 // Canonicalize funnel shift right by constant to funnel shift left. This 1300 // is not entirely arbitrary. For historical reasons, the backend may 1301 // recognize rotate left patterns but miss rotate right patterns. 1302 if (IID == Intrinsic::fshr) { 1303 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) 1304 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 1305 Module *Mod = II->getModule(); 1306 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 1307 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 1308 } 1309 assert(IID == Intrinsic::fshl && 1310 "All funnel shifts by simple constants should go left"); 1311 1312 // fshl(X, 0, C) --> shl X, C 1313 // fshl(X, undef, C) --> shl X, C 1314 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 1315 return BinaryOperator::CreateShl(Op0, ShAmtC); 1316 1317 // fshl(0, X, C) --> lshr X, (BW-C) 1318 // fshl(undef, X, C) --> lshr X, (BW-C) 1319 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 1320 return BinaryOperator::CreateLShr(Op1, 1321 ConstantExpr::getSub(WidthC, ShAmtC)); 1322 1323 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 1324 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 1325 Module *Mod = II->getModule(); 1326 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 1327 return CallInst::Create(Bswap, { Op0 }); 1328 } 1329 } 1330 1331 // Left or right might be masked. 1332 if (SimplifyDemandedInstructionBits(*II)) 1333 return &CI; 1334 1335 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 1336 // so only the low bits of the shift amount are demanded if the bitwidth is 1337 // a power-of-2. 1338 if (!isPowerOf2_32(BitWidth)) 1339 break; 1340 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 1341 KnownBits Op2Known(BitWidth); 1342 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 1343 return &CI; 1344 break; 1345 } 1346 case Intrinsic::uadd_with_overflow: 1347 case Intrinsic::sadd_with_overflow: { 1348 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1349 return I; 1350 1351 // Given 2 constant operands whose sum does not overflow: 1352 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 1353 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 1354 Value *X; 1355 const APInt *C0, *C1; 1356 Value *Arg0 = II->getArgOperand(0); 1357 Value *Arg1 = II->getArgOperand(1); 1358 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 1359 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) 1360 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); 1361 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 1362 bool Overflow; 1363 APInt NewC = 1364 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 1365 if (!Overflow) 1366 return replaceInstUsesWith( 1367 *II, Builder.CreateBinaryIntrinsic( 1368 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 1369 } 1370 break; 1371 } 1372 1373 case Intrinsic::umul_with_overflow: 1374 case Intrinsic::smul_with_overflow: 1375 case Intrinsic::usub_with_overflow: 1376 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1377 return I; 1378 break; 1379 1380 case Intrinsic::ssub_with_overflow: { 1381 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1382 return I; 1383 1384 Constant *C; 1385 Value *Arg0 = II->getArgOperand(0); 1386 Value *Arg1 = II->getArgOperand(1); 1387 // Given a constant C that is not the minimum signed value 1388 // for an integer of a given bit width: 1389 // 1390 // ssubo X, C -> saddo X, -C 1391 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 1392 Value *NegVal = ConstantExpr::getNeg(C); 1393 // Build a saddo call that is equivalent to the discovered 1394 // ssubo call. 1395 return replaceInstUsesWith( 1396 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 1397 Arg0, NegVal)); 1398 } 1399 1400 break; 1401 } 1402 1403 case Intrinsic::uadd_sat: 1404 case Intrinsic::sadd_sat: 1405 case Intrinsic::usub_sat: 1406 case Intrinsic::ssub_sat: { 1407 SaturatingInst *SI = cast<SaturatingInst>(II); 1408 Type *Ty = SI->getType(); 1409 Value *Arg0 = SI->getLHS(); 1410 Value *Arg1 = SI->getRHS(); 1411 1412 // Make use of known overflow information. 1413 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 1414 Arg0, Arg1, SI); 1415 switch (OR) { 1416 case OverflowResult::MayOverflow: 1417 break; 1418 case OverflowResult::NeverOverflows: 1419 if (SI->isSigned()) 1420 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 1421 else 1422 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 1423 case OverflowResult::AlwaysOverflowsLow: { 1424 unsigned BitWidth = Ty->getScalarSizeInBits(); 1425 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 1426 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 1427 } 1428 case OverflowResult::AlwaysOverflowsHigh: { 1429 unsigned BitWidth = Ty->getScalarSizeInBits(); 1430 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 1431 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 1432 } 1433 } 1434 1435 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 1436 Constant *C; 1437 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 1438 C->isNotMinSignedValue()) { 1439 Value *NegVal = ConstantExpr::getNeg(C); 1440 return replaceInstUsesWith( 1441 *II, Builder.CreateBinaryIntrinsic( 1442 Intrinsic::sadd_sat, Arg0, NegVal)); 1443 } 1444 1445 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 1446 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 1447 // if Val and Val2 have the same sign 1448 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 1449 Value *X; 1450 const APInt *Val, *Val2; 1451 APInt NewVal; 1452 bool IsUnsigned = 1453 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 1454 if (Other->getIntrinsicID() == IID && 1455 match(Arg1, m_APInt(Val)) && 1456 match(Other->getArgOperand(0), m_Value(X)) && 1457 match(Other->getArgOperand(1), m_APInt(Val2))) { 1458 if (IsUnsigned) 1459 NewVal = Val->uadd_sat(*Val2); 1460 else if (Val->isNonNegative() == Val2->isNonNegative()) { 1461 bool Overflow; 1462 NewVal = Val->sadd_ov(*Val2, Overflow); 1463 if (Overflow) { 1464 // Both adds together may add more than SignedMaxValue 1465 // without saturating the final result. 1466 break; 1467 } 1468 } else { 1469 // Cannot fold saturated addition with different signs. 1470 break; 1471 } 1472 1473 return replaceInstUsesWith( 1474 *II, Builder.CreateBinaryIntrinsic( 1475 IID, X, ConstantInt::get(II->getType(), NewVal))); 1476 } 1477 } 1478 break; 1479 } 1480 1481 case Intrinsic::minnum: 1482 case Intrinsic::maxnum: 1483 case Intrinsic::minimum: 1484 case Intrinsic::maximum: { 1485 Value *Arg0 = II->getArgOperand(0); 1486 Value *Arg1 = II->getArgOperand(1); 1487 Value *X, *Y; 1488 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 1489 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 1490 // If both operands are negated, invert the call and negate the result: 1491 // min(-X, -Y) --> -(max(X, Y)) 1492 // max(-X, -Y) --> -(min(X, Y)) 1493 Intrinsic::ID NewIID; 1494 switch (IID) { 1495 case Intrinsic::maxnum: 1496 NewIID = Intrinsic::minnum; 1497 break; 1498 case Intrinsic::minnum: 1499 NewIID = Intrinsic::maxnum; 1500 break; 1501 case Intrinsic::maximum: 1502 NewIID = Intrinsic::minimum; 1503 break; 1504 case Intrinsic::minimum: 1505 NewIID = Intrinsic::maximum; 1506 break; 1507 default: 1508 llvm_unreachable("unexpected intrinsic ID"); 1509 } 1510 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 1511 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 1512 FNeg->copyIRFlags(II); 1513 return FNeg; 1514 } 1515 1516 // m(m(X, C2), C1) -> m(X, C) 1517 const APFloat *C1, *C2; 1518 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 1519 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 1520 ((match(M->getArgOperand(0), m_Value(X)) && 1521 match(M->getArgOperand(1), m_APFloat(C2))) || 1522 (match(M->getArgOperand(1), m_Value(X)) && 1523 match(M->getArgOperand(0), m_APFloat(C2))))) { 1524 APFloat Res(0.0); 1525 switch (IID) { 1526 case Intrinsic::maxnum: 1527 Res = maxnum(*C1, *C2); 1528 break; 1529 case Intrinsic::minnum: 1530 Res = minnum(*C1, *C2); 1531 break; 1532 case Intrinsic::maximum: 1533 Res = maximum(*C1, *C2); 1534 break; 1535 case Intrinsic::minimum: 1536 Res = minimum(*C1, *C2); 1537 break; 1538 default: 1539 llvm_unreachable("unexpected intrinsic ID"); 1540 } 1541 Instruction *NewCall = Builder.CreateBinaryIntrinsic( 1542 IID, X, ConstantFP::get(Arg0->getType(), Res), II); 1543 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 1544 // was a simplification (so Arg0 and its original flags could 1545 // propagate?) 1546 NewCall->andIRFlags(M); 1547 return replaceInstUsesWith(*II, NewCall); 1548 } 1549 } 1550 1551 // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) 1552 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && 1553 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && 1554 X->getType() == Y->getType()) { 1555 Value *NewCall = 1556 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); 1557 return new FPExtInst(NewCall, II->getType()); 1558 } 1559 1560 // max X, -X --> fabs X 1561 // min X, -X --> -(fabs X) 1562 // TODO: Remove one-use limitation? That is obviously better for max. 1563 // It would be an extra instruction for min (fnabs), but that is 1564 // still likely better for analysis and codegen. 1565 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) || 1566 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) { 1567 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 1568 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) 1569 R = Builder.CreateFNegFMF(R, II); 1570 return replaceInstUsesWith(*II, R); 1571 } 1572 1573 break; 1574 } 1575 case Intrinsic::fmuladd: { 1576 // Canonicalize fast fmuladd to the separate fmul + fadd. 1577 if (II->isFast()) { 1578 BuilderTy::FastMathFlagGuard Guard(Builder); 1579 Builder.setFastMathFlags(II->getFastMathFlags()); 1580 Value *Mul = Builder.CreateFMul(II->getArgOperand(0), 1581 II->getArgOperand(1)); 1582 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); 1583 Add->takeName(II); 1584 return replaceInstUsesWith(*II, Add); 1585 } 1586 1587 // Try to simplify the underlying FMul. 1588 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 1589 II->getFastMathFlags(), 1590 SQ.getWithInstruction(II))) { 1591 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1592 FAdd->copyFastMathFlags(II); 1593 return FAdd; 1594 } 1595 1596 LLVM_FALLTHROUGH; 1597 } 1598 case Intrinsic::fma: { 1599 // fma fneg(x), fneg(y), z -> fma x, y, z 1600 Value *Src0 = II->getArgOperand(0); 1601 Value *Src1 = II->getArgOperand(1); 1602 Value *X, *Y; 1603 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 1604 replaceOperand(*II, 0, X); 1605 replaceOperand(*II, 1, Y); 1606 return II; 1607 } 1608 1609 // fma fabs(x), fabs(x), z -> fma x, x, z 1610 if (match(Src0, m_FAbs(m_Value(X))) && 1611 match(Src1, m_FAbs(m_Specific(X)))) { 1612 replaceOperand(*II, 0, X); 1613 replaceOperand(*II, 1, X); 1614 return II; 1615 } 1616 1617 // Try to simplify the underlying FMul. We can only apply simplifications 1618 // that do not require rounding. 1619 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), 1620 II->getFastMathFlags(), 1621 SQ.getWithInstruction(II))) { 1622 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1623 FAdd->copyFastMathFlags(II); 1624 return FAdd; 1625 } 1626 1627 // fma x, y, 0 -> fmul x, y 1628 // This is always valid for -0.0, but requires nsz for +0.0 as 1629 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 1630 if (match(II->getArgOperand(2), m_NegZeroFP()) || 1631 (match(II->getArgOperand(2), m_PosZeroFP()) && 1632 II->getFastMathFlags().noSignedZeros())) 1633 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 1634 1635 break; 1636 } 1637 case Intrinsic::copysign: { 1638 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 1639 if (SignBitMustBeZero(Sign, &TLI)) { 1640 // If we know that the sign argument is positive, reduce to FABS: 1641 // copysign Mag, +Sign --> fabs Mag 1642 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1643 return replaceInstUsesWith(*II, Fabs); 1644 } 1645 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne. 1646 const APFloat *C; 1647 if (match(Sign, m_APFloat(C)) && C->isNegative()) { 1648 // If we know that the sign argument is negative, reduce to FNABS: 1649 // copysign Mag, -Sign --> fneg (fabs Mag) 1650 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1651 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 1652 } 1653 1654 // Propagate sign argument through nested calls: 1655 // copysign Mag, (copysign ?, X) --> copysign Mag, X 1656 Value *X; 1657 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) 1658 return replaceOperand(*II, 1, X); 1659 1660 // Peek through changes of magnitude's sign-bit. This call rewrites those: 1661 // copysign (fabs X), Sign --> copysign X, Sign 1662 // copysign (fneg X), Sign --> copysign X, Sign 1663 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 1664 return replaceOperand(*II, 0, X); 1665 1666 break; 1667 } 1668 case Intrinsic::fabs: { 1669 Value *Cond, *TVal, *FVal; 1670 if (match(II->getArgOperand(0), 1671 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 1672 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 1673 if (isa<Constant>(TVal) && isa<Constant>(FVal)) { 1674 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 1675 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 1676 return SelectInst::Create(Cond, AbsT, AbsF); 1677 } 1678 // fabs (select Cond, -FVal, FVal) --> fabs FVal 1679 if (match(TVal, m_FNeg(m_Specific(FVal)))) 1680 return replaceOperand(*II, 0, FVal); 1681 // fabs (select Cond, TVal, -TVal) --> fabs TVal 1682 if (match(FVal, m_FNeg(m_Specific(TVal)))) 1683 return replaceOperand(*II, 0, TVal); 1684 } 1685 1686 LLVM_FALLTHROUGH; 1687 } 1688 case Intrinsic::ceil: 1689 case Intrinsic::floor: 1690 case Intrinsic::round: 1691 case Intrinsic::roundeven: 1692 case Intrinsic::nearbyint: 1693 case Intrinsic::rint: 1694 case Intrinsic::trunc: { 1695 Value *ExtSrc; 1696 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 1697 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 1698 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 1699 return new FPExtInst(NarrowII, II->getType()); 1700 } 1701 break; 1702 } 1703 case Intrinsic::cos: 1704 case Intrinsic::amdgcn_cos: { 1705 Value *X; 1706 Value *Src = II->getArgOperand(0); 1707 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { 1708 // cos(-x) -> cos(x) 1709 // cos(fabs(x)) -> cos(x) 1710 return replaceOperand(*II, 0, X); 1711 } 1712 break; 1713 } 1714 case Intrinsic::sin: { 1715 Value *X; 1716 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 1717 // sin(-x) --> -sin(x) 1718 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); 1719 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin); 1720 FNeg->copyFastMathFlags(II); 1721 return FNeg; 1722 } 1723 break; 1724 } 1725 1726 case Intrinsic::arm_neon_vtbl1: 1727 case Intrinsic::aarch64_neon_tbl1: 1728 if (Value *V = simplifyNeonTbl1(*II, Builder)) 1729 return replaceInstUsesWith(*II, V); 1730 break; 1731 1732 case Intrinsic::arm_neon_vmulls: 1733 case Intrinsic::arm_neon_vmullu: 1734 case Intrinsic::aarch64_neon_smull: 1735 case Intrinsic::aarch64_neon_umull: { 1736 Value *Arg0 = II->getArgOperand(0); 1737 Value *Arg1 = II->getArgOperand(1); 1738 1739 // Handle mul by zero first: 1740 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 1741 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 1742 } 1743 1744 // Check for constant LHS & RHS - in this case we just simplify. 1745 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 1746 IID == Intrinsic::aarch64_neon_umull); 1747 VectorType *NewVT = cast<VectorType>(II->getType()); 1748 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 1749 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 1750 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); 1751 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); 1752 1753 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); 1754 } 1755 1756 // Couldn't simplify - canonicalize constant to the RHS. 1757 std::swap(Arg0, Arg1); 1758 } 1759 1760 // Handle mul by one: 1761 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 1762 if (ConstantInt *Splat = 1763 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 1764 if (Splat->isOne()) 1765 return CastInst::CreateIntegerCast(Arg0, II->getType(), 1766 /*isSigned=*/!Zext); 1767 1768 break; 1769 } 1770 case Intrinsic::arm_neon_aesd: 1771 case Intrinsic::arm_neon_aese: 1772 case Intrinsic::aarch64_crypto_aesd: 1773 case Intrinsic::aarch64_crypto_aese: { 1774 Value *DataArg = II->getArgOperand(0); 1775 Value *KeyArg = II->getArgOperand(1); 1776 1777 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 1778 Value *Data, *Key; 1779 if (match(KeyArg, m_ZeroInt()) && 1780 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 1781 replaceOperand(*II, 0, Data); 1782 replaceOperand(*II, 1, Key); 1783 return II; 1784 } 1785 break; 1786 } 1787 case Intrinsic::hexagon_V6_vandvrt: 1788 case Intrinsic::hexagon_V6_vandvrt_128B: { 1789 // Simplify Q -> V -> Q conversion. 1790 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1791 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 1792 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 1793 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 1794 break; 1795 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 1796 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 1797 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 1798 // Check if every byte has common bits in Bytes and Mask. 1799 uint64_t C = Bytes1 & Mask1; 1800 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 1801 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 1802 } 1803 break; 1804 } 1805 case Intrinsic::stackrestore: { 1806 enum class ClassifyResult { 1807 None, 1808 Alloca, 1809 StackRestore, 1810 CallWithSideEffects, 1811 }; 1812 auto Classify = [](const Instruction *I) { 1813 if (isa<AllocaInst>(I)) 1814 return ClassifyResult::Alloca; 1815 1816 if (auto *CI = dyn_cast<CallInst>(I)) { 1817 if (auto *II = dyn_cast<IntrinsicInst>(CI)) { 1818 if (II->getIntrinsicID() == Intrinsic::stackrestore) 1819 return ClassifyResult::StackRestore; 1820 1821 if (II->mayHaveSideEffects()) 1822 return ClassifyResult::CallWithSideEffects; 1823 } else { 1824 // Consider all non-intrinsic calls to be side effects 1825 return ClassifyResult::CallWithSideEffects; 1826 } 1827 } 1828 1829 return ClassifyResult::None; 1830 }; 1831 1832 // If the stacksave and the stackrestore are in the same BB, and there is 1833 // no intervening call, alloca, or stackrestore of a different stacksave, 1834 // remove the restore. This can happen when variable allocas are DCE'd. 1835 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1836 if (SS->getIntrinsicID() == Intrinsic::stacksave && 1837 SS->getParent() == II->getParent()) { 1838 BasicBlock::iterator BI(SS); 1839 bool CannotRemove = false; 1840 for (++BI; &*BI != II; ++BI) { 1841 switch (Classify(&*BI)) { 1842 case ClassifyResult::None: 1843 // So far so good, look at next instructions. 1844 break; 1845 1846 case ClassifyResult::StackRestore: 1847 // If we found an intervening stackrestore for a different 1848 // stacksave, we can't remove the stackrestore. Otherwise, continue. 1849 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS) 1850 CannotRemove = true; 1851 break; 1852 1853 case ClassifyResult::Alloca: 1854 case ClassifyResult::CallWithSideEffects: 1855 // If we found an alloca, a non-intrinsic call, or an intrinsic 1856 // call with side effects, we can't remove the stackrestore. 1857 CannotRemove = true; 1858 break; 1859 } 1860 if (CannotRemove) 1861 break; 1862 } 1863 1864 if (!CannotRemove) 1865 return eraseInstFromFunction(CI); 1866 } 1867 } 1868 1869 // Scan down this block to see if there is another stack restore in the 1870 // same block without an intervening call/alloca. 1871 BasicBlock::iterator BI(II); 1872 Instruction *TI = II->getParent()->getTerminator(); 1873 bool CannotRemove = false; 1874 for (++BI; &*BI != TI; ++BI) { 1875 switch (Classify(&*BI)) { 1876 case ClassifyResult::None: 1877 // So far so good, look at next instructions. 1878 break; 1879 1880 case ClassifyResult::StackRestore: 1881 // If there is a stackrestore below this one, remove this one. 1882 return eraseInstFromFunction(CI); 1883 1884 case ClassifyResult::Alloca: 1885 case ClassifyResult::CallWithSideEffects: 1886 // If we found an alloca, a non-intrinsic call, or an intrinsic call 1887 // with side effects (such as llvm.stacksave and llvm.read_register), 1888 // we can't remove the stack restore. 1889 CannotRemove = true; 1890 break; 1891 } 1892 if (CannotRemove) 1893 break; 1894 } 1895 1896 // If the stack restore is in a return, resume, or unwind block and if there 1897 // are no allocas or calls between the restore and the return, nuke the 1898 // restore. 1899 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 1900 return eraseInstFromFunction(CI); 1901 break; 1902 } 1903 case Intrinsic::lifetime_end: 1904 // Asan needs to poison memory to detect invalid access which is possible 1905 // even for empty lifetime range. 1906 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 1907 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 1908 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 1909 break; 1910 1911 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 1912 return I.getIntrinsicID() == Intrinsic::lifetime_start; 1913 })) 1914 return nullptr; 1915 break; 1916 case Intrinsic::assume: { 1917 Value *IIOperand = II->getArgOperand(0); 1918 SmallVector<OperandBundleDef, 4> OpBundles; 1919 II->getOperandBundlesAsDefs(OpBundles); 1920 1921 /// This will remove the boolean Condition from the assume given as 1922 /// argument and remove the assume if it becomes useless. 1923 /// always returns nullptr for use as a return values. 1924 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 1925 assert(isa<AssumeInst>(Assume)); 1926 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 1927 return eraseInstFromFunction(CI); 1928 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 1929 return nullptr; 1930 }; 1931 // Remove an assume if it is followed by an identical assume. 1932 // TODO: Do we need this? Unless there are conflicting assumptions, the 1933 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 1934 Instruction *Next = II->getNextNonDebugInstruction(); 1935 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 1936 return RemoveConditionFromAssume(Next); 1937 1938 // Canonicalize assume(a && b) -> assume(a); assume(b); 1939 // Note: New assumption intrinsics created here are registered by 1940 // the InstCombineIRInserter object. 1941 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 1942 Value *AssumeIntrinsic = II->getCalledOperand(); 1943 Value *A, *B; 1944 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 1945 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 1946 II->getName()); 1947 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 1948 return eraseInstFromFunction(*II); 1949 } 1950 // assume(!(a || b)) -> assume(!a); assume(!b); 1951 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 1952 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1953 Builder.CreateNot(A), OpBundles, II->getName()); 1954 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1955 Builder.CreateNot(B), II->getName()); 1956 return eraseInstFromFunction(*II); 1957 } 1958 1959 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 1960 // (if assume is valid at the load) 1961 CmpInst::Predicate Pred; 1962 Instruction *LHS; 1963 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 1964 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 1965 LHS->getType()->isPointerTy() && 1966 isValidAssumeForContext(II, LHS, &DT)) { 1967 MDNode *MD = MDNode::get(II->getContext(), None); 1968 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 1969 return RemoveConditionFromAssume(II); 1970 1971 // TODO: apply nonnull return attributes to calls and invokes 1972 // TODO: apply range metadata for range check patterns? 1973 } 1974 1975 // Convert nonnull assume like: 1976 // %A = icmp ne i32* %PTR, null 1977 // call void @llvm.assume(i1 %A) 1978 // into 1979 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 1980 if (EnableKnowledgeRetention && 1981 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && 1982 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { 1983 if (auto *Replacement = buildAssumeFromKnowledge( 1984 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 1985 1986 Replacement->insertBefore(Next); 1987 AC.registerAssumption(Replacement); 1988 return RemoveConditionFromAssume(II); 1989 } 1990 } 1991 1992 // Convert alignment assume like: 1993 // %B = ptrtoint i32* %A to i64 1994 // %C = and i64 %B, Constant 1995 // %D = icmp eq i64 %C, 0 1996 // call void @llvm.assume(i1 %D) 1997 // into 1998 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 1999 uint64_t AlignMask; 2000 if (EnableKnowledgeRetention && 2001 match(IIOperand, 2002 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), 2003 m_Zero())) && 2004 Pred == CmpInst::ICMP_EQ) { 2005 if (isPowerOf2_64(AlignMask + 1)) { 2006 uint64_t Offset = 0; 2007 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 2008 if (match(A, m_PtrToInt(m_Value(A)))) { 2009 /// Note: this doesn't preserve the offset information but merges 2010 /// offset and alignment. 2011 /// TODO: we can generate a GEP instead of merging the alignment with 2012 /// the offset. 2013 RetainedKnowledge RK{Attribute::Alignment, 2014 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 2015 if (auto *Replacement = 2016 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 2017 2018 Replacement->insertAfter(II); 2019 AC.registerAssumption(Replacement); 2020 } 2021 return RemoveConditionFromAssume(II); 2022 } 2023 } 2024 } 2025 2026 /// Canonicalize Knowledge in operand bundles. 2027 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 2028 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 2029 auto &BOI = II->bundle_op_info_begin()[Idx]; 2030 RetainedKnowledge RK = 2031 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 2032 if (BOI.End - BOI.Begin > 2) 2033 continue; // Prevent reducing knowledge in an align with offset since 2034 // extracting a RetainedKnowledge form them looses offset 2035 // information 2036 RetainedKnowledge CanonRK = 2037 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 2038 &getAssumptionCache(), 2039 &getDominatorTree()); 2040 if (CanonRK == RK) 2041 continue; 2042 if (!CanonRK) { 2043 if (BOI.End - BOI.Begin > 0) { 2044 Worklist.pushValue(II->op_begin()[BOI.Begin]); 2045 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 2046 } 2047 continue; 2048 } 2049 assert(RK.AttrKind == CanonRK.AttrKind); 2050 if (BOI.End - BOI.Begin > 0) 2051 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 2052 if (BOI.End - BOI.Begin > 1) 2053 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 2054 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 2055 if (RK.WasOn) 2056 Worklist.pushValue(RK.WasOn); 2057 return II; 2058 } 2059 } 2060 2061 // If there is a dominating assume with the same condition as this one, 2062 // then this one is redundant, and should be removed. 2063 KnownBits Known(1); 2064 computeKnownBits(IIOperand, Known, 0, II); 2065 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 2066 return eraseInstFromFunction(*II); 2067 2068 // Update the cache of affected values for this assumption (we might be 2069 // here because we just simplified the condition). 2070 AC.updateAffectedValues(cast<AssumeInst>(II)); 2071 break; 2072 } 2073 case Intrinsic::experimental_guard: { 2074 // Is this guard followed by another guard? We scan forward over a small 2075 // fixed window of instructions to handle common cases with conditions 2076 // computed between guards. 2077 Instruction *NextInst = II->getNextNonDebugInstruction(); 2078 for (unsigned i = 0; i < GuardWideningWindow; i++) { 2079 // Note: Using context-free form to avoid compile time blow up 2080 if (!isSafeToSpeculativelyExecute(NextInst)) 2081 break; 2082 NextInst = NextInst->getNextNonDebugInstruction(); 2083 } 2084 Value *NextCond = nullptr; 2085 if (match(NextInst, 2086 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 2087 Value *CurrCond = II->getArgOperand(0); 2088 2089 // Remove a guard that it is immediately preceded by an identical guard. 2090 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 2091 if (CurrCond != NextCond) { 2092 Instruction *MoveI = II->getNextNonDebugInstruction(); 2093 while (MoveI != NextInst) { 2094 auto *Temp = MoveI; 2095 MoveI = MoveI->getNextNonDebugInstruction(); 2096 Temp->moveBefore(II); 2097 } 2098 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 2099 } 2100 eraseInstFromFunction(*NextInst); 2101 return II; 2102 } 2103 break; 2104 } 2105 case Intrinsic::experimental_vector_insert: { 2106 Value *Vec = II->getArgOperand(0); 2107 Value *SubVec = II->getArgOperand(1); 2108 Value *Idx = II->getArgOperand(2); 2109 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 2110 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 2111 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 2112 2113 // Only canonicalize if the destination vector, Vec, and SubVec are all 2114 // fixed vectors. 2115 if (DstTy && VecTy && SubVecTy) { 2116 unsigned DstNumElts = DstTy->getNumElements(); 2117 unsigned VecNumElts = VecTy->getNumElements(); 2118 unsigned SubVecNumElts = SubVecTy->getNumElements(); 2119 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 2120 2121 // An insert that entirely overwrites Vec with SubVec is a nop. 2122 if (VecNumElts == SubVecNumElts) 2123 return replaceInstUsesWith(CI, SubVec); 2124 2125 // Widen SubVec into a vector of the same width as Vec, since 2126 // shufflevector requires the two input vectors to be the same width. 2127 // Elements beyond the bounds of SubVec within the widened vector are 2128 // undefined. 2129 SmallVector<int, 8> WidenMask; 2130 unsigned i; 2131 for (i = 0; i != SubVecNumElts; ++i) 2132 WidenMask.push_back(i); 2133 for (; i != VecNumElts; ++i) 2134 WidenMask.push_back(UndefMaskElem); 2135 2136 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 2137 2138 SmallVector<int, 8> Mask; 2139 for (unsigned i = 0; i != IdxN; ++i) 2140 Mask.push_back(i); 2141 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 2142 Mask.push_back(i); 2143 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 2144 Mask.push_back(i); 2145 2146 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 2147 return replaceInstUsesWith(CI, Shuffle); 2148 } 2149 break; 2150 } 2151 case Intrinsic::experimental_vector_extract: { 2152 Value *Vec = II->getArgOperand(0); 2153 Value *Idx = II->getArgOperand(1); 2154 2155 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 2156 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 2157 2158 // Only canonicalize if the the destination vector and Vec are fixed 2159 // vectors. 2160 if (DstTy && VecTy) { 2161 unsigned DstNumElts = DstTy->getNumElements(); 2162 unsigned VecNumElts = VecTy->getNumElements(); 2163 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 2164 2165 // Extracting the entirety of Vec is a nop. 2166 if (VecNumElts == DstNumElts) { 2167 replaceInstUsesWith(CI, Vec); 2168 return eraseInstFromFunction(CI); 2169 } 2170 2171 SmallVector<int, 8> Mask; 2172 for (unsigned i = 0; i != DstNumElts; ++i) 2173 Mask.push_back(IdxN + i); 2174 2175 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); 2176 return replaceInstUsesWith(CI, Shuffle); 2177 } 2178 break; 2179 } 2180 case Intrinsic::experimental_vector_reverse: { 2181 Value *BO0, *BO1, *X, *Y; 2182 Value *Vec = II->getArgOperand(0); 2183 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) { 2184 auto *OldBinOp = cast<BinaryOperator>(Vec); 2185 if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2186 m_Value(X)))) { 2187 // rev(binop rev(X), rev(Y)) --> binop X, Y 2188 if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2189 m_Value(Y)))) 2190 return replaceInstUsesWith(CI, 2191 BinaryOperator::CreateWithCopiedFlags( 2192 OldBinOp->getOpcode(), X, Y, OldBinOp, 2193 OldBinOp->getName(), II)); 2194 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat 2195 if (isSplatValue(BO1)) 2196 return replaceInstUsesWith(CI, 2197 BinaryOperator::CreateWithCopiedFlags( 2198 OldBinOp->getOpcode(), X, BO1, 2199 OldBinOp, OldBinOp->getName(), II)); 2200 } 2201 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y 2202 if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2203 m_Value(Y))) && 2204 isSplatValue(BO0)) 2205 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 2206 OldBinOp->getOpcode(), BO0, Y, 2207 OldBinOp, OldBinOp->getName(), II)); 2208 } 2209 // rev(unop rev(X)) --> unop X 2210 if (match(Vec, m_OneUse(m_UnOp( 2211 m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2212 m_Value(X)))))) { 2213 auto *OldUnOp = cast<UnaryOperator>(Vec); 2214 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags( 2215 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II); 2216 return replaceInstUsesWith(CI, NewUnOp); 2217 } 2218 break; 2219 } 2220 case Intrinsic::vector_reduce_or: 2221 case Intrinsic::vector_reduce_and: { 2222 // Canonicalize logical or/and reductions: 2223 // Or reduction for i1 is represented as: 2224 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 2225 // %res = cmp ne iReduxWidth %val, 0 2226 // And reduction for i1 is represented as: 2227 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 2228 // %res = cmp eq iReduxWidth %val, 11111 2229 Value *Arg = II->getArgOperand(0); 2230 Value *Vect; 2231 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2232 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2233 if (FTy->getElementType() == Builder.getInt1Ty()) { 2234 Value *Res = Builder.CreateBitCast( 2235 Vect, Builder.getIntNTy(FTy->getNumElements())); 2236 if (IID == Intrinsic::vector_reduce_and) { 2237 Res = Builder.CreateICmpEQ( 2238 Res, ConstantInt::getAllOnesValue(Res->getType())); 2239 } else { 2240 assert(IID == Intrinsic::vector_reduce_or && 2241 "Expected or reduction."); 2242 Res = Builder.CreateIsNotNull(Res); 2243 } 2244 if (Arg != Vect) 2245 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 2246 II->getType()); 2247 return replaceInstUsesWith(CI, Res); 2248 } 2249 } 2250 LLVM_FALLTHROUGH; 2251 } 2252 case Intrinsic::vector_reduce_add: { 2253 if (IID == Intrinsic::vector_reduce_add) { 2254 // Convert vector_reduce_add(ZExt(<n x i1>)) to 2255 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 2256 // Convert vector_reduce_add(SExt(<n x i1>)) to 2257 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 2258 // Convert vector_reduce_add(<n x i1>) to 2259 // Trunc(ctpop(bitcast <n x i1> to in)). 2260 Value *Arg = II->getArgOperand(0); 2261 Value *Vect; 2262 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2263 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2264 if (FTy->getElementType() == Builder.getInt1Ty()) { 2265 Value *V = Builder.CreateBitCast( 2266 Vect, Builder.getIntNTy(FTy->getNumElements())); 2267 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); 2268 if (Res->getType() != II->getType()) 2269 Res = Builder.CreateZExtOrTrunc(Res, II->getType()); 2270 if (Arg != Vect && 2271 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) 2272 Res = Builder.CreateNeg(Res); 2273 return replaceInstUsesWith(CI, Res); 2274 } 2275 } 2276 } 2277 LLVM_FALLTHROUGH; 2278 } 2279 case Intrinsic::vector_reduce_xor: { 2280 if (IID == Intrinsic::vector_reduce_xor) { 2281 // Exclusive disjunction reduction over the vector with 2282 // (potentially-extended) i1 element type is actually a 2283 // (potentially-extended) arithmetic `add` reduction over the original 2284 // non-extended value: 2285 // vector_reduce_xor(?ext(<n x i1>)) 2286 // --> 2287 // ?ext(vector_reduce_add(<n x i1>)) 2288 Value *Arg = II->getArgOperand(0); 2289 Value *Vect; 2290 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2291 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2292 if (FTy->getElementType() == Builder.getInt1Ty()) { 2293 Value *Res = Builder.CreateAddReduce(Vect); 2294 if (Arg != Vect) 2295 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 2296 II->getType()); 2297 return replaceInstUsesWith(CI, Res); 2298 } 2299 } 2300 } 2301 LLVM_FALLTHROUGH; 2302 } 2303 case Intrinsic::vector_reduce_mul: { 2304 if (IID == Intrinsic::vector_reduce_mul) { 2305 // Multiplicative reduction over the vector with (potentially-extended) 2306 // i1 element type is actually a (potentially zero-extended) 2307 // logical `and` reduction over the original non-extended value: 2308 // vector_reduce_mul(?ext(<n x i1>)) 2309 // --> 2310 // zext(vector_reduce_and(<n x i1>)) 2311 Value *Arg = II->getArgOperand(0); 2312 Value *Vect; 2313 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2314 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2315 if (FTy->getElementType() == Builder.getInt1Ty()) { 2316 Value *Res = Builder.CreateAndReduce(Vect); 2317 if (Res->getType() != II->getType()) 2318 Res = Builder.CreateZExt(Res, II->getType()); 2319 return replaceInstUsesWith(CI, Res); 2320 } 2321 } 2322 } 2323 LLVM_FALLTHROUGH; 2324 } 2325 case Intrinsic::vector_reduce_umin: 2326 case Intrinsic::vector_reduce_umax: { 2327 if (IID == Intrinsic::vector_reduce_umin || 2328 IID == Intrinsic::vector_reduce_umax) { 2329 // UMin/UMax reduction over the vector with (potentially-extended) 2330 // i1 element type is actually a (potentially-extended) 2331 // logical `and`/`or` reduction over the original non-extended value: 2332 // vector_reduce_u{min,max}(?ext(<n x i1>)) 2333 // --> 2334 // ?ext(vector_reduce_{and,or}(<n x i1>)) 2335 Value *Arg = II->getArgOperand(0); 2336 Value *Vect; 2337 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2338 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2339 if (FTy->getElementType() == Builder.getInt1Ty()) { 2340 Value *Res = IID == Intrinsic::vector_reduce_umin 2341 ? Builder.CreateAndReduce(Vect) 2342 : Builder.CreateOrReduce(Vect); 2343 if (Arg != Vect) 2344 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 2345 II->getType()); 2346 return replaceInstUsesWith(CI, Res); 2347 } 2348 } 2349 } 2350 LLVM_FALLTHROUGH; 2351 } 2352 case Intrinsic::vector_reduce_smin: 2353 case Intrinsic::vector_reduce_smax: { 2354 if (IID == Intrinsic::vector_reduce_smin || 2355 IID == Intrinsic::vector_reduce_smax) { 2356 // SMin/SMax reduction over the vector with (potentially-extended) 2357 // i1 element type is actually a (potentially-extended) 2358 // logical `and`/`or` reduction over the original non-extended value: 2359 // vector_reduce_s{min,max}(<n x i1>) 2360 // --> 2361 // vector_reduce_{or,and}(<n x i1>) 2362 // and 2363 // vector_reduce_s{min,max}(sext(<n x i1>)) 2364 // --> 2365 // sext(vector_reduce_{or,and}(<n x i1>)) 2366 // and 2367 // vector_reduce_s{min,max}(zext(<n x i1>)) 2368 // --> 2369 // zext(vector_reduce_{and,or}(<n x i1>)) 2370 Value *Arg = II->getArgOperand(0); 2371 Value *Vect; 2372 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2373 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2374 if (FTy->getElementType() == Builder.getInt1Ty()) { 2375 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd; 2376 if (Arg != Vect) 2377 ExtOpc = cast<CastInst>(Arg)->getOpcode(); 2378 Value *Res = ((IID == Intrinsic::vector_reduce_smin) == 2379 (ExtOpc == Instruction::CastOps::ZExt)) 2380 ? Builder.CreateAndReduce(Vect) 2381 : Builder.CreateOrReduce(Vect); 2382 if (Arg != Vect) 2383 Res = Builder.CreateCast(ExtOpc, Res, II->getType()); 2384 return replaceInstUsesWith(CI, Res); 2385 } 2386 } 2387 } 2388 LLVM_FALLTHROUGH; 2389 } 2390 case Intrinsic::vector_reduce_fmax: 2391 case Intrinsic::vector_reduce_fmin: 2392 case Intrinsic::vector_reduce_fadd: 2393 case Intrinsic::vector_reduce_fmul: { 2394 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd && 2395 IID != Intrinsic::vector_reduce_fmul) || 2396 II->hasAllowReassoc(); 2397 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || 2398 IID == Intrinsic::vector_reduce_fmul) 2399 ? 1 2400 : 0; 2401 Value *Arg = II->getArgOperand(ArgIdx); 2402 Value *V; 2403 ArrayRef<int> Mask; 2404 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated || 2405 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || 2406 !cast<ShuffleVectorInst>(Arg)->isSingleSource()) 2407 break; 2408 int Sz = Mask.size(); 2409 SmallBitVector UsedIndices(Sz); 2410 for (int Idx : Mask) { 2411 if (Idx == UndefMaskElem || UsedIndices.test(Idx)) 2412 break; 2413 UsedIndices.set(Idx); 2414 } 2415 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or 2416 // other changes. 2417 if (UsedIndices.all()) { 2418 replaceUse(II->getOperandUse(ArgIdx), V); 2419 return nullptr; 2420 } 2421 break; 2422 } 2423 default: { 2424 // Handle target specific intrinsics 2425 Optional<Instruction *> V = targetInstCombineIntrinsic(*II); 2426 if (V.hasValue()) 2427 return V.getValue(); 2428 break; 2429 } 2430 } 2431 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 2432 // context, so it is handled in visitCallBase and we should trigger it. 2433 return visitCallBase(*II); 2434 } 2435 2436 // Fence instruction simplification 2437 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 2438 // Remove identical consecutive fences. 2439 Instruction *Next = FI.getNextNonDebugInstruction(); 2440 if (auto *NFI = dyn_cast<FenceInst>(Next)) 2441 if (FI.isIdenticalTo(NFI)) 2442 return eraseInstFromFunction(FI); 2443 return nullptr; 2444 } 2445 2446 // InvokeInst simplification 2447 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 2448 return visitCallBase(II); 2449 } 2450 2451 // CallBrInst simplification 2452 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 2453 return visitCallBase(CBI); 2454 } 2455 2456 /// If this cast does not affect the value passed through the varargs area, we 2457 /// can eliminate the use of the cast. 2458 static bool isSafeToEliminateVarargsCast(const CallBase &Call, 2459 const DataLayout &DL, 2460 const CastInst *const CI, 2461 const int ix) { 2462 if (!CI->isLosslessCast()) 2463 return false; 2464 2465 // If this is a GC intrinsic, avoid munging types. We need types for 2466 // statepoint reconstruction in SelectionDAG. 2467 // TODO: This is probably something which should be expanded to all 2468 // intrinsics since the entire point of intrinsics is that 2469 // they are understandable by the optimizer. 2470 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 2471 isa<GCResultInst>(Call)) 2472 return false; 2473 2474 // Opaque pointers are compatible with any byval types. 2475 PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType()); 2476 if (SrcTy->isOpaque()) 2477 return true; 2478 2479 // The size of ByVal or InAlloca arguments is derived from the type, so we 2480 // can't change to a type with a different size. If the size were 2481 // passed explicitly we could avoid this check. 2482 if (!Call.isPassPointeeByValueArgument(ix)) 2483 return true; 2484 2485 // The transform currently only handles type replacement for byval, not other 2486 // type-carrying attributes. 2487 if (!Call.isByValArgument(ix)) 2488 return false; 2489 2490 Type *SrcElemTy = SrcTy->getElementType(); 2491 Type *DstElemTy = Call.getParamByValType(ix); 2492 if (!SrcElemTy->isSized() || !DstElemTy->isSized()) 2493 return false; 2494 if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy)) 2495 return false; 2496 return true; 2497 } 2498 2499 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 2500 if (!CI->getCalledFunction()) return nullptr; 2501 2502 // Skip optimizing notail and musttail calls so 2503 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants. 2504 // LibCallSimplifier::optimizeCall should try to preseve tail calls though. 2505 if (CI->isMustTailCall() || CI->isNoTailCall()) 2506 return nullptr; 2507 2508 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 2509 replaceInstUsesWith(*From, With); 2510 }; 2511 auto InstCombineErase = [this](Instruction *I) { 2512 eraseInstFromFunction(*I); 2513 }; 2514 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, 2515 InstCombineErase); 2516 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 2517 ++NumSimplified; 2518 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 2519 } 2520 2521 return nullptr; 2522 } 2523 2524 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 2525 // Strip off at most one level of pointer casts, looking for an alloca. This 2526 // is good enough in practice and simpler than handling any number of casts. 2527 Value *Underlying = TrampMem->stripPointerCasts(); 2528 if (Underlying != TrampMem && 2529 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 2530 return nullptr; 2531 if (!isa<AllocaInst>(Underlying)) 2532 return nullptr; 2533 2534 IntrinsicInst *InitTrampoline = nullptr; 2535 for (User *U : TrampMem->users()) { 2536 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2537 if (!II) 2538 return nullptr; 2539 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 2540 if (InitTrampoline) 2541 // More than one init_trampoline writes to this value. Give up. 2542 return nullptr; 2543 InitTrampoline = II; 2544 continue; 2545 } 2546 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 2547 // Allow any number of calls to adjust.trampoline. 2548 continue; 2549 return nullptr; 2550 } 2551 2552 // No call to init.trampoline found. 2553 if (!InitTrampoline) 2554 return nullptr; 2555 2556 // Check that the alloca is being used in the expected way. 2557 if (InitTrampoline->getOperand(0) != TrampMem) 2558 return nullptr; 2559 2560 return InitTrampoline; 2561 } 2562 2563 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 2564 Value *TrampMem) { 2565 // Visit all the previous instructions in the basic block, and try to find a 2566 // init.trampoline which has a direct path to the adjust.trampoline. 2567 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 2568 E = AdjustTramp->getParent()->begin(); 2569 I != E;) { 2570 Instruction *Inst = &*--I; 2571 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2572 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 2573 II->getOperand(0) == TrampMem) 2574 return II; 2575 if (Inst->mayWriteToMemory()) 2576 return nullptr; 2577 } 2578 return nullptr; 2579 } 2580 2581 // Given a call to llvm.adjust.trampoline, find and return the corresponding 2582 // call to llvm.init.trampoline if the call to the trampoline can be optimized 2583 // to a direct call to a function. Otherwise return NULL. 2584 static IntrinsicInst *findInitTrampoline(Value *Callee) { 2585 Callee = Callee->stripPointerCasts(); 2586 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 2587 if (!AdjustTramp || 2588 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 2589 return nullptr; 2590 2591 Value *TrampMem = AdjustTramp->getOperand(0); 2592 2593 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 2594 return IT; 2595 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 2596 return IT; 2597 return nullptr; 2598 } 2599 2600 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) { 2601 // Note: We only handle cases which can't be driven from generic attributes 2602 // here. So, for example, nonnull and noalias (which are common properties 2603 // of some allocation functions) are expected to be handled via annotation 2604 // of the respective allocator declaration with generic attributes. 2605 2606 uint64_t Size; 2607 ObjectSizeOpts Opts; 2608 if (getObjectSize(&Call, Size, DL, TLI, Opts) && Size > 0) { 2609 // TODO: We really should just emit deref_or_null here and then 2610 // let the generic inference code combine that with nonnull. 2611 if (Call.hasRetAttr(Attribute::NonNull)) 2612 Call.addRetAttr(Attribute::getWithDereferenceableBytes( 2613 Call.getContext(), Size)); 2614 else 2615 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2616 Call.getContext(), Size)); 2617 } 2618 2619 // Add alignment attribute if alignment is a power of two constant. 2620 Value *Alignment = getAllocAlignment(&Call, TLI); 2621 if (!Alignment) 2622 return; 2623 2624 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment); 2625 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) { 2626 uint64_t AlignmentVal = AlignOpC->getZExtValue(); 2627 if (llvm::isPowerOf2_64(AlignmentVal)) { 2628 Call.removeRetAttr(Attribute::Alignment); 2629 Call.addRetAttr(Attribute::getWithAlignment(Call.getContext(), 2630 Align(AlignmentVal))); 2631 } 2632 } 2633 } 2634 2635 /// Improvements for call, callbr and invoke instructions. 2636 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 2637 if (isAllocationFn(&Call, &TLI)) 2638 annotateAnyAllocSite(Call, &TLI); 2639 2640 bool Changed = false; 2641 2642 // Mark any parameters that are known to be non-null with the nonnull 2643 // attribute. This is helpful for inlining calls to functions with null 2644 // checks on their arguments. 2645 SmallVector<unsigned, 4> ArgNos; 2646 unsigned ArgNo = 0; 2647 2648 for (Value *V : Call.args()) { 2649 if (V->getType()->isPointerTy() && 2650 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 2651 isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) 2652 ArgNos.push_back(ArgNo); 2653 ArgNo++; 2654 } 2655 2656 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly."); 2657 2658 if (!ArgNos.empty()) { 2659 AttributeList AS = Call.getAttributes(); 2660 LLVMContext &Ctx = Call.getContext(); 2661 AS = AS.addParamAttribute(Ctx, ArgNos, 2662 Attribute::get(Ctx, Attribute::NonNull)); 2663 Call.setAttributes(AS); 2664 Changed = true; 2665 } 2666 2667 // If the callee is a pointer to a function, attempt to move any casts to the 2668 // arguments of the call/callbr/invoke. 2669 Value *Callee = Call.getCalledOperand(); 2670 if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) 2671 return nullptr; 2672 2673 if (Function *CalleeF = dyn_cast<Function>(Callee)) { 2674 // Remove the convergent attr on calls when the callee is not convergent. 2675 if (Call.isConvergent() && !CalleeF->isConvergent() && 2676 !CalleeF->isIntrinsic()) { 2677 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 2678 << "\n"); 2679 Call.setNotConvergent(); 2680 return &Call; 2681 } 2682 2683 // If the call and callee calling conventions don't match, and neither one 2684 // of the calling conventions is compatible with C calling convention 2685 // this call must be unreachable, as the call is undefined. 2686 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 2687 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 2688 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 2689 !(Call.getCallingConv() == llvm::CallingConv::C && 2690 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 2691 // Only do this for calls to a function with a body. A prototype may 2692 // not actually end up matching the implementation's calling conv for a 2693 // variety of reasons (e.g. it may be written in assembly). 2694 !CalleeF->isDeclaration()) { 2695 Instruction *OldCall = &Call; 2696 CreateNonTerminatorUnreachable(OldCall); 2697 // If OldCall does not return void then replaceInstUsesWith poison. 2698 // This allows ValueHandlers and custom metadata to adjust itself. 2699 if (!OldCall->getType()->isVoidTy()) 2700 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType())); 2701 if (isa<CallInst>(OldCall)) 2702 return eraseInstFromFunction(*OldCall); 2703 2704 // We cannot remove an invoke or a callbr, because it would change thexi 2705 // CFG, just change the callee to a null pointer. 2706 cast<CallBase>(OldCall)->setCalledFunction( 2707 CalleeF->getFunctionType(), 2708 Constant::getNullValue(CalleeF->getType())); 2709 return nullptr; 2710 } 2711 } 2712 2713 // Calling a null function pointer is undefined if a null address isn't 2714 // dereferenceable. 2715 if ((isa<ConstantPointerNull>(Callee) && 2716 !NullPointerIsDefined(Call.getFunction())) || 2717 isa<UndefValue>(Callee)) { 2718 // If Call does not return void then replaceInstUsesWith poison. 2719 // This allows ValueHandlers and custom metadata to adjust itself. 2720 if (!Call.getType()->isVoidTy()) 2721 replaceInstUsesWith(Call, PoisonValue::get(Call.getType())); 2722 2723 if (Call.isTerminator()) { 2724 // Can't remove an invoke or callbr because we cannot change the CFG. 2725 return nullptr; 2726 } 2727 2728 // This instruction is not reachable, just remove it. 2729 CreateNonTerminatorUnreachable(&Call); 2730 return eraseInstFromFunction(Call); 2731 } 2732 2733 if (IntrinsicInst *II = findInitTrampoline(Callee)) 2734 return transformCallThroughTrampoline(Call, *II); 2735 2736 // TODO: Drop this transform once opaque pointer transition is done. 2737 FunctionType *FTy = Call.getFunctionType(); 2738 if (FTy->isVarArg()) { 2739 int ix = FTy->getNumParams(); 2740 // See if we can optimize any arguments passed through the varargs area of 2741 // the call. 2742 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); 2743 I != E; ++I, ++ix) { 2744 CastInst *CI = dyn_cast<CastInst>(*I); 2745 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { 2746 replaceUse(*I, CI->getOperand(0)); 2747 2748 // Update the byval type to match the pointer type. 2749 // Not necessary for opaque pointers. 2750 PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType()); 2751 if (!NewTy->isOpaque() && Call.isByValArgument(ix)) { 2752 Call.removeParamAttr(ix, Attribute::ByVal); 2753 Call.addParamAttr( 2754 ix, Attribute::getWithByValType( 2755 Call.getContext(), NewTy->getElementType())); 2756 } 2757 Changed = true; 2758 } 2759 } 2760 } 2761 2762 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 2763 InlineAsm *IA = cast<InlineAsm>(Callee); 2764 if (!IA->canThrow()) { 2765 // Normal inline asm calls cannot throw - mark them 2766 // 'nounwind'. 2767 Call.setDoesNotThrow(); 2768 Changed = true; 2769 } 2770 } 2771 2772 // Try to optimize the call if possible, we require DataLayout for most of 2773 // this. None of these calls are seen as possibly dead so go ahead and 2774 // delete the instruction now. 2775 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 2776 Instruction *I = tryOptimizeCall(CI); 2777 // If we changed something return the result, etc. Otherwise let 2778 // the fallthrough check. 2779 if (I) return eraseInstFromFunction(*I); 2780 } 2781 2782 if (!Call.use_empty() && !Call.isMustTailCall()) 2783 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 2784 Type *CallTy = Call.getType(); 2785 Type *RetArgTy = ReturnedArg->getType(); 2786 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 2787 return replaceInstUsesWith( 2788 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 2789 } 2790 2791 if (isAllocationFn(&Call, &TLI) && 2792 isAllocRemovable(&cast<CallBase>(Call), &TLI)) 2793 return visitAllocSite(Call); 2794 2795 // Handle intrinsics which can be used in both call and invoke context. 2796 switch (Call.getIntrinsicID()) { 2797 case Intrinsic::experimental_gc_statepoint: { 2798 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 2799 SmallPtrSet<Value *, 32> LiveGcValues; 2800 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2801 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2802 2803 // Remove the relocation if unused. 2804 if (GCR.use_empty()) { 2805 eraseInstFromFunction(GCR); 2806 continue; 2807 } 2808 2809 Value *DerivedPtr = GCR.getDerivedPtr(); 2810 Value *BasePtr = GCR.getBasePtr(); 2811 2812 // Undef is undef, even after relocation. 2813 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 2814 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 2815 eraseInstFromFunction(GCR); 2816 continue; 2817 } 2818 2819 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 2820 // The relocation of null will be null for most any collector. 2821 // TODO: provide a hook for this in GCStrategy. There might be some 2822 // weird collector this property does not hold for. 2823 if (isa<ConstantPointerNull>(DerivedPtr)) { 2824 // Use null-pointer of gc_relocate's type to replace it. 2825 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 2826 eraseInstFromFunction(GCR); 2827 continue; 2828 } 2829 2830 // isKnownNonNull -> nonnull attribute 2831 if (!GCR.hasRetAttr(Attribute::NonNull) && 2832 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) { 2833 GCR.addRetAttr(Attribute::NonNull); 2834 // We discovered new fact, re-check users. 2835 Worklist.pushUsersToWorkList(GCR); 2836 } 2837 } 2838 2839 // If we have two copies of the same pointer in the statepoint argument 2840 // list, canonicalize to one. This may let us common gc.relocates. 2841 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 2842 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 2843 auto *OpIntTy = GCR.getOperand(2)->getType(); 2844 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 2845 } 2846 2847 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 2848 // Canonicalize on the type from the uses to the defs 2849 2850 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 2851 LiveGcValues.insert(BasePtr); 2852 LiveGcValues.insert(DerivedPtr); 2853 } 2854 Optional<OperandBundleUse> Bundle = 2855 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 2856 unsigned NumOfGCLives = LiveGcValues.size(); 2857 if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size()) 2858 break; 2859 // We can reduce the size of gc live bundle. 2860 DenseMap<Value *, unsigned> Val2Idx; 2861 std::vector<Value *> NewLiveGc; 2862 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) { 2863 Value *V = Bundle->Inputs[I]; 2864 if (Val2Idx.count(V)) 2865 continue; 2866 if (LiveGcValues.count(V)) { 2867 Val2Idx[V] = NewLiveGc.size(); 2868 NewLiveGc.push_back(V); 2869 } else 2870 Val2Idx[V] = NumOfGCLives; 2871 } 2872 // Update all gc.relocates 2873 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2874 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2875 Value *BasePtr = GCR.getBasePtr(); 2876 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 2877 "Missed live gc for base pointer"); 2878 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 2879 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 2880 Value *DerivedPtr = GCR.getDerivedPtr(); 2881 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 2882 "Missed live gc for derived pointer"); 2883 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 2884 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 2885 } 2886 // Create new statepoint instruction. 2887 OperandBundleDef NewBundle("gc-live", NewLiveGc); 2888 return CallBase::Create(&Call, NewBundle); 2889 } 2890 default: { break; } 2891 } 2892 2893 return Changed ? &Call : nullptr; 2894 } 2895 2896 /// If the callee is a constexpr cast of a function, attempt to move the cast to 2897 /// the arguments of the call/callbr/invoke. 2898 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 2899 auto *Callee = 2900 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2901 if (!Callee) 2902 return false; 2903 2904 // If this is a call to a thunk function, don't remove the cast. Thunks are 2905 // used to transparently forward all incoming parameters and outgoing return 2906 // values, so it's important to leave the cast in place. 2907 if (Callee->hasFnAttribute("thunk")) 2908 return false; 2909 2910 // If this is a musttail call, the callee's prototype must match the caller's 2911 // prototype with the exception of pointee types. The code below doesn't 2912 // implement that, so we can't do this transform. 2913 // TODO: Do the transform if it only requires adding pointer casts. 2914 if (Call.isMustTailCall()) 2915 return false; 2916 2917 Instruction *Caller = &Call; 2918 const AttributeList &CallerPAL = Call.getAttributes(); 2919 2920 // Okay, this is a cast from a function to a different type. Unless doing so 2921 // would cause a type conversion of one of our arguments, change this call to 2922 // be a direct call with arguments casted to the appropriate types. 2923 FunctionType *FT = Callee->getFunctionType(); 2924 Type *OldRetTy = Caller->getType(); 2925 Type *NewRetTy = FT->getReturnType(); 2926 2927 // Check to see if we are changing the return type... 2928 if (OldRetTy != NewRetTy) { 2929 2930 if (NewRetTy->isStructTy()) 2931 return false; // TODO: Handle multiple return values. 2932 2933 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 2934 if (Callee->isDeclaration()) 2935 return false; // Cannot transform this return value. 2936 2937 if (!Caller->use_empty() && 2938 // void -> non-void is handled specially 2939 !NewRetTy->isVoidTy()) 2940 return false; // Cannot transform this return value. 2941 } 2942 2943 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 2944 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 2945 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 2946 return false; // Attribute not compatible with transformed value. 2947 } 2948 2949 // If the callbase is an invoke/callbr instruction, and the return value is 2950 // used by a PHI node in a successor, we cannot change the return type of 2951 // the call because there is no place to put the cast instruction (without 2952 // breaking the critical edge). Bail out in this case. 2953 if (!Caller->use_empty()) { 2954 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) 2955 for (User *U : II->users()) 2956 if (PHINode *PN = dyn_cast<PHINode>(U)) 2957 if (PN->getParent() == II->getNormalDest() || 2958 PN->getParent() == II->getUnwindDest()) 2959 return false; 2960 // FIXME: Be conservative for callbr to avoid a quadratic search. 2961 if (isa<CallBrInst>(Caller)) 2962 return false; 2963 } 2964 } 2965 2966 unsigned NumActualArgs = Call.arg_size(); 2967 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 2968 2969 // Prevent us turning: 2970 // declare void @takes_i32_inalloca(i32* inalloca) 2971 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 2972 // 2973 // into: 2974 // call void @takes_i32_inalloca(i32* null) 2975 // 2976 // Similarly, avoid folding away bitcasts of byval calls. 2977 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 2978 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) || 2979 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 2980 return false; 2981 2982 auto AI = Call.arg_begin(); 2983 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 2984 Type *ParamTy = FT->getParamType(i); 2985 Type *ActTy = (*AI)->getType(); 2986 2987 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 2988 return false; // Cannot transform this parameter value. 2989 2990 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i)) 2991 .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) 2992 return false; // Attribute not compatible with transformed value. 2993 2994 if (Call.isInAllocaArgument(i)) 2995 return false; // Cannot transform to and from inalloca. 2996 2997 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError)) 2998 return false; 2999 3000 // If the parameter is passed as a byval argument, then we have to have a 3001 // sized type and the sized type has to have the same size as the old type. 3002 if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) { 3003 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); 3004 if (!ParamPTy || !ParamPTy->getElementType()->isSized()) 3005 return false; 3006 3007 Type *CurElTy = Call.getParamByValType(i); 3008 if (DL.getTypeAllocSize(CurElTy) != 3009 DL.getTypeAllocSize(ParamPTy->getElementType())) 3010 return false; 3011 } 3012 } 3013 3014 if (Callee->isDeclaration()) { 3015 // Do not delete arguments unless we have a function body. 3016 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 3017 return false; 3018 3019 // If the callee is just a declaration, don't change the varargsness of the 3020 // call. We don't want to introduce a varargs call where one doesn't 3021 // already exist. 3022 PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3023 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) 3024 return false; 3025 3026 // If both the callee and the cast type are varargs, we still have to make 3027 // sure the number of fixed parameters are the same or we have the same 3028 // ABI issues as if we introduce a varargs call. 3029 if (FT->isVarArg() && 3030 cast<FunctionType>(APTy->getElementType())->isVarArg() && 3031 FT->getNumParams() != 3032 cast<FunctionType>(APTy->getElementType())->getNumParams()) 3033 return false; 3034 } 3035 3036 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 3037 !CallerPAL.isEmpty()) { 3038 // In this case we have more arguments than the new function type, but we 3039 // won't be dropping them. Check that these extra arguments have attributes 3040 // that are compatible with being a vararg call argument. 3041 unsigned SRetIdx; 3042 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 3043 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams()) 3044 return false; 3045 } 3046 3047 // Okay, we decided that this is a safe thing to do: go ahead and start 3048 // inserting cast instructions as necessary. 3049 SmallVector<Value *, 8> Args; 3050 SmallVector<AttributeSet, 8> ArgAttrs; 3051 Args.reserve(NumActualArgs); 3052 ArgAttrs.reserve(NumActualArgs); 3053 3054 // Get any return attributes. 3055 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 3056 3057 // If the return value is not being used, the type may not be compatible 3058 // with the existing attributes. Wipe out any problematic attributes. 3059 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 3060 3061 LLVMContext &Ctx = Call.getContext(); 3062 AI = Call.arg_begin(); 3063 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 3064 Type *ParamTy = FT->getParamType(i); 3065 3066 Value *NewArg = *AI; 3067 if ((*AI)->getType() != ParamTy) 3068 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 3069 Args.push_back(NewArg); 3070 3071 // Add any parameter attributes. 3072 if (CallerPAL.hasParamAttr(i, Attribute::ByVal)) { 3073 AttrBuilder AB(FT->getContext(), CallerPAL.getParamAttrs(i)); 3074 AB.addByValAttr(NewArg->getType()->getPointerElementType()); 3075 ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); 3076 } else 3077 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 3078 } 3079 3080 // If the function takes more arguments than the call was taking, add them 3081 // now. 3082 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 3083 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 3084 ArgAttrs.push_back(AttributeSet()); 3085 } 3086 3087 // If we are removing arguments to the function, emit an obnoxious warning. 3088 if (FT->getNumParams() < NumActualArgs) { 3089 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 3090 if (FT->isVarArg()) { 3091 // Add all of the arguments in their promoted form to the arg list. 3092 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 3093 Type *PTy = getPromotedType((*AI)->getType()); 3094 Value *NewArg = *AI; 3095 if (PTy != (*AI)->getType()) { 3096 // Must promote to pass through va_arg area! 3097 Instruction::CastOps opcode = 3098 CastInst::getCastOpcode(*AI, false, PTy, false); 3099 NewArg = Builder.CreateCast(opcode, *AI, PTy); 3100 } 3101 Args.push_back(NewArg); 3102 3103 // Add any parameter attributes. 3104 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 3105 } 3106 } 3107 } 3108 3109 AttributeSet FnAttrs = CallerPAL.getFnAttrs(); 3110 3111 if (NewRetTy->isVoidTy()) 3112 Caller->setName(""); // Void type should not have a name. 3113 3114 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 3115 "missing argument attributes"); 3116 AttributeList NewCallerPAL = AttributeList::get( 3117 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 3118 3119 SmallVector<OperandBundleDef, 1> OpBundles; 3120 Call.getOperandBundlesAsDefs(OpBundles); 3121 3122 CallBase *NewCall; 3123 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 3124 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 3125 II->getUnwindDest(), Args, OpBundles); 3126 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 3127 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), 3128 CBI->getIndirectDests(), Args, OpBundles); 3129 } else { 3130 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 3131 cast<CallInst>(NewCall)->setTailCallKind( 3132 cast<CallInst>(Caller)->getTailCallKind()); 3133 } 3134 NewCall->takeName(Caller); 3135 NewCall->setCallingConv(Call.getCallingConv()); 3136 NewCall->setAttributes(NewCallerPAL); 3137 3138 // Preserve prof metadata if any. 3139 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 3140 3141 // Insert a cast of the return type as necessary. 3142 Instruction *NC = NewCall; 3143 Value *NV = NC; 3144 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 3145 if (!NV->getType()->isVoidTy()) { 3146 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 3147 NC->setDebugLoc(Caller->getDebugLoc()); 3148 3149 // If this is an invoke/callbr instruction, we should insert it after the 3150 // first non-phi instruction in the normal successor block. 3151 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 3152 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); 3153 InsertNewInstBefore(NC, *I); 3154 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 3155 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); 3156 InsertNewInstBefore(NC, *I); 3157 } else { 3158 // Otherwise, it's a call, just insert cast right after the call. 3159 InsertNewInstBefore(NC, *Caller); 3160 } 3161 Worklist.pushUsersToWorkList(*Caller); 3162 } else { 3163 NV = UndefValue::get(Caller->getType()); 3164 } 3165 } 3166 3167 if (!Caller->use_empty()) 3168 replaceInstUsesWith(*Caller, NV); 3169 else if (Caller->hasValueHandle()) { 3170 if (OldRetTy == NV->getType()) 3171 ValueHandleBase::ValueIsRAUWd(Caller, NV); 3172 else 3173 // We cannot call ValueIsRAUWd with a different type, and the 3174 // actual tracked value will disappear. 3175 ValueHandleBase::ValueIsDeleted(Caller); 3176 } 3177 3178 eraseInstFromFunction(*Caller); 3179 return true; 3180 } 3181 3182 /// Turn a call to a function created by init_trampoline / adjust_trampoline 3183 /// intrinsic pair into a direct call to the underlying function. 3184 Instruction * 3185 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 3186 IntrinsicInst &Tramp) { 3187 Value *Callee = Call.getCalledOperand(); 3188 Type *CalleeTy = Callee->getType(); 3189 FunctionType *FTy = Call.getFunctionType(); 3190 AttributeList Attrs = Call.getAttributes(); 3191 3192 // If the call already has the 'nest' attribute somewhere then give up - 3193 // otherwise 'nest' would occur twice after splicing in the chain. 3194 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 3195 return nullptr; 3196 3197 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 3198 FunctionType *NestFTy = NestF->getFunctionType(); 3199 3200 AttributeList NestAttrs = NestF->getAttributes(); 3201 if (!NestAttrs.isEmpty()) { 3202 unsigned NestArgNo = 0; 3203 Type *NestTy = nullptr; 3204 AttributeSet NestAttr; 3205 3206 // Look for a parameter marked with the 'nest' attribute. 3207 for (FunctionType::param_iterator I = NestFTy->param_begin(), 3208 E = NestFTy->param_end(); 3209 I != E; ++NestArgNo, ++I) { 3210 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo); 3211 if (AS.hasAttribute(Attribute::Nest)) { 3212 // Record the parameter type and any other attributes. 3213 NestTy = *I; 3214 NestAttr = AS; 3215 break; 3216 } 3217 } 3218 3219 if (NestTy) { 3220 std::vector<Value*> NewArgs; 3221 std::vector<AttributeSet> NewArgAttrs; 3222 NewArgs.reserve(Call.arg_size() + 1); 3223 NewArgAttrs.reserve(Call.arg_size()); 3224 3225 // Insert the nest argument into the call argument list, which may 3226 // mean appending it. Likewise for attributes. 3227 3228 { 3229 unsigned ArgNo = 0; 3230 auto I = Call.arg_begin(), E = Call.arg_end(); 3231 do { 3232 if (ArgNo == NestArgNo) { 3233 // Add the chain argument and attributes. 3234 Value *NestVal = Tramp.getArgOperand(2); 3235 if (NestVal->getType() != NestTy) 3236 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 3237 NewArgs.push_back(NestVal); 3238 NewArgAttrs.push_back(NestAttr); 3239 } 3240 3241 if (I == E) 3242 break; 3243 3244 // Add the original argument and attributes. 3245 NewArgs.push_back(*I); 3246 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 3247 3248 ++ArgNo; 3249 ++I; 3250 } while (true); 3251 } 3252 3253 // The trampoline may have been bitcast to a bogus type (FTy). 3254 // Handle this by synthesizing a new function type, equal to FTy 3255 // with the chain parameter inserted. 3256 3257 std::vector<Type*> NewTypes; 3258 NewTypes.reserve(FTy->getNumParams()+1); 3259 3260 // Insert the chain's type into the list of parameter types, which may 3261 // mean appending it. 3262 { 3263 unsigned ArgNo = 0; 3264 FunctionType::param_iterator I = FTy->param_begin(), 3265 E = FTy->param_end(); 3266 3267 do { 3268 if (ArgNo == NestArgNo) 3269 // Add the chain's type. 3270 NewTypes.push_back(NestTy); 3271 3272 if (I == E) 3273 break; 3274 3275 // Add the original type. 3276 NewTypes.push_back(*I); 3277 3278 ++ArgNo; 3279 ++I; 3280 } while (true); 3281 } 3282 3283 // Replace the trampoline call with a direct call. Let the generic 3284 // code sort out any function type mismatches. 3285 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 3286 FTy->isVarArg()); 3287 Constant *NewCallee = 3288 NestF->getType() == PointerType::getUnqual(NewFTy) ? 3289 NestF : ConstantExpr::getBitCast(NestF, 3290 PointerType::getUnqual(NewFTy)); 3291 AttributeList NewPAL = 3292 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(), 3293 Attrs.getRetAttrs(), NewArgAttrs); 3294 3295 SmallVector<OperandBundleDef, 1> OpBundles; 3296 Call.getOperandBundlesAsDefs(OpBundles); 3297 3298 Instruction *NewCaller; 3299 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 3300 NewCaller = InvokeInst::Create(NewFTy, NewCallee, 3301 II->getNormalDest(), II->getUnwindDest(), 3302 NewArgs, OpBundles); 3303 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 3304 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 3305 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 3306 NewCaller = 3307 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), 3308 CBI->getIndirectDests(), NewArgs, OpBundles); 3309 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 3310 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 3311 } else { 3312 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); 3313 cast<CallInst>(NewCaller)->setTailCallKind( 3314 cast<CallInst>(Call).getTailCallKind()); 3315 cast<CallInst>(NewCaller)->setCallingConv( 3316 cast<CallInst>(Call).getCallingConv()); 3317 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 3318 } 3319 NewCaller->setDebugLoc(Call.getDebugLoc()); 3320 3321 return NewCaller; 3322 } 3323 } 3324 3325 // Replace the trampoline call with a direct call. Since there is no 'nest' 3326 // parameter, there is no need to adjust the argument list. Let the generic 3327 // code sort out any function type mismatches. 3328 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); 3329 Call.setCalledFunction(FTy, NewCallee); 3330 return &Call; 3331 } 3332