1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/FloatingPointMode.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallBitVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/IntrinsicsAArch64.h"
50 #include "llvm/IR/IntrinsicsAMDGPU.h"
51 #include "llvm/IR/IntrinsicsARM.h"
52 #include "llvm/IR/IntrinsicsHexagon.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/InstCombine/InstCombiner.h"
71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <cstring>
78 #include <utility>
79 #include <vector>
80 
81 #define DEBUG_TYPE "instcombine"
82 #include "llvm/Transforms/Utils/InstructionWorklist.h"
83 
84 using namespace llvm;
85 using namespace PatternMatch;
86 
87 STATISTIC(NumSimplified, "Number of library calls simplified");
88 
89 static cl::opt<unsigned> GuardWideningWindow(
90     "instcombine-guard-widening-window",
91     cl::init(3),
92     cl::desc("How wide an instruction window to bypass looking for "
93              "another guard"));
94 
95 namespace llvm {
96 /// enable preservation of attributes in assume like:
97 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
98 extern cl::opt<bool> EnableKnowledgeRetention;
99 } // namespace llvm
100 
101 /// Return the specified type promoted as it would be to pass though a va_arg
102 /// area.
103 static Type *getPromotedType(Type *Ty) {
104   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
105     if (ITy->getBitWidth() < 32)
106       return Type::getInt32Ty(Ty->getContext());
107   }
108   return Ty;
109 }
110 
111 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
112   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
113   MaybeAlign CopyDstAlign = MI->getDestAlign();
114   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
115     MI->setDestAlignment(DstAlign);
116     return MI;
117   }
118 
119   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
120   MaybeAlign CopySrcAlign = MI->getSourceAlign();
121   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
122     MI->setSourceAlignment(SrcAlign);
123     return MI;
124   }
125 
126   // If we have a store to a location which is known constant, we can conclude
127   // that the store must be storing the constant value (else the memory
128   // wouldn't be constant), and this must be a noop.
129   if (AA->pointsToConstantMemory(MI->getDest())) {
130     // Set the size of the copy to 0, it will be deleted on the next iteration.
131     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
132     return MI;
133   }
134 
135   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
136   // load/store.
137   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
138   if (!MemOpLength) return nullptr;
139 
140   // Source and destination pointer types are always "i8*" for intrinsic.  See
141   // if the size is something we can handle with a single primitive load/store.
142   // A single load+store correctly handles overlapping memory in the memmove
143   // case.
144   uint64_t Size = MemOpLength->getLimitedValue();
145   assert(Size && "0-sized memory transferring should be removed already.");
146 
147   if (Size > 8 || (Size&(Size-1)))
148     return nullptr;  // If not 1/2/4/8 bytes, exit.
149 
150   // If it is an atomic and alignment is less than the size then we will
151   // introduce the unaligned memory access which will be later transformed
152   // into libcall in CodeGen. This is not evident performance gain so disable
153   // it now.
154   if (isa<AtomicMemTransferInst>(MI))
155     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
156       return nullptr;
157 
158   // Use an integer load+store unless we can find something better.
159   unsigned SrcAddrSp =
160     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
161   unsigned DstAddrSp =
162     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
163 
164   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
165   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
166   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
167 
168   // If the memcpy has metadata describing the members, see if we can get the
169   // TBAA tag describing our copy.
170   MDNode *CopyMD = nullptr;
171   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
172     CopyMD = M;
173   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
174     if (M->getNumOperands() == 3 && M->getOperand(0) &&
175         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
176         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
177         M->getOperand(1) &&
178         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
179         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
180         Size &&
181         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
182       CopyMD = cast<MDNode>(M->getOperand(2));
183   }
184 
185   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
186   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
187   LoadInst *L = Builder.CreateLoad(IntType, Src);
188   // Alignment from the mem intrinsic will be better, so use it.
189   L->setAlignment(*CopySrcAlign);
190   if (CopyMD)
191     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
192   MDNode *LoopMemParallelMD =
193     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
194   if (LoopMemParallelMD)
195     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
196   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
197   if (AccessGroupMD)
198     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199 
200   StoreInst *S = Builder.CreateStore(L, Dest);
201   // Alignment from the mem intrinsic will be better, so use it.
202   S->setAlignment(*CopyDstAlign);
203   if (CopyMD)
204     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
205   if (LoopMemParallelMD)
206     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
207   if (AccessGroupMD)
208     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
209 
210   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
211     // non-atomics can be volatile
212     L->setVolatile(MT->isVolatile());
213     S->setVolatile(MT->isVolatile());
214   }
215   if (isa<AtomicMemTransferInst>(MI)) {
216     // atomics have to be unordered
217     L->setOrdering(AtomicOrdering::Unordered);
218     S->setOrdering(AtomicOrdering::Unordered);
219   }
220 
221   // Set the size of the copy to 0, it will be deleted on the next iteration.
222   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
223   return MI;
224 }
225 
226 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
227   const Align KnownAlignment =
228       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
229   MaybeAlign MemSetAlign = MI->getDestAlign();
230   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
231     MI->setDestAlignment(KnownAlignment);
232     return MI;
233   }
234 
235   // If we have a store to a location which is known constant, we can conclude
236   // that the store must be storing the constant value (else the memory
237   // wouldn't be constant), and this must be a noop.
238   if (AA->pointsToConstantMemory(MI->getDest())) {
239     // Set the size of the copy to 0, it will be deleted on the next iteration.
240     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241     return MI;
242   }
243 
244   // Extract the length and alignment and fill if they are constant.
245   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248     return nullptr;
249   const uint64_t Len = LenC->getLimitedValue();
250   assert(Len && "0-sized memory setting should be removed already.");
251   const Align Alignment = assumeAligned(MI->getDestAlignment());
252 
253   // If it is an atomic and alignment is less than the size then we will
254   // introduce the unaligned memory access which will be later transformed
255   // into libcall in CodeGen. This is not evident performance gain so disable
256   // it now.
257   if (isa<AtomicMemSetInst>(MI))
258     if (Alignment < Len)
259       return nullptr;
260 
261   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
264 
265     Value *Dest = MI->getDest();
266     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
267     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
268     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
269 
270     // Extract the fill value and store.
271     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
272     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
273                                        MI->isVolatile());
274     S->setAlignment(Alignment);
275     if (isa<AtomicMemSetInst>(MI))
276       S->setOrdering(AtomicOrdering::Unordered);
277 
278     // Set the size of the copy to 0, it will be deleted on the next iteration.
279     MI->setLength(Constant::getNullValue(LenC->getType()));
280     return MI;
281   }
282 
283   return nullptr;
284 }
285 
286 // TODO, Obvious Missing Transforms:
287 // * Narrow width by halfs excluding zero/undef lanes
288 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
289   Value *LoadPtr = II.getArgOperand(0);
290   const Align Alignment =
291       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
292 
293   // If the mask is all ones or undefs, this is a plain vector load of the 1st
294   // argument.
295   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
296     LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
297                                             "unmaskedload");
298     L->copyMetadata(II);
299     return L;
300   }
301 
302   // If we can unconditionally load from this address, replace with a
303   // load/select idiom. TODO: use DT for context sensitive query
304   if (isDereferenceablePointer(LoadPtr, II.getType(),
305                                II.getModule()->getDataLayout(), &II, nullptr)) {
306     LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
307                                              "unmaskedload");
308     LI->copyMetadata(II);
309     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
310   }
311 
312   return nullptr;
313 }
314 
315 // TODO, Obvious Missing Transforms:
316 // * Single constant active lane -> store
317 // * Narrow width by halfs excluding zero/undef lanes
318 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
319   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
320   if (!ConstMask)
321     return nullptr;
322 
323   // If the mask is all zeros, this instruction does nothing.
324   if (ConstMask->isNullValue())
325     return eraseInstFromFunction(II);
326 
327   // If the mask is all ones, this is a plain vector store of the 1st argument.
328   if (ConstMask->isAllOnesValue()) {
329     Value *StorePtr = II.getArgOperand(1);
330     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
331     StoreInst *S =
332         new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
333     S->copyMetadata(II);
334     return S;
335   }
336 
337   if (isa<ScalableVectorType>(ConstMask->getType()))
338     return nullptr;
339 
340   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
341   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
342   APInt UndefElts(DemandedElts.getBitWidth(), 0);
343   if (Value *V =
344           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
345     return replaceOperand(II, 0, V);
346 
347   return nullptr;
348 }
349 
350 // TODO, Obvious Missing Transforms:
351 // * Single constant active lane load -> load
352 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
353 // * Adjacent vector addresses -> masked.load
354 // * Narrow width by halfs excluding zero/undef lanes
355 // * Vector splat address w/known mask -> scalar load
356 // * Vector incrementing address -> vector masked load
357 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
358   return nullptr;
359 }
360 
361 // TODO, Obvious Missing Transforms:
362 // * Single constant active lane -> store
363 // * Adjacent vector addresses -> masked.store
364 // * Narrow store width by halfs excluding zero/undef lanes
365 // * Vector splat address w/known mask -> scalar store
366 // * Vector incrementing address -> vector masked store
367 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
368   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
369   if (!ConstMask)
370     return nullptr;
371 
372   // If the mask is all zeros, a scatter does nothing.
373   if (ConstMask->isNullValue())
374     return eraseInstFromFunction(II);
375 
376   if (isa<ScalableVectorType>(ConstMask->getType()))
377     return nullptr;
378 
379   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
380   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
381   APInt UndefElts(DemandedElts.getBitWidth(), 0);
382   if (Value *V =
383           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
384     return replaceOperand(II, 0, V);
385   if (Value *V =
386           SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
387     return replaceOperand(II, 1, V);
388 
389   return nullptr;
390 }
391 
392 /// This function transforms launder.invariant.group and strip.invariant.group
393 /// like:
394 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
395 /// launder(strip(%x)) -> launder(%x)
396 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
397 /// strip(launder(%x)) -> strip(%x)
398 /// This is legal because it preserves the most recent information about
399 /// the presence or absence of invariant.group.
400 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
401                                                     InstCombinerImpl &IC) {
402   auto *Arg = II.getArgOperand(0);
403   auto *StrippedArg = Arg->stripPointerCasts();
404   auto *StrippedInvariantGroupsArg = StrippedArg;
405   while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
406     if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
407         Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
408       break;
409     StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
410   }
411   if (StrippedArg == StrippedInvariantGroupsArg)
412     return nullptr; // No launders/strips to remove.
413 
414   Value *Result = nullptr;
415 
416   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
417     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
418   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
419     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
420   else
421     llvm_unreachable(
422         "simplifyInvariantGroupIntrinsic only handles launder and strip");
423   if (Result->getType()->getPointerAddressSpace() !=
424       II.getType()->getPointerAddressSpace())
425     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
426   if (Result->getType() != II.getType())
427     Result = IC.Builder.CreateBitCast(Result, II.getType());
428 
429   return cast<Instruction>(Result);
430 }
431 
432 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
433   assert((II.getIntrinsicID() == Intrinsic::cttz ||
434           II.getIntrinsicID() == Intrinsic::ctlz) &&
435          "Expected cttz or ctlz intrinsic");
436   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
437   Value *Op0 = II.getArgOperand(0);
438   Value *Op1 = II.getArgOperand(1);
439   Value *X;
440   // ctlz(bitreverse(x)) -> cttz(x)
441   // cttz(bitreverse(x)) -> ctlz(x)
442   if (match(Op0, m_BitReverse(m_Value(X)))) {
443     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
444     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
445     return CallInst::Create(F, {X, II.getArgOperand(1)});
446   }
447 
448   if (II.getType()->isIntOrIntVectorTy(1)) {
449     // ctlz/cttz i1 Op0 --> not Op0
450     if (match(Op1, m_Zero()))
451       return BinaryOperator::CreateNot(Op0);
452     // If zero is undef, then the input can be assumed to be "true", so the
453     // instruction simplifies to "false".
454     assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
455     return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
456   }
457 
458   // If the operand is a select with constant arm(s), try to hoist ctlz/cttz.
459   if (auto *Sel = dyn_cast<SelectInst>(Op0))
460     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
461       return R;
462 
463   if (IsTZ) {
464     // cttz(-x) -> cttz(x)
465     if (match(Op0, m_Neg(m_Value(X))))
466       return IC.replaceOperand(II, 0, X);
467 
468     // cttz(sext(x)) -> cttz(zext(x))
469     if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
470       auto *Zext = IC.Builder.CreateZExt(X, II.getType());
471       auto *CttzZext =
472           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
473       return IC.replaceInstUsesWith(II, CttzZext);
474     }
475 
476     // Zext doesn't change the number of trailing zeros, so narrow:
477     // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'.
478     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
479       auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
480                                                     IC.Builder.getTrue());
481       auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
482       return IC.replaceInstUsesWith(II, ZextCttz);
483     }
484 
485     // cttz(abs(x)) -> cttz(x)
486     // cttz(nabs(x)) -> cttz(x)
487     Value *Y;
488     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
489     if (SPF == SPF_ABS || SPF == SPF_NABS)
490       return IC.replaceOperand(II, 0, X);
491 
492     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
493       return IC.replaceOperand(II, 0, X);
494   }
495 
496   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
497 
498   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
499   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
500                                 : Known.countMaxLeadingZeros();
501   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
502                                 : Known.countMinLeadingZeros();
503 
504   // If all bits above (ctlz) or below (cttz) the first known one are known
505   // zero, this value is constant.
506   // FIXME: This should be in InstSimplify because we're replacing an
507   // instruction with a constant.
508   if (PossibleZeros == DefiniteZeros) {
509     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
510     return IC.replaceInstUsesWith(II, C);
511   }
512 
513   // If the input to cttz/ctlz is known to be non-zero,
514   // then change the 'ZeroIsUndef' parameter to 'true'
515   // because we know the zero behavior can't affect the result.
516   if (!Known.One.isZero() ||
517       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
518                      &IC.getDominatorTree())) {
519     if (!match(II.getArgOperand(1), m_One()))
520       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
521   }
522 
523   // Add range metadata since known bits can't completely reflect what we know.
524   // TODO: Handle splat vectors.
525   auto *IT = dyn_cast<IntegerType>(Op0->getType());
526   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
527     Metadata *LowAndHigh[] = {
528         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
529         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
530     II.setMetadata(LLVMContext::MD_range,
531                    MDNode::get(II.getContext(), LowAndHigh));
532     return &II;
533   }
534 
535   return nullptr;
536 }
537 
538 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
539   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
540          "Expected ctpop intrinsic");
541   Type *Ty = II.getType();
542   unsigned BitWidth = Ty->getScalarSizeInBits();
543   Value *Op0 = II.getArgOperand(0);
544   Value *X, *Y;
545 
546   // ctpop(bitreverse(x)) -> ctpop(x)
547   // ctpop(bswap(x)) -> ctpop(x)
548   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
549     return IC.replaceOperand(II, 0, X);
550 
551   // ctpop(rot(x)) -> ctpop(x)
552   if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
553        match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
554       X == Y)
555     return IC.replaceOperand(II, 0, X);
556 
557   // ctpop(x | -x) -> bitwidth - cttz(x, false)
558   if (Op0->hasOneUse() &&
559       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
560     Function *F =
561         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
562     auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
563     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
564     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
565   }
566 
567   // ctpop(~x & (x - 1)) -> cttz(x, false)
568   if (match(Op0,
569             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
570     Function *F =
571         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
572     return CallInst::Create(F, {X, IC.Builder.getFalse()});
573   }
574 
575   // Zext doesn't change the number of set bits, so narrow:
576   // ctpop (zext X) --> zext (ctpop X)
577   if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
578     Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
579     return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
580   }
581 
582   // If the operand is a select with constant arm(s), try to hoist ctpop.
583   if (auto *Sel = dyn_cast<SelectInst>(Op0))
584     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
585       return R;
586 
587   KnownBits Known(BitWidth);
588   IC.computeKnownBits(Op0, Known, 0, &II);
589 
590   // If all bits are zero except for exactly one fixed bit, then the result
591   // must be 0 or 1, and we can get that answer by shifting to LSB:
592   // ctpop (X & 32) --> (X & 32) >> 5
593   if ((~Known.Zero).isPowerOf2())
594     return BinaryOperator::CreateLShr(
595         Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
596 
597   // FIXME: Try to simplify vectors of integers.
598   auto *IT = dyn_cast<IntegerType>(Ty);
599   if (!IT)
600     return nullptr;
601 
602   // Add range metadata since known bits can't completely reflect what we know.
603   unsigned MinCount = Known.countMinPopulation();
604   unsigned MaxCount = Known.countMaxPopulation();
605   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
606     Metadata *LowAndHigh[] = {
607         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
608         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
609     II.setMetadata(LLVMContext::MD_range,
610                    MDNode::get(II.getContext(), LowAndHigh));
611     return &II;
612   }
613 
614   return nullptr;
615 }
616 
617 /// Convert a table lookup to shufflevector if the mask is constant.
618 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
619 /// which case we could lower the shufflevector with rev64 instructions
620 /// as it's actually a byte reverse.
621 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
622                                InstCombiner::BuilderTy &Builder) {
623   // Bail out if the mask is not a constant.
624   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
625   if (!C)
626     return nullptr;
627 
628   auto *VecTy = cast<FixedVectorType>(II.getType());
629   unsigned NumElts = VecTy->getNumElements();
630 
631   // Only perform this transformation for <8 x i8> vector types.
632   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
633     return nullptr;
634 
635   int Indexes[8];
636 
637   for (unsigned I = 0; I < NumElts; ++I) {
638     Constant *COp = C->getAggregateElement(I);
639 
640     if (!COp || !isa<ConstantInt>(COp))
641       return nullptr;
642 
643     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
644 
645     // Make sure the mask indices are in range.
646     if ((unsigned)Indexes[I] >= NumElts)
647       return nullptr;
648   }
649 
650   auto *V1 = II.getArgOperand(0);
651   auto *V2 = Constant::getNullValue(V1->getType());
652   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
653 }
654 
655 // Returns true iff the 2 intrinsics have the same operands, limiting the
656 // comparison to the first NumOperands.
657 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
658                              unsigned NumOperands) {
659   assert(I.arg_size() >= NumOperands && "Not enough operands");
660   assert(E.arg_size() >= NumOperands && "Not enough operands");
661   for (unsigned i = 0; i < NumOperands; i++)
662     if (I.getArgOperand(i) != E.getArgOperand(i))
663       return false;
664   return true;
665 }
666 
667 // Remove trivially empty start/end intrinsic ranges, i.e. a start
668 // immediately followed by an end (ignoring debuginfo or other
669 // start/end intrinsics in between). As this handles only the most trivial
670 // cases, tracking the nesting level is not needed:
671 //
672 //   call @llvm.foo.start(i1 0)
673 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
674 //   call @llvm.foo.end(i1 0)
675 //   call @llvm.foo.end(i1 0) ; &I
676 static bool
677 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
678                           std::function<bool(const IntrinsicInst &)> IsStart) {
679   // We start from the end intrinsic and scan backwards, so that InstCombine
680   // has already processed (and potentially removed) all the instructions
681   // before the end intrinsic.
682   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
683   for (; BI != BE; ++BI) {
684     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
685       if (I->isDebugOrPseudoInst() ||
686           I->getIntrinsicID() == EndI.getIntrinsicID())
687         continue;
688       if (IsStart(*I)) {
689         if (haveSameOperands(EndI, *I, EndI.arg_size())) {
690           IC.eraseInstFromFunction(*I);
691           IC.eraseInstFromFunction(EndI);
692           return true;
693         }
694         // Skip start intrinsics that don't pair with this end intrinsic.
695         continue;
696       }
697     }
698     break;
699   }
700 
701   return false;
702 }
703 
704 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
705   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
706     return I.getIntrinsicID() == Intrinsic::vastart ||
707            I.getIntrinsicID() == Intrinsic::vacopy;
708   });
709   return nullptr;
710 }
711 
712 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
713   assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
714   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
715   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
716     Call.setArgOperand(0, Arg1);
717     Call.setArgOperand(1, Arg0);
718     return &Call;
719   }
720   return nullptr;
721 }
722 
723 /// Creates a result tuple for an overflow intrinsic \p II with a given
724 /// \p Result and a constant \p Overflow value.
725 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
726                                         Constant *Overflow) {
727   Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
728   StructType *ST = cast<StructType>(II->getType());
729   Constant *Struct = ConstantStruct::get(ST, V);
730   return InsertValueInst::Create(Struct, Result, 0);
731 }
732 
733 Instruction *
734 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
735   WithOverflowInst *WO = cast<WithOverflowInst>(II);
736   Value *OperationResult = nullptr;
737   Constant *OverflowResult = nullptr;
738   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
739                             WO->getRHS(), *WO, OperationResult, OverflowResult))
740     return createOverflowTuple(WO, OperationResult, OverflowResult);
741   return nullptr;
742 }
743 
744 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
745                                    const DataLayout &DL, AssumptionCache *AC,
746                                    DominatorTree *DT) {
747   KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
748   if (Known.isNonNegative())
749     return false;
750   if (Known.isNegative())
751     return true;
752 
753   return isImpliedByDomCondition(
754       ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
755 }
756 
757 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
758 /// can trigger other combines.
759 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
760                                        InstCombiner::BuilderTy &Builder) {
761   Intrinsic::ID MinMaxID = II->getIntrinsicID();
762   assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
763           MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
764          "Expected a min or max intrinsic");
765 
766   // TODO: Match vectors with undef elements, but undef may not propagate.
767   Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
768   Value *X;
769   const APInt *C0, *C1;
770   if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
771       !match(Op1, m_APInt(C1)))
772     return nullptr;
773 
774   // Check for necessary no-wrap and overflow constraints.
775   bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
776   auto *Add = cast<BinaryOperator>(Op0);
777   if ((IsSigned && !Add->hasNoSignedWrap()) ||
778       (!IsSigned && !Add->hasNoUnsignedWrap()))
779     return nullptr;
780 
781   // If the constant difference overflows, then instsimplify should reduce the
782   // min/max to the add or C1.
783   bool Overflow;
784   APInt CDiff =
785       IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
786   assert(!Overflow && "Expected simplify of min/max");
787 
788   // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
789   // Note: the "mismatched" no-overflow setting does not propagate.
790   Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
791   Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
792   return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
793                   : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
794 }
795 
796 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
797 /// can only be one of two possible constant values -- turn that into a select
798 /// of constants.
799 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
800                                         InstCombiner::BuilderTy &Builder) {
801   Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
802   Value *X;
803   const APInt *C0, *C1;
804   if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
805     return nullptr;
806 
807   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
808   switch (II->getIntrinsicID()) {
809   case Intrinsic::smax:
810     if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
811       Pred = ICmpInst::ICMP_SGT;
812     break;
813   case Intrinsic::smin:
814     if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
815       Pred = ICmpInst::ICMP_SLT;
816     break;
817   case Intrinsic::umax:
818     if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
819       Pred = ICmpInst::ICMP_UGT;
820     break;
821   case Intrinsic::umin:
822     if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
823       Pred = ICmpInst::ICMP_ULT;
824     break;
825   default:
826     llvm_unreachable("Expected min/max intrinsic");
827   }
828   if (Pred == CmpInst::BAD_ICMP_PREDICATE)
829     return nullptr;
830 
831   // max (min X, 42), 41 --> X > 41 ? 42 : 41
832   // min (max X, 42), 43 --> X < 43 ? 42 : 43
833   Value *Cmp = Builder.CreateICmp(Pred, X, I1);
834   return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
835 }
836 
837 /// Reduce a sequence of min/max intrinsics with a common operand.
838 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
839   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
840   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
841   auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
842   Intrinsic::ID MinMaxID = II->getIntrinsicID();
843   if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
844       RHS->getIntrinsicID() != MinMaxID ||
845       (!LHS->hasOneUse() && !RHS->hasOneUse()))
846     return nullptr;
847 
848   Value *A = LHS->getArgOperand(0);
849   Value *B = LHS->getArgOperand(1);
850   Value *C = RHS->getArgOperand(0);
851   Value *D = RHS->getArgOperand(1);
852 
853   // Look for a common operand.
854   Value *MinMaxOp = nullptr;
855   Value *ThirdOp = nullptr;
856   if (LHS->hasOneUse()) {
857     // If the LHS is only used in this chain and the RHS is used outside of it,
858     // reuse the RHS min/max because that will eliminate the LHS.
859     if (D == A || C == A) {
860       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
861       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
862       MinMaxOp = RHS;
863       ThirdOp = B;
864     } else if (D == B || C == B) {
865       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
866       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
867       MinMaxOp = RHS;
868       ThirdOp = A;
869     }
870   } else {
871     assert(RHS->hasOneUse() && "Expected one-use operand");
872     // Reuse the LHS. This will eliminate the RHS.
873     if (D == A || D == B) {
874       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
875       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
876       MinMaxOp = LHS;
877       ThirdOp = C;
878     } else if (C == A || C == B) {
879       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
880       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
881       MinMaxOp = LHS;
882       ThirdOp = D;
883     }
884   }
885 
886   if (!MinMaxOp || !ThirdOp)
887     return nullptr;
888 
889   Module *Mod = II->getModule();
890   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
891   return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
892 }
893 
894 /// CallInst simplification. This mostly only handles folding of intrinsic
895 /// instructions. For normal calls, it allows visitCallBase to do the heavy
896 /// lifting.
897 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
898   // Don't try to simplify calls without uses. It will not do anything useful,
899   // but will result in the following folds being skipped.
900   if (!CI.use_empty())
901     if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
902       return replaceInstUsesWith(CI, V);
903 
904   if (isFreeCall(&CI, &TLI))
905     return visitFree(CI);
906 
907   // If the caller function is nounwind, mark the call as nounwind, even if the
908   // callee isn't.
909   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
910     CI.setDoesNotThrow();
911     return &CI;
912   }
913 
914   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
915   if (!II) return visitCallBase(CI);
916 
917   // For atomic unordered mem intrinsics if len is not a positive or
918   // not a multiple of element size then behavior is undefined.
919   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
920     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
921       if (NumBytes->getSExtValue() < 0 ||
922           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
923         CreateNonTerminatorUnreachable(AMI);
924         assert(AMI->getType()->isVoidTy() &&
925                "non void atomic unordered mem intrinsic");
926         return eraseInstFromFunction(*AMI);
927       }
928 
929   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
930   // instead of in visitCallBase.
931   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
932     bool Changed = false;
933 
934     // memmove/cpy/set of zero bytes is a noop.
935     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
936       if (NumBytes->isNullValue())
937         return eraseInstFromFunction(CI);
938 
939       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
940         if (CI->getZExtValue() == 1) {
941           // Replace the instruction with just byte operations.  We would
942           // transform other cases to loads/stores, but we don't know if
943           // alignment is sufficient.
944         }
945     }
946 
947     // No other transformations apply to volatile transfers.
948     if (auto *M = dyn_cast<MemIntrinsic>(MI))
949       if (M->isVolatile())
950         return nullptr;
951 
952     // If we have a memmove and the source operation is a constant global,
953     // then the source and dest pointers can't alias, so we can change this
954     // into a call to memcpy.
955     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
956       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
957         if (GVSrc->isConstant()) {
958           Module *M = CI.getModule();
959           Intrinsic::ID MemCpyID =
960               isa<AtomicMemMoveInst>(MMI)
961                   ? Intrinsic::memcpy_element_unordered_atomic
962                   : Intrinsic::memcpy;
963           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
964                            CI.getArgOperand(1)->getType(),
965                            CI.getArgOperand(2)->getType() };
966           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
967           Changed = true;
968         }
969     }
970 
971     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
972       // memmove(x,x,size) -> noop.
973       if (MTI->getSource() == MTI->getDest())
974         return eraseInstFromFunction(CI);
975     }
976 
977     // If we can determine a pointer alignment that is bigger than currently
978     // set, update the alignment.
979     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
980       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
981         return I;
982     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
983       if (Instruction *I = SimplifyAnyMemSet(MSI))
984         return I;
985     }
986 
987     if (Changed) return II;
988   }
989 
990   // For fixed width vector result intrinsics, use the generic demanded vector
991   // support.
992   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
993     auto VWidth = IIFVTy->getNumElements();
994     APInt UndefElts(VWidth, 0);
995     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
996     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
997       if (V != II)
998         return replaceInstUsesWith(*II, V);
999       return II;
1000     }
1001   }
1002 
1003   if (II->isCommutative()) {
1004     if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1005       return NewCall;
1006   }
1007 
1008   Intrinsic::ID IID = II->getIntrinsicID();
1009   switch (IID) {
1010   case Intrinsic::objectsize:
1011     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1012       return replaceInstUsesWith(CI, V);
1013     return nullptr;
1014   case Intrinsic::abs: {
1015     Value *IIOperand = II->getArgOperand(0);
1016     bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1017 
1018     // abs(-x) -> abs(x)
1019     // TODO: Copy nsw if it was present on the neg?
1020     Value *X;
1021     if (match(IIOperand, m_Neg(m_Value(X))))
1022       return replaceOperand(*II, 0, X);
1023     if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1024       return replaceOperand(*II, 0, X);
1025     if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1026       return replaceOperand(*II, 0, X);
1027 
1028     if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
1029       // abs(x) -> x if x >= 0
1030       if (!*Sign)
1031         return replaceInstUsesWith(*II, IIOperand);
1032 
1033       // abs(x) -> -x if x < 0
1034       if (IntMinIsPoison)
1035         return BinaryOperator::CreateNSWNeg(IIOperand);
1036       return BinaryOperator::CreateNeg(IIOperand);
1037     }
1038 
1039     // abs (sext X) --> zext (abs X*)
1040     // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1041     if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1042       Value *NarrowAbs =
1043           Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1044       return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1045     }
1046 
1047     // Match a complicated way to check if a number is odd/even:
1048     // abs (srem X, 2) --> and X, 1
1049     const APInt *C;
1050     if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1051       return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1052 
1053     break;
1054   }
1055   case Intrinsic::umin: {
1056     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1057     // umin(x, 1) == zext(x != 0)
1058     if (match(I1, m_One())) {
1059       Value *Zero = Constant::getNullValue(I0->getType());
1060       Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1061       return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1062     }
1063     LLVM_FALLTHROUGH;
1064   }
1065   case Intrinsic::umax: {
1066     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1067     Value *X, *Y;
1068     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1069         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1070       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1071       return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1072     }
1073     Constant *C;
1074     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1075         I0->hasOneUse()) {
1076       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1077       if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
1078         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1079         return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1080       }
1081     }
1082     // If both operands of unsigned min/max are sign-extended, it is still ok
1083     // to narrow the operation.
1084     LLVM_FALLTHROUGH;
1085   }
1086   case Intrinsic::smax:
1087   case Intrinsic::smin: {
1088     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1089     Value *X, *Y;
1090     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1091         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1092       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1093       return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1094     }
1095 
1096     Constant *C;
1097     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1098         I0->hasOneUse()) {
1099       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1100       if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
1101         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1102         return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1103       }
1104     }
1105 
1106     if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1107       // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1108       // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1109       // TODO: Canonicalize neg after min/max if I1 is constant.
1110       if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1111           (I0->hasOneUse() || I1->hasOneUse())) {
1112         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1113         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1114         return BinaryOperator::CreateNSWNeg(InvMaxMin);
1115       }
1116     }
1117 
1118     // If we can eliminate ~A and Y is free to invert:
1119     // max ~A, Y --> ~(min A, ~Y)
1120     //
1121     // Examples:
1122     // max ~A, ~Y --> ~(min A, Y)
1123     // max ~A, C --> ~(min A, ~C)
1124     // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1125     auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1126       Value *A;
1127       if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1128           !isFreeToInvert(A, A->hasOneUse()) &&
1129           isFreeToInvert(Y, Y->hasOneUse())) {
1130         Value *NotY = Builder.CreateNot(Y);
1131         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1132         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1133         return BinaryOperator::CreateNot(InvMaxMin);
1134       }
1135       return nullptr;
1136     };
1137 
1138     if (Instruction *I = moveNotAfterMinMax(I0, I1))
1139       return I;
1140     if (Instruction *I = moveNotAfterMinMax(I1, I0))
1141       return I;
1142 
1143     if (Instruction *I = moveAddAfterMinMax(II, Builder))
1144       return I;
1145 
1146     // smax(X, -X) --> abs(X)
1147     // smin(X, -X) --> -abs(X)
1148     // umax(X, -X) --> -abs(X)
1149     // umin(X, -X) --> abs(X)
1150     if (isKnownNegation(I0, I1)) {
1151       // We can choose either operand as the input to abs(), but if we can
1152       // eliminate the only use of a value, that's better for subsequent
1153       // transforms/analysis.
1154       if (I0->hasOneUse() && !I1->hasOneUse())
1155         std::swap(I0, I1);
1156 
1157       // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1158       // operation and potentially its negation.
1159       bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1160       Value *Abs = Builder.CreateBinaryIntrinsic(
1161           Intrinsic::abs, I0,
1162           ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1163 
1164       // We don't have a "nabs" intrinsic, so negate if needed based on the
1165       // max/min operation.
1166       if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1167         Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1168       return replaceInstUsesWith(CI, Abs);
1169     }
1170 
1171     if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1172       return Sel;
1173 
1174     if (Instruction *SAdd = matchSAddSubSat(*II))
1175       return SAdd;
1176 
1177     if (match(I1, m_ImmConstant()))
1178       if (auto *Sel = dyn_cast<SelectInst>(I0))
1179         if (Instruction *R = FoldOpIntoSelect(*II, Sel))
1180           return R;
1181 
1182     if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1183        return NewMinMax;
1184 
1185     break;
1186   }
1187   case Intrinsic::bswap: {
1188     Value *IIOperand = II->getArgOperand(0);
1189     Value *X = nullptr;
1190 
1191     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1192     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1193       unsigned C = X->getType()->getScalarSizeInBits() -
1194                    IIOperand->getType()->getScalarSizeInBits();
1195       Value *CV = ConstantInt::get(X->getType(), C);
1196       Value *V = Builder.CreateLShr(X, CV);
1197       return new TruncInst(V, IIOperand->getType());
1198     }
1199     break;
1200   }
1201   case Intrinsic::masked_load:
1202     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1203       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1204     break;
1205   case Intrinsic::masked_store:
1206     return simplifyMaskedStore(*II);
1207   case Intrinsic::masked_gather:
1208     return simplifyMaskedGather(*II);
1209   case Intrinsic::masked_scatter:
1210     return simplifyMaskedScatter(*II);
1211   case Intrinsic::launder_invariant_group:
1212   case Intrinsic::strip_invariant_group:
1213     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1214       return replaceInstUsesWith(*II, SkippedBarrier);
1215     break;
1216   case Intrinsic::powi:
1217     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1218       // 0 and 1 are handled in instsimplify
1219       // powi(x, -1) -> 1/x
1220       if (Power->isMinusOne())
1221         return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1222                                              II->getArgOperand(0), II);
1223       // powi(x, 2) -> x*x
1224       if (Power->equalsInt(2))
1225         return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1226                                              II->getArgOperand(0), II);
1227 
1228       if (!Power->getValue()[0]) {
1229         Value *X;
1230         // If power is even:
1231         // powi(-x, p) -> powi(x, p)
1232         // powi(fabs(x), p) -> powi(x, p)
1233         // powi(copysign(x, y), p) -> powi(x, p)
1234         if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1235             match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1236             match(II->getArgOperand(0),
1237                   m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1238           return replaceOperand(*II, 0, X);
1239       }
1240     }
1241     break;
1242 
1243   case Intrinsic::cttz:
1244   case Intrinsic::ctlz:
1245     if (auto *I = foldCttzCtlz(*II, *this))
1246       return I;
1247     break;
1248 
1249   case Intrinsic::ctpop:
1250     if (auto *I = foldCtpop(*II, *this))
1251       return I;
1252     break;
1253 
1254   case Intrinsic::fshl:
1255   case Intrinsic::fshr: {
1256     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1257     Type *Ty = II->getType();
1258     unsigned BitWidth = Ty->getScalarSizeInBits();
1259     Constant *ShAmtC;
1260     if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) &&
1261         !ShAmtC->containsConstantExpression()) {
1262       // Canonicalize a shift amount constant operand to modulo the bit-width.
1263       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1264       Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1265       if (ModuloC != ShAmtC)
1266         return replaceOperand(*II, 2, ModuloC);
1267 
1268       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1269                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1270              "Shift amount expected to be modulo bitwidth");
1271 
1272       // Canonicalize funnel shift right by constant to funnel shift left. This
1273       // is not entirely arbitrary. For historical reasons, the backend may
1274       // recognize rotate left patterns but miss rotate right patterns.
1275       if (IID == Intrinsic::fshr) {
1276         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1277         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1278         Module *Mod = II->getModule();
1279         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1280         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1281       }
1282       assert(IID == Intrinsic::fshl &&
1283              "All funnel shifts by simple constants should go left");
1284 
1285       // fshl(X, 0, C) --> shl X, C
1286       // fshl(X, undef, C) --> shl X, C
1287       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1288         return BinaryOperator::CreateShl(Op0, ShAmtC);
1289 
1290       // fshl(0, X, C) --> lshr X, (BW-C)
1291       // fshl(undef, X, C) --> lshr X, (BW-C)
1292       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1293         return BinaryOperator::CreateLShr(Op1,
1294                                           ConstantExpr::getSub(WidthC, ShAmtC));
1295 
1296       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1297       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1298         Module *Mod = II->getModule();
1299         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1300         return CallInst::Create(Bswap, { Op0 });
1301       }
1302     }
1303 
1304     // Left or right might be masked.
1305     if (SimplifyDemandedInstructionBits(*II))
1306       return &CI;
1307 
1308     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1309     // so only the low bits of the shift amount are demanded if the bitwidth is
1310     // a power-of-2.
1311     if (!isPowerOf2_32(BitWidth))
1312       break;
1313     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1314     KnownBits Op2Known(BitWidth);
1315     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1316       return &CI;
1317     break;
1318   }
1319   case Intrinsic::uadd_with_overflow:
1320   case Intrinsic::sadd_with_overflow: {
1321     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1322       return I;
1323 
1324     // Given 2 constant operands whose sum does not overflow:
1325     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1326     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1327     Value *X;
1328     const APInt *C0, *C1;
1329     Value *Arg0 = II->getArgOperand(0);
1330     Value *Arg1 = II->getArgOperand(1);
1331     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1332     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1333                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1334     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1335       bool Overflow;
1336       APInt NewC =
1337           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1338       if (!Overflow)
1339         return replaceInstUsesWith(
1340             *II, Builder.CreateBinaryIntrinsic(
1341                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1342     }
1343     break;
1344   }
1345 
1346   case Intrinsic::umul_with_overflow:
1347   case Intrinsic::smul_with_overflow:
1348   case Intrinsic::usub_with_overflow:
1349     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1350       return I;
1351     break;
1352 
1353   case Intrinsic::ssub_with_overflow: {
1354     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1355       return I;
1356 
1357     Constant *C;
1358     Value *Arg0 = II->getArgOperand(0);
1359     Value *Arg1 = II->getArgOperand(1);
1360     // Given a constant C that is not the minimum signed value
1361     // for an integer of a given bit width:
1362     //
1363     // ssubo X, C -> saddo X, -C
1364     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1365       Value *NegVal = ConstantExpr::getNeg(C);
1366       // Build a saddo call that is equivalent to the discovered
1367       // ssubo call.
1368       return replaceInstUsesWith(
1369           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1370                                              Arg0, NegVal));
1371     }
1372 
1373     break;
1374   }
1375 
1376   case Intrinsic::uadd_sat:
1377   case Intrinsic::sadd_sat:
1378   case Intrinsic::usub_sat:
1379   case Intrinsic::ssub_sat: {
1380     SaturatingInst *SI = cast<SaturatingInst>(II);
1381     Type *Ty = SI->getType();
1382     Value *Arg0 = SI->getLHS();
1383     Value *Arg1 = SI->getRHS();
1384 
1385     // Make use of known overflow information.
1386     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1387                                         Arg0, Arg1, SI);
1388     switch (OR) {
1389       case OverflowResult::MayOverflow:
1390         break;
1391       case OverflowResult::NeverOverflows:
1392         if (SI->isSigned())
1393           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1394         else
1395           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1396       case OverflowResult::AlwaysOverflowsLow: {
1397         unsigned BitWidth = Ty->getScalarSizeInBits();
1398         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1399         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1400       }
1401       case OverflowResult::AlwaysOverflowsHigh: {
1402         unsigned BitWidth = Ty->getScalarSizeInBits();
1403         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1404         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1405       }
1406     }
1407 
1408     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1409     Constant *C;
1410     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1411         C->isNotMinSignedValue()) {
1412       Value *NegVal = ConstantExpr::getNeg(C);
1413       return replaceInstUsesWith(
1414           *II, Builder.CreateBinaryIntrinsic(
1415               Intrinsic::sadd_sat, Arg0, NegVal));
1416     }
1417 
1418     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1419     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1420     // if Val and Val2 have the same sign
1421     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1422       Value *X;
1423       const APInt *Val, *Val2;
1424       APInt NewVal;
1425       bool IsUnsigned =
1426           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1427       if (Other->getIntrinsicID() == IID &&
1428           match(Arg1, m_APInt(Val)) &&
1429           match(Other->getArgOperand(0), m_Value(X)) &&
1430           match(Other->getArgOperand(1), m_APInt(Val2))) {
1431         if (IsUnsigned)
1432           NewVal = Val->uadd_sat(*Val2);
1433         else if (Val->isNonNegative() == Val2->isNonNegative()) {
1434           bool Overflow;
1435           NewVal = Val->sadd_ov(*Val2, Overflow);
1436           if (Overflow) {
1437             // Both adds together may add more than SignedMaxValue
1438             // without saturating the final result.
1439             break;
1440           }
1441         } else {
1442           // Cannot fold saturated addition with different signs.
1443           break;
1444         }
1445 
1446         return replaceInstUsesWith(
1447             *II, Builder.CreateBinaryIntrinsic(
1448                      IID, X, ConstantInt::get(II->getType(), NewVal)));
1449       }
1450     }
1451     break;
1452   }
1453 
1454   case Intrinsic::minnum:
1455   case Intrinsic::maxnum:
1456   case Intrinsic::minimum:
1457   case Intrinsic::maximum: {
1458     Value *Arg0 = II->getArgOperand(0);
1459     Value *Arg1 = II->getArgOperand(1);
1460     Value *X, *Y;
1461     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1462         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1463       // If both operands are negated, invert the call and negate the result:
1464       // min(-X, -Y) --> -(max(X, Y))
1465       // max(-X, -Y) --> -(min(X, Y))
1466       Intrinsic::ID NewIID;
1467       switch (IID) {
1468       case Intrinsic::maxnum:
1469         NewIID = Intrinsic::minnum;
1470         break;
1471       case Intrinsic::minnum:
1472         NewIID = Intrinsic::maxnum;
1473         break;
1474       case Intrinsic::maximum:
1475         NewIID = Intrinsic::minimum;
1476         break;
1477       case Intrinsic::minimum:
1478         NewIID = Intrinsic::maximum;
1479         break;
1480       default:
1481         llvm_unreachable("unexpected intrinsic ID");
1482       }
1483       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1484       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1485       FNeg->copyIRFlags(II);
1486       return FNeg;
1487     }
1488 
1489     // m(m(X, C2), C1) -> m(X, C)
1490     const APFloat *C1, *C2;
1491     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1492       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1493           ((match(M->getArgOperand(0), m_Value(X)) &&
1494             match(M->getArgOperand(1), m_APFloat(C2))) ||
1495            (match(M->getArgOperand(1), m_Value(X)) &&
1496             match(M->getArgOperand(0), m_APFloat(C2))))) {
1497         APFloat Res(0.0);
1498         switch (IID) {
1499         case Intrinsic::maxnum:
1500           Res = maxnum(*C1, *C2);
1501           break;
1502         case Intrinsic::minnum:
1503           Res = minnum(*C1, *C2);
1504           break;
1505         case Intrinsic::maximum:
1506           Res = maximum(*C1, *C2);
1507           break;
1508         case Intrinsic::minimum:
1509           Res = minimum(*C1, *C2);
1510           break;
1511         default:
1512           llvm_unreachable("unexpected intrinsic ID");
1513         }
1514         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1515             IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1516         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1517         //       was a simplification (so Arg0 and its original flags could
1518         //       propagate?)
1519         NewCall->andIRFlags(M);
1520         return replaceInstUsesWith(*II, NewCall);
1521       }
1522     }
1523 
1524     // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
1525     if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
1526         match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
1527         X->getType() == Y->getType()) {
1528       Value *NewCall =
1529           Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
1530       return new FPExtInst(NewCall, II->getType());
1531     }
1532 
1533     // max X, -X --> fabs X
1534     // min X, -X --> -(fabs X)
1535     // TODO: Remove one-use limitation? That is obviously better for max.
1536     //       It would be an extra instruction for min (fnabs), but that is
1537     //       still likely better for analysis and codegen.
1538     if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
1539         (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
1540       Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
1541       if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
1542         R = Builder.CreateFNegFMF(R, II);
1543       return replaceInstUsesWith(*II, R);
1544     }
1545 
1546     break;
1547   }
1548   case Intrinsic::fmuladd: {
1549     // Canonicalize fast fmuladd to the separate fmul + fadd.
1550     if (II->isFast()) {
1551       BuilderTy::FastMathFlagGuard Guard(Builder);
1552       Builder.setFastMathFlags(II->getFastMathFlags());
1553       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1554                                       II->getArgOperand(1));
1555       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1556       Add->takeName(II);
1557       return replaceInstUsesWith(*II, Add);
1558     }
1559 
1560     // Try to simplify the underlying FMul.
1561     if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1562                                     II->getFastMathFlags(),
1563                                     SQ.getWithInstruction(II))) {
1564       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1565       FAdd->copyFastMathFlags(II);
1566       return FAdd;
1567     }
1568 
1569     LLVM_FALLTHROUGH;
1570   }
1571   case Intrinsic::fma: {
1572     // fma fneg(x), fneg(y), z -> fma x, y, z
1573     Value *Src0 = II->getArgOperand(0);
1574     Value *Src1 = II->getArgOperand(1);
1575     Value *X, *Y;
1576     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1577       replaceOperand(*II, 0, X);
1578       replaceOperand(*II, 1, Y);
1579       return II;
1580     }
1581 
1582     // fma fabs(x), fabs(x), z -> fma x, x, z
1583     if (match(Src0, m_FAbs(m_Value(X))) &&
1584         match(Src1, m_FAbs(m_Specific(X)))) {
1585       replaceOperand(*II, 0, X);
1586       replaceOperand(*II, 1, X);
1587       return II;
1588     }
1589 
1590     // Try to simplify the underlying FMul. We can only apply simplifications
1591     // that do not require rounding.
1592     if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1593                                    II->getFastMathFlags(),
1594                                    SQ.getWithInstruction(II))) {
1595       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1596       FAdd->copyFastMathFlags(II);
1597       return FAdd;
1598     }
1599 
1600     // fma x, y, 0 -> fmul x, y
1601     // This is always valid for -0.0, but requires nsz for +0.0 as
1602     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1603     if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1604         (match(II->getArgOperand(2), m_PosZeroFP()) &&
1605          II->getFastMathFlags().noSignedZeros()))
1606       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1607 
1608     break;
1609   }
1610   case Intrinsic::copysign: {
1611     Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1612     if (SignBitMustBeZero(Sign, &TLI)) {
1613       // If we know that the sign argument is positive, reduce to FABS:
1614       // copysign Mag, +Sign --> fabs Mag
1615       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1616       return replaceInstUsesWith(*II, Fabs);
1617     }
1618     // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1619     const APFloat *C;
1620     if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1621       // If we know that the sign argument is negative, reduce to FNABS:
1622       // copysign Mag, -Sign --> fneg (fabs Mag)
1623       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1624       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1625     }
1626 
1627     // Propagate sign argument through nested calls:
1628     // copysign Mag, (copysign ?, X) --> copysign Mag, X
1629     Value *X;
1630     if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
1631       return replaceOperand(*II, 1, X);
1632 
1633     // Peek through changes of magnitude's sign-bit. This call rewrites those:
1634     // copysign (fabs X), Sign --> copysign X, Sign
1635     // copysign (fneg X), Sign --> copysign X, Sign
1636     if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
1637       return replaceOperand(*II, 0, X);
1638 
1639     break;
1640   }
1641   case Intrinsic::fabs: {
1642     Value *Cond, *TVal, *FVal;
1643     if (match(II->getArgOperand(0),
1644               m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
1645       // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
1646       if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
1647         CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
1648         CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
1649         return SelectInst::Create(Cond, AbsT, AbsF);
1650       }
1651       // fabs (select Cond, -FVal, FVal) --> fabs FVal
1652       if (match(TVal, m_FNeg(m_Specific(FVal))))
1653         return replaceOperand(*II, 0, FVal);
1654       // fabs (select Cond, TVal, -TVal) --> fabs TVal
1655       if (match(FVal, m_FNeg(m_Specific(TVal))))
1656         return replaceOperand(*II, 0, TVal);
1657     }
1658 
1659     LLVM_FALLTHROUGH;
1660   }
1661   case Intrinsic::ceil:
1662   case Intrinsic::floor:
1663   case Intrinsic::round:
1664   case Intrinsic::roundeven:
1665   case Intrinsic::nearbyint:
1666   case Intrinsic::rint:
1667   case Intrinsic::trunc: {
1668     Value *ExtSrc;
1669     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
1670       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
1671       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
1672       return new FPExtInst(NarrowII, II->getType());
1673     }
1674     break;
1675   }
1676   case Intrinsic::cos:
1677   case Intrinsic::amdgcn_cos: {
1678     Value *X;
1679     Value *Src = II->getArgOperand(0);
1680     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
1681       // cos(-x) -> cos(x)
1682       // cos(fabs(x)) -> cos(x)
1683       return replaceOperand(*II, 0, X);
1684     }
1685     break;
1686   }
1687   case Intrinsic::sin: {
1688     Value *X;
1689     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
1690       // sin(-x) --> -sin(x)
1691       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
1692       Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
1693       FNeg->copyFastMathFlags(II);
1694       return FNeg;
1695     }
1696     break;
1697   }
1698 
1699   case Intrinsic::arm_neon_vtbl1:
1700   case Intrinsic::aarch64_neon_tbl1:
1701     if (Value *V = simplifyNeonTbl1(*II, Builder))
1702       return replaceInstUsesWith(*II, V);
1703     break;
1704 
1705   case Intrinsic::arm_neon_vmulls:
1706   case Intrinsic::arm_neon_vmullu:
1707   case Intrinsic::aarch64_neon_smull:
1708   case Intrinsic::aarch64_neon_umull: {
1709     Value *Arg0 = II->getArgOperand(0);
1710     Value *Arg1 = II->getArgOperand(1);
1711 
1712     // Handle mul by zero first:
1713     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1714       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1715     }
1716 
1717     // Check for constant LHS & RHS - in this case we just simplify.
1718     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
1719                  IID == Intrinsic::aarch64_neon_umull);
1720     VectorType *NewVT = cast<VectorType>(II->getType());
1721     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1722       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1723         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1724         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1725 
1726         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1727       }
1728 
1729       // Couldn't simplify - canonicalize constant to the RHS.
1730       std::swap(Arg0, Arg1);
1731     }
1732 
1733     // Handle mul by one:
1734     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1735       if (ConstantInt *Splat =
1736               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1737         if (Splat->isOne())
1738           return CastInst::CreateIntegerCast(Arg0, II->getType(),
1739                                              /*isSigned=*/!Zext);
1740 
1741     break;
1742   }
1743   case Intrinsic::arm_neon_aesd:
1744   case Intrinsic::arm_neon_aese:
1745   case Intrinsic::aarch64_crypto_aesd:
1746   case Intrinsic::aarch64_crypto_aese: {
1747     Value *DataArg = II->getArgOperand(0);
1748     Value *KeyArg  = II->getArgOperand(1);
1749 
1750     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
1751     Value *Data, *Key;
1752     if (match(KeyArg, m_ZeroInt()) &&
1753         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
1754       replaceOperand(*II, 0, Data);
1755       replaceOperand(*II, 1, Key);
1756       return II;
1757     }
1758     break;
1759   }
1760   case Intrinsic::hexagon_V6_vandvrt:
1761   case Intrinsic::hexagon_V6_vandvrt_128B: {
1762     // Simplify Q -> V -> Q conversion.
1763     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1764       Intrinsic::ID ID0 = Op0->getIntrinsicID();
1765       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
1766           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
1767         break;
1768       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
1769       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
1770       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
1771       // Check if every byte has common bits in Bytes and Mask.
1772       uint64_t C = Bytes1 & Mask1;
1773       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
1774         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
1775     }
1776     break;
1777   }
1778   case Intrinsic::stackrestore: {
1779     enum class ClassifyResult {
1780       None,
1781       Alloca,
1782       StackRestore,
1783       CallWithSideEffects,
1784     };
1785     auto Classify = [](const Instruction *I) {
1786       if (isa<AllocaInst>(I))
1787         return ClassifyResult::Alloca;
1788 
1789       if (auto *CI = dyn_cast<CallInst>(I)) {
1790         if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
1791           if (II->getIntrinsicID() == Intrinsic::stackrestore)
1792             return ClassifyResult::StackRestore;
1793 
1794           if (II->mayHaveSideEffects())
1795             return ClassifyResult::CallWithSideEffects;
1796         } else {
1797           // Consider all non-intrinsic calls to be side effects
1798           return ClassifyResult::CallWithSideEffects;
1799         }
1800       }
1801 
1802       return ClassifyResult::None;
1803     };
1804 
1805     // If the stacksave and the stackrestore are in the same BB, and there is
1806     // no intervening call, alloca, or stackrestore of a different stacksave,
1807     // remove the restore. This can happen when variable allocas are DCE'd.
1808     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1809       if (SS->getIntrinsicID() == Intrinsic::stacksave &&
1810           SS->getParent() == II->getParent()) {
1811         BasicBlock::iterator BI(SS);
1812         bool CannotRemove = false;
1813         for (++BI; &*BI != II; ++BI) {
1814           switch (Classify(&*BI)) {
1815           case ClassifyResult::None:
1816             // So far so good, look at next instructions.
1817             break;
1818 
1819           case ClassifyResult::StackRestore:
1820             // If we found an intervening stackrestore for a different
1821             // stacksave, we can't remove the stackrestore. Otherwise, continue.
1822             if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
1823               CannotRemove = true;
1824             break;
1825 
1826           case ClassifyResult::Alloca:
1827           case ClassifyResult::CallWithSideEffects:
1828             // If we found an alloca, a non-intrinsic call, or an intrinsic
1829             // call with side effects, we can't remove the stackrestore.
1830             CannotRemove = true;
1831             break;
1832           }
1833           if (CannotRemove)
1834             break;
1835         }
1836 
1837         if (!CannotRemove)
1838           return eraseInstFromFunction(CI);
1839       }
1840     }
1841 
1842     // Scan down this block to see if there is another stack restore in the
1843     // same block without an intervening call/alloca.
1844     BasicBlock::iterator BI(II);
1845     Instruction *TI = II->getParent()->getTerminator();
1846     bool CannotRemove = false;
1847     for (++BI; &*BI != TI; ++BI) {
1848       switch (Classify(&*BI)) {
1849       case ClassifyResult::None:
1850         // So far so good, look at next instructions.
1851         break;
1852 
1853       case ClassifyResult::StackRestore:
1854         // If there is a stackrestore below this one, remove this one.
1855         return eraseInstFromFunction(CI);
1856 
1857       case ClassifyResult::Alloca:
1858       case ClassifyResult::CallWithSideEffects:
1859         // If we found an alloca, a non-intrinsic call, or an intrinsic call
1860         // with side effects (such as llvm.stacksave and llvm.read_register),
1861         // we can't remove the stack restore.
1862         CannotRemove = true;
1863         break;
1864       }
1865       if (CannotRemove)
1866         break;
1867     }
1868 
1869     // If the stack restore is in a return, resume, or unwind block and if there
1870     // are no allocas or calls between the restore and the return, nuke the
1871     // restore.
1872     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1873       return eraseInstFromFunction(CI);
1874     break;
1875   }
1876   case Intrinsic::lifetime_end:
1877     // Asan needs to poison memory to detect invalid access which is possible
1878     // even for empty lifetime range.
1879     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
1880         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
1881         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
1882       break;
1883 
1884     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
1885           return I.getIntrinsicID() == Intrinsic::lifetime_start;
1886         }))
1887       return nullptr;
1888     break;
1889   case Intrinsic::assume: {
1890     Value *IIOperand = II->getArgOperand(0);
1891     SmallVector<OperandBundleDef, 4> OpBundles;
1892     II->getOperandBundlesAsDefs(OpBundles);
1893 
1894     /// This will remove the boolean Condition from the assume given as
1895     /// argument and remove the assume if it becomes useless.
1896     /// always returns nullptr for use as a return values.
1897     auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
1898       assert(isa<AssumeInst>(Assume));
1899       if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
1900         return eraseInstFromFunction(CI);
1901       replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
1902       return nullptr;
1903     };
1904     // Remove an assume if it is followed by an identical assume.
1905     // TODO: Do we need this? Unless there are conflicting assumptions, the
1906     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
1907     Instruction *Next = II->getNextNonDebugInstruction();
1908     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
1909       return RemoveConditionFromAssume(Next);
1910 
1911     // Canonicalize assume(a && b) -> assume(a); assume(b);
1912     // Note: New assumption intrinsics created here are registered by
1913     // the InstCombineIRInserter object.
1914     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
1915     Value *AssumeIntrinsic = II->getCalledOperand();
1916     Value *A, *B;
1917     if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
1918       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
1919                          II->getName());
1920       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
1921       return eraseInstFromFunction(*II);
1922     }
1923     // assume(!(a || b)) -> assume(!a); assume(!b);
1924     if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
1925       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1926                          Builder.CreateNot(A), OpBundles, II->getName());
1927       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1928                          Builder.CreateNot(B), II->getName());
1929       return eraseInstFromFunction(*II);
1930     }
1931 
1932     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1933     // (if assume is valid at the load)
1934     CmpInst::Predicate Pred;
1935     Instruction *LHS;
1936     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
1937         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
1938         LHS->getType()->isPointerTy() &&
1939         isValidAssumeForContext(II, LHS, &DT)) {
1940       MDNode *MD = MDNode::get(II->getContext(), None);
1941       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
1942       return RemoveConditionFromAssume(II);
1943 
1944       // TODO: apply nonnull return attributes to calls and invokes
1945       // TODO: apply range metadata for range check patterns?
1946     }
1947 
1948     // Convert nonnull assume like:
1949     // %A = icmp ne i32* %PTR, null
1950     // call void @llvm.assume(i1 %A)
1951     // into
1952     // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
1953     if (EnableKnowledgeRetention &&
1954         match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
1955         Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
1956       if (auto *Replacement = buildAssumeFromKnowledge(
1957               {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
1958 
1959         Replacement->insertBefore(Next);
1960         AC.registerAssumption(Replacement);
1961         return RemoveConditionFromAssume(II);
1962       }
1963     }
1964 
1965     // Convert alignment assume like:
1966     // %B = ptrtoint i32* %A to i64
1967     // %C = and i64 %B, Constant
1968     // %D = icmp eq i64 %C, 0
1969     // call void @llvm.assume(i1 %D)
1970     // into
1971     // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64  Constant + 1)]
1972     uint64_t AlignMask;
1973     if (EnableKnowledgeRetention &&
1974         match(IIOperand,
1975               m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
1976                     m_Zero())) &&
1977         Pred == CmpInst::ICMP_EQ) {
1978       if (isPowerOf2_64(AlignMask + 1)) {
1979         uint64_t Offset = 0;
1980         match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
1981         if (match(A, m_PtrToInt(m_Value(A)))) {
1982           /// Note: this doesn't preserve the offset information but merges
1983           /// offset and alignment.
1984           /// TODO: we can generate a GEP instead of merging the alignment with
1985           /// the offset.
1986           RetainedKnowledge RK{Attribute::Alignment,
1987                                (unsigned)MinAlign(Offset, AlignMask + 1), A};
1988           if (auto *Replacement =
1989                   buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
1990 
1991             Replacement->insertAfter(II);
1992             AC.registerAssumption(Replacement);
1993           }
1994           return RemoveConditionFromAssume(II);
1995         }
1996       }
1997     }
1998 
1999     /// Canonicalize Knowledge in operand bundles.
2000     if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2001       for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2002         auto &BOI = II->bundle_op_info_begin()[Idx];
2003         RetainedKnowledge RK =
2004           llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2005         if (BOI.End - BOI.Begin > 2)
2006           continue; // Prevent reducing knowledge in an align with offset since
2007                     // extracting a RetainedKnowledge form them looses offset
2008                     // information
2009         RetainedKnowledge CanonRK =
2010           llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2011                                           &getAssumptionCache(),
2012                                           &getDominatorTree());
2013         if (CanonRK == RK)
2014           continue;
2015         if (!CanonRK) {
2016           if (BOI.End - BOI.Begin > 0) {
2017             Worklist.pushValue(II->op_begin()[BOI.Begin]);
2018             Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2019           }
2020           continue;
2021         }
2022         assert(RK.AttrKind == CanonRK.AttrKind);
2023         if (BOI.End - BOI.Begin > 0)
2024           II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2025         if (BOI.End - BOI.Begin > 1)
2026           II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2027               Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2028         if (RK.WasOn)
2029           Worklist.pushValue(RK.WasOn);
2030         return II;
2031       }
2032     }
2033 
2034     // If there is a dominating assume with the same condition as this one,
2035     // then this one is redundant, and should be removed.
2036     KnownBits Known(1);
2037     computeKnownBits(IIOperand, Known, 0, II);
2038     if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2039       return eraseInstFromFunction(*II);
2040 
2041     // Update the cache of affected values for this assumption (we might be
2042     // here because we just simplified the condition).
2043     AC.updateAffectedValues(cast<AssumeInst>(II));
2044     break;
2045   }
2046   case Intrinsic::experimental_guard: {
2047     // Is this guard followed by another guard?  We scan forward over a small
2048     // fixed window of instructions to handle common cases with conditions
2049     // computed between guards.
2050     Instruction *NextInst = II->getNextNonDebugInstruction();
2051     for (unsigned i = 0; i < GuardWideningWindow; i++) {
2052       // Note: Using context-free form to avoid compile time blow up
2053       if (!isSafeToSpeculativelyExecute(NextInst))
2054         break;
2055       NextInst = NextInst->getNextNonDebugInstruction();
2056     }
2057     Value *NextCond = nullptr;
2058     if (match(NextInst,
2059               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2060       Value *CurrCond = II->getArgOperand(0);
2061 
2062       // Remove a guard that it is immediately preceded by an identical guard.
2063       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
2064       if (CurrCond != NextCond) {
2065         Instruction *MoveI = II->getNextNonDebugInstruction();
2066         while (MoveI != NextInst) {
2067           auto *Temp = MoveI;
2068           MoveI = MoveI->getNextNonDebugInstruction();
2069           Temp->moveBefore(II);
2070         }
2071         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
2072       }
2073       eraseInstFromFunction(*NextInst);
2074       return II;
2075     }
2076     break;
2077   }
2078   case Intrinsic::experimental_vector_insert: {
2079     Value *Vec = II->getArgOperand(0);
2080     Value *SubVec = II->getArgOperand(1);
2081     Value *Idx = II->getArgOperand(2);
2082     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2083     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2084     auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
2085 
2086     // Only canonicalize if the destination vector, Vec, and SubVec are all
2087     // fixed vectors.
2088     if (DstTy && VecTy && SubVecTy) {
2089       unsigned DstNumElts = DstTy->getNumElements();
2090       unsigned VecNumElts = VecTy->getNumElements();
2091       unsigned SubVecNumElts = SubVecTy->getNumElements();
2092       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2093 
2094       // An insert that entirely overwrites Vec with SubVec is a nop.
2095       if (VecNumElts == SubVecNumElts)
2096         return replaceInstUsesWith(CI, SubVec);
2097 
2098       // Widen SubVec into a vector of the same width as Vec, since
2099       // shufflevector requires the two input vectors to be the same width.
2100       // Elements beyond the bounds of SubVec within the widened vector are
2101       // undefined.
2102       SmallVector<int, 8> WidenMask;
2103       unsigned i;
2104       for (i = 0; i != SubVecNumElts; ++i)
2105         WidenMask.push_back(i);
2106       for (; i != VecNumElts; ++i)
2107         WidenMask.push_back(UndefMaskElem);
2108 
2109       Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
2110 
2111       SmallVector<int, 8> Mask;
2112       for (unsigned i = 0; i != IdxN; ++i)
2113         Mask.push_back(i);
2114       for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
2115         Mask.push_back(i);
2116       for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
2117         Mask.push_back(i);
2118 
2119       Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
2120       return replaceInstUsesWith(CI, Shuffle);
2121     }
2122     break;
2123   }
2124   case Intrinsic::experimental_vector_extract: {
2125     Value *Vec = II->getArgOperand(0);
2126     Value *Idx = II->getArgOperand(1);
2127 
2128     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2129     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2130 
2131     // Only canonicalize if the the destination vector and Vec are fixed
2132     // vectors.
2133     if (DstTy && VecTy) {
2134       unsigned DstNumElts = DstTy->getNumElements();
2135       unsigned VecNumElts = VecTy->getNumElements();
2136       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2137 
2138       // Extracting the entirety of Vec is a nop.
2139       if (VecNumElts == DstNumElts) {
2140         replaceInstUsesWith(CI, Vec);
2141         return eraseInstFromFunction(CI);
2142       }
2143 
2144       SmallVector<int, 8> Mask;
2145       for (unsigned i = 0; i != DstNumElts; ++i)
2146         Mask.push_back(IdxN + i);
2147 
2148       Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
2149       return replaceInstUsesWith(CI, Shuffle);
2150     }
2151     break;
2152   }
2153   case Intrinsic::experimental_vector_reverse: {
2154     Value *BO0, *BO1, *X, *Y;
2155     Value *Vec = II->getArgOperand(0);
2156     if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
2157       auto *OldBinOp = cast<BinaryOperator>(Vec);
2158       if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2159                          m_Value(X)))) {
2160         // rev(binop rev(X), rev(Y)) --> binop X, Y
2161         if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2162                            m_Value(Y))))
2163           return replaceInstUsesWith(CI,
2164                                      BinaryOperator::CreateWithCopiedFlags(
2165                                          OldBinOp->getOpcode(), X, Y, OldBinOp,
2166                                          OldBinOp->getName(), II));
2167         // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
2168         if (isSplatValue(BO1))
2169           return replaceInstUsesWith(CI,
2170                                      BinaryOperator::CreateWithCopiedFlags(
2171                                          OldBinOp->getOpcode(), X, BO1,
2172                                          OldBinOp, OldBinOp->getName(), II));
2173       }
2174       // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
2175       if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2176                          m_Value(Y))) &&
2177           isSplatValue(BO0))
2178         return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
2179                                            OldBinOp->getOpcode(), BO0, Y,
2180                                            OldBinOp, OldBinOp->getName(), II));
2181     }
2182     // rev(unop rev(X)) --> unop X
2183     if (match(Vec, m_OneUse(m_UnOp(
2184                        m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2185                            m_Value(X)))))) {
2186       auto *OldUnOp = cast<UnaryOperator>(Vec);
2187       auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
2188           OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
2189       return replaceInstUsesWith(CI, NewUnOp);
2190     }
2191     break;
2192   }
2193   case Intrinsic::vector_reduce_or:
2194   case Intrinsic::vector_reduce_and: {
2195     // Canonicalize logical or/and reductions:
2196     // Or reduction for i1 is represented as:
2197     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2198     // %res = cmp ne iReduxWidth %val, 0
2199     // And reduction for i1 is represented as:
2200     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2201     // %res = cmp eq iReduxWidth %val, 11111
2202     Value *Arg = II->getArgOperand(0);
2203     Value *Vect;
2204     if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2205       if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2206         if (FTy->getElementType() == Builder.getInt1Ty()) {
2207           Value *Res = Builder.CreateBitCast(
2208               Vect, Builder.getIntNTy(FTy->getNumElements()));
2209           if (IID == Intrinsic::vector_reduce_and) {
2210             Res = Builder.CreateICmpEQ(
2211                 Res, ConstantInt::getAllOnesValue(Res->getType()));
2212           } else {
2213             assert(IID == Intrinsic::vector_reduce_or &&
2214                    "Expected or reduction.");
2215             Res = Builder.CreateIsNotNull(Res);
2216           }
2217           if (Arg != Vect)
2218             Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2219                                      II->getType());
2220           return replaceInstUsesWith(CI, Res);
2221         }
2222     }
2223     LLVM_FALLTHROUGH;
2224   }
2225   case Intrinsic::vector_reduce_add: {
2226     if (IID == Intrinsic::vector_reduce_add) {
2227       // Convert vector_reduce_add(ZExt(<n x i1>)) to
2228       // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2229       // Convert vector_reduce_add(SExt(<n x i1>)) to
2230       // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2231       // Convert vector_reduce_add(<n x i1>) to
2232       // Trunc(ctpop(bitcast <n x i1> to in)).
2233       Value *Arg = II->getArgOperand(0);
2234       Value *Vect;
2235       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2236         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2237           if (FTy->getElementType() == Builder.getInt1Ty()) {
2238             Value *V = Builder.CreateBitCast(
2239                 Vect, Builder.getIntNTy(FTy->getNumElements()));
2240             Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
2241             if (Res->getType() != II->getType())
2242               Res = Builder.CreateZExtOrTrunc(Res, II->getType());
2243             if (Arg != Vect &&
2244                 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
2245               Res = Builder.CreateNeg(Res);
2246             return replaceInstUsesWith(CI, Res);
2247           }
2248       }
2249     }
2250     LLVM_FALLTHROUGH;
2251   }
2252   case Intrinsic::vector_reduce_xor: {
2253     if (IID == Intrinsic::vector_reduce_xor) {
2254       // Exclusive disjunction reduction over the vector with
2255       // (potentially-extended) i1 element type is actually a
2256       // (potentially-extended) arithmetic `add` reduction over the original
2257       // non-extended value:
2258       //   vector_reduce_xor(?ext(<n x i1>))
2259       //     -->
2260       //   ?ext(vector_reduce_add(<n x i1>))
2261       Value *Arg = II->getArgOperand(0);
2262       Value *Vect;
2263       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2264         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2265           if (FTy->getElementType() == Builder.getInt1Ty()) {
2266             Value *Res = Builder.CreateAddReduce(Vect);
2267             if (Arg != Vect)
2268               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2269                                        II->getType());
2270             return replaceInstUsesWith(CI, Res);
2271           }
2272       }
2273     }
2274     LLVM_FALLTHROUGH;
2275   }
2276   case Intrinsic::vector_reduce_mul: {
2277     if (IID == Intrinsic::vector_reduce_mul) {
2278       // Multiplicative reduction over the vector with (potentially-extended)
2279       // i1 element type is actually a (potentially zero-extended)
2280       // logical `and` reduction over the original non-extended value:
2281       //   vector_reduce_mul(?ext(<n x i1>))
2282       //     -->
2283       //   zext(vector_reduce_and(<n x i1>))
2284       Value *Arg = II->getArgOperand(0);
2285       Value *Vect;
2286       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2287         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2288           if (FTy->getElementType() == Builder.getInt1Ty()) {
2289             Value *Res = Builder.CreateAndReduce(Vect);
2290             if (Res->getType() != II->getType())
2291               Res = Builder.CreateZExt(Res, II->getType());
2292             return replaceInstUsesWith(CI, Res);
2293           }
2294       }
2295     }
2296     LLVM_FALLTHROUGH;
2297   }
2298   case Intrinsic::vector_reduce_umin:
2299   case Intrinsic::vector_reduce_umax: {
2300     if (IID == Intrinsic::vector_reduce_umin ||
2301         IID == Intrinsic::vector_reduce_umax) {
2302       // UMin/UMax reduction over the vector with (potentially-extended)
2303       // i1 element type is actually a (potentially-extended)
2304       // logical `and`/`or` reduction over the original non-extended value:
2305       //   vector_reduce_u{min,max}(?ext(<n x i1>))
2306       //     -->
2307       //   ?ext(vector_reduce_{and,or}(<n x i1>))
2308       Value *Arg = II->getArgOperand(0);
2309       Value *Vect;
2310       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2311         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2312           if (FTy->getElementType() == Builder.getInt1Ty()) {
2313             Value *Res = IID == Intrinsic::vector_reduce_umin
2314                              ? Builder.CreateAndReduce(Vect)
2315                              : Builder.CreateOrReduce(Vect);
2316             if (Arg != Vect)
2317               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2318                                        II->getType());
2319             return replaceInstUsesWith(CI, Res);
2320           }
2321       }
2322     }
2323     LLVM_FALLTHROUGH;
2324   }
2325   case Intrinsic::vector_reduce_smin:
2326   case Intrinsic::vector_reduce_smax: {
2327     if (IID == Intrinsic::vector_reduce_smin ||
2328         IID == Intrinsic::vector_reduce_smax) {
2329       // SMin/SMax reduction over the vector with (potentially-extended)
2330       // i1 element type is actually a (potentially-extended)
2331       // logical `and`/`or` reduction over the original non-extended value:
2332       //   vector_reduce_s{min,max}(<n x i1>)
2333       //     -->
2334       //   vector_reduce_{or,and}(<n x i1>)
2335       // and
2336       //   vector_reduce_s{min,max}(sext(<n x i1>))
2337       //     -->
2338       //   sext(vector_reduce_{or,and}(<n x i1>))
2339       // and
2340       //   vector_reduce_s{min,max}(zext(<n x i1>))
2341       //     -->
2342       //   zext(vector_reduce_{and,or}(<n x i1>))
2343       Value *Arg = II->getArgOperand(0);
2344       Value *Vect;
2345       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2346         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2347           if (FTy->getElementType() == Builder.getInt1Ty()) {
2348             Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
2349             if (Arg != Vect)
2350               ExtOpc = cast<CastInst>(Arg)->getOpcode();
2351             Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
2352                           (ExtOpc == Instruction::CastOps::ZExt))
2353                              ? Builder.CreateAndReduce(Vect)
2354                              : Builder.CreateOrReduce(Vect);
2355             if (Arg != Vect)
2356               Res = Builder.CreateCast(ExtOpc, Res, II->getType());
2357             return replaceInstUsesWith(CI, Res);
2358           }
2359       }
2360     }
2361     LLVM_FALLTHROUGH;
2362   }
2363   case Intrinsic::vector_reduce_fmax:
2364   case Intrinsic::vector_reduce_fmin:
2365   case Intrinsic::vector_reduce_fadd:
2366   case Intrinsic::vector_reduce_fmul: {
2367     bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
2368                               IID != Intrinsic::vector_reduce_fmul) ||
2369                              II->hasAllowReassoc();
2370     const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
2371                              IID == Intrinsic::vector_reduce_fmul)
2372                                 ? 1
2373                                 : 0;
2374     Value *Arg = II->getArgOperand(ArgIdx);
2375     Value *V;
2376     ArrayRef<int> Mask;
2377     if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
2378         !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
2379         !cast<ShuffleVectorInst>(Arg)->isSingleSource())
2380       break;
2381     int Sz = Mask.size();
2382     SmallBitVector UsedIndices(Sz);
2383     for (int Idx : Mask) {
2384       if (Idx == UndefMaskElem || UsedIndices.test(Idx))
2385         break;
2386       UsedIndices.set(Idx);
2387     }
2388     // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
2389     // other changes.
2390     if (UsedIndices.all()) {
2391       replaceUse(II->getOperandUse(ArgIdx), V);
2392       return nullptr;
2393     }
2394     break;
2395   }
2396   default: {
2397     // Handle target specific intrinsics
2398     Optional<Instruction *> V = targetInstCombineIntrinsic(*II);
2399     if (V.hasValue())
2400       return V.getValue();
2401     break;
2402   }
2403   }
2404   // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
2405   // context, so it is handled in visitCallBase and we should trigger it.
2406   return visitCallBase(*II);
2407 }
2408 
2409 // Fence instruction simplification
2410 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
2411   // Remove identical consecutive fences.
2412   Instruction *Next = FI.getNextNonDebugInstruction();
2413   if (auto *NFI = dyn_cast<FenceInst>(Next))
2414     if (FI.isIdenticalTo(NFI))
2415       return eraseInstFromFunction(FI);
2416   return nullptr;
2417 }
2418 
2419 // InvokeInst simplification
2420 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
2421   return visitCallBase(II);
2422 }
2423 
2424 // CallBrInst simplification
2425 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2426   return visitCallBase(CBI);
2427 }
2428 
2429 /// If this cast does not affect the value passed through the varargs area, we
2430 /// can eliminate the use of the cast.
2431 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2432                                          const DataLayout &DL,
2433                                          const CastInst *const CI,
2434                                          const int ix) {
2435   if (!CI->isLosslessCast())
2436     return false;
2437 
2438   // If this is a GC intrinsic, avoid munging types.  We need types for
2439   // statepoint reconstruction in SelectionDAG.
2440   // TODO: This is probably something which should be expanded to all
2441   // intrinsics since the entire point of intrinsics is that
2442   // they are understandable by the optimizer.
2443   if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2444       isa<GCResultInst>(Call))
2445     return false;
2446 
2447   // Opaque pointers are compatible with any byval types.
2448   PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType());
2449   if (SrcTy->isOpaque())
2450     return true;
2451 
2452   // The size of ByVal or InAlloca arguments is derived from the type, so we
2453   // can't change to a type with a different size.  If the size were
2454   // passed explicitly we could avoid this check.
2455   if (!Call.isPassPointeeByValueArgument(ix))
2456     return true;
2457 
2458   // The transform currently only handles type replacement for byval, not other
2459   // type-carrying attributes.
2460   if (!Call.isByValArgument(ix))
2461     return false;
2462 
2463   Type *SrcElemTy = SrcTy->getElementType();
2464   Type *DstElemTy = Call.getParamByValType(ix);
2465   if (!SrcElemTy->isSized() || !DstElemTy->isSized())
2466     return false;
2467   if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy))
2468     return false;
2469   return true;
2470 }
2471 
2472 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2473   if (!CI->getCalledFunction()) return nullptr;
2474 
2475   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2476     replaceInstUsesWith(*From, With);
2477   };
2478   auto InstCombineErase = [this](Instruction *I) {
2479     eraseInstFromFunction(*I);
2480   };
2481   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2482                                InstCombineErase);
2483   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2484     ++NumSimplified;
2485     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2486   }
2487 
2488   return nullptr;
2489 }
2490 
2491 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2492   // Strip off at most one level of pointer casts, looking for an alloca.  This
2493   // is good enough in practice and simpler than handling any number of casts.
2494   Value *Underlying = TrampMem->stripPointerCasts();
2495   if (Underlying != TrampMem &&
2496       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2497     return nullptr;
2498   if (!isa<AllocaInst>(Underlying))
2499     return nullptr;
2500 
2501   IntrinsicInst *InitTrampoline = nullptr;
2502   for (User *U : TrampMem->users()) {
2503     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2504     if (!II)
2505       return nullptr;
2506     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2507       if (InitTrampoline)
2508         // More than one init_trampoline writes to this value.  Give up.
2509         return nullptr;
2510       InitTrampoline = II;
2511       continue;
2512     }
2513     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2514       // Allow any number of calls to adjust.trampoline.
2515       continue;
2516     return nullptr;
2517   }
2518 
2519   // No call to init.trampoline found.
2520   if (!InitTrampoline)
2521     return nullptr;
2522 
2523   // Check that the alloca is being used in the expected way.
2524   if (InitTrampoline->getOperand(0) != TrampMem)
2525     return nullptr;
2526 
2527   return InitTrampoline;
2528 }
2529 
2530 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2531                                                Value *TrampMem) {
2532   // Visit all the previous instructions in the basic block, and try to find a
2533   // init.trampoline which has a direct path to the adjust.trampoline.
2534   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2535                             E = AdjustTramp->getParent()->begin();
2536        I != E;) {
2537     Instruction *Inst = &*--I;
2538     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2539       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2540           II->getOperand(0) == TrampMem)
2541         return II;
2542     if (Inst->mayWriteToMemory())
2543       return nullptr;
2544   }
2545   return nullptr;
2546 }
2547 
2548 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2549 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2550 // to a direct call to a function.  Otherwise return NULL.
2551 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2552   Callee = Callee->stripPointerCasts();
2553   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2554   if (!AdjustTramp ||
2555       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2556     return nullptr;
2557 
2558   Value *TrampMem = AdjustTramp->getOperand(0);
2559 
2560   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2561     return IT;
2562   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2563     return IT;
2564   return nullptr;
2565 }
2566 
2567 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
2568   unsigned NumArgs = Call.arg_size();
2569   ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
2570   ConstantInt *Op1C =
2571       (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
2572   // Bail out if the allocation size is zero (or an invalid alignment of zero
2573   // with aligned_alloc).
2574   if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
2575     return;
2576 
2577   if (isMallocLikeFn(&Call, TLI) && Op0C) {
2578     if (isOpNewLikeFn(&Call, TLI))
2579       Call.addRetAttr(Attribute::getWithDereferenceableBytes(
2580           Call.getContext(), Op0C->getZExtValue()));
2581     else
2582       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2583           Call.getContext(), Op0C->getZExtValue()));
2584   } else if (isAlignedAllocLikeFn(&Call, TLI)) {
2585     if (Op1C)
2586       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2587           Call.getContext(), Op1C->getZExtValue()));
2588     // Add alignment attribute if alignment is a power of two constant.
2589     if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment) &&
2590         isKnownNonZero(Call.getOperand(1), DL, 0, &AC, &Call, &DT)) {
2591       uint64_t AlignmentVal = Op0C->getZExtValue();
2592       if (llvm::isPowerOf2_64(AlignmentVal)) {
2593         Call.removeRetAttr(Attribute::Alignment);
2594         Call.addRetAttr(Attribute::getWithAlignment(Call.getContext(),
2595                                                     Align(AlignmentVal)));
2596       }
2597     }
2598   } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
2599     Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2600         Call.getContext(), Op1C->getZExtValue()));
2601   } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
2602     bool Overflow;
2603     const APInt &N = Op0C->getValue();
2604     APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
2605     if (!Overflow)
2606       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2607           Call.getContext(), Size.getZExtValue()));
2608   } else if (isStrdupLikeFn(&Call, TLI)) {
2609     uint64_t Len = GetStringLength(Call.getOperand(0));
2610     if (Len) {
2611       // strdup
2612       if (NumArgs == 1)
2613         Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2614             Call.getContext(), Len));
2615       // strndup
2616       else if (NumArgs == 2 && Op1C)
2617         Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2618             Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
2619     }
2620   }
2621 }
2622 
2623 /// Improvements for call, callbr and invoke instructions.
2624 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
2625   if (isAllocationFn(&Call, &TLI))
2626     annotateAnyAllocSite(Call, &TLI);
2627 
2628   bool Changed = false;
2629 
2630   // Mark any parameters that are known to be non-null with the nonnull
2631   // attribute.  This is helpful for inlining calls to functions with null
2632   // checks on their arguments.
2633   SmallVector<unsigned, 4> ArgNos;
2634   unsigned ArgNo = 0;
2635 
2636   for (Value *V : Call.args()) {
2637     if (V->getType()->isPointerTy() &&
2638         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
2639         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
2640       ArgNos.push_back(ArgNo);
2641     ArgNo++;
2642   }
2643 
2644   assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
2645 
2646   if (!ArgNos.empty()) {
2647     AttributeList AS = Call.getAttributes();
2648     LLVMContext &Ctx = Call.getContext();
2649     AS = AS.addParamAttribute(Ctx, ArgNos,
2650                               Attribute::get(Ctx, Attribute::NonNull));
2651     Call.setAttributes(AS);
2652     Changed = true;
2653   }
2654 
2655   // If the callee is a pointer to a function, attempt to move any casts to the
2656   // arguments of the call/callbr/invoke.
2657   Value *Callee = Call.getCalledOperand();
2658   if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
2659     return nullptr;
2660 
2661   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
2662     // Remove the convergent attr on calls when the callee is not convergent.
2663     if (Call.isConvergent() && !CalleeF->isConvergent() &&
2664         !CalleeF->isIntrinsic()) {
2665       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
2666                         << "\n");
2667       Call.setNotConvergent();
2668       return &Call;
2669     }
2670 
2671     // If the call and callee calling conventions don't match, and neither one
2672     // of the calling conventions is compatible with C calling convention
2673     // this call must be unreachable, as the call is undefined.
2674     if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
2675          !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
2676            TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
2677          !(Call.getCallingConv() == llvm::CallingConv::C &&
2678            TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
2679         // Only do this for calls to a function with a body.  A prototype may
2680         // not actually end up matching the implementation's calling conv for a
2681         // variety of reasons (e.g. it may be written in assembly).
2682         !CalleeF->isDeclaration()) {
2683       Instruction *OldCall = &Call;
2684       CreateNonTerminatorUnreachable(OldCall);
2685       // If OldCall does not return void then replaceInstUsesWith poison.
2686       // This allows ValueHandlers and custom metadata to adjust itself.
2687       if (!OldCall->getType()->isVoidTy())
2688         replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
2689       if (isa<CallInst>(OldCall))
2690         return eraseInstFromFunction(*OldCall);
2691 
2692       // We cannot remove an invoke or a callbr, because it would change thexi
2693       // CFG, just change the callee to a null pointer.
2694       cast<CallBase>(OldCall)->setCalledFunction(
2695           CalleeF->getFunctionType(),
2696           Constant::getNullValue(CalleeF->getType()));
2697       return nullptr;
2698     }
2699   }
2700 
2701   // Calling a null function pointer is undefined if a null address isn't
2702   // dereferenceable.
2703   if ((isa<ConstantPointerNull>(Callee) &&
2704        !NullPointerIsDefined(Call.getFunction())) ||
2705       isa<UndefValue>(Callee)) {
2706     // If Call does not return void then replaceInstUsesWith poison.
2707     // This allows ValueHandlers and custom metadata to adjust itself.
2708     if (!Call.getType()->isVoidTy())
2709       replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
2710 
2711     if (Call.isTerminator()) {
2712       // Can't remove an invoke or callbr because we cannot change the CFG.
2713       return nullptr;
2714     }
2715 
2716     // This instruction is not reachable, just remove it.
2717     CreateNonTerminatorUnreachable(&Call);
2718     return eraseInstFromFunction(Call);
2719   }
2720 
2721   if (IntrinsicInst *II = findInitTrampoline(Callee))
2722     return transformCallThroughTrampoline(Call, *II);
2723 
2724   // TODO: Drop this transform once opaque pointer transition is done.
2725   FunctionType *FTy = Call.getFunctionType();
2726   if (FTy->isVarArg()) {
2727     int ix = FTy->getNumParams();
2728     // See if we can optimize any arguments passed through the varargs area of
2729     // the call.
2730     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
2731          I != E; ++I, ++ix) {
2732       CastInst *CI = dyn_cast<CastInst>(*I);
2733       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
2734         replaceUse(*I, CI->getOperand(0));
2735 
2736         // Update the byval type to match the pointer type.
2737         // Not necessary for opaque pointers.
2738         PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType());
2739         if (!NewTy->isOpaque() && Call.isByValArgument(ix)) {
2740           Call.removeParamAttr(ix, Attribute::ByVal);
2741           Call.addParamAttr(
2742               ix, Attribute::getWithByValType(
2743                       Call.getContext(), NewTy->getElementType()));
2744         }
2745         Changed = true;
2746       }
2747     }
2748   }
2749 
2750   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
2751     InlineAsm *IA = cast<InlineAsm>(Callee);
2752     if (!IA->canThrow()) {
2753       // Normal inline asm calls cannot throw - mark them
2754       // 'nounwind'.
2755       Call.setDoesNotThrow();
2756       Changed = true;
2757     }
2758   }
2759 
2760   // Try to optimize the call if possible, we require DataLayout for most of
2761   // this.  None of these calls are seen as possibly dead so go ahead and
2762   // delete the instruction now.
2763   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
2764     Instruction *I = tryOptimizeCall(CI);
2765     // If we changed something return the result, etc. Otherwise let
2766     // the fallthrough check.
2767     if (I) return eraseInstFromFunction(*I);
2768   }
2769 
2770   if (!Call.use_empty() && !Call.isMustTailCall())
2771     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
2772       Type *CallTy = Call.getType();
2773       Type *RetArgTy = ReturnedArg->getType();
2774       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
2775         return replaceInstUsesWith(
2776             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
2777     }
2778 
2779   if (isAllocLikeFn(&Call, &TLI))
2780     return visitAllocSite(Call);
2781 
2782   // Handle intrinsics which can be used in both call and invoke context.
2783   switch (Call.getIntrinsicID()) {
2784   case Intrinsic::experimental_gc_statepoint: {
2785     GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
2786     SmallPtrSet<Value *, 32> LiveGcValues;
2787     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2788       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2789 
2790       // Remove the relocation if unused.
2791       if (GCR.use_empty()) {
2792         eraseInstFromFunction(GCR);
2793         continue;
2794       }
2795 
2796       Value *DerivedPtr = GCR.getDerivedPtr();
2797       Value *BasePtr = GCR.getBasePtr();
2798 
2799       // Undef is undef, even after relocation.
2800       if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
2801         replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
2802         eraseInstFromFunction(GCR);
2803         continue;
2804       }
2805 
2806       if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
2807         // The relocation of null will be null for most any collector.
2808         // TODO: provide a hook for this in GCStrategy.  There might be some
2809         // weird collector this property does not hold for.
2810         if (isa<ConstantPointerNull>(DerivedPtr)) {
2811           // Use null-pointer of gc_relocate's type to replace it.
2812           replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
2813           eraseInstFromFunction(GCR);
2814           continue;
2815         }
2816 
2817         // isKnownNonNull -> nonnull attribute
2818         if (!GCR.hasRetAttr(Attribute::NonNull) &&
2819             isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
2820           GCR.addRetAttr(Attribute::NonNull);
2821           // We discovered new fact, re-check users.
2822           Worklist.pushUsersToWorkList(GCR);
2823         }
2824       }
2825 
2826       // If we have two copies of the same pointer in the statepoint argument
2827       // list, canonicalize to one.  This may let us common gc.relocates.
2828       if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
2829           GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
2830         auto *OpIntTy = GCR.getOperand(2)->getType();
2831         GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
2832       }
2833 
2834       // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
2835       // Canonicalize on the type from the uses to the defs
2836 
2837       // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
2838       LiveGcValues.insert(BasePtr);
2839       LiveGcValues.insert(DerivedPtr);
2840     }
2841     Optional<OperandBundleUse> Bundle =
2842         GCSP.getOperandBundle(LLVMContext::OB_gc_live);
2843     unsigned NumOfGCLives = LiveGcValues.size();
2844     if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size())
2845       break;
2846     // We can reduce the size of gc live bundle.
2847     DenseMap<Value *, unsigned> Val2Idx;
2848     std::vector<Value *> NewLiveGc;
2849     for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) {
2850       Value *V = Bundle->Inputs[I];
2851       if (Val2Idx.count(V))
2852         continue;
2853       if (LiveGcValues.count(V)) {
2854         Val2Idx[V] = NewLiveGc.size();
2855         NewLiveGc.push_back(V);
2856       } else
2857         Val2Idx[V] = NumOfGCLives;
2858     }
2859     // Update all gc.relocates
2860     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2861       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2862       Value *BasePtr = GCR.getBasePtr();
2863       assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
2864              "Missed live gc for base pointer");
2865       auto *OpIntTy1 = GCR.getOperand(1)->getType();
2866       GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
2867       Value *DerivedPtr = GCR.getDerivedPtr();
2868       assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
2869              "Missed live gc for derived pointer");
2870       auto *OpIntTy2 = GCR.getOperand(2)->getType();
2871       GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
2872     }
2873     // Create new statepoint instruction.
2874     OperandBundleDef NewBundle("gc-live", NewLiveGc);
2875     return CallBase::Create(&Call, NewBundle);
2876   }
2877   default: { break; }
2878   }
2879 
2880   return Changed ? &Call : nullptr;
2881 }
2882 
2883 /// If the callee is a constexpr cast of a function, attempt to move the cast to
2884 /// the arguments of the call/callbr/invoke.
2885 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
2886   auto *Callee =
2887       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2888   if (!Callee)
2889     return false;
2890 
2891   // If this is a call to a thunk function, don't remove the cast. Thunks are
2892   // used to transparently forward all incoming parameters and outgoing return
2893   // values, so it's important to leave the cast in place.
2894   if (Callee->hasFnAttribute("thunk"))
2895     return false;
2896 
2897   // If this is a musttail call, the callee's prototype must match the caller's
2898   // prototype with the exception of pointee types. The code below doesn't
2899   // implement that, so we can't do this transform.
2900   // TODO: Do the transform if it only requires adding pointer casts.
2901   if (Call.isMustTailCall())
2902     return false;
2903 
2904   Instruction *Caller = &Call;
2905   const AttributeList &CallerPAL = Call.getAttributes();
2906 
2907   // Okay, this is a cast from a function to a different type.  Unless doing so
2908   // would cause a type conversion of one of our arguments, change this call to
2909   // be a direct call with arguments casted to the appropriate types.
2910   FunctionType *FT = Callee->getFunctionType();
2911   Type *OldRetTy = Caller->getType();
2912   Type *NewRetTy = FT->getReturnType();
2913 
2914   // Check to see if we are changing the return type...
2915   if (OldRetTy != NewRetTy) {
2916 
2917     if (NewRetTy->isStructTy())
2918       return false; // TODO: Handle multiple return values.
2919 
2920     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2921       if (Callee->isDeclaration())
2922         return false;   // Cannot transform this return value.
2923 
2924       if (!Caller->use_empty() &&
2925           // void -> non-void is handled specially
2926           !NewRetTy->isVoidTy())
2927         return false;   // Cannot transform this return value.
2928     }
2929 
2930     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2931       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
2932       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2933         return false;   // Attribute not compatible with transformed value.
2934     }
2935 
2936     // If the callbase is an invoke/callbr instruction, and the return value is
2937     // used by a PHI node in a successor, we cannot change the return type of
2938     // the call because there is no place to put the cast instruction (without
2939     // breaking the critical edge).  Bail out in this case.
2940     if (!Caller->use_empty()) {
2941       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2942         for (User *U : II->users())
2943           if (PHINode *PN = dyn_cast<PHINode>(U))
2944             if (PN->getParent() == II->getNormalDest() ||
2945                 PN->getParent() == II->getUnwindDest())
2946               return false;
2947       // FIXME: Be conservative for callbr to avoid a quadratic search.
2948       if (isa<CallBrInst>(Caller))
2949         return false;
2950     }
2951   }
2952 
2953   unsigned NumActualArgs = Call.arg_size();
2954   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2955 
2956   // Prevent us turning:
2957   // declare void @takes_i32_inalloca(i32* inalloca)
2958   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
2959   //
2960   // into:
2961   //  call void @takes_i32_inalloca(i32* null)
2962   //
2963   //  Similarly, avoid folding away bitcasts of byval calls.
2964   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
2965       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) ||
2966       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
2967     return false;
2968 
2969   auto AI = Call.arg_begin();
2970   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2971     Type *ParamTy = FT->getParamType(i);
2972     Type *ActTy = (*AI)->getType();
2973 
2974     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
2975       return false;   // Cannot transform this parameter value.
2976 
2977     if (AttrBuilder(CallerPAL.getParamAttrs(i))
2978             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
2979       return false;   // Attribute not compatible with transformed value.
2980 
2981     if (Call.isInAllocaArgument(i))
2982       return false;   // Cannot transform to and from inalloca.
2983 
2984     if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
2985       return false;
2986 
2987     // If the parameter is passed as a byval argument, then we have to have a
2988     // sized type and the sized type has to have the same size as the old type.
2989     if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
2990       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
2991       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
2992         return false;
2993 
2994       Type *CurElTy = Call.getParamByValType(i);
2995       if (DL.getTypeAllocSize(CurElTy) !=
2996           DL.getTypeAllocSize(ParamPTy->getElementType()))
2997         return false;
2998     }
2999   }
3000 
3001   if (Callee->isDeclaration()) {
3002     // Do not delete arguments unless we have a function body.
3003     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3004       return false;
3005 
3006     // If the callee is just a declaration, don't change the varargsness of the
3007     // call.  We don't want to introduce a varargs call where one doesn't
3008     // already exist.
3009     PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType());
3010     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
3011       return false;
3012 
3013     // If both the callee and the cast type are varargs, we still have to make
3014     // sure the number of fixed parameters are the same or we have the same
3015     // ABI issues as if we introduce a varargs call.
3016     if (FT->isVarArg() &&
3017         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
3018         FT->getNumParams() !=
3019         cast<FunctionType>(APTy->getElementType())->getNumParams())
3020       return false;
3021   }
3022 
3023   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3024       !CallerPAL.isEmpty()) {
3025     // In this case we have more arguments than the new function type, but we
3026     // won't be dropping them.  Check that these extra arguments have attributes
3027     // that are compatible with being a vararg call argument.
3028     unsigned SRetIdx;
3029     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3030         SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3031       return false;
3032   }
3033 
3034   // Okay, we decided that this is a safe thing to do: go ahead and start
3035   // inserting cast instructions as necessary.
3036   SmallVector<Value *, 8> Args;
3037   SmallVector<AttributeSet, 8> ArgAttrs;
3038   Args.reserve(NumActualArgs);
3039   ArgAttrs.reserve(NumActualArgs);
3040 
3041   // Get any return attributes.
3042   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
3043 
3044   // If the return value is not being used, the type may not be compatible
3045   // with the existing attributes.  Wipe out any problematic attributes.
3046   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
3047 
3048   LLVMContext &Ctx = Call.getContext();
3049   AI = Call.arg_begin();
3050   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
3051     Type *ParamTy = FT->getParamType(i);
3052 
3053     Value *NewArg = *AI;
3054     if ((*AI)->getType() != ParamTy)
3055       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
3056     Args.push_back(NewArg);
3057 
3058     // Add any parameter attributes.
3059     if (CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
3060       AttrBuilder AB(CallerPAL.getParamAttrs(i));
3061       AB.addByValAttr(NewArg->getType()->getPointerElementType());
3062       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
3063     } else
3064       ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3065   }
3066 
3067   // If the function takes more arguments than the call was taking, add them
3068   // now.
3069   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
3070     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
3071     ArgAttrs.push_back(AttributeSet());
3072   }
3073 
3074   // If we are removing arguments to the function, emit an obnoxious warning.
3075   if (FT->getNumParams() < NumActualArgs) {
3076     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
3077     if (FT->isVarArg()) {
3078       // Add all of the arguments in their promoted form to the arg list.
3079       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
3080         Type *PTy = getPromotedType((*AI)->getType());
3081         Value *NewArg = *AI;
3082         if (PTy != (*AI)->getType()) {
3083           // Must promote to pass through va_arg area!
3084           Instruction::CastOps opcode =
3085             CastInst::getCastOpcode(*AI, false, PTy, false);
3086           NewArg = Builder.CreateCast(opcode, *AI, PTy);
3087         }
3088         Args.push_back(NewArg);
3089 
3090         // Add any parameter attributes.
3091         ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3092       }
3093     }
3094   }
3095 
3096   AttributeSet FnAttrs = CallerPAL.getFnAttrs();
3097 
3098   if (NewRetTy->isVoidTy())
3099     Caller->setName("");   // Void type should not have a name.
3100 
3101   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
3102          "missing argument attributes");
3103   AttributeList NewCallerPAL = AttributeList::get(
3104       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
3105 
3106   SmallVector<OperandBundleDef, 1> OpBundles;
3107   Call.getOperandBundlesAsDefs(OpBundles);
3108 
3109   CallBase *NewCall;
3110   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3111     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
3112                                    II->getUnwindDest(), Args, OpBundles);
3113   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3114     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
3115                                    CBI->getIndirectDests(), Args, OpBundles);
3116   } else {
3117     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
3118     cast<CallInst>(NewCall)->setTailCallKind(
3119         cast<CallInst>(Caller)->getTailCallKind());
3120   }
3121   NewCall->takeName(Caller);
3122   NewCall->setCallingConv(Call.getCallingConv());
3123   NewCall->setAttributes(NewCallerPAL);
3124 
3125   // Preserve prof metadata if any.
3126   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
3127 
3128   // Insert a cast of the return type as necessary.
3129   Instruction *NC = NewCall;
3130   Value *NV = NC;
3131   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
3132     if (!NV->getType()->isVoidTy()) {
3133       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
3134       NC->setDebugLoc(Caller->getDebugLoc());
3135 
3136       // If this is an invoke/callbr instruction, we should insert it after the
3137       // first non-phi instruction in the normal successor block.
3138       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3139         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
3140         InsertNewInstBefore(NC, *I);
3141       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3142         BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
3143         InsertNewInstBefore(NC, *I);
3144       } else {
3145         // Otherwise, it's a call, just insert cast right after the call.
3146         InsertNewInstBefore(NC, *Caller);
3147       }
3148       Worklist.pushUsersToWorkList(*Caller);
3149     } else {
3150       NV = UndefValue::get(Caller->getType());
3151     }
3152   }
3153 
3154   if (!Caller->use_empty())
3155     replaceInstUsesWith(*Caller, NV);
3156   else if (Caller->hasValueHandle()) {
3157     if (OldRetTy == NV->getType())
3158       ValueHandleBase::ValueIsRAUWd(Caller, NV);
3159     else
3160       // We cannot call ValueIsRAUWd with a different type, and the
3161       // actual tracked value will disappear.
3162       ValueHandleBase::ValueIsDeleted(Caller);
3163   }
3164 
3165   eraseInstFromFunction(*Caller);
3166   return true;
3167 }
3168 
3169 /// Turn a call to a function created by init_trampoline / adjust_trampoline
3170 /// intrinsic pair into a direct call to the underlying function.
3171 Instruction *
3172 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
3173                                                  IntrinsicInst &Tramp) {
3174   Value *Callee = Call.getCalledOperand();
3175   Type *CalleeTy = Callee->getType();
3176   FunctionType *FTy = Call.getFunctionType();
3177   AttributeList Attrs = Call.getAttributes();
3178 
3179   // If the call already has the 'nest' attribute somewhere then give up -
3180   // otherwise 'nest' would occur twice after splicing in the chain.
3181   if (Attrs.hasAttrSomewhere(Attribute::Nest))
3182     return nullptr;
3183 
3184   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
3185   FunctionType *NestFTy = NestF->getFunctionType();
3186 
3187   AttributeList NestAttrs = NestF->getAttributes();
3188   if (!NestAttrs.isEmpty()) {
3189     unsigned NestArgNo = 0;
3190     Type *NestTy = nullptr;
3191     AttributeSet NestAttr;
3192 
3193     // Look for a parameter marked with the 'nest' attribute.
3194     for (FunctionType::param_iterator I = NestFTy->param_begin(),
3195                                       E = NestFTy->param_end();
3196          I != E; ++NestArgNo, ++I) {
3197       AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
3198       if (AS.hasAttribute(Attribute::Nest)) {
3199         // Record the parameter type and any other attributes.
3200         NestTy = *I;
3201         NestAttr = AS;
3202         break;
3203       }
3204     }
3205 
3206     if (NestTy) {
3207       std::vector<Value*> NewArgs;
3208       std::vector<AttributeSet> NewArgAttrs;
3209       NewArgs.reserve(Call.arg_size() + 1);
3210       NewArgAttrs.reserve(Call.arg_size());
3211 
3212       // Insert the nest argument into the call argument list, which may
3213       // mean appending it.  Likewise for attributes.
3214 
3215       {
3216         unsigned ArgNo = 0;
3217         auto I = Call.arg_begin(), E = Call.arg_end();
3218         do {
3219           if (ArgNo == NestArgNo) {
3220             // Add the chain argument and attributes.
3221             Value *NestVal = Tramp.getArgOperand(2);
3222             if (NestVal->getType() != NestTy)
3223               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
3224             NewArgs.push_back(NestVal);
3225             NewArgAttrs.push_back(NestAttr);
3226           }
3227 
3228           if (I == E)
3229             break;
3230 
3231           // Add the original argument and attributes.
3232           NewArgs.push_back(*I);
3233           NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
3234 
3235           ++ArgNo;
3236           ++I;
3237         } while (true);
3238       }
3239 
3240       // The trampoline may have been bitcast to a bogus type (FTy).
3241       // Handle this by synthesizing a new function type, equal to FTy
3242       // with the chain parameter inserted.
3243 
3244       std::vector<Type*> NewTypes;
3245       NewTypes.reserve(FTy->getNumParams()+1);
3246 
3247       // Insert the chain's type into the list of parameter types, which may
3248       // mean appending it.
3249       {
3250         unsigned ArgNo = 0;
3251         FunctionType::param_iterator I = FTy->param_begin(),
3252           E = FTy->param_end();
3253 
3254         do {
3255           if (ArgNo == NestArgNo)
3256             // Add the chain's type.
3257             NewTypes.push_back(NestTy);
3258 
3259           if (I == E)
3260             break;
3261 
3262           // Add the original type.
3263           NewTypes.push_back(*I);
3264 
3265           ++ArgNo;
3266           ++I;
3267         } while (true);
3268       }
3269 
3270       // Replace the trampoline call with a direct call.  Let the generic
3271       // code sort out any function type mismatches.
3272       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3273                                                 FTy->isVarArg());
3274       Constant *NewCallee =
3275         NestF->getType() == PointerType::getUnqual(NewFTy) ?
3276         NestF : ConstantExpr::getBitCast(NestF,
3277                                          PointerType::getUnqual(NewFTy));
3278       AttributeList NewPAL =
3279           AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
3280                              Attrs.getRetAttrs(), NewArgAttrs);
3281 
3282       SmallVector<OperandBundleDef, 1> OpBundles;
3283       Call.getOperandBundlesAsDefs(OpBundles);
3284 
3285       Instruction *NewCaller;
3286       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
3287         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
3288                                        II->getNormalDest(), II->getUnwindDest(),
3289                                        NewArgs, OpBundles);
3290         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3291         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3292       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
3293         NewCaller =
3294             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
3295                                CBI->getIndirectDests(), NewArgs, OpBundles);
3296         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
3297         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
3298       } else {
3299         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
3300         cast<CallInst>(NewCaller)->setTailCallKind(
3301             cast<CallInst>(Call).getTailCallKind());
3302         cast<CallInst>(NewCaller)->setCallingConv(
3303             cast<CallInst>(Call).getCallingConv());
3304         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3305       }
3306       NewCaller->setDebugLoc(Call.getDebugLoc());
3307 
3308       return NewCaller;
3309     }
3310   }
3311 
3312   // Replace the trampoline call with a direct call.  Since there is no 'nest'
3313   // parameter, there is no need to adjust the argument list.  Let the generic
3314   // code sort out any function type mismatches.
3315   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
3316   Call.setCalledFunction(FTy, NewCallee);
3317   return &Call;
3318 }
3319