1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallBitVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/IntrinsicsAArch64.h" 50 #include "llvm/IR/IntrinsicsAMDGPU.h" 51 #include "llvm/IR/IntrinsicsARM.h" 52 #include "llvm/IR/IntrinsicsHexagon.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Statepoint.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/InstCombine/InstCombiner.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <cstring> 78 #include <utility> 79 #include <vector> 80 81 #define DEBUG_TYPE "instcombine" 82 #include "llvm/Transforms/Utils/InstructionWorklist.h" 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 STATISTIC(NumSimplified, "Number of library calls simplified"); 88 89 static cl::opt<unsigned> GuardWideningWindow( 90 "instcombine-guard-widening-window", 91 cl::init(3), 92 cl::desc("How wide an instruction window to bypass looking for " 93 "another guard")); 94 95 namespace llvm { 96 /// enable preservation of attributes in assume like: 97 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 98 extern cl::opt<bool> EnableKnowledgeRetention; 99 } // namespace llvm 100 101 /// Return the specified type promoted as it would be to pass though a va_arg 102 /// area. 103 static Type *getPromotedType(Type *Ty) { 104 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 105 if (ITy->getBitWidth() < 32) 106 return Type::getInt32Ty(Ty->getContext()); 107 } 108 return Ty; 109 } 110 111 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 112 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 113 MaybeAlign CopyDstAlign = MI->getDestAlign(); 114 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 115 MI->setDestAlignment(DstAlign); 116 return MI; 117 } 118 119 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 120 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 121 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 122 MI->setSourceAlignment(SrcAlign); 123 return MI; 124 } 125 126 // If we have a store to a location which is known constant, we can conclude 127 // that the store must be storing the constant value (else the memory 128 // wouldn't be constant), and this must be a noop. 129 if (AA->pointsToConstantMemory(MI->getDest())) { 130 // Set the size of the copy to 0, it will be deleted on the next iteration. 131 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 132 return MI; 133 } 134 135 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 136 // load/store. 137 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 138 if (!MemOpLength) return nullptr; 139 140 // Source and destination pointer types are always "i8*" for intrinsic. See 141 // if the size is something we can handle with a single primitive load/store. 142 // A single load+store correctly handles overlapping memory in the memmove 143 // case. 144 uint64_t Size = MemOpLength->getLimitedValue(); 145 assert(Size && "0-sized memory transferring should be removed already."); 146 147 if (Size > 8 || (Size&(Size-1))) 148 return nullptr; // If not 1/2/4/8 bytes, exit. 149 150 // If it is an atomic and alignment is less than the size then we will 151 // introduce the unaligned memory access which will be later transformed 152 // into libcall in CodeGen. This is not evident performance gain so disable 153 // it now. 154 if (isa<AtomicMemTransferInst>(MI)) 155 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 156 return nullptr; 157 158 // Use an integer load+store unless we can find something better. 159 unsigned SrcAddrSp = 160 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); 161 unsigned DstAddrSp = 162 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); 163 164 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 165 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); 166 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); 167 168 // If the memcpy has metadata describing the members, see if we can get the 169 // TBAA tag describing our copy. 170 MDNode *CopyMD = nullptr; 171 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { 172 CopyMD = M; 173 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { 174 if (M->getNumOperands() == 3 && M->getOperand(0) && 175 mdconst::hasa<ConstantInt>(M->getOperand(0)) && 176 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && 177 M->getOperand(1) && 178 mdconst::hasa<ConstantInt>(M->getOperand(1)) && 179 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == 180 Size && 181 M->getOperand(2) && isa<MDNode>(M->getOperand(2))) 182 CopyMD = cast<MDNode>(M->getOperand(2)); 183 } 184 185 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); 186 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); 187 LoadInst *L = Builder.CreateLoad(IntType, Src); 188 // Alignment from the mem intrinsic will be better, so use it. 189 L->setAlignment(*CopySrcAlign); 190 if (CopyMD) 191 L->setMetadata(LLVMContext::MD_tbaa, CopyMD); 192 MDNode *LoopMemParallelMD = 193 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 194 if (LoopMemParallelMD) 195 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 196 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 197 if (AccessGroupMD) 198 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 199 200 StoreInst *S = Builder.CreateStore(L, Dest); 201 // Alignment from the mem intrinsic will be better, so use it. 202 S->setAlignment(*CopyDstAlign); 203 if (CopyMD) 204 S->setMetadata(LLVMContext::MD_tbaa, CopyMD); 205 if (LoopMemParallelMD) 206 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 207 if (AccessGroupMD) 208 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 209 210 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 211 // non-atomics can be volatile 212 L->setVolatile(MT->isVolatile()); 213 S->setVolatile(MT->isVolatile()); 214 } 215 if (isa<AtomicMemTransferInst>(MI)) { 216 // atomics have to be unordered 217 L->setOrdering(AtomicOrdering::Unordered); 218 S->setOrdering(AtomicOrdering::Unordered); 219 } 220 221 // Set the size of the copy to 0, it will be deleted on the next iteration. 222 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 223 return MI; 224 } 225 226 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 227 const Align KnownAlignment = 228 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 229 MaybeAlign MemSetAlign = MI->getDestAlign(); 230 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 231 MI->setDestAlignment(KnownAlignment); 232 return MI; 233 } 234 235 // If we have a store to a location which is known constant, we can conclude 236 // that the store must be storing the constant value (else the memory 237 // wouldn't be constant), and this must be a noop. 238 if (AA->pointsToConstantMemory(MI->getDest())) { 239 // Set the size of the copy to 0, it will be deleted on the next iteration. 240 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 241 return MI; 242 } 243 244 // Extract the length and alignment and fill if they are constant. 245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 248 return nullptr; 249 const uint64_t Len = LenC->getLimitedValue(); 250 assert(Len && "0-sized memory setting should be removed already."); 251 const Align Alignment = assumeAligned(MI->getDestAlignment()); 252 253 // If it is an atomic and alignment is less than the size then we will 254 // introduce the unaligned memory access which will be later transformed 255 // into libcall in CodeGen. This is not evident performance gain so disable 256 // it now. 257 if (isa<AtomicMemSetInst>(MI)) 258 if (Alignment < Len) 259 return nullptr; 260 261 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 264 265 Value *Dest = MI->getDest(); 266 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); 267 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); 268 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); 269 270 // Extract the fill value and store. 271 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 272 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, 273 MI->isVolatile()); 274 S->setAlignment(Alignment); 275 if (isa<AtomicMemSetInst>(MI)) 276 S->setOrdering(AtomicOrdering::Unordered); 277 278 // Set the size of the copy to 0, it will be deleted on the next iteration. 279 MI->setLength(Constant::getNullValue(LenC->getType())); 280 return MI; 281 } 282 283 return nullptr; 284 } 285 286 // TODO, Obvious Missing Transforms: 287 // * Narrow width by halfs excluding zero/undef lanes 288 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 289 Value *LoadPtr = II.getArgOperand(0); 290 const Align Alignment = 291 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 292 293 // If the mask is all ones or undefs, this is a plain vector load of the 1st 294 // argument. 295 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 296 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 297 "unmaskedload"); 298 L->copyMetadata(II); 299 return L; 300 } 301 302 // If we can unconditionally load from this address, replace with a 303 // load/select idiom. TODO: use DT for context sensitive query 304 if (isDereferenceablePointer(LoadPtr, II.getType(), 305 II.getModule()->getDataLayout(), &II, nullptr)) { 306 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 307 "unmaskedload"); 308 LI->copyMetadata(II); 309 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 310 } 311 312 return nullptr; 313 } 314 315 // TODO, Obvious Missing Transforms: 316 // * Single constant active lane -> store 317 // * Narrow width by halfs excluding zero/undef lanes 318 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 319 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 320 if (!ConstMask) 321 return nullptr; 322 323 // If the mask is all zeros, this instruction does nothing. 324 if (ConstMask->isNullValue()) 325 return eraseInstFromFunction(II); 326 327 // If the mask is all ones, this is a plain vector store of the 1st argument. 328 if (ConstMask->isAllOnesValue()) { 329 Value *StorePtr = II.getArgOperand(1); 330 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 331 StoreInst *S = 332 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 333 S->copyMetadata(II); 334 return S; 335 } 336 337 if (isa<ScalableVectorType>(ConstMask->getType())) 338 return nullptr; 339 340 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 341 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 342 APInt UndefElts(DemandedElts.getBitWidth(), 0); 343 if (Value *V = 344 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 345 return replaceOperand(II, 0, V); 346 347 return nullptr; 348 } 349 350 // TODO, Obvious Missing Transforms: 351 // * Single constant active lane load -> load 352 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 353 // * Adjacent vector addresses -> masked.load 354 // * Narrow width by halfs excluding zero/undef lanes 355 // * Vector splat address w/known mask -> scalar load 356 // * Vector incrementing address -> vector masked load 357 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 358 return nullptr; 359 } 360 361 // TODO, Obvious Missing Transforms: 362 // * Single constant active lane -> store 363 // * Adjacent vector addresses -> masked.store 364 // * Narrow store width by halfs excluding zero/undef lanes 365 // * Vector splat address w/known mask -> scalar store 366 // * Vector incrementing address -> vector masked store 367 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 368 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 369 if (!ConstMask) 370 return nullptr; 371 372 // If the mask is all zeros, a scatter does nothing. 373 if (ConstMask->isNullValue()) 374 return eraseInstFromFunction(II); 375 376 if (isa<ScalableVectorType>(ConstMask->getType())) 377 return nullptr; 378 379 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 380 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 381 APInt UndefElts(DemandedElts.getBitWidth(), 0); 382 if (Value *V = 383 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 384 return replaceOperand(II, 0, V); 385 if (Value *V = 386 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts)) 387 return replaceOperand(II, 1, V); 388 389 return nullptr; 390 } 391 392 /// This function transforms launder.invariant.group and strip.invariant.group 393 /// like: 394 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 395 /// launder(strip(%x)) -> launder(%x) 396 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 397 /// strip(launder(%x)) -> strip(%x) 398 /// This is legal because it preserves the most recent information about 399 /// the presence or absence of invariant.group. 400 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 401 InstCombinerImpl &IC) { 402 auto *Arg = II.getArgOperand(0); 403 auto *StrippedArg = Arg->stripPointerCasts(); 404 auto *StrippedInvariantGroupsArg = StrippedArg; 405 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 406 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 407 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 408 break; 409 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 410 } 411 if (StrippedArg == StrippedInvariantGroupsArg) 412 return nullptr; // No launders/strips to remove. 413 414 Value *Result = nullptr; 415 416 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 417 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 418 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 419 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 420 else 421 llvm_unreachable( 422 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 423 if (Result->getType()->getPointerAddressSpace() != 424 II.getType()->getPointerAddressSpace()) 425 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 426 if (Result->getType() != II.getType()) 427 Result = IC.Builder.CreateBitCast(Result, II.getType()); 428 429 return cast<Instruction>(Result); 430 } 431 432 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 433 assert((II.getIntrinsicID() == Intrinsic::cttz || 434 II.getIntrinsicID() == Intrinsic::ctlz) && 435 "Expected cttz or ctlz intrinsic"); 436 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 437 Value *Op0 = II.getArgOperand(0); 438 Value *Op1 = II.getArgOperand(1); 439 Value *X; 440 // ctlz(bitreverse(x)) -> cttz(x) 441 // cttz(bitreverse(x)) -> ctlz(x) 442 if (match(Op0, m_BitReverse(m_Value(X)))) { 443 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 444 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 445 return CallInst::Create(F, {X, II.getArgOperand(1)}); 446 } 447 448 if (II.getType()->isIntOrIntVectorTy(1)) { 449 // ctlz/cttz i1 Op0 --> not Op0 450 if (match(Op1, m_Zero())) 451 return BinaryOperator::CreateNot(Op0); 452 // If zero is undef, then the input can be assumed to be "true", so the 453 // instruction simplifies to "false". 454 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); 455 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); 456 } 457 458 // If the operand is a select with constant arm(s), try to hoist ctlz/cttz. 459 if (auto *Sel = dyn_cast<SelectInst>(Op0)) 460 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) 461 return R; 462 463 if (IsTZ) { 464 // cttz(-x) -> cttz(x) 465 if (match(Op0, m_Neg(m_Value(X)))) 466 return IC.replaceOperand(II, 0, X); 467 468 // cttz(sext(x)) -> cttz(zext(x)) 469 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 470 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 471 auto *CttzZext = 472 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 473 return IC.replaceInstUsesWith(II, CttzZext); 474 } 475 476 // Zext doesn't change the number of trailing zeros, so narrow: 477 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'. 478 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 479 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 480 IC.Builder.getTrue()); 481 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 482 return IC.replaceInstUsesWith(II, ZextCttz); 483 } 484 485 // cttz(abs(x)) -> cttz(x) 486 // cttz(nabs(x)) -> cttz(x) 487 Value *Y; 488 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 489 if (SPF == SPF_ABS || SPF == SPF_NABS) 490 return IC.replaceOperand(II, 0, X); 491 492 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 493 return IC.replaceOperand(II, 0, X); 494 } 495 496 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 497 498 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 499 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 500 : Known.countMaxLeadingZeros(); 501 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 502 : Known.countMinLeadingZeros(); 503 504 // If all bits above (ctlz) or below (cttz) the first known one are known 505 // zero, this value is constant. 506 // FIXME: This should be in InstSimplify because we're replacing an 507 // instruction with a constant. 508 if (PossibleZeros == DefiniteZeros) { 509 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 510 return IC.replaceInstUsesWith(II, C); 511 } 512 513 // If the input to cttz/ctlz is known to be non-zero, 514 // then change the 'ZeroIsUndef' parameter to 'true' 515 // because we know the zero behavior can't affect the result. 516 if (!Known.One.isZero() || 517 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, 518 &IC.getDominatorTree())) { 519 if (!match(II.getArgOperand(1), m_One())) 520 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 521 } 522 523 // Add range metadata since known bits can't completely reflect what we know. 524 // TODO: Handle splat vectors. 525 auto *IT = dyn_cast<IntegerType>(Op0->getType()); 526 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 527 Metadata *LowAndHigh[] = { 528 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), 529 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; 530 II.setMetadata(LLVMContext::MD_range, 531 MDNode::get(II.getContext(), LowAndHigh)); 532 return &II; 533 } 534 535 return nullptr; 536 } 537 538 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 539 assert(II.getIntrinsicID() == Intrinsic::ctpop && 540 "Expected ctpop intrinsic"); 541 Type *Ty = II.getType(); 542 unsigned BitWidth = Ty->getScalarSizeInBits(); 543 Value *Op0 = II.getArgOperand(0); 544 Value *X, *Y; 545 546 // ctpop(bitreverse(x)) -> ctpop(x) 547 // ctpop(bswap(x)) -> ctpop(x) 548 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 549 return IC.replaceOperand(II, 0, X); 550 551 // ctpop(rot(x)) -> ctpop(x) 552 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 553 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 554 X == Y) 555 return IC.replaceOperand(II, 0, X); 556 557 // ctpop(x | -x) -> bitwidth - cttz(x, false) 558 if (Op0->hasOneUse() && 559 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 560 Function *F = 561 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 562 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); 563 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 564 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 565 } 566 567 // ctpop(~x & (x - 1)) -> cttz(x, false) 568 if (match(Op0, 569 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 570 Function *F = 571 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 572 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 573 } 574 575 // Zext doesn't change the number of set bits, so narrow: 576 // ctpop (zext X) --> zext (ctpop X) 577 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 578 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 579 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 580 } 581 582 // If the operand is a select with constant arm(s), try to hoist ctpop. 583 if (auto *Sel = dyn_cast<SelectInst>(Op0)) 584 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) 585 return R; 586 587 KnownBits Known(BitWidth); 588 IC.computeKnownBits(Op0, Known, 0, &II); 589 590 // If all bits are zero except for exactly one fixed bit, then the result 591 // must be 0 or 1, and we can get that answer by shifting to LSB: 592 // ctpop (X & 32) --> (X & 32) >> 5 593 if ((~Known.Zero).isPowerOf2()) 594 return BinaryOperator::CreateLShr( 595 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 596 597 // FIXME: Try to simplify vectors of integers. 598 auto *IT = dyn_cast<IntegerType>(Ty); 599 if (!IT) 600 return nullptr; 601 602 // Add range metadata since known bits can't completely reflect what we know. 603 unsigned MinCount = Known.countMinPopulation(); 604 unsigned MaxCount = Known.countMaxPopulation(); 605 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 606 Metadata *LowAndHigh[] = { 607 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), 608 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; 609 II.setMetadata(LLVMContext::MD_range, 610 MDNode::get(II.getContext(), LowAndHigh)); 611 return &II; 612 } 613 614 return nullptr; 615 } 616 617 /// Convert a table lookup to shufflevector if the mask is constant. 618 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 619 /// which case we could lower the shufflevector with rev64 instructions 620 /// as it's actually a byte reverse. 621 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 622 InstCombiner::BuilderTy &Builder) { 623 // Bail out if the mask is not a constant. 624 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 625 if (!C) 626 return nullptr; 627 628 auto *VecTy = cast<FixedVectorType>(II.getType()); 629 unsigned NumElts = VecTy->getNumElements(); 630 631 // Only perform this transformation for <8 x i8> vector types. 632 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 633 return nullptr; 634 635 int Indexes[8]; 636 637 for (unsigned I = 0; I < NumElts; ++I) { 638 Constant *COp = C->getAggregateElement(I); 639 640 if (!COp || !isa<ConstantInt>(COp)) 641 return nullptr; 642 643 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 644 645 // Make sure the mask indices are in range. 646 if ((unsigned)Indexes[I] >= NumElts) 647 return nullptr; 648 } 649 650 auto *V1 = II.getArgOperand(0); 651 auto *V2 = Constant::getNullValue(V1->getType()); 652 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes)); 653 } 654 655 // Returns true iff the 2 intrinsics have the same operands, limiting the 656 // comparison to the first NumOperands. 657 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 658 unsigned NumOperands) { 659 assert(I.arg_size() >= NumOperands && "Not enough operands"); 660 assert(E.arg_size() >= NumOperands && "Not enough operands"); 661 for (unsigned i = 0; i < NumOperands; i++) 662 if (I.getArgOperand(i) != E.getArgOperand(i)) 663 return false; 664 return true; 665 } 666 667 // Remove trivially empty start/end intrinsic ranges, i.e. a start 668 // immediately followed by an end (ignoring debuginfo or other 669 // start/end intrinsics in between). As this handles only the most trivial 670 // cases, tracking the nesting level is not needed: 671 // 672 // call @llvm.foo.start(i1 0) 673 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 674 // call @llvm.foo.end(i1 0) 675 // call @llvm.foo.end(i1 0) ; &I 676 static bool 677 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 678 std::function<bool(const IntrinsicInst &)> IsStart) { 679 // We start from the end intrinsic and scan backwards, so that InstCombine 680 // has already processed (and potentially removed) all the instructions 681 // before the end intrinsic. 682 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 683 for (; BI != BE; ++BI) { 684 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 685 if (I->isDebugOrPseudoInst() || 686 I->getIntrinsicID() == EndI.getIntrinsicID()) 687 continue; 688 if (IsStart(*I)) { 689 if (haveSameOperands(EndI, *I, EndI.arg_size())) { 690 IC.eraseInstFromFunction(*I); 691 IC.eraseInstFromFunction(EndI); 692 return true; 693 } 694 // Skip start intrinsics that don't pair with this end intrinsic. 695 continue; 696 } 697 } 698 break; 699 } 700 701 return false; 702 } 703 704 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 705 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 706 return I.getIntrinsicID() == Intrinsic::vastart || 707 I.getIntrinsicID() == Intrinsic::vacopy; 708 }); 709 return nullptr; 710 } 711 712 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 713 assert(Call.arg_size() > 1 && "Need at least 2 args to swap"); 714 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 715 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 716 Call.setArgOperand(0, Arg1); 717 Call.setArgOperand(1, Arg0); 718 return &Call; 719 } 720 return nullptr; 721 } 722 723 /// Creates a result tuple for an overflow intrinsic \p II with a given 724 /// \p Result and a constant \p Overflow value. 725 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 726 Constant *Overflow) { 727 Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; 728 StructType *ST = cast<StructType>(II->getType()); 729 Constant *Struct = ConstantStruct::get(ST, V); 730 return InsertValueInst::Create(Struct, Result, 0); 731 } 732 733 Instruction * 734 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 735 WithOverflowInst *WO = cast<WithOverflowInst>(II); 736 Value *OperationResult = nullptr; 737 Constant *OverflowResult = nullptr; 738 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 739 WO->getRHS(), *WO, OperationResult, OverflowResult)) 740 return createOverflowTuple(WO, OperationResult, OverflowResult); 741 return nullptr; 742 } 743 744 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI, 745 const DataLayout &DL, AssumptionCache *AC, 746 DominatorTree *DT) { 747 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT); 748 if (Known.isNonNegative()) 749 return false; 750 if (Known.isNegative()) 751 return true; 752 753 return isImpliedByDomCondition( 754 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL); 755 } 756 757 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This 758 /// can trigger other combines. 759 static Instruction *moveAddAfterMinMax(IntrinsicInst *II, 760 InstCombiner::BuilderTy &Builder) { 761 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 762 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin || 763 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) && 764 "Expected a min or max intrinsic"); 765 766 // TODO: Match vectors with undef elements, but undef may not propagate. 767 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 768 Value *X; 769 const APInt *C0, *C1; 770 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) || 771 !match(Op1, m_APInt(C1))) 772 return nullptr; 773 774 // Check for necessary no-wrap and overflow constraints. 775 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin; 776 auto *Add = cast<BinaryOperator>(Op0); 777 if ((IsSigned && !Add->hasNoSignedWrap()) || 778 (!IsSigned && !Add->hasNoUnsignedWrap())) 779 return nullptr; 780 781 // If the constant difference overflows, then instsimplify should reduce the 782 // min/max to the add or C1. 783 bool Overflow; 784 APInt CDiff = 785 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow); 786 assert(!Overflow && "Expected simplify of min/max"); 787 788 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0 789 // Note: the "mismatched" no-overflow setting does not propagate. 790 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff); 791 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC); 792 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1)) 793 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1)); 794 } 795 796 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 797 /// can only be one of two possible constant values -- turn that into a select 798 /// of constants. 799 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 800 InstCombiner::BuilderTy &Builder) { 801 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 802 Value *X; 803 const APInt *C0, *C1; 804 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 805 return nullptr; 806 807 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 808 switch (II->getIntrinsicID()) { 809 case Intrinsic::smax: 810 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 811 Pred = ICmpInst::ICMP_SGT; 812 break; 813 case Intrinsic::smin: 814 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 815 Pred = ICmpInst::ICMP_SLT; 816 break; 817 case Intrinsic::umax: 818 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 819 Pred = ICmpInst::ICMP_UGT; 820 break; 821 case Intrinsic::umin: 822 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 823 Pred = ICmpInst::ICMP_ULT; 824 break; 825 default: 826 llvm_unreachable("Expected min/max intrinsic"); 827 } 828 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 829 return nullptr; 830 831 // max (min X, 42), 41 --> X > 41 ? 42 : 41 832 // min (max X, 42), 43 --> X < 43 ? 42 : 43 833 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 834 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 835 } 836 837 /// Reduce a sequence of min/max intrinsics with a common operand. 838 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) { 839 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 840 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 841 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1)); 842 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 843 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID || 844 RHS->getIntrinsicID() != MinMaxID || 845 (!LHS->hasOneUse() && !RHS->hasOneUse())) 846 return nullptr; 847 848 Value *A = LHS->getArgOperand(0); 849 Value *B = LHS->getArgOperand(1); 850 Value *C = RHS->getArgOperand(0); 851 Value *D = RHS->getArgOperand(1); 852 853 // Look for a common operand. 854 Value *MinMaxOp = nullptr; 855 Value *ThirdOp = nullptr; 856 if (LHS->hasOneUse()) { 857 // If the LHS is only used in this chain and the RHS is used outside of it, 858 // reuse the RHS min/max because that will eliminate the LHS. 859 if (D == A || C == A) { 860 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 861 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 862 MinMaxOp = RHS; 863 ThirdOp = B; 864 } else if (D == B || C == B) { 865 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 866 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 867 MinMaxOp = RHS; 868 ThirdOp = A; 869 } 870 } else { 871 assert(RHS->hasOneUse() && "Expected one-use operand"); 872 // Reuse the LHS. This will eliminate the RHS. 873 if (D == A || D == B) { 874 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 875 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 876 MinMaxOp = LHS; 877 ThirdOp = C; 878 } else if (C == A || C == B) { 879 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 880 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 881 MinMaxOp = LHS; 882 ThirdOp = D; 883 } 884 } 885 886 if (!MinMaxOp || !ThirdOp) 887 return nullptr; 888 889 Module *Mod = II->getModule(); 890 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType()); 891 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp }); 892 } 893 894 /// CallInst simplification. This mostly only handles folding of intrinsic 895 /// instructions. For normal calls, it allows visitCallBase to do the heavy 896 /// lifting. 897 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 898 // Don't try to simplify calls without uses. It will not do anything useful, 899 // but will result in the following folds being skipped. 900 if (!CI.use_empty()) 901 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) 902 return replaceInstUsesWith(CI, V); 903 904 if (isFreeCall(&CI, &TLI)) 905 return visitFree(CI); 906 907 // If the caller function is nounwind, mark the call as nounwind, even if the 908 // callee isn't. 909 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 910 CI.setDoesNotThrow(); 911 return &CI; 912 } 913 914 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 915 if (!II) return visitCallBase(CI); 916 917 // For atomic unordered mem intrinsics if len is not a positive or 918 // not a multiple of element size then behavior is undefined. 919 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 920 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 921 if (NumBytes->getSExtValue() < 0 || 922 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 923 CreateNonTerminatorUnreachable(AMI); 924 assert(AMI->getType()->isVoidTy() && 925 "non void atomic unordered mem intrinsic"); 926 return eraseInstFromFunction(*AMI); 927 } 928 929 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 930 // instead of in visitCallBase. 931 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 932 bool Changed = false; 933 934 // memmove/cpy/set of zero bytes is a noop. 935 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 936 if (NumBytes->isNullValue()) 937 return eraseInstFromFunction(CI); 938 939 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) 940 if (CI->getZExtValue() == 1) { 941 // Replace the instruction with just byte operations. We would 942 // transform other cases to loads/stores, but we don't know if 943 // alignment is sufficient. 944 } 945 } 946 947 // No other transformations apply to volatile transfers. 948 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 949 if (M->isVolatile()) 950 return nullptr; 951 952 // If we have a memmove and the source operation is a constant global, 953 // then the source and dest pointers can't alias, so we can change this 954 // into a call to memcpy. 955 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 956 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 957 if (GVSrc->isConstant()) { 958 Module *M = CI.getModule(); 959 Intrinsic::ID MemCpyID = 960 isa<AtomicMemMoveInst>(MMI) 961 ? Intrinsic::memcpy_element_unordered_atomic 962 : Intrinsic::memcpy; 963 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 964 CI.getArgOperand(1)->getType(), 965 CI.getArgOperand(2)->getType() }; 966 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 967 Changed = true; 968 } 969 } 970 971 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 972 // memmove(x,x,size) -> noop. 973 if (MTI->getSource() == MTI->getDest()) 974 return eraseInstFromFunction(CI); 975 } 976 977 // If we can determine a pointer alignment that is bigger than currently 978 // set, update the alignment. 979 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 980 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 981 return I; 982 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 983 if (Instruction *I = SimplifyAnyMemSet(MSI)) 984 return I; 985 } 986 987 if (Changed) return II; 988 } 989 990 // For fixed width vector result intrinsics, use the generic demanded vector 991 // support. 992 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 993 auto VWidth = IIFVTy->getNumElements(); 994 APInt UndefElts(VWidth, 0); 995 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 996 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { 997 if (V != II) 998 return replaceInstUsesWith(*II, V); 999 return II; 1000 } 1001 } 1002 1003 if (II->isCommutative()) { 1004 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 1005 return NewCall; 1006 } 1007 1008 Intrinsic::ID IID = II->getIntrinsicID(); 1009 switch (IID) { 1010 case Intrinsic::objectsize: 1011 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) 1012 return replaceInstUsesWith(CI, V); 1013 return nullptr; 1014 case Intrinsic::abs: { 1015 Value *IIOperand = II->getArgOperand(0); 1016 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 1017 1018 // abs(-x) -> abs(x) 1019 // TODO: Copy nsw if it was present on the neg? 1020 Value *X; 1021 if (match(IIOperand, m_Neg(m_Value(X)))) 1022 return replaceOperand(*II, 0, X); 1023 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) 1024 return replaceOperand(*II, 0, X); 1025 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) 1026 return replaceOperand(*II, 0, X); 1027 1028 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) { 1029 // abs(x) -> x if x >= 0 1030 if (!*Sign) 1031 return replaceInstUsesWith(*II, IIOperand); 1032 1033 // abs(x) -> -x if x < 0 1034 if (IntMinIsPoison) 1035 return BinaryOperator::CreateNSWNeg(IIOperand); 1036 return BinaryOperator::CreateNeg(IIOperand); 1037 } 1038 1039 // abs (sext X) --> zext (abs X*) 1040 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 1041 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 1042 Value *NarrowAbs = 1043 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 1044 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 1045 } 1046 1047 // Match a complicated way to check if a number is odd/even: 1048 // abs (srem X, 2) --> and X, 1 1049 const APInt *C; 1050 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 1051 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 1052 1053 break; 1054 } 1055 case Intrinsic::umin: { 1056 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1057 // umin(x, 1) == zext(x != 0) 1058 if (match(I1, m_One())) { 1059 Value *Zero = Constant::getNullValue(I0->getType()); 1060 Value *Cmp = Builder.CreateICmpNE(I0, Zero); 1061 return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); 1062 } 1063 LLVM_FALLTHROUGH; 1064 } 1065 case Intrinsic::umax: { 1066 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1067 Value *X, *Y; 1068 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 1069 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1070 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1071 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1072 } 1073 Constant *C; 1074 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 1075 I0->hasOneUse()) { 1076 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 1077 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) { 1078 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1079 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1080 } 1081 } 1082 // If both operands of unsigned min/max are sign-extended, it is still ok 1083 // to narrow the operation. 1084 LLVM_FALLTHROUGH; 1085 } 1086 case Intrinsic::smax: 1087 case Intrinsic::smin: { 1088 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1089 Value *X, *Y; 1090 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 1091 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1092 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1093 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1094 } 1095 1096 Constant *C; 1097 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 1098 I0->hasOneUse()) { 1099 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 1100 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) { 1101 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1102 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1103 } 1104 } 1105 1106 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1107 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y) 1108 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y) 1109 // TODO: Canonicalize neg after min/max if I1 is constant. 1110 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) && 1111 (I0->hasOneUse() || I1->hasOneUse())) { 1112 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1113 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 1114 return BinaryOperator::CreateNSWNeg(InvMaxMin); 1115 } 1116 } 1117 1118 // If we can eliminate ~A and Y is free to invert: 1119 // max ~A, Y --> ~(min A, ~Y) 1120 // 1121 // Examples: 1122 // max ~A, ~Y --> ~(min A, Y) 1123 // max ~A, C --> ~(min A, ~C) 1124 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z)) 1125 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1126 Value *A; 1127 if (match(X, m_OneUse(m_Not(m_Value(A)))) && 1128 !isFreeToInvert(A, A->hasOneUse()) && 1129 isFreeToInvert(Y, Y->hasOneUse())) { 1130 Value *NotY = Builder.CreateNot(Y); 1131 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1132 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY); 1133 return BinaryOperator::CreateNot(InvMaxMin); 1134 } 1135 return nullptr; 1136 }; 1137 1138 if (Instruction *I = moveNotAfterMinMax(I0, I1)) 1139 return I; 1140 if (Instruction *I = moveNotAfterMinMax(I1, I0)) 1141 return I; 1142 1143 if (Instruction *I = moveAddAfterMinMax(II, Builder)) 1144 return I; 1145 1146 // smax(X, -X) --> abs(X) 1147 // smin(X, -X) --> -abs(X) 1148 // umax(X, -X) --> -abs(X) 1149 // umin(X, -X) --> abs(X) 1150 if (isKnownNegation(I0, I1)) { 1151 // We can choose either operand as the input to abs(), but if we can 1152 // eliminate the only use of a value, that's better for subsequent 1153 // transforms/analysis. 1154 if (I0->hasOneUse() && !I1->hasOneUse()) 1155 std::swap(I0, I1); 1156 1157 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 1158 // operation and potentially its negation. 1159 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 1160 Value *Abs = Builder.CreateBinaryIntrinsic( 1161 Intrinsic::abs, I0, 1162 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 1163 1164 // We don't have a "nabs" intrinsic, so negate if needed based on the 1165 // max/min operation. 1166 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 1167 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison); 1168 return replaceInstUsesWith(CI, Abs); 1169 } 1170 1171 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 1172 return Sel; 1173 1174 if (Instruction *SAdd = matchSAddSubSat(*II)) 1175 return SAdd; 1176 1177 if (match(I1, m_ImmConstant())) 1178 if (auto *Sel = dyn_cast<SelectInst>(I0)) 1179 if (Instruction *R = FoldOpIntoSelect(*II, Sel)) 1180 return R; 1181 1182 if (Instruction *NewMinMax = factorizeMinMaxTree(II)) 1183 return NewMinMax; 1184 1185 break; 1186 } 1187 case Intrinsic::bswap: { 1188 Value *IIOperand = II->getArgOperand(0); 1189 Value *X = nullptr; 1190 1191 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1192 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1193 unsigned C = X->getType()->getScalarSizeInBits() - 1194 IIOperand->getType()->getScalarSizeInBits(); 1195 Value *CV = ConstantInt::get(X->getType(), C); 1196 Value *V = Builder.CreateLShr(X, CV); 1197 return new TruncInst(V, IIOperand->getType()); 1198 } 1199 break; 1200 } 1201 case Intrinsic::masked_load: 1202 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1203 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1204 break; 1205 case Intrinsic::masked_store: 1206 return simplifyMaskedStore(*II); 1207 case Intrinsic::masked_gather: 1208 return simplifyMaskedGather(*II); 1209 case Intrinsic::masked_scatter: 1210 return simplifyMaskedScatter(*II); 1211 case Intrinsic::launder_invariant_group: 1212 case Intrinsic::strip_invariant_group: 1213 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1214 return replaceInstUsesWith(*II, SkippedBarrier); 1215 break; 1216 case Intrinsic::powi: 1217 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 1218 // 0 and 1 are handled in instsimplify 1219 // powi(x, -1) -> 1/x 1220 if (Power->isMinusOne()) 1221 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 1222 II->getArgOperand(0), II); 1223 // powi(x, 2) -> x*x 1224 if (Power->equalsInt(2)) 1225 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 1226 II->getArgOperand(0), II); 1227 1228 if (!Power->getValue()[0]) { 1229 Value *X; 1230 // If power is even: 1231 // powi(-x, p) -> powi(x, p) 1232 // powi(fabs(x), p) -> powi(x, p) 1233 // powi(copysign(x, y), p) -> powi(x, p) 1234 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) || 1235 match(II->getArgOperand(0), m_FAbs(m_Value(X))) || 1236 match(II->getArgOperand(0), 1237 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value()))) 1238 return replaceOperand(*II, 0, X); 1239 } 1240 } 1241 break; 1242 1243 case Intrinsic::cttz: 1244 case Intrinsic::ctlz: 1245 if (auto *I = foldCttzCtlz(*II, *this)) 1246 return I; 1247 break; 1248 1249 case Intrinsic::ctpop: 1250 if (auto *I = foldCtpop(*II, *this)) 1251 return I; 1252 break; 1253 1254 case Intrinsic::fshl: 1255 case Intrinsic::fshr: { 1256 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1257 Type *Ty = II->getType(); 1258 unsigned BitWidth = Ty->getScalarSizeInBits(); 1259 Constant *ShAmtC; 1260 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) && 1261 !ShAmtC->containsConstantExpression()) { 1262 // Canonicalize a shift amount constant operand to modulo the bit-width. 1263 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 1264 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); 1265 if (ModuloC != ShAmtC) 1266 return replaceOperand(*II, 2, ModuloC); 1267 1268 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == 1269 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && 1270 "Shift amount expected to be modulo bitwidth"); 1271 1272 // Canonicalize funnel shift right by constant to funnel shift left. This 1273 // is not entirely arbitrary. For historical reasons, the backend may 1274 // recognize rotate left patterns but miss rotate right patterns. 1275 if (IID == Intrinsic::fshr) { 1276 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) 1277 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 1278 Module *Mod = II->getModule(); 1279 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 1280 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 1281 } 1282 assert(IID == Intrinsic::fshl && 1283 "All funnel shifts by simple constants should go left"); 1284 1285 // fshl(X, 0, C) --> shl X, C 1286 // fshl(X, undef, C) --> shl X, C 1287 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 1288 return BinaryOperator::CreateShl(Op0, ShAmtC); 1289 1290 // fshl(0, X, C) --> lshr X, (BW-C) 1291 // fshl(undef, X, C) --> lshr X, (BW-C) 1292 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 1293 return BinaryOperator::CreateLShr(Op1, 1294 ConstantExpr::getSub(WidthC, ShAmtC)); 1295 1296 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 1297 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 1298 Module *Mod = II->getModule(); 1299 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 1300 return CallInst::Create(Bswap, { Op0 }); 1301 } 1302 } 1303 1304 // Left or right might be masked. 1305 if (SimplifyDemandedInstructionBits(*II)) 1306 return &CI; 1307 1308 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 1309 // so only the low bits of the shift amount are demanded if the bitwidth is 1310 // a power-of-2. 1311 if (!isPowerOf2_32(BitWidth)) 1312 break; 1313 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 1314 KnownBits Op2Known(BitWidth); 1315 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 1316 return &CI; 1317 break; 1318 } 1319 case Intrinsic::uadd_with_overflow: 1320 case Intrinsic::sadd_with_overflow: { 1321 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1322 return I; 1323 1324 // Given 2 constant operands whose sum does not overflow: 1325 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 1326 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 1327 Value *X; 1328 const APInt *C0, *C1; 1329 Value *Arg0 = II->getArgOperand(0); 1330 Value *Arg1 = II->getArgOperand(1); 1331 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 1332 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) 1333 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); 1334 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 1335 bool Overflow; 1336 APInt NewC = 1337 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 1338 if (!Overflow) 1339 return replaceInstUsesWith( 1340 *II, Builder.CreateBinaryIntrinsic( 1341 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 1342 } 1343 break; 1344 } 1345 1346 case Intrinsic::umul_with_overflow: 1347 case Intrinsic::smul_with_overflow: 1348 case Intrinsic::usub_with_overflow: 1349 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1350 return I; 1351 break; 1352 1353 case Intrinsic::ssub_with_overflow: { 1354 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1355 return I; 1356 1357 Constant *C; 1358 Value *Arg0 = II->getArgOperand(0); 1359 Value *Arg1 = II->getArgOperand(1); 1360 // Given a constant C that is not the minimum signed value 1361 // for an integer of a given bit width: 1362 // 1363 // ssubo X, C -> saddo X, -C 1364 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 1365 Value *NegVal = ConstantExpr::getNeg(C); 1366 // Build a saddo call that is equivalent to the discovered 1367 // ssubo call. 1368 return replaceInstUsesWith( 1369 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 1370 Arg0, NegVal)); 1371 } 1372 1373 break; 1374 } 1375 1376 case Intrinsic::uadd_sat: 1377 case Intrinsic::sadd_sat: 1378 case Intrinsic::usub_sat: 1379 case Intrinsic::ssub_sat: { 1380 SaturatingInst *SI = cast<SaturatingInst>(II); 1381 Type *Ty = SI->getType(); 1382 Value *Arg0 = SI->getLHS(); 1383 Value *Arg1 = SI->getRHS(); 1384 1385 // Make use of known overflow information. 1386 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 1387 Arg0, Arg1, SI); 1388 switch (OR) { 1389 case OverflowResult::MayOverflow: 1390 break; 1391 case OverflowResult::NeverOverflows: 1392 if (SI->isSigned()) 1393 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 1394 else 1395 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 1396 case OverflowResult::AlwaysOverflowsLow: { 1397 unsigned BitWidth = Ty->getScalarSizeInBits(); 1398 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 1399 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 1400 } 1401 case OverflowResult::AlwaysOverflowsHigh: { 1402 unsigned BitWidth = Ty->getScalarSizeInBits(); 1403 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 1404 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 1405 } 1406 } 1407 1408 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 1409 Constant *C; 1410 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 1411 C->isNotMinSignedValue()) { 1412 Value *NegVal = ConstantExpr::getNeg(C); 1413 return replaceInstUsesWith( 1414 *II, Builder.CreateBinaryIntrinsic( 1415 Intrinsic::sadd_sat, Arg0, NegVal)); 1416 } 1417 1418 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 1419 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 1420 // if Val and Val2 have the same sign 1421 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 1422 Value *X; 1423 const APInt *Val, *Val2; 1424 APInt NewVal; 1425 bool IsUnsigned = 1426 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 1427 if (Other->getIntrinsicID() == IID && 1428 match(Arg1, m_APInt(Val)) && 1429 match(Other->getArgOperand(0), m_Value(X)) && 1430 match(Other->getArgOperand(1), m_APInt(Val2))) { 1431 if (IsUnsigned) 1432 NewVal = Val->uadd_sat(*Val2); 1433 else if (Val->isNonNegative() == Val2->isNonNegative()) { 1434 bool Overflow; 1435 NewVal = Val->sadd_ov(*Val2, Overflow); 1436 if (Overflow) { 1437 // Both adds together may add more than SignedMaxValue 1438 // without saturating the final result. 1439 break; 1440 } 1441 } else { 1442 // Cannot fold saturated addition with different signs. 1443 break; 1444 } 1445 1446 return replaceInstUsesWith( 1447 *II, Builder.CreateBinaryIntrinsic( 1448 IID, X, ConstantInt::get(II->getType(), NewVal))); 1449 } 1450 } 1451 break; 1452 } 1453 1454 case Intrinsic::minnum: 1455 case Intrinsic::maxnum: 1456 case Intrinsic::minimum: 1457 case Intrinsic::maximum: { 1458 Value *Arg0 = II->getArgOperand(0); 1459 Value *Arg1 = II->getArgOperand(1); 1460 Value *X, *Y; 1461 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 1462 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 1463 // If both operands are negated, invert the call and negate the result: 1464 // min(-X, -Y) --> -(max(X, Y)) 1465 // max(-X, -Y) --> -(min(X, Y)) 1466 Intrinsic::ID NewIID; 1467 switch (IID) { 1468 case Intrinsic::maxnum: 1469 NewIID = Intrinsic::minnum; 1470 break; 1471 case Intrinsic::minnum: 1472 NewIID = Intrinsic::maxnum; 1473 break; 1474 case Intrinsic::maximum: 1475 NewIID = Intrinsic::minimum; 1476 break; 1477 case Intrinsic::minimum: 1478 NewIID = Intrinsic::maximum; 1479 break; 1480 default: 1481 llvm_unreachable("unexpected intrinsic ID"); 1482 } 1483 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 1484 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 1485 FNeg->copyIRFlags(II); 1486 return FNeg; 1487 } 1488 1489 // m(m(X, C2), C1) -> m(X, C) 1490 const APFloat *C1, *C2; 1491 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 1492 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 1493 ((match(M->getArgOperand(0), m_Value(X)) && 1494 match(M->getArgOperand(1), m_APFloat(C2))) || 1495 (match(M->getArgOperand(1), m_Value(X)) && 1496 match(M->getArgOperand(0), m_APFloat(C2))))) { 1497 APFloat Res(0.0); 1498 switch (IID) { 1499 case Intrinsic::maxnum: 1500 Res = maxnum(*C1, *C2); 1501 break; 1502 case Intrinsic::minnum: 1503 Res = minnum(*C1, *C2); 1504 break; 1505 case Intrinsic::maximum: 1506 Res = maximum(*C1, *C2); 1507 break; 1508 case Intrinsic::minimum: 1509 Res = minimum(*C1, *C2); 1510 break; 1511 default: 1512 llvm_unreachable("unexpected intrinsic ID"); 1513 } 1514 Instruction *NewCall = Builder.CreateBinaryIntrinsic( 1515 IID, X, ConstantFP::get(Arg0->getType(), Res), II); 1516 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 1517 // was a simplification (so Arg0 and its original flags could 1518 // propagate?) 1519 NewCall->andIRFlags(M); 1520 return replaceInstUsesWith(*II, NewCall); 1521 } 1522 } 1523 1524 // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) 1525 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && 1526 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && 1527 X->getType() == Y->getType()) { 1528 Value *NewCall = 1529 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); 1530 return new FPExtInst(NewCall, II->getType()); 1531 } 1532 1533 // max X, -X --> fabs X 1534 // min X, -X --> -(fabs X) 1535 // TODO: Remove one-use limitation? That is obviously better for max. 1536 // It would be an extra instruction for min (fnabs), but that is 1537 // still likely better for analysis and codegen. 1538 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) || 1539 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) { 1540 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 1541 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) 1542 R = Builder.CreateFNegFMF(R, II); 1543 return replaceInstUsesWith(*II, R); 1544 } 1545 1546 break; 1547 } 1548 case Intrinsic::fmuladd: { 1549 // Canonicalize fast fmuladd to the separate fmul + fadd. 1550 if (II->isFast()) { 1551 BuilderTy::FastMathFlagGuard Guard(Builder); 1552 Builder.setFastMathFlags(II->getFastMathFlags()); 1553 Value *Mul = Builder.CreateFMul(II->getArgOperand(0), 1554 II->getArgOperand(1)); 1555 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); 1556 Add->takeName(II); 1557 return replaceInstUsesWith(*II, Add); 1558 } 1559 1560 // Try to simplify the underlying FMul. 1561 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 1562 II->getFastMathFlags(), 1563 SQ.getWithInstruction(II))) { 1564 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1565 FAdd->copyFastMathFlags(II); 1566 return FAdd; 1567 } 1568 1569 LLVM_FALLTHROUGH; 1570 } 1571 case Intrinsic::fma: { 1572 // fma fneg(x), fneg(y), z -> fma x, y, z 1573 Value *Src0 = II->getArgOperand(0); 1574 Value *Src1 = II->getArgOperand(1); 1575 Value *X, *Y; 1576 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 1577 replaceOperand(*II, 0, X); 1578 replaceOperand(*II, 1, Y); 1579 return II; 1580 } 1581 1582 // fma fabs(x), fabs(x), z -> fma x, x, z 1583 if (match(Src0, m_FAbs(m_Value(X))) && 1584 match(Src1, m_FAbs(m_Specific(X)))) { 1585 replaceOperand(*II, 0, X); 1586 replaceOperand(*II, 1, X); 1587 return II; 1588 } 1589 1590 // Try to simplify the underlying FMul. We can only apply simplifications 1591 // that do not require rounding. 1592 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), 1593 II->getFastMathFlags(), 1594 SQ.getWithInstruction(II))) { 1595 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1596 FAdd->copyFastMathFlags(II); 1597 return FAdd; 1598 } 1599 1600 // fma x, y, 0 -> fmul x, y 1601 // This is always valid for -0.0, but requires nsz for +0.0 as 1602 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 1603 if (match(II->getArgOperand(2), m_NegZeroFP()) || 1604 (match(II->getArgOperand(2), m_PosZeroFP()) && 1605 II->getFastMathFlags().noSignedZeros())) 1606 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 1607 1608 break; 1609 } 1610 case Intrinsic::copysign: { 1611 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 1612 if (SignBitMustBeZero(Sign, &TLI)) { 1613 // If we know that the sign argument is positive, reduce to FABS: 1614 // copysign Mag, +Sign --> fabs Mag 1615 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1616 return replaceInstUsesWith(*II, Fabs); 1617 } 1618 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne. 1619 const APFloat *C; 1620 if (match(Sign, m_APFloat(C)) && C->isNegative()) { 1621 // If we know that the sign argument is negative, reduce to FNABS: 1622 // copysign Mag, -Sign --> fneg (fabs Mag) 1623 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1624 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 1625 } 1626 1627 // Propagate sign argument through nested calls: 1628 // copysign Mag, (copysign ?, X) --> copysign Mag, X 1629 Value *X; 1630 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) 1631 return replaceOperand(*II, 1, X); 1632 1633 // Peek through changes of magnitude's sign-bit. This call rewrites those: 1634 // copysign (fabs X), Sign --> copysign X, Sign 1635 // copysign (fneg X), Sign --> copysign X, Sign 1636 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 1637 return replaceOperand(*II, 0, X); 1638 1639 break; 1640 } 1641 case Intrinsic::fabs: { 1642 Value *Cond, *TVal, *FVal; 1643 if (match(II->getArgOperand(0), 1644 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 1645 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 1646 if (isa<Constant>(TVal) && isa<Constant>(FVal)) { 1647 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 1648 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 1649 return SelectInst::Create(Cond, AbsT, AbsF); 1650 } 1651 // fabs (select Cond, -FVal, FVal) --> fabs FVal 1652 if (match(TVal, m_FNeg(m_Specific(FVal)))) 1653 return replaceOperand(*II, 0, FVal); 1654 // fabs (select Cond, TVal, -TVal) --> fabs TVal 1655 if (match(FVal, m_FNeg(m_Specific(TVal)))) 1656 return replaceOperand(*II, 0, TVal); 1657 } 1658 1659 LLVM_FALLTHROUGH; 1660 } 1661 case Intrinsic::ceil: 1662 case Intrinsic::floor: 1663 case Intrinsic::round: 1664 case Intrinsic::roundeven: 1665 case Intrinsic::nearbyint: 1666 case Intrinsic::rint: 1667 case Intrinsic::trunc: { 1668 Value *ExtSrc; 1669 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 1670 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 1671 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 1672 return new FPExtInst(NarrowII, II->getType()); 1673 } 1674 break; 1675 } 1676 case Intrinsic::cos: 1677 case Intrinsic::amdgcn_cos: { 1678 Value *X; 1679 Value *Src = II->getArgOperand(0); 1680 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { 1681 // cos(-x) -> cos(x) 1682 // cos(fabs(x)) -> cos(x) 1683 return replaceOperand(*II, 0, X); 1684 } 1685 break; 1686 } 1687 case Intrinsic::sin: { 1688 Value *X; 1689 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 1690 // sin(-x) --> -sin(x) 1691 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); 1692 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin); 1693 FNeg->copyFastMathFlags(II); 1694 return FNeg; 1695 } 1696 break; 1697 } 1698 1699 case Intrinsic::arm_neon_vtbl1: 1700 case Intrinsic::aarch64_neon_tbl1: 1701 if (Value *V = simplifyNeonTbl1(*II, Builder)) 1702 return replaceInstUsesWith(*II, V); 1703 break; 1704 1705 case Intrinsic::arm_neon_vmulls: 1706 case Intrinsic::arm_neon_vmullu: 1707 case Intrinsic::aarch64_neon_smull: 1708 case Intrinsic::aarch64_neon_umull: { 1709 Value *Arg0 = II->getArgOperand(0); 1710 Value *Arg1 = II->getArgOperand(1); 1711 1712 // Handle mul by zero first: 1713 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 1714 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 1715 } 1716 1717 // Check for constant LHS & RHS - in this case we just simplify. 1718 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 1719 IID == Intrinsic::aarch64_neon_umull); 1720 VectorType *NewVT = cast<VectorType>(II->getType()); 1721 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 1722 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 1723 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); 1724 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); 1725 1726 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); 1727 } 1728 1729 // Couldn't simplify - canonicalize constant to the RHS. 1730 std::swap(Arg0, Arg1); 1731 } 1732 1733 // Handle mul by one: 1734 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 1735 if (ConstantInt *Splat = 1736 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 1737 if (Splat->isOne()) 1738 return CastInst::CreateIntegerCast(Arg0, II->getType(), 1739 /*isSigned=*/!Zext); 1740 1741 break; 1742 } 1743 case Intrinsic::arm_neon_aesd: 1744 case Intrinsic::arm_neon_aese: 1745 case Intrinsic::aarch64_crypto_aesd: 1746 case Intrinsic::aarch64_crypto_aese: { 1747 Value *DataArg = II->getArgOperand(0); 1748 Value *KeyArg = II->getArgOperand(1); 1749 1750 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 1751 Value *Data, *Key; 1752 if (match(KeyArg, m_ZeroInt()) && 1753 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 1754 replaceOperand(*II, 0, Data); 1755 replaceOperand(*II, 1, Key); 1756 return II; 1757 } 1758 break; 1759 } 1760 case Intrinsic::hexagon_V6_vandvrt: 1761 case Intrinsic::hexagon_V6_vandvrt_128B: { 1762 // Simplify Q -> V -> Q conversion. 1763 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1764 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 1765 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 1766 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 1767 break; 1768 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 1769 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 1770 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 1771 // Check if every byte has common bits in Bytes and Mask. 1772 uint64_t C = Bytes1 & Mask1; 1773 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 1774 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 1775 } 1776 break; 1777 } 1778 case Intrinsic::stackrestore: { 1779 enum class ClassifyResult { 1780 None, 1781 Alloca, 1782 StackRestore, 1783 CallWithSideEffects, 1784 }; 1785 auto Classify = [](const Instruction *I) { 1786 if (isa<AllocaInst>(I)) 1787 return ClassifyResult::Alloca; 1788 1789 if (auto *CI = dyn_cast<CallInst>(I)) { 1790 if (auto *II = dyn_cast<IntrinsicInst>(CI)) { 1791 if (II->getIntrinsicID() == Intrinsic::stackrestore) 1792 return ClassifyResult::StackRestore; 1793 1794 if (II->mayHaveSideEffects()) 1795 return ClassifyResult::CallWithSideEffects; 1796 } else { 1797 // Consider all non-intrinsic calls to be side effects 1798 return ClassifyResult::CallWithSideEffects; 1799 } 1800 } 1801 1802 return ClassifyResult::None; 1803 }; 1804 1805 // If the stacksave and the stackrestore are in the same BB, and there is 1806 // no intervening call, alloca, or stackrestore of a different stacksave, 1807 // remove the restore. This can happen when variable allocas are DCE'd. 1808 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1809 if (SS->getIntrinsicID() == Intrinsic::stacksave && 1810 SS->getParent() == II->getParent()) { 1811 BasicBlock::iterator BI(SS); 1812 bool CannotRemove = false; 1813 for (++BI; &*BI != II; ++BI) { 1814 switch (Classify(&*BI)) { 1815 case ClassifyResult::None: 1816 // So far so good, look at next instructions. 1817 break; 1818 1819 case ClassifyResult::StackRestore: 1820 // If we found an intervening stackrestore for a different 1821 // stacksave, we can't remove the stackrestore. Otherwise, continue. 1822 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS) 1823 CannotRemove = true; 1824 break; 1825 1826 case ClassifyResult::Alloca: 1827 case ClassifyResult::CallWithSideEffects: 1828 // If we found an alloca, a non-intrinsic call, or an intrinsic 1829 // call with side effects, we can't remove the stackrestore. 1830 CannotRemove = true; 1831 break; 1832 } 1833 if (CannotRemove) 1834 break; 1835 } 1836 1837 if (!CannotRemove) 1838 return eraseInstFromFunction(CI); 1839 } 1840 } 1841 1842 // Scan down this block to see if there is another stack restore in the 1843 // same block without an intervening call/alloca. 1844 BasicBlock::iterator BI(II); 1845 Instruction *TI = II->getParent()->getTerminator(); 1846 bool CannotRemove = false; 1847 for (++BI; &*BI != TI; ++BI) { 1848 switch (Classify(&*BI)) { 1849 case ClassifyResult::None: 1850 // So far so good, look at next instructions. 1851 break; 1852 1853 case ClassifyResult::StackRestore: 1854 // If there is a stackrestore below this one, remove this one. 1855 return eraseInstFromFunction(CI); 1856 1857 case ClassifyResult::Alloca: 1858 case ClassifyResult::CallWithSideEffects: 1859 // If we found an alloca, a non-intrinsic call, or an intrinsic call 1860 // with side effects (such as llvm.stacksave and llvm.read_register), 1861 // we can't remove the stack restore. 1862 CannotRemove = true; 1863 break; 1864 } 1865 if (CannotRemove) 1866 break; 1867 } 1868 1869 // If the stack restore is in a return, resume, or unwind block and if there 1870 // are no allocas or calls between the restore and the return, nuke the 1871 // restore. 1872 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 1873 return eraseInstFromFunction(CI); 1874 break; 1875 } 1876 case Intrinsic::lifetime_end: 1877 // Asan needs to poison memory to detect invalid access which is possible 1878 // even for empty lifetime range. 1879 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 1880 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 1881 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 1882 break; 1883 1884 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 1885 return I.getIntrinsicID() == Intrinsic::lifetime_start; 1886 })) 1887 return nullptr; 1888 break; 1889 case Intrinsic::assume: { 1890 Value *IIOperand = II->getArgOperand(0); 1891 SmallVector<OperandBundleDef, 4> OpBundles; 1892 II->getOperandBundlesAsDefs(OpBundles); 1893 1894 /// This will remove the boolean Condition from the assume given as 1895 /// argument and remove the assume if it becomes useless. 1896 /// always returns nullptr for use as a return values. 1897 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 1898 assert(isa<AssumeInst>(Assume)); 1899 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 1900 return eraseInstFromFunction(CI); 1901 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 1902 return nullptr; 1903 }; 1904 // Remove an assume if it is followed by an identical assume. 1905 // TODO: Do we need this? Unless there are conflicting assumptions, the 1906 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 1907 Instruction *Next = II->getNextNonDebugInstruction(); 1908 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 1909 return RemoveConditionFromAssume(Next); 1910 1911 // Canonicalize assume(a && b) -> assume(a); assume(b); 1912 // Note: New assumption intrinsics created here are registered by 1913 // the InstCombineIRInserter object. 1914 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 1915 Value *AssumeIntrinsic = II->getCalledOperand(); 1916 Value *A, *B; 1917 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 1918 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 1919 II->getName()); 1920 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 1921 return eraseInstFromFunction(*II); 1922 } 1923 // assume(!(a || b)) -> assume(!a); assume(!b); 1924 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 1925 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1926 Builder.CreateNot(A), OpBundles, II->getName()); 1927 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1928 Builder.CreateNot(B), II->getName()); 1929 return eraseInstFromFunction(*II); 1930 } 1931 1932 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 1933 // (if assume is valid at the load) 1934 CmpInst::Predicate Pred; 1935 Instruction *LHS; 1936 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 1937 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 1938 LHS->getType()->isPointerTy() && 1939 isValidAssumeForContext(II, LHS, &DT)) { 1940 MDNode *MD = MDNode::get(II->getContext(), None); 1941 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 1942 return RemoveConditionFromAssume(II); 1943 1944 // TODO: apply nonnull return attributes to calls and invokes 1945 // TODO: apply range metadata for range check patterns? 1946 } 1947 1948 // Convert nonnull assume like: 1949 // %A = icmp ne i32* %PTR, null 1950 // call void @llvm.assume(i1 %A) 1951 // into 1952 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 1953 if (EnableKnowledgeRetention && 1954 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && 1955 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { 1956 if (auto *Replacement = buildAssumeFromKnowledge( 1957 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 1958 1959 Replacement->insertBefore(Next); 1960 AC.registerAssumption(Replacement); 1961 return RemoveConditionFromAssume(II); 1962 } 1963 } 1964 1965 // Convert alignment assume like: 1966 // %B = ptrtoint i32* %A to i64 1967 // %C = and i64 %B, Constant 1968 // %D = icmp eq i64 %C, 0 1969 // call void @llvm.assume(i1 %D) 1970 // into 1971 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 1972 uint64_t AlignMask; 1973 if (EnableKnowledgeRetention && 1974 match(IIOperand, 1975 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), 1976 m_Zero())) && 1977 Pred == CmpInst::ICMP_EQ) { 1978 if (isPowerOf2_64(AlignMask + 1)) { 1979 uint64_t Offset = 0; 1980 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 1981 if (match(A, m_PtrToInt(m_Value(A)))) { 1982 /// Note: this doesn't preserve the offset information but merges 1983 /// offset and alignment. 1984 /// TODO: we can generate a GEP instead of merging the alignment with 1985 /// the offset. 1986 RetainedKnowledge RK{Attribute::Alignment, 1987 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 1988 if (auto *Replacement = 1989 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 1990 1991 Replacement->insertAfter(II); 1992 AC.registerAssumption(Replacement); 1993 } 1994 return RemoveConditionFromAssume(II); 1995 } 1996 } 1997 } 1998 1999 /// Canonicalize Knowledge in operand bundles. 2000 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 2001 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 2002 auto &BOI = II->bundle_op_info_begin()[Idx]; 2003 RetainedKnowledge RK = 2004 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 2005 if (BOI.End - BOI.Begin > 2) 2006 continue; // Prevent reducing knowledge in an align with offset since 2007 // extracting a RetainedKnowledge form them looses offset 2008 // information 2009 RetainedKnowledge CanonRK = 2010 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 2011 &getAssumptionCache(), 2012 &getDominatorTree()); 2013 if (CanonRK == RK) 2014 continue; 2015 if (!CanonRK) { 2016 if (BOI.End - BOI.Begin > 0) { 2017 Worklist.pushValue(II->op_begin()[BOI.Begin]); 2018 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 2019 } 2020 continue; 2021 } 2022 assert(RK.AttrKind == CanonRK.AttrKind); 2023 if (BOI.End - BOI.Begin > 0) 2024 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 2025 if (BOI.End - BOI.Begin > 1) 2026 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 2027 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 2028 if (RK.WasOn) 2029 Worklist.pushValue(RK.WasOn); 2030 return II; 2031 } 2032 } 2033 2034 // If there is a dominating assume with the same condition as this one, 2035 // then this one is redundant, and should be removed. 2036 KnownBits Known(1); 2037 computeKnownBits(IIOperand, Known, 0, II); 2038 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 2039 return eraseInstFromFunction(*II); 2040 2041 // Update the cache of affected values for this assumption (we might be 2042 // here because we just simplified the condition). 2043 AC.updateAffectedValues(cast<AssumeInst>(II)); 2044 break; 2045 } 2046 case Intrinsic::experimental_guard: { 2047 // Is this guard followed by another guard? We scan forward over a small 2048 // fixed window of instructions to handle common cases with conditions 2049 // computed between guards. 2050 Instruction *NextInst = II->getNextNonDebugInstruction(); 2051 for (unsigned i = 0; i < GuardWideningWindow; i++) { 2052 // Note: Using context-free form to avoid compile time blow up 2053 if (!isSafeToSpeculativelyExecute(NextInst)) 2054 break; 2055 NextInst = NextInst->getNextNonDebugInstruction(); 2056 } 2057 Value *NextCond = nullptr; 2058 if (match(NextInst, 2059 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 2060 Value *CurrCond = II->getArgOperand(0); 2061 2062 // Remove a guard that it is immediately preceded by an identical guard. 2063 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 2064 if (CurrCond != NextCond) { 2065 Instruction *MoveI = II->getNextNonDebugInstruction(); 2066 while (MoveI != NextInst) { 2067 auto *Temp = MoveI; 2068 MoveI = MoveI->getNextNonDebugInstruction(); 2069 Temp->moveBefore(II); 2070 } 2071 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 2072 } 2073 eraseInstFromFunction(*NextInst); 2074 return II; 2075 } 2076 break; 2077 } 2078 case Intrinsic::experimental_vector_insert: { 2079 Value *Vec = II->getArgOperand(0); 2080 Value *SubVec = II->getArgOperand(1); 2081 Value *Idx = II->getArgOperand(2); 2082 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 2083 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 2084 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 2085 2086 // Only canonicalize if the destination vector, Vec, and SubVec are all 2087 // fixed vectors. 2088 if (DstTy && VecTy && SubVecTy) { 2089 unsigned DstNumElts = DstTy->getNumElements(); 2090 unsigned VecNumElts = VecTy->getNumElements(); 2091 unsigned SubVecNumElts = SubVecTy->getNumElements(); 2092 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 2093 2094 // An insert that entirely overwrites Vec with SubVec is a nop. 2095 if (VecNumElts == SubVecNumElts) 2096 return replaceInstUsesWith(CI, SubVec); 2097 2098 // Widen SubVec into a vector of the same width as Vec, since 2099 // shufflevector requires the two input vectors to be the same width. 2100 // Elements beyond the bounds of SubVec within the widened vector are 2101 // undefined. 2102 SmallVector<int, 8> WidenMask; 2103 unsigned i; 2104 for (i = 0; i != SubVecNumElts; ++i) 2105 WidenMask.push_back(i); 2106 for (; i != VecNumElts; ++i) 2107 WidenMask.push_back(UndefMaskElem); 2108 2109 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 2110 2111 SmallVector<int, 8> Mask; 2112 for (unsigned i = 0; i != IdxN; ++i) 2113 Mask.push_back(i); 2114 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 2115 Mask.push_back(i); 2116 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 2117 Mask.push_back(i); 2118 2119 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 2120 return replaceInstUsesWith(CI, Shuffle); 2121 } 2122 break; 2123 } 2124 case Intrinsic::experimental_vector_extract: { 2125 Value *Vec = II->getArgOperand(0); 2126 Value *Idx = II->getArgOperand(1); 2127 2128 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 2129 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 2130 2131 // Only canonicalize if the the destination vector and Vec are fixed 2132 // vectors. 2133 if (DstTy && VecTy) { 2134 unsigned DstNumElts = DstTy->getNumElements(); 2135 unsigned VecNumElts = VecTy->getNumElements(); 2136 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 2137 2138 // Extracting the entirety of Vec is a nop. 2139 if (VecNumElts == DstNumElts) { 2140 replaceInstUsesWith(CI, Vec); 2141 return eraseInstFromFunction(CI); 2142 } 2143 2144 SmallVector<int, 8> Mask; 2145 for (unsigned i = 0; i != DstNumElts; ++i) 2146 Mask.push_back(IdxN + i); 2147 2148 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); 2149 return replaceInstUsesWith(CI, Shuffle); 2150 } 2151 break; 2152 } 2153 case Intrinsic::experimental_vector_reverse: { 2154 Value *BO0, *BO1, *X, *Y; 2155 Value *Vec = II->getArgOperand(0); 2156 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) { 2157 auto *OldBinOp = cast<BinaryOperator>(Vec); 2158 if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2159 m_Value(X)))) { 2160 // rev(binop rev(X), rev(Y)) --> binop X, Y 2161 if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2162 m_Value(Y)))) 2163 return replaceInstUsesWith(CI, 2164 BinaryOperator::CreateWithCopiedFlags( 2165 OldBinOp->getOpcode(), X, Y, OldBinOp, 2166 OldBinOp->getName(), II)); 2167 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat 2168 if (isSplatValue(BO1)) 2169 return replaceInstUsesWith(CI, 2170 BinaryOperator::CreateWithCopiedFlags( 2171 OldBinOp->getOpcode(), X, BO1, 2172 OldBinOp, OldBinOp->getName(), II)); 2173 } 2174 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y 2175 if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2176 m_Value(Y))) && 2177 isSplatValue(BO0)) 2178 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 2179 OldBinOp->getOpcode(), BO0, Y, 2180 OldBinOp, OldBinOp->getName(), II)); 2181 } 2182 // rev(unop rev(X)) --> unop X 2183 if (match(Vec, m_OneUse(m_UnOp( 2184 m_Intrinsic<Intrinsic::experimental_vector_reverse>( 2185 m_Value(X)))))) { 2186 auto *OldUnOp = cast<UnaryOperator>(Vec); 2187 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags( 2188 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II); 2189 return replaceInstUsesWith(CI, NewUnOp); 2190 } 2191 break; 2192 } 2193 case Intrinsic::vector_reduce_or: 2194 case Intrinsic::vector_reduce_and: { 2195 // Canonicalize logical or/and reductions: 2196 // Or reduction for i1 is represented as: 2197 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 2198 // %res = cmp ne iReduxWidth %val, 0 2199 // And reduction for i1 is represented as: 2200 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 2201 // %res = cmp eq iReduxWidth %val, 11111 2202 Value *Arg = II->getArgOperand(0); 2203 Value *Vect; 2204 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2205 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2206 if (FTy->getElementType() == Builder.getInt1Ty()) { 2207 Value *Res = Builder.CreateBitCast( 2208 Vect, Builder.getIntNTy(FTy->getNumElements())); 2209 if (IID == Intrinsic::vector_reduce_and) { 2210 Res = Builder.CreateICmpEQ( 2211 Res, ConstantInt::getAllOnesValue(Res->getType())); 2212 } else { 2213 assert(IID == Intrinsic::vector_reduce_or && 2214 "Expected or reduction."); 2215 Res = Builder.CreateIsNotNull(Res); 2216 } 2217 if (Arg != Vect) 2218 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 2219 II->getType()); 2220 return replaceInstUsesWith(CI, Res); 2221 } 2222 } 2223 LLVM_FALLTHROUGH; 2224 } 2225 case Intrinsic::vector_reduce_add: { 2226 if (IID == Intrinsic::vector_reduce_add) { 2227 // Convert vector_reduce_add(ZExt(<n x i1>)) to 2228 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 2229 // Convert vector_reduce_add(SExt(<n x i1>)) to 2230 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 2231 // Convert vector_reduce_add(<n x i1>) to 2232 // Trunc(ctpop(bitcast <n x i1> to in)). 2233 Value *Arg = II->getArgOperand(0); 2234 Value *Vect; 2235 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2236 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2237 if (FTy->getElementType() == Builder.getInt1Ty()) { 2238 Value *V = Builder.CreateBitCast( 2239 Vect, Builder.getIntNTy(FTy->getNumElements())); 2240 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); 2241 if (Res->getType() != II->getType()) 2242 Res = Builder.CreateZExtOrTrunc(Res, II->getType()); 2243 if (Arg != Vect && 2244 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) 2245 Res = Builder.CreateNeg(Res); 2246 return replaceInstUsesWith(CI, Res); 2247 } 2248 } 2249 } 2250 LLVM_FALLTHROUGH; 2251 } 2252 case Intrinsic::vector_reduce_xor: { 2253 if (IID == Intrinsic::vector_reduce_xor) { 2254 // Exclusive disjunction reduction over the vector with 2255 // (potentially-extended) i1 element type is actually a 2256 // (potentially-extended) arithmetic `add` reduction over the original 2257 // non-extended value: 2258 // vector_reduce_xor(?ext(<n x i1>)) 2259 // --> 2260 // ?ext(vector_reduce_add(<n x i1>)) 2261 Value *Arg = II->getArgOperand(0); 2262 Value *Vect; 2263 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2264 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2265 if (FTy->getElementType() == Builder.getInt1Ty()) { 2266 Value *Res = Builder.CreateAddReduce(Vect); 2267 if (Arg != Vect) 2268 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 2269 II->getType()); 2270 return replaceInstUsesWith(CI, Res); 2271 } 2272 } 2273 } 2274 LLVM_FALLTHROUGH; 2275 } 2276 case Intrinsic::vector_reduce_mul: { 2277 if (IID == Intrinsic::vector_reduce_mul) { 2278 // Multiplicative reduction over the vector with (potentially-extended) 2279 // i1 element type is actually a (potentially zero-extended) 2280 // logical `and` reduction over the original non-extended value: 2281 // vector_reduce_mul(?ext(<n x i1>)) 2282 // --> 2283 // zext(vector_reduce_and(<n x i1>)) 2284 Value *Arg = II->getArgOperand(0); 2285 Value *Vect; 2286 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2287 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2288 if (FTy->getElementType() == Builder.getInt1Ty()) { 2289 Value *Res = Builder.CreateAndReduce(Vect); 2290 if (Res->getType() != II->getType()) 2291 Res = Builder.CreateZExt(Res, II->getType()); 2292 return replaceInstUsesWith(CI, Res); 2293 } 2294 } 2295 } 2296 LLVM_FALLTHROUGH; 2297 } 2298 case Intrinsic::vector_reduce_umin: 2299 case Intrinsic::vector_reduce_umax: { 2300 if (IID == Intrinsic::vector_reduce_umin || 2301 IID == Intrinsic::vector_reduce_umax) { 2302 // UMin/UMax reduction over the vector with (potentially-extended) 2303 // i1 element type is actually a (potentially-extended) 2304 // logical `and`/`or` reduction over the original non-extended value: 2305 // vector_reduce_u{min,max}(?ext(<n x i1>)) 2306 // --> 2307 // ?ext(vector_reduce_{and,or}(<n x i1>)) 2308 Value *Arg = II->getArgOperand(0); 2309 Value *Vect; 2310 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2311 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2312 if (FTy->getElementType() == Builder.getInt1Ty()) { 2313 Value *Res = IID == Intrinsic::vector_reduce_umin 2314 ? Builder.CreateAndReduce(Vect) 2315 : Builder.CreateOrReduce(Vect); 2316 if (Arg != Vect) 2317 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 2318 II->getType()); 2319 return replaceInstUsesWith(CI, Res); 2320 } 2321 } 2322 } 2323 LLVM_FALLTHROUGH; 2324 } 2325 case Intrinsic::vector_reduce_smin: 2326 case Intrinsic::vector_reduce_smax: { 2327 if (IID == Intrinsic::vector_reduce_smin || 2328 IID == Intrinsic::vector_reduce_smax) { 2329 // SMin/SMax reduction over the vector with (potentially-extended) 2330 // i1 element type is actually a (potentially-extended) 2331 // logical `and`/`or` reduction over the original non-extended value: 2332 // vector_reduce_s{min,max}(<n x i1>) 2333 // --> 2334 // vector_reduce_{or,and}(<n x i1>) 2335 // and 2336 // vector_reduce_s{min,max}(sext(<n x i1>)) 2337 // --> 2338 // sext(vector_reduce_{or,and}(<n x i1>)) 2339 // and 2340 // vector_reduce_s{min,max}(zext(<n x i1>)) 2341 // --> 2342 // zext(vector_reduce_{and,or}(<n x i1>)) 2343 Value *Arg = II->getArgOperand(0); 2344 Value *Vect; 2345 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2346 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2347 if (FTy->getElementType() == Builder.getInt1Ty()) { 2348 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd; 2349 if (Arg != Vect) 2350 ExtOpc = cast<CastInst>(Arg)->getOpcode(); 2351 Value *Res = ((IID == Intrinsic::vector_reduce_smin) == 2352 (ExtOpc == Instruction::CastOps::ZExt)) 2353 ? Builder.CreateAndReduce(Vect) 2354 : Builder.CreateOrReduce(Vect); 2355 if (Arg != Vect) 2356 Res = Builder.CreateCast(ExtOpc, Res, II->getType()); 2357 return replaceInstUsesWith(CI, Res); 2358 } 2359 } 2360 } 2361 LLVM_FALLTHROUGH; 2362 } 2363 case Intrinsic::vector_reduce_fmax: 2364 case Intrinsic::vector_reduce_fmin: 2365 case Intrinsic::vector_reduce_fadd: 2366 case Intrinsic::vector_reduce_fmul: { 2367 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd && 2368 IID != Intrinsic::vector_reduce_fmul) || 2369 II->hasAllowReassoc(); 2370 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || 2371 IID == Intrinsic::vector_reduce_fmul) 2372 ? 1 2373 : 0; 2374 Value *Arg = II->getArgOperand(ArgIdx); 2375 Value *V; 2376 ArrayRef<int> Mask; 2377 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated || 2378 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || 2379 !cast<ShuffleVectorInst>(Arg)->isSingleSource()) 2380 break; 2381 int Sz = Mask.size(); 2382 SmallBitVector UsedIndices(Sz); 2383 for (int Idx : Mask) { 2384 if (Idx == UndefMaskElem || UsedIndices.test(Idx)) 2385 break; 2386 UsedIndices.set(Idx); 2387 } 2388 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or 2389 // other changes. 2390 if (UsedIndices.all()) { 2391 replaceUse(II->getOperandUse(ArgIdx), V); 2392 return nullptr; 2393 } 2394 break; 2395 } 2396 default: { 2397 // Handle target specific intrinsics 2398 Optional<Instruction *> V = targetInstCombineIntrinsic(*II); 2399 if (V.hasValue()) 2400 return V.getValue(); 2401 break; 2402 } 2403 } 2404 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 2405 // context, so it is handled in visitCallBase and we should trigger it. 2406 return visitCallBase(*II); 2407 } 2408 2409 // Fence instruction simplification 2410 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 2411 // Remove identical consecutive fences. 2412 Instruction *Next = FI.getNextNonDebugInstruction(); 2413 if (auto *NFI = dyn_cast<FenceInst>(Next)) 2414 if (FI.isIdenticalTo(NFI)) 2415 return eraseInstFromFunction(FI); 2416 return nullptr; 2417 } 2418 2419 // InvokeInst simplification 2420 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 2421 return visitCallBase(II); 2422 } 2423 2424 // CallBrInst simplification 2425 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 2426 return visitCallBase(CBI); 2427 } 2428 2429 /// If this cast does not affect the value passed through the varargs area, we 2430 /// can eliminate the use of the cast. 2431 static bool isSafeToEliminateVarargsCast(const CallBase &Call, 2432 const DataLayout &DL, 2433 const CastInst *const CI, 2434 const int ix) { 2435 if (!CI->isLosslessCast()) 2436 return false; 2437 2438 // If this is a GC intrinsic, avoid munging types. We need types for 2439 // statepoint reconstruction in SelectionDAG. 2440 // TODO: This is probably something which should be expanded to all 2441 // intrinsics since the entire point of intrinsics is that 2442 // they are understandable by the optimizer. 2443 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 2444 isa<GCResultInst>(Call)) 2445 return false; 2446 2447 // Opaque pointers are compatible with any byval types. 2448 PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType()); 2449 if (SrcTy->isOpaque()) 2450 return true; 2451 2452 // The size of ByVal or InAlloca arguments is derived from the type, so we 2453 // can't change to a type with a different size. If the size were 2454 // passed explicitly we could avoid this check. 2455 if (!Call.isPassPointeeByValueArgument(ix)) 2456 return true; 2457 2458 // The transform currently only handles type replacement for byval, not other 2459 // type-carrying attributes. 2460 if (!Call.isByValArgument(ix)) 2461 return false; 2462 2463 Type *SrcElemTy = SrcTy->getElementType(); 2464 Type *DstElemTy = Call.getParamByValType(ix); 2465 if (!SrcElemTy->isSized() || !DstElemTy->isSized()) 2466 return false; 2467 if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy)) 2468 return false; 2469 return true; 2470 } 2471 2472 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 2473 if (!CI->getCalledFunction()) return nullptr; 2474 2475 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 2476 replaceInstUsesWith(*From, With); 2477 }; 2478 auto InstCombineErase = [this](Instruction *I) { 2479 eraseInstFromFunction(*I); 2480 }; 2481 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, 2482 InstCombineErase); 2483 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 2484 ++NumSimplified; 2485 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 2486 } 2487 2488 return nullptr; 2489 } 2490 2491 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 2492 // Strip off at most one level of pointer casts, looking for an alloca. This 2493 // is good enough in practice and simpler than handling any number of casts. 2494 Value *Underlying = TrampMem->stripPointerCasts(); 2495 if (Underlying != TrampMem && 2496 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 2497 return nullptr; 2498 if (!isa<AllocaInst>(Underlying)) 2499 return nullptr; 2500 2501 IntrinsicInst *InitTrampoline = nullptr; 2502 for (User *U : TrampMem->users()) { 2503 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2504 if (!II) 2505 return nullptr; 2506 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 2507 if (InitTrampoline) 2508 // More than one init_trampoline writes to this value. Give up. 2509 return nullptr; 2510 InitTrampoline = II; 2511 continue; 2512 } 2513 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 2514 // Allow any number of calls to adjust.trampoline. 2515 continue; 2516 return nullptr; 2517 } 2518 2519 // No call to init.trampoline found. 2520 if (!InitTrampoline) 2521 return nullptr; 2522 2523 // Check that the alloca is being used in the expected way. 2524 if (InitTrampoline->getOperand(0) != TrampMem) 2525 return nullptr; 2526 2527 return InitTrampoline; 2528 } 2529 2530 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 2531 Value *TrampMem) { 2532 // Visit all the previous instructions in the basic block, and try to find a 2533 // init.trampoline which has a direct path to the adjust.trampoline. 2534 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 2535 E = AdjustTramp->getParent()->begin(); 2536 I != E;) { 2537 Instruction *Inst = &*--I; 2538 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2539 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 2540 II->getOperand(0) == TrampMem) 2541 return II; 2542 if (Inst->mayWriteToMemory()) 2543 return nullptr; 2544 } 2545 return nullptr; 2546 } 2547 2548 // Given a call to llvm.adjust.trampoline, find and return the corresponding 2549 // call to llvm.init.trampoline if the call to the trampoline can be optimized 2550 // to a direct call to a function. Otherwise return NULL. 2551 static IntrinsicInst *findInitTrampoline(Value *Callee) { 2552 Callee = Callee->stripPointerCasts(); 2553 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 2554 if (!AdjustTramp || 2555 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 2556 return nullptr; 2557 2558 Value *TrampMem = AdjustTramp->getOperand(0); 2559 2560 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 2561 return IT; 2562 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 2563 return IT; 2564 return nullptr; 2565 } 2566 2567 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) { 2568 unsigned NumArgs = Call.arg_size(); 2569 ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0)); 2570 ConstantInt *Op1C = 2571 (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1)); 2572 // Bail out if the allocation size is zero (or an invalid alignment of zero 2573 // with aligned_alloc). 2574 if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue())) 2575 return; 2576 2577 if (isMallocLikeFn(&Call, TLI) && Op0C) { 2578 if (isOpNewLikeFn(&Call, TLI)) 2579 Call.addRetAttr(Attribute::getWithDereferenceableBytes( 2580 Call.getContext(), Op0C->getZExtValue())); 2581 else 2582 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2583 Call.getContext(), Op0C->getZExtValue())); 2584 } else if (isAlignedAllocLikeFn(&Call, TLI)) { 2585 if (Op1C) 2586 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2587 Call.getContext(), Op1C->getZExtValue())); 2588 // Add alignment attribute if alignment is a power of two constant. 2589 if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment) && 2590 isKnownNonZero(Call.getOperand(1), DL, 0, &AC, &Call, &DT)) { 2591 uint64_t AlignmentVal = Op0C->getZExtValue(); 2592 if (llvm::isPowerOf2_64(AlignmentVal)) { 2593 Call.removeRetAttr(Attribute::Alignment); 2594 Call.addRetAttr(Attribute::getWithAlignment(Call.getContext(), 2595 Align(AlignmentVal))); 2596 } 2597 } 2598 } else if (isReallocLikeFn(&Call, TLI) && Op1C) { 2599 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2600 Call.getContext(), Op1C->getZExtValue())); 2601 } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) { 2602 bool Overflow; 2603 const APInt &N = Op0C->getValue(); 2604 APInt Size = N.umul_ov(Op1C->getValue(), Overflow); 2605 if (!Overflow) 2606 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2607 Call.getContext(), Size.getZExtValue())); 2608 } else if (isStrdupLikeFn(&Call, TLI)) { 2609 uint64_t Len = GetStringLength(Call.getOperand(0)); 2610 if (Len) { 2611 // strdup 2612 if (NumArgs == 1) 2613 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2614 Call.getContext(), Len)); 2615 // strndup 2616 else if (NumArgs == 2 && Op1C) 2617 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 2618 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1))); 2619 } 2620 } 2621 } 2622 2623 /// Improvements for call, callbr and invoke instructions. 2624 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 2625 if (isAllocationFn(&Call, &TLI)) 2626 annotateAnyAllocSite(Call, &TLI); 2627 2628 bool Changed = false; 2629 2630 // Mark any parameters that are known to be non-null with the nonnull 2631 // attribute. This is helpful for inlining calls to functions with null 2632 // checks on their arguments. 2633 SmallVector<unsigned, 4> ArgNos; 2634 unsigned ArgNo = 0; 2635 2636 for (Value *V : Call.args()) { 2637 if (V->getType()->isPointerTy() && 2638 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 2639 isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) 2640 ArgNos.push_back(ArgNo); 2641 ArgNo++; 2642 } 2643 2644 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly."); 2645 2646 if (!ArgNos.empty()) { 2647 AttributeList AS = Call.getAttributes(); 2648 LLVMContext &Ctx = Call.getContext(); 2649 AS = AS.addParamAttribute(Ctx, ArgNos, 2650 Attribute::get(Ctx, Attribute::NonNull)); 2651 Call.setAttributes(AS); 2652 Changed = true; 2653 } 2654 2655 // If the callee is a pointer to a function, attempt to move any casts to the 2656 // arguments of the call/callbr/invoke. 2657 Value *Callee = Call.getCalledOperand(); 2658 if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) 2659 return nullptr; 2660 2661 if (Function *CalleeF = dyn_cast<Function>(Callee)) { 2662 // Remove the convergent attr on calls when the callee is not convergent. 2663 if (Call.isConvergent() && !CalleeF->isConvergent() && 2664 !CalleeF->isIntrinsic()) { 2665 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 2666 << "\n"); 2667 Call.setNotConvergent(); 2668 return &Call; 2669 } 2670 2671 // If the call and callee calling conventions don't match, and neither one 2672 // of the calling conventions is compatible with C calling convention 2673 // this call must be unreachable, as the call is undefined. 2674 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 2675 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 2676 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 2677 !(Call.getCallingConv() == llvm::CallingConv::C && 2678 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 2679 // Only do this for calls to a function with a body. A prototype may 2680 // not actually end up matching the implementation's calling conv for a 2681 // variety of reasons (e.g. it may be written in assembly). 2682 !CalleeF->isDeclaration()) { 2683 Instruction *OldCall = &Call; 2684 CreateNonTerminatorUnreachable(OldCall); 2685 // If OldCall does not return void then replaceInstUsesWith poison. 2686 // This allows ValueHandlers and custom metadata to adjust itself. 2687 if (!OldCall->getType()->isVoidTy()) 2688 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType())); 2689 if (isa<CallInst>(OldCall)) 2690 return eraseInstFromFunction(*OldCall); 2691 2692 // We cannot remove an invoke or a callbr, because it would change thexi 2693 // CFG, just change the callee to a null pointer. 2694 cast<CallBase>(OldCall)->setCalledFunction( 2695 CalleeF->getFunctionType(), 2696 Constant::getNullValue(CalleeF->getType())); 2697 return nullptr; 2698 } 2699 } 2700 2701 // Calling a null function pointer is undefined if a null address isn't 2702 // dereferenceable. 2703 if ((isa<ConstantPointerNull>(Callee) && 2704 !NullPointerIsDefined(Call.getFunction())) || 2705 isa<UndefValue>(Callee)) { 2706 // If Call does not return void then replaceInstUsesWith poison. 2707 // This allows ValueHandlers and custom metadata to adjust itself. 2708 if (!Call.getType()->isVoidTy()) 2709 replaceInstUsesWith(Call, PoisonValue::get(Call.getType())); 2710 2711 if (Call.isTerminator()) { 2712 // Can't remove an invoke or callbr because we cannot change the CFG. 2713 return nullptr; 2714 } 2715 2716 // This instruction is not reachable, just remove it. 2717 CreateNonTerminatorUnreachable(&Call); 2718 return eraseInstFromFunction(Call); 2719 } 2720 2721 if (IntrinsicInst *II = findInitTrampoline(Callee)) 2722 return transformCallThroughTrampoline(Call, *II); 2723 2724 // TODO: Drop this transform once opaque pointer transition is done. 2725 FunctionType *FTy = Call.getFunctionType(); 2726 if (FTy->isVarArg()) { 2727 int ix = FTy->getNumParams(); 2728 // See if we can optimize any arguments passed through the varargs area of 2729 // the call. 2730 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); 2731 I != E; ++I, ++ix) { 2732 CastInst *CI = dyn_cast<CastInst>(*I); 2733 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { 2734 replaceUse(*I, CI->getOperand(0)); 2735 2736 // Update the byval type to match the pointer type. 2737 // Not necessary for opaque pointers. 2738 PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType()); 2739 if (!NewTy->isOpaque() && Call.isByValArgument(ix)) { 2740 Call.removeParamAttr(ix, Attribute::ByVal); 2741 Call.addParamAttr( 2742 ix, Attribute::getWithByValType( 2743 Call.getContext(), NewTy->getElementType())); 2744 } 2745 Changed = true; 2746 } 2747 } 2748 } 2749 2750 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 2751 InlineAsm *IA = cast<InlineAsm>(Callee); 2752 if (!IA->canThrow()) { 2753 // Normal inline asm calls cannot throw - mark them 2754 // 'nounwind'. 2755 Call.setDoesNotThrow(); 2756 Changed = true; 2757 } 2758 } 2759 2760 // Try to optimize the call if possible, we require DataLayout for most of 2761 // this. None of these calls are seen as possibly dead so go ahead and 2762 // delete the instruction now. 2763 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 2764 Instruction *I = tryOptimizeCall(CI); 2765 // If we changed something return the result, etc. Otherwise let 2766 // the fallthrough check. 2767 if (I) return eraseInstFromFunction(*I); 2768 } 2769 2770 if (!Call.use_empty() && !Call.isMustTailCall()) 2771 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 2772 Type *CallTy = Call.getType(); 2773 Type *RetArgTy = ReturnedArg->getType(); 2774 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 2775 return replaceInstUsesWith( 2776 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 2777 } 2778 2779 if (isAllocLikeFn(&Call, &TLI)) 2780 return visitAllocSite(Call); 2781 2782 // Handle intrinsics which can be used in both call and invoke context. 2783 switch (Call.getIntrinsicID()) { 2784 case Intrinsic::experimental_gc_statepoint: { 2785 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 2786 SmallPtrSet<Value *, 32> LiveGcValues; 2787 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2788 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2789 2790 // Remove the relocation if unused. 2791 if (GCR.use_empty()) { 2792 eraseInstFromFunction(GCR); 2793 continue; 2794 } 2795 2796 Value *DerivedPtr = GCR.getDerivedPtr(); 2797 Value *BasePtr = GCR.getBasePtr(); 2798 2799 // Undef is undef, even after relocation. 2800 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 2801 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 2802 eraseInstFromFunction(GCR); 2803 continue; 2804 } 2805 2806 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 2807 // The relocation of null will be null for most any collector. 2808 // TODO: provide a hook for this in GCStrategy. There might be some 2809 // weird collector this property does not hold for. 2810 if (isa<ConstantPointerNull>(DerivedPtr)) { 2811 // Use null-pointer of gc_relocate's type to replace it. 2812 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 2813 eraseInstFromFunction(GCR); 2814 continue; 2815 } 2816 2817 // isKnownNonNull -> nonnull attribute 2818 if (!GCR.hasRetAttr(Attribute::NonNull) && 2819 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) { 2820 GCR.addRetAttr(Attribute::NonNull); 2821 // We discovered new fact, re-check users. 2822 Worklist.pushUsersToWorkList(GCR); 2823 } 2824 } 2825 2826 // If we have two copies of the same pointer in the statepoint argument 2827 // list, canonicalize to one. This may let us common gc.relocates. 2828 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 2829 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 2830 auto *OpIntTy = GCR.getOperand(2)->getType(); 2831 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 2832 } 2833 2834 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 2835 // Canonicalize on the type from the uses to the defs 2836 2837 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 2838 LiveGcValues.insert(BasePtr); 2839 LiveGcValues.insert(DerivedPtr); 2840 } 2841 Optional<OperandBundleUse> Bundle = 2842 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 2843 unsigned NumOfGCLives = LiveGcValues.size(); 2844 if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size()) 2845 break; 2846 // We can reduce the size of gc live bundle. 2847 DenseMap<Value *, unsigned> Val2Idx; 2848 std::vector<Value *> NewLiveGc; 2849 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) { 2850 Value *V = Bundle->Inputs[I]; 2851 if (Val2Idx.count(V)) 2852 continue; 2853 if (LiveGcValues.count(V)) { 2854 Val2Idx[V] = NewLiveGc.size(); 2855 NewLiveGc.push_back(V); 2856 } else 2857 Val2Idx[V] = NumOfGCLives; 2858 } 2859 // Update all gc.relocates 2860 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2861 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2862 Value *BasePtr = GCR.getBasePtr(); 2863 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 2864 "Missed live gc for base pointer"); 2865 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 2866 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 2867 Value *DerivedPtr = GCR.getDerivedPtr(); 2868 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 2869 "Missed live gc for derived pointer"); 2870 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 2871 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 2872 } 2873 // Create new statepoint instruction. 2874 OperandBundleDef NewBundle("gc-live", NewLiveGc); 2875 return CallBase::Create(&Call, NewBundle); 2876 } 2877 default: { break; } 2878 } 2879 2880 return Changed ? &Call : nullptr; 2881 } 2882 2883 /// If the callee is a constexpr cast of a function, attempt to move the cast to 2884 /// the arguments of the call/callbr/invoke. 2885 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 2886 auto *Callee = 2887 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2888 if (!Callee) 2889 return false; 2890 2891 // If this is a call to a thunk function, don't remove the cast. Thunks are 2892 // used to transparently forward all incoming parameters and outgoing return 2893 // values, so it's important to leave the cast in place. 2894 if (Callee->hasFnAttribute("thunk")) 2895 return false; 2896 2897 // If this is a musttail call, the callee's prototype must match the caller's 2898 // prototype with the exception of pointee types. The code below doesn't 2899 // implement that, so we can't do this transform. 2900 // TODO: Do the transform if it only requires adding pointer casts. 2901 if (Call.isMustTailCall()) 2902 return false; 2903 2904 Instruction *Caller = &Call; 2905 const AttributeList &CallerPAL = Call.getAttributes(); 2906 2907 // Okay, this is a cast from a function to a different type. Unless doing so 2908 // would cause a type conversion of one of our arguments, change this call to 2909 // be a direct call with arguments casted to the appropriate types. 2910 FunctionType *FT = Callee->getFunctionType(); 2911 Type *OldRetTy = Caller->getType(); 2912 Type *NewRetTy = FT->getReturnType(); 2913 2914 // Check to see if we are changing the return type... 2915 if (OldRetTy != NewRetTy) { 2916 2917 if (NewRetTy->isStructTy()) 2918 return false; // TODO: Handle multiple return values. 2919 2920 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 2921 if (Callee->isDeclaration()) 2922 return false; // Cannot transform this return value. 2923 2924 if (!Caller->use_empty() && 2925 // void -> non-void is handled specially 2926 !NewRetTy->isVoidTy()) 2927 return false; // Cannot transform this return value. 2928 } 2929 2930 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 2931 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 2932 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 2933 return false; // Attribute not compatible with transformed value. 2934 } 2935 2936 // If the callbase is an invoke/callbr instruction, and the return value is 2937 // used by a PHI node in a successor, we cannot change the return type of 2938 // the call because there is no place to put the cast instruction (without 2939 // breaking the critical edge). Bail out in this case. 2940 if (!Caller->use_empty()) { 2941 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) 2942 for (User *U : II->users()) 2943 if (PHINode *PN = dyn_cast<PHINode>(U)) 2944 if (PN->getParent() == II->getNormalDest() || 2945 PN->getParent() == II->getUnwindDest()) 2946 return false; 2947 // FIXME: Be conservative for callbr to avoid a quadratic search. 2948 if (isa<CallBrInst>(Caller)) 2949 return false; 2950 } 2951 } 2952 2953 unsigned NumActualArgs = Call.arg_size(); 2954 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 2955 2956 // Prevent us turning: 2957 // declare void @takes_i32_inalloca(i32* inalloca) 2958 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 2959 // 2960 // into: 2961 // call void @takes_i32_inalloca(i32* null) 2962 // 2963 // Similarly, avoid folding away bitcasts of byval calls. 2964 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 2965 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) || 2966 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 2967 return false; 2968 2969 auto AI = Call.arg_begin(); 2970 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 2971 Type *ParamTy = FT->getParamType(i); 2972 Type *ActTy = (*AI)->getType(); 2973 2974 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 2975 return false; // Cannot transform this parameter value. 2976 2977 if (AttrBuilder(CallerPAL.getParamAttrs(i)) 2978 .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) 2979 return false; // Attribute not compatible with transformed value. 2980 2981 if (Call.isInAllocaArgument(i)) 2982 return false; // Cannot transform to and from inalloca. 2983 2984 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError)) 2985 return false; 2986 2987 // If the parameter is passed as a byval argument, then we have to have a 2988 // sized type and the sized type has to have the same size as the old type. 2989 if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) { 2990 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); 2991 if (!ParamPTy || !ParamPTy->getElementType()->isSized()) 2992 return false; 2993 2994 Type *CurElTy = Call.getParamByValType(i); 2995 if (DL.getTypeAllocSize(CurElTy) != 2996 DL.getTypeAllocSize(ParamPTy->getElementType())) 2997 return false; 2998 } 2999 } 3000 3001 if (Callee->isDeclaration()) { 3002 // Do not delete arguments unless we have a function body. 3003 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 3004 return false; 3005 3006 // If the callee is just a declaration, don't change the varargsness of the 3007 // call. We don't want to introduce a varargs call where one doesn't 3008 // already exist. 3009 PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3010 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) 3011 return false; 3012 3013 // If both the callee and the cast type are varargs, we still have to make 3014 // sure the number of fixed parameters are the same or we have the same 3015 // ABI issues as if we introduce a varargs call. 3016 if (FT->isVarArg() && 3017 cast<FunctionType>(APTy->getElementType())->isVarArg() && 3018 FT->getNumParams() != 3019 cast<FunctionType>(APTy->getElementType())->getNumParams()) 3020 return false; 3021 } 3022 3023 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 3024 !CallerPAL.isEmpty()) { 3025 // In this case we have more arguments than the new function type, but we 3026 // won't be dropping them. Check that these extra arguments have attributes 3027 // that are compatible with being a vararg call argument. 3028 unsigned SRetIdx; 3029 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 3030 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams()) 3031 return false; 3032 } 3033 3034 // Okay, we decided that this is a safe thing to do: go ahead and start 3035 // inserting cast instructions as necessary. 3036 SmallVector<Value *, 8> Args; 3037 SmallVector<AttributeSet, 8> ArgAttrs; 3038 Args.reserve(NumActualArgs); 3039 ArgAttrs.reserve(NumActualArgs); 3040 3041 // Get any return attributes. 3042 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 3043 3044 // If the return value is not being used, the type may not be compatible 3045 // with the existing attributes. Wipe out any problematic attributes. 3046 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 3047 3048 LLVMContext &Ctx = Call.getContext(); 3049 AI = Call.arg_begin(); 3050 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 3051 Type *ParamTy = FT->getParamType(i); 3052 3053 Value *NewArg = *AI; 3054 if ((*AI)->getType() != ParamTy) 3055 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 3056 Args.push_back(NewArg); 3057 3058 // Add any parameter attributes. 3059 if (CallerPAL.hasParamAttr(i, Attribute::ByVal)) { 3060 AttrBuilder AB(CallerPAL.getParamAttrs(i)); 3061 AB.addByValAttr(NewArg->getType()->getPointerElementType()); 3062 ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); 3063 } else 3064 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 3065 } 3066 3067 // If the function takes more arguments than the call was taking, add them 3068 // now. 3069 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 3070 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 3071 ArgAttrs.push_back(AttributeSet()); 3072 } 3073 3074 // If we are removing arguments to the function, emit an obnoxious warning. 3075 if (FT->getNumParams() < NumActualArgs) { 3076 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 3077 if (FT->isVarArg()) { 3078 // Add all of the arguments in their promoted form to the arg list. 3079 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 3080 Type *PTy = getPromotedType((*AI)->getType()); 3081 Value *NewArg = *AI; 3082 if (PTy != (*AI)->getType()) { 3083 // Must promote to pass through va_arg area! 3084 Instruction::CastOps opcode = 3085 CastInst::getCastOpcode(*AI, false, PTy, false); 3086 NewArg = Builder.CreateCast(opcode, *AI, PTy); 3087 } 3088 Args.push_back(NewArg); 3089 3090 // Add any parameter attributes. 3091 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 3092 } 3093 } 3094 } 3095 3096 AttributeSet FnAttrs = CallerPAL.getFnAttrs(); 3097 3098 if (NewRetTy->isVoidTy()) 3099 Caller->setName(""); // Void type should not have a name. 3100 3101 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 3102 "missing argument attributes"); 3103 AttributeList NewCallerPAL = AttributeList::get( 3104 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 3105 3106 SmallVector<OperandBundleDef, 1> OpBundles; 3107 Call.getOperandBundlesAsDefs(OpBundles); 3108 3109 CallBase *NewCall; 3110 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 3111 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 3112 II->getUnwindDest(), Args, OpBundles); 3113 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 3114 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), 3115 CBI->getIndirectDests(), Args, OpBundles); 3116 } else { 3117 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 3118 cast<CallInst>(NewCall)->setTailCallKind( 3119 cast<CallInst>(Caller)->getTailCallKind()); 3120 } 3121 NewCall->takeName(Caller); 3122 NewCall->setCallingConv(Call.getCallingConv()); 3123 NewCall->setAttributes(NewCallerPAL); 3124 3125 // Preserve prof metadata if any. 3126 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 3127 3128 // Insert a cast of the return type as necessary. 3129 Instruction *NC = NewCall; 3130 Value *NV = NC; 3131 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 3132 if (!NV->getType()->isVoidTy()) { 3133 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 3134 NC->setDebugLoc(Caller->getDebugLoc()); 3135 3136 // If this is an invoke/callbr instruction, we should insert it after the 3137 // first non-phi instruction in the normal successor block. 3138 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 3139 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); 3140 InsertNewInstBefore(NC, *I); 3141 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 3142 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); 3143 InsertNewInstBefore(NC, *I); 3144 } else { 3145 // Otherwise, it's a call, just insert cast right after the call. 3146 InsertNewInstBefore(NC, *Caller); 3147 } 3148 Worklist.pushUsersToWorkList(*Caller); 3149 } else { 3150 NV = UndefValue::get(Caller->getType()); 3151 } 3152 } 3153 3154 if (!Caller->use_empty()) 3155 replaceInstUsesWith(*Caller, NV); 3156 else if (Caller->hasValueHandle()) { 3157 if (OldRetTy == NV->getType()) 3158 ValueHandleBase::ValueIsRAUWd(Caller, NV); 3159 else 3160 // We cannot call ValueIsRAUWd with a different type, and the 3161 // actual tracked value will disappear. 3162 ValueHandleBase::ValueIsDeleted(Caller); 3163 } 3164 3165 eraseInstFromFunction(*Caller); 3166 return true; 3167 } 3168 3169 /// Turn a call to a function created by init_trampoline / adjust_trampoline 3170 /// intrinsic pair into a direct call to the underlying function. 3171 Instruction * 3172 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 3173 IntrinsicInst &Tramp) { 3174 Value *Callee = Call.getCalledOperand(); 3175 Type *CalleeTy = Callee->getType(); 3176 FunctionType *FTy = Call.getFunctionType(); 3177 AttributeList Attrs = Call.getAttributes(); 3178 3179 // If the call already has the 'nest' attribute somewhere then give up - 3180 // otherwise 'nest' would occur twice after splicing in the chain. 3181 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 3182 return nullptr; 3183 3184 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 3185 FunctionType *NestFTy = NestF->getFunctionType(); 3186 3187 AttributeList NestAttrs = NestF->getAttributes(); 3188 if (!NestAttrs.isEmpty()) { 3189 unsigned NestArgNo = 0; 3190 Type *NestTy = nullptr; 3191 AttributeSet NestAttr; 3192 3193 // Look for a parameter marked with the 'nest' attribute. 3194 for (FunctionType::param_iterator I = NestFTy->param_begin(), 3195 E = NestFTy->param_end(); 3196 I != E; ++NestArgNo, ++I) { 3197 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo); 3198 if (AS.hasAttribute(Attribute::Nest)) { 3199 // Record the parameter type and any other attributes. 3200 NestTy = *I; 3201 NestAttr = AS; 3202 break; 3203 } 3204 } 3205 3206 if (NestTy) { 3207 std::vector<Value*> NewArgs; 3208 std::vector<AttributeSet> NewArgAttrs; 3209 NewArgs.reserve(Call.arg_size() + 1); 3210 NewArgAttrs.reserve(Call.arg_size()); 3211 3212 // Insert the nest argument into the call argument list, which may 3213 // mean appending it. Likewise for attributes. 3214 3215 { 3216 unsigned ArgNo = 0; 3217 auto I = Call.arg_begin(), E = Call.arg_end(); 3218 do { 3219 if (ArgNo == NestArgNo) { 3220 // Add the chain argument and attributes. 3221 Value *NestVal = Tramp.getArgOperand(2); 3222 if (NestVal->getType() != NestTy) 3223 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 3224 NewArgs.push_back(NestVal); 3225 NewArgAttrs.push_back(NestAttr); 3226 } 3227 3228 if (I == E) 3229 break; 3230 3231 // Add the original argument and attributes. 3232 NewArgs.push_back(*I); 3233 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 3234 3235 ++ArgNo; 3236 ++I; 3237 } while (true); 3238 } 3239 3240 // The trampoline may have been bitcast to a bogus type (FTy). 3241 // Handle this by synthesizing a new function type, equal to FTy 3242 // with the chain parameter inserted. 3243 3244 std::vector<Type*> NewTypes; 3245 NewTypes.reserve(FTy->getNumParams()+1); 3246 3247 // Insert the chain's type into the list of parameter types, which may 3248 // mean appending it. 3249 { 3250 unsigned ArgNo = 0; 3251 FunctionType::param_iterator I = FTy->param_begin(), 3252 E = FTy->param_end(); 3253 3254 do { 3255 if (ArgNo == NestArgNo) 3256 // Add the chain's type. 3257 NewTypes.push_back(NestTy); 3258 3259 if (I == E) 3260 break; 3261 3262 // Add the original type. 3263 NewTypes.push_back(*I); 3264 3265 ++ArgNo; 3266 ++I; 3267 } while (true); 3268 } 3269 3270 // Replace the trampoline call with a direct call. Let the generic 3271 // code sort out any function type mismatches. 3272 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 3273 FTy->isVarArg()); 3274 Constant *NewCallee = 3275 NestF->getType() == PointerType::getUnqual(NewFTy) ? 3276 NestF : ConstantExpr::getBitCast(NestF, 3277 PointerType::getUnqual(NewFTy)); 3278 AttributeList NewPAL = 3279 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(), 3280 Attrs.getRetAttrs(), NewArgAttrs); 3281 3282 SmallVector<OperandBundleDef, 1> OpBundles; 3283 Call.getOperandBundlesAsDefs(OpBundles); 3284 3285 Instruction *NewCaller; 3286 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 3287 NewCaller = InvokeInst::Create(NewFTy, NewCallee, 3288 II->getNormalDest(), II->getUnwindDest(), 3289 NewArgs, OpBundles); 3290 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 3291 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 3292 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 3293 NewCaller = 3294 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), 3295 CBI->getIndirectDests(), NewArgs, OpBundles); 3296 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 3297 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 3298 } else { 3299 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); 3300 cast<CallInst>(NewCaller)->setTailCallKind( 3301 cast<CallInst>(Call).getTailCallKind()); 3302 cast<CallInst>(NewCaller)->setCallingConv( 3303 cast<CallInst>(Call).getCallingConv()); 3304 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 3305 } 3306 NewCaller->setDebugLoc(Call.getDebugLoc()); 3307 3308 return NewCaller; 3309 } 3310 } 3311 3312 // Replace the trampoline call with a direct call. Since there is no 'nest' 3313 // parameter, there is no need to adjust the argument list. Let the generic 3314 // code sort out any function type mismatches. 3315 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); 3316 Call.setCalledFunction(FTy, NewCallee); 3317 return &Call; 3318 } 3319