1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21
22 using namespace llvm;
23 using namespace PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// This is the complement of getICmpCode, which turns an opcode and two
28 /// operands into either a constant true or false, or a brand new ICmp
29 /// instruction. The sign is passed in to determine which kind of predicate to
30 /// use in the new icmp instruction.
getNewICmpValue(unsigned Code,bool Sign,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
32 InstCombiner::BuilderTy &Builder) {
33 ICmpInst::Predicate NewPred;
34 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
35 return TorF;
36 return Builder.CreateICmp(NewPred, LHS, RHS);
37 }
38
39 /// This is the complement of getFCmpCode, which turns an opcode and two
40 /// operands into either a FCmp instruction, or a true/false constant.
getFCmpValue(unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
42 InstCombiner::BuilderTy &Builder) {
43 FCmpInst::Predicate NewPred;
44 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
45 return TorF;
46 return Builder.CreateFCmp(NewPred, LHS, RHS);
47 }
48
49 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
50 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
51 /// \param I Binary operator to transform.
52 /// \return Pointer to node that must replace the original binary operator, or
53 /// null pointer if no transformation was made.
SimplifyBSwap(BinaryOperator & I,InstCombiner::BuilderTy & Builder)54 static Value *SimplifyBSwap(BinaryOperator &I,
55 InstCombiner::BuilderTy &Builder) {
56 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
57
58 Value *OldLHS = I.getOperand(0);
59 Value *OldRHS = I.getOperand(1);
60
61 Value *NewLHS;
62 if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
63 return nullptr;
64
65 Value *NewRHS;
66 const APInt *C;
67
68 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
69 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
70 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
71 return nullptr;
72 // NewRHS initialized by the matcher.
73 } else if (match(OldRHS, m_APInt(C))) {
74 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
75 if (!OldLHS->hasOneUse())
76 return nullptr;
77 NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
78 } else
79 return nullptr;
80
81 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
82 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
83 I.getType());
84 return Builder.CreateCall(F, BinOp);
85 }
86
87 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
88 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
89 /// whether to treat V, Lo, and Hi as signed or not.
insertRangeTest(Value * V,const APInt & Lo,const APInt & Hi,bool isSigned,bool Inside)90 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
91 const APInt &Hi, bool isSigned,
92 bool Inside) {
93 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
94 "Lo is not < Hi in range emission code!");
95
96 Type *Ty = V->getType();
97
98 // V >= Min && V < Hi --> V < Hi
99 // V < Min || V >= Hi --> V >= Hi
100 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
101 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
102 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
103 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
104 }
105
106 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
107 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
108 Value *VMinusLo =
109 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
110 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
111 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
112 }
113
114 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
115 /// that can be simplified.
116 /// One of A and B is considered the mask. The other is the value. This is
117 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
118 /// only "Mask", then both A and B can be considered masks. If A is the mask,
119 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
120 /// If both A and C are constants, this proof is also easy.
121 /// For the following explanations, we assume that A is the mask.
122 ///
123 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
124 /// bits of A are set in B.
125 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
126 ///
127 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
128 /// bits of A are cleared in B.
129 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
130 ///
131 /// "Mixed" declares that (A & B) == C and C might or might not contain any
132 /// number of one bits and zero bits.
133 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
134 ///
135 /// "Not" means that in above descriptions "==" should be replaced by "!=".
136 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
137 ///
138 /// If the mask A contains a single bit, then the following is equivalent:
139 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
140 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
141 enum MaskedICmpType {
142 AMask_AllOnes = 1,
143 AMask_NotAllOnes = 2,
144 BMask_AllOnes = 4,
145 BMask_NotAllOnes = 8,
146 Mask_AllZeros = 16,
147 Mask_NotAllZeros = 32,
148 AMask_Mixed = 64,
149 AMask_NotMixed = 128,
150 BMask_Mixed = 256,
151 BMask_NotMixed = 512
152 };
153
154 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
155 /// satisfies.
getMaskedICmpType(Value * A,Value * B,Value * C,ICmpInst::Predicate Pred)156 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
157 ICmpInst::Predicate Pred) {
158 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
159 match(A, m_APInt(ConstA));
160 match(B, m_APInt(ConstB));
161 match(C, m_APInt(ConstC));
162 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
163 bool IsAPow2 = ConstA && ConstA->isPowerOf2();
164 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
165 unsigned MaskVal = 0;
166 if (ConstC && ConstC->isZero()) {
167 // if C is zero, then both A and B qualify as mask
168 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
169 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
170 if (IsAPow2)
171 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
172 : (AMask_AllOnes | AMask_Mixed));
173 if (IsBPow2)
174 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
175 : (BMask_AllOnes | BMask_Mixed));
176 return MaskVal;
177 }
178
179 if (A == C) {
180 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
181 : (AMask_NotAllOnes | AMask_NotMixed));
182 if (IsAPow2)
183 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
184 : (Mask_AllZeros | AMask_Mixed));
185 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
186 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
187 }
188
189 if (B == C) {
190 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
191 : (BMask_NotAllOnes | BMask_NotMixed));
192 if (IsBPow2)
193 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
194 : (Mask_AllZeros | BMask_Mixed));
195 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
196 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
197 }
198
199 return MaskVal;
200 }
201
202 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
203 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
204 /// is adjacent to the corresponding normal flag (recording ==), this just
205 /// involves swapping those bits over.
conjugateICmpMask(unsigned Mask)206 static unsigned conjugateICmpMask(unsigned Mask) {
207 unsigned NewMask;
208 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
209 AMask_Mixed | BMask_Mixed))
210 << 1;
211
212 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
213 AMask_NotMixed | BMask_NotMixed))
214 >> 1;
215
216 return NewMask;
217 }
218
219 // Adapts the external decomposeBitTestICmp for local use.
decomposeBitTestICmp(Value * LHS,Value * RHS,CmpInst::Predicate & Pred,Value * & X,Value * & Y,Value * & Z)220 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
221 Value *&X, Value *&Y, Value *&Z) {
222 APInt Mask;
223 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
224 return false;
225
226 Y = ConstantInt::get(X->getType(), Mask);
227 Z = ConstantInt::get(X->getType(), 0);
228 return true;
229 }
230
231 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
232 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
233 /// the right hand side as a pair.
234 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
235 /// and PredR are their predicates, respectively.
236 static
237 Optional<std::pair<unsigned, unsigned>>
getMaskedTypeForICmpPair(Value * & A,Value * & B,Value * & C,Value * & D,Value * & E,ICmpInst * LHS,ICmpInst * RHS,ICmpInst::Predicate & PredL,ICmpInst::Predicate & PredR)238 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
239 Value *&D, Value *&E, ICmpInst *LHS,
240 ICmpInst *RHS,
241 ICmpInst::Predicate &PredL,
242 ICmpInst::Predicate &PredR) {
243 // Don't allow pointers. Splat vectors are fine.
244 if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
245 !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
246 return None;
247
248 // Here comes the tricky part:
249 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
250 // and L11 & L12 == L21 & L22. The same goes for RHS.
251 // Now we must find those components L** and R**, that are equal, so
252 // that we can extract the parameters A, B, C, D, and E for the canonical
253 // above.
254 Value *L1 = LHS->getOperand(0);
255 Value *L2 = LHS->getOperand(1);
256 Value *L11, *L12, *L21, *L22;
257 // Check whether the icmp can be decomposed into a bit test.
258 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
259 L21 = L22 = L1 = nullptr;
260 } else {
261 // Look for ANDs in the LHS icmp.
262 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
263 // Any icmp can be viewed as being trivially masked; if it allows us to
264 // remove one, it's worth it.
265 L11 = L1;
266 L12 = Constant::getAllOnesValue(L1->getType());
267 }
268
269 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
270 L21 = L2;
271 L22 = Constant::getAllOnesValue(L2->getType());
272 }
273 }
274
275 // Bail if LHS was a icmp that can't be decomposed into an equality.
276 if (!ICmpInst::isEquality(PredL))
277 return None;
278
279 Value *R1 = RHS->getOperand(0);
280 Value *R2 = RHS->getOperand(1);
281 Value *R11, *R12;
282 bool Ok = false;
283 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
284 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
285 A = R11;
286 D = R12;
287 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
288 A = R12;
289 D = R11;
290 } else {
291 return None;
292 }
293 E = R2;
294 R1 = nullptr;
295 Ok = true;
296 } else {
297 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
298 // As before, model no mask as a trivial mask if it'll let us do an
299 // optimization.
300 R11 = R1;
301 R12 = Constant::getAllOnesValue(R1->getType());
302 }
303
304 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
305 A = R11;
306 D = R12;
307 E = R2;
308 Ok = true;
309 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
310 A = R12;
311 D = R11;
312 E = R2;
313 Ok = true;
314 }
315 }
316
317 // Bail if RHS was a icmp that can't be decomposed into an equality.
318 if (!ICmpInst::isEquality(PredR))
319 return None;
320
321 // Look for ANDs on the right side of the RHS icmp.
322 if (!Ok) {
323 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
324 R11 = R2;
325 R12 = Constant::getAllOnesValue(R2->getType());
326 }
327
328 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
329 A = R11;
330 D = R12;
331 E = R1;
332 Ok = true;
333 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
334 A = R12;
335 D = R11;
336 E = R1;
337 Ok = true;
338 } else {
339 return None;
340 }
341
342 assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
343 }
344
345 if (L11 == A) {
346 B = L12;
347 C = L2;
348 } else if (L12 == A) {
349 B = L11;
350 C = L2;
351 } else if (L21 == A) {
352 B = L22;
353 C = L1;
354 } else if (L22 == A) {
355 B = L21;
356 C = L1;
357 }
358
359 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
360 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
361 return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
362 }
363
364 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
365 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
366 /// and the right hand side is of type BMask_Mixed. For example,
367 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
368 /// Also used for logical and/or, must be poison safe.
foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,InstCombiner::BuilderTy & Builder)369 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
370 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
371 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
372 InstCombiner::BuilderTy &Builder) {
373 // We are given the canonical form:
374 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
375 // where D & E == E.
376 //
377 // If IsAnd is false, we get it in negated form:
378 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
379 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
380 //
381 // We currently handle the case of B, C, D, E are constant.
382 //
383 const APInt *BCst, *CCst, *DCst, *OrigECst;
384 if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
385 !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
386 return nullptr;
387
388 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
389
390 // Update E to the canonical form when D is a power of two and RHS is
391 // canonicalized as,
392 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
393 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
394 APInt ECst = *OrigECst;
395 if (PredR != NewCC)
396 ECst ^= *DCst;
397
398 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
399 // other folding rules and this pattern won't apply any more.
400 if (*BCst == 0 || *DCst == 0)
401 return nullptr;
402
403 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
404 // deduce anything from it.
405 // For example,
406 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
407 if ((*BCst & *DCst) == 0)
408 return nullptr;
409
410 // If the following two conditions are met:
411 //
412 // 1. mask B covers only a single bit that's not covered by mask D, that is,
413 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
414 // B and D has only one bit set) and,
415 //
416 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
417 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
418 //
419 // then that single bit in B must be one and thus the whole expression can be
420 // folded to
421 // (A & (B | D)) == (B & (B ^ D)) | E.
422 //
423 // For example,
424 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
425 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
426 if ((((*BCst & *DCst) & ECst) == 0) &&
427 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
428 APInt BorD = *BCst | *DCst;
429 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
430 Value *NewMask = ConstantInt::get(A->getType(), BorD);
431 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
432 Value *NewAnd = Builder.CreateAnd(A, NewMask);
433 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
434 }
435
436 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
437 return (*C1 & *C2) == *C1;
438 };
439 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
440 return (*C1 & *C2) == *C2;
441 };
442
443 // In the following, we consider only the cases where B is a superset of D, B
444 // is a subset of D, or B == D because otherwise there's at least one bit
445 // covered by B but not D, in which case we can't deduce much from it, so
446 // no folding (aside from the single must-be-one bit case right above.)
447 // For example,
448 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
449 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
450 return nullptr;
451
452 // At this point, either B is a superset of D, B is a subset of D or B == D.
453
454 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
455 // and the whole expression becomes false (or true if negated), otherwise, no
456 // folding.
457 // For example,
458 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
459 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
460 if (ECst.isZero()) {
461 if (IsSubSetOrEqual(BCst, DCst))
462 return ConstantInt::get(LHS->getType(), !IsAnd);
463 return nullptr;
464 }
465
466 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
467 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
468 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
469 // RHS. For example,
470 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
471 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
472 if (IsSuperSetOrEqual(BCst, DCst))
473 return RHS;
474 // Otherwise, B is a subset of D. If B and E have a common bit set,
475 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
476 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
477 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
478 if ((*BCst & ECst) != 0)
479 return RHS;
480 // Otherwise, LHS and RHS contradict and the whole expression becomes false
481 // (or true if negated.) For example,
482 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
483 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
484 return ConstantInt::get(LHS->getType(), !IsAnd);
485 }
486
487 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
488 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
489 /// aren't of the common mask pattern type.
490 /// Also used for logical and/or, must be poison safe.
foldLogOpOfMaskedICmpsAsymmetric(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,unsigned LHSMask,unsigned RHSMask,InstCombiner::BuilderTy & Builder)491 static Value *foldLogOpOfMaskedICmpsAsymmetric(
492 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
493 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
494 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
495 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
496 "Expected equality predicates for masked type of icmps.");
497 // Handle Mask_NotAllZeros-BMask_Mixed cases.
498 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
499 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
500 // which gets swapped to
501 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
502 if (!IsAnd) {
503 LHSMask = conjugateICmpMask(LHSMask);
504 RHSMask = conjugateICmpMask(RHSMask);
505 }
506 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
507 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
508 LHS, RHS, IsAnd, A, B, C, D, E,
509 PredL, PredR, Builder)) {
510 return V;
511 }
512 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
513 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
514 RHS, LHS, IsAnd, A, D, E, B, C,
515 PredR, PredL, Builder)) {
516 return V;
517 }
518 }
519 return nullptr;
520 }
521
522 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
523 /// into a single (icmp(A & X) ==/!= Y).
foldLogOpOfMaskedICmps(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,bool IsLogical,InstCombiner::BuilderTy & Builder)524 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
525 bool IsLogical,
526 InstCombiner::BuilderTy &Builder) {
527 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
528 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
529 Optional<std::pair<unsigned, unsigned>> MaskPair =
530 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
531 if (!MaskPair)
532 return nullptr;
533 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
534 "Expected equality predicates for masked type of icmps.");
535 unsigned LHSMask = MaskPair->first;
536 unsigned RHSMask = MaskPair->second;
537 unsigned Mask = LHSMask & RHSMask;
538 if (Mask == 0) {
539 // Even if the two sides don't share a common pattern, check if folding can
540 // still happen.
541 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
542 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
543 Builder))
544 return V;
545 return nullptr;
546 }
547
548 // In full generality:
549 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
550 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
551 //
552 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
553 // equivalent to (icmp (A & X) !Op Y).
554 //
555 // Therefore, we can pretend for the rest of this function that we're dealing
556 // with the conjunction, provided we flip the sense of any comparisons (both
557 // input and output).
558
559 // In most cases we're going to produce an EQ for the "&&" case.
560 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
561 if (!IsAnd) {
562 // Convert the masking analysis into its equivalent with negated
563 // comparisons.
564 Mask = conjugateICmpMask(Mask);
565 }
566
567 if (Mask & Mask_AllZeros) {
568 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
569 // -> (icmp eq (A & (B|D)), 0)
570 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
571 return nullptr; // TODO: Use freeze?
572 Value *NewOr = Builder.CreateOr(B, D);
573 Value *NewAnd = Builder.CreateAnd(A, NewOr);
574 // We can't use C as zero because we might actually handle
575 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
576 // with B and D, having a single bit set.
577 Value *Zero = Constant::getNullValue(A->getType());
578 return Builder.CreateICmp(NewCC, NewAnd, Zero);
579 }
580 if (Mask & BMask_AllOnes) {
581 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
582 // -> (icmp eq (A & (B|D)), (B|D))
583 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
584 return nullptr; // TODO: Use freeze?
585 Value *NewOr = Builder.CreateOr(B, D);
586 Value *NewAnd = Builder.CreateAnd(A, NewOr);
587 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
588 }
589 if (Mask & AMask_AllOnes) {
590 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
591 // -> (icmp eq (A & (B&D)), A)
592 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
593 return nullptr; // TODO: Use freeze?
594 Value *NewAnd1 = Builder.CreateAnd(B, D);
595 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
596 return Builder.CreateICmp(NewCC, NewAnd2, A);
597 }
598
599 // Remaining cases assume at least that B and D are constant, and depend on
600 // their actual values. This isn't strictly necessary, just a "handle the
601 // easy cases for now" decision.
602 const APInt *ConstB, *ConstD;
603 if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
604 return nullptr;
605
606 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
607 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
608 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
609 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
610 // Only valid if one of the masks is a superset of the other (check "B&D" is
611 // the same as either B or D).
612 APInt NewMask = *ConstB & *ConstD;
613 if (NewMask == *ConstB)
614 return LHS;
615 else if (NewMask == *ConstD)
616 return RHS;
617 }
618
619 if (Mask & AMask_NotAllOnes) {
620 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
621 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
622 // Only valid if one of the masks is a superset of the other (check "B|D" is
623 // the same as either B or D).
624 APInt NewMask = *ConstB | *ConstD;
625 if (NewMask == *ConstB)
626 return LHS;
627 else if (NewMask == *ConstD)
628 return RHS;
629 }
630
631 if (Mask & BMask_Mixed) {
632 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
633 // We already know that B & C == C && D & E == E.
634 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
635 // C and E, which are shared by both the mask B and the mask D, don't
636 // contradict, then we can transform to
637 // -> (icmp eq (A & (B|D)), (C|E))
638 // Currently, we only handle the case of B, C, D, and E being constant.
639 // We can't simply use C and E because we might actually handle
640 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
641 // with B and D, having a single bit set.
642 const APInt *OldConstC, *OldConstE;
643 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
644 return nullptr;
645
646 const APInt ConstC = PredL != NewCC ? *ConstB ^ *OldConstC : *OldConstC;
647 const APInt ConstE = PredR != NewCC ? *ConstD ^ *OldConstE : *OldConstE;
648
649 // If there is a conflict, we should actually return a false for the
650 // whole construct.
651 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
652 return ConstantInt::get(LHS->getType(), !IsAnd);
653
654 Value *NewOr1 = Builder.CreateOr(B, D);
655 Value *NewAnd = Builder.CreateAnd(A, NewOr1);
656 Constant *NewOr2 = ConstantInt::get(A->getType(), ConstC | ConstE);
657 return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
658 }
659
660 return nullptr;
661 }
662
663 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
664 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
665 /// If \p Inverted is true then the check is for the inverted range, e.g.
666 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
simplifyRangeCheck(ICmpInst * Cmp0,ICmpInst * Cmp1,bool Inverted)667 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
668 bool Inverted) {
669 // Check the lower range comparison, e.g. x >= 0
670 // InstCombine already ensured that if there is a constant it's on the RHS.
671 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
672 if (!RangeStart)
673 return nullptr;
674
675 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
676 Cmp0->getPredicate());
677
678 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
679 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
680 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
681 return nullptr;
682
683 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
684 Cmp1->getPredicate());
685
686 Value *Input = Cmp0->getOperand(0);
687 Value *RangeEnd;
688 if (Cmp1->getOperand(0) == Input) {
689 // For the upper range compare we have: icmp x, n
690 RangeEnd = Cmp1->getOperand(1);
691 } else if (Cmp1->getOperand(1) == Input) {
692 // For the upper range compare we have: icmp n, x
693 RangeEnd = Cmp1->getOperand(0);
694 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
695 } else {
696 return nullptr;
697 }
698
699 // Check the upper range comparison, e.g. x < n
700 ICmpInst::Predicate NewPred;
701 switch (Pred1) {
702 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
703 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
704 default: return nullptr;
705 }
706
707 // This simplification is only valid if the upper range is not negative.
708 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
709 if (!Known.isNonNegative())
710 return nullptr;
711
712 if (Inverted)
713 NewPred = ICmpInst::getInversePredicate(NewPred);
714
715 return Builder.CreateICmp(NewPred, Input, RangeEnd);
716 }
717
718 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
719 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
foldAndOrOfICmpsOfAndWithPow2(ICmpInst * LHS,ICmpInst * RHS,Instruction * CxtI,bool IsAnd,bool IsLogical)720 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
721 ICmpInst *RHS,
722 Instruction *CxtI,
723 bool IsAnd,
724 bool IsLogical) {
725 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
726 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
727 return nullptr;
728
729 if (!match(LHS->getOperand(1), m_Zero()) ||
730 !match(RHS->getOperand(1), m_Zero()))
731 return nullptr;
732
733 Value *L1, *L2, *R1, *R2;
734 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
735 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
736 if (L1 == R2 || L2 == R2)
737 std::swap(R1, R2);
738 if (L2 == R1)
739 std::swap(L1, L2);
740
741 if (L1 == R1 &&
742 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
743 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
744 // If this is a logical and/or, then we must prevent propagation of a
745 // poison value from the RHS by inserting freeze.
746 if (IsLogical)
747 R2 = Builder.CreateFreeze(R2);
748 Value *Mask = Builder.CreateOr(L2, R2);
749 Value *Masked = Builder.CreateAnd(L1, Mask);
750 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
751 return Builder.CreateICmp(NewPred, Masked, Mask);
752 }
753 }
754
755 return nullptr;
756 }
757
758 /// General pattern:
759 /// X & Y
760 ///
761 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
762 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
763 /// Pattern can be one of:
764 /// %t = add i32 %arg, 128
765 /// %r = icmp ult i32 %t, 256
766 /// Or
767 /// %t0 = shl i32 %arg, 24
768 /// %t1 = ashr i32 %t0, 24
769 /// %r = icmp eq i32 %t1, %arg
770 /// Or
771 /// %t0 = trunc i32 %arg to i8
772 /// %t1 = sext i8 %t0 to i32
773 /// %r = icmp eq i32 %t1, %arg
774 /// This pattern is a signed truncation check.
775 ///
776 /// And X is checking that some bit in that same mask is zero.
777 /// I.e. can be one of:
778 /// %r = icmp sgt i32 %arg, -1
779 /// Or
780 /// %t = and i32 %arg, 2147483648
781 /// %r = icmp eq i32 %t, 0
782 ///
783 /// Since we are checking that all the bits in that mask are the same,
784 /// and a particular bit is zero, what we are really checking is that all the
785 /// masked bits are zero.
786 /// So this should be transformed to:
787 /// %r = icmp ult i32 %arg, 128
foldSignedTruncationCheck(ICmpInst * ICmp0,ICmpInst * ICmp1,Instruction & CxtI,InstCombiner::BuilderTy & Builder)788 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
789 Instruction &CxtI,
790 InstCombiner::BuilderTy &Builder) {
791 assert(CxtI.getOpcode() == Instruction::And);
792
793 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
794 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
795 APInt &SignBitMask) -> bool {
796 CmpInst::Predicate Pred;
797 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
798 if (!(match(ICmp,
799 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
800 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
801 return false;
802 // Which bit is the new sign bit as per the 'signed truncation' pattern?
803 SignBitMask = *I01;
804 return true;
805 };
806
807 // One icmp needs to be 'signed truncation check'.
808 // We need to match this first, else we will mismatch commutative cases.
809 Value *X1;
810 APInt HighestBit;
811 ICmpInst *OtherICmp;
812 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
813 OtherICmp = ICmp0;
814 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
815 OtherICmp = ICmp1;
816 else
817 return nullptr;
818
819 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
820
821 // Try to match/decompose into: icmp eq (X & Mask), 0
822 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
823 APInt &UnsetBitsMask) -> bool {
824 CmpInst::Predicate Pred = ICmp->getPredicate();
825 // Can it be decomposed into icmp eq (X & Mask), 0 ?
826 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
827 Pred, X, UnsetBitsMask,
828 /*LookThroughTrunc=*/false) &&
829 Pred == ICmpInst::ICMP_EQ)
830 return true;
831 // Is it icmp eq (X & Mask), 0 already?
832 const APInt *Mask;
833 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
834 Pred == ICmpInst::ICMP_EQ) {
835 UnsetBitsMask = *Mask;
836 return true;
837 }
838 return false;
839 };
840
841 // And the other icmp needs to be decomposable into a bit test.
842 Value *X0;
843 APInt UnsetBitsMask;
844 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
845 return nullptr;
846
847 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
848
849 // Are they working on the same value?
850 Value *X;
851 if (X1 == X0) {
852 // Ok as is.
853 X = X1;
854 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
855 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
856 X = X1;
857 } else
858 return nullptr;
859
860 // So which bits should be uniform as per the 'signed truncation check'?
861 // (all the bits starting with (i.e. including) HighestBit)
862 APInt SignBitsMask = ~(HighestBit - 1U);
863
864 // UnsetBitsMask must have some common bits with SignBitsMask,
865 if (!UnsetBitsMask.intersects(SignBitsMask))
866 return nullptr;
867
868 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
869 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
870 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
871 if (!OtherHighestBit.isPowerOf2())
872 return nullptr;
873 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
874 }
875 // Else, if it does not, then all is ok as-is.
876
877 // %r = icmp ult %X, SignBit
878 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
879 CxtI.getName() + ".simplified");
880 }
881
882 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
883 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
884 /// Also used for logical and/or, must be poison safe.
foldIsPowerOf2OrZero(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd,InstCombiner::BuilderTy & Builder)885 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
886 InstCombiner::BuilderTy &Builder) {
887 CmpInst::Predicate Pred0, Pred1;
888 Value *X;
889 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
890 m_SpecificInt(1))) ||
891 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
892 return nullptr;
893
894 Value *CtPop = Cmp0->getOperand(0);
895 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
896 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
897 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
898 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
899
900 return nullptr;
901 }
902
903 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
904 /// Also used for logical and/or, must be poison safe.
foldIsPowerOf2(ICmpInst * Cmp0,ICmpInst * Cmp1,bool JoinedByAnd,InstCombiner::BuilderTy & Builder)905 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
906 InstCombiner::BuilderTy &Builder) {
907 // Handle 'and' / 'or' commutation: make the equality check the first operand.
908 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
909 std::swap(Cmp0, Cmp1);
910 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
911 std::swap(Cmp0, Cmp1);
912
913 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
914 CmpInst::Predicate Pred0, Pred1;
915 Value *X;
916 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
917 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
918 m_SpecificInt(2))) &&
919 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
920 Value *CtPop = Cmp1->getOperand(0);
921 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
922 }
923 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
924 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
925 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
926 m_SpecificInt(1))) &&
927 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
928 Value *CtPop = Cmp1->getOperand(0);
929 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
930 }
931 return nullptr;
932 }
933
934 /// Commuted variants are assumed to be handled by calling this function again
935 /// with the parameters swapped.
foldUnsignedUnderflowCheck(ICmpInst * ZeroICmp,ICmpInst * UnsignedICmp,bool IsAnd,const SimplifyQuery & Q,InstCombiner::BuilderTy & Builder)936 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
937 ICmpInst *UnsignedICmp, bool IsAnd,
938 const SimplifyQuery &Q,
939 InstCombiner::BuilderTy &Builder) {
940 Value *ZeroCmpOp;
941 ICmpInst::Predicate EqPred;
942 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
943 !ICmpInst::isEquality(EqPred))
944 return nullptr;
945
946 auto IsKnownNonZero = [&](Value *V) {
947 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
948 };
949
950 ICmpInst::Predicate UnsignedPred;
951
952 Value *A, *B;
953 if (match(UnsignedICmp,
954 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
955 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
956 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
957 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
958 if (!IsKnownNonZero(NonZero))
959 std::swap(NonZero, Other);
960 return IsKnownNonZero(NonZero);
961 };
962
963 // Given ZeroCmpOp = (A + B)
964 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
965 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
966 // with X being the value (A/B) that is known to be non-zero,
967 // and Y being remaining value.
968 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
969 IsAnd && GetKnownNonZeroAndOther(B, A))
970 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
971 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
972 !IsAnd && GetKnownNonZeroAndOther(B, A))
973 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
974 }
975
976 Value *Base, *Offset;
977 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
978 return nullptr;
979
980 if (!match(UnsignedICmp,
981 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
982 !ICmpInst::isUnsigned(UnsignedPred))
983 return nullptr;
984
985 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
986 // (no overflow and not null)
987 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
988 UnsignedPred == ICmpInst::ICMP_UGT) &&
989 EqPred == ICmpInst::ICMP_NE && IsAnd)
990 return Builder.CreateICmpUGT(Base, Offset);
991
992 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
993 // (overflow or null)
994 if ((UnsignedPred == ICmpInst::ICMP_ULE ||
995 UnsignedPred == ICmpInst::ICMP_ULT) &&
996 EqPred == ICmpInst::ICMP_EQ && !IsAnd)
997 return Builder.CreateICmpULE(Base, Offset);
998
999 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
1000 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1001 IsAnd)
1002 return Builder.CreateICmpULT(Base, Offset);
1003
1004 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
1005 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1006 !IsAnd)
1007 return Builder.CreateICmpUGE(Base, Offset);
1008
1009 return nullptr;
1010 }
1011
1012 struct IntPart {
1013 Value *From;
1014 unsigned StartBit;
1015 unsigned NumBits;
1016 };
1017
1018 /// Match an extraction of bits from an integer.
matchIntPart(Value * V)1019 static Optional<IntPart> matchIntPart(Value *V) {
1020 Value *X;
1021 if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1022 return None;
1023
1024 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1025 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1026 Value *Y;
1027 const APInt *Shift;
1028 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1029 // from Y, not any shifted-in zeroes.
1030 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1031 Shift->ule(NumOriginalBits - NumExtractedBits))
1032 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1033 return {{X, 0, NumExtractedBits}};
1034 }
1035
1036 /// Materialize an extraction of bits from an integer in IR.
extractIntPart(const IntPart & P,IRBuilderBase & Builder)1037 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1038 Value *V = P.From;
1039 if (P.StartBit)
1040 V = Builder.CreateLShr(V, P.StartBit);
1041 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1042 if (TruncTy != V->getType())
1043 V = Builder.CreateTrunc(V, TruncTy);
1044 return V;
1045 }
1046
1047 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1048 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1049 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
foldEqOfParts(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1050 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1051 bool IsAnd) {
1052 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1053 return nullptr;
1054
1055 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1056 if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
1057 return nullptr;
1058
1059 Optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
1060 Optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
1061 Optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
1062 Optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
1063 if (!L0 || !R0 || !L1 || !R1)
1064 return nullptr;
1065
1066 // Make sure the LHS/RHS compare a part of the same value, possibly after
1067 // an operand swap.
1068 if (L0->From != L1->From || R0->From != R1->From) {
1069 if (L0->From != R1->From || R0->From != L1->From)
1070 return nullptr;
1071 std::swap(L1, R1);
1072 }
1073
1074 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1075 // the low part and L1/R1 being the high part.
1076 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1077 R0->StartBit + R0->NumBits != R1->StartBit) {
1078 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1079 R1->StartBit + R1->NumBits != R0->StartBit)
1080 return nullptr;
1081 std::swap(L0, L1);
1082 std::swap(R0, R1);
1083 }
1084
1085 // We can simplify to a comparison of these larger parts of the integers.
1086 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1087 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1088 Value *LValue = extractIntPart(L, Builder);
1089 Value *RValue = extractIntPart(R, Builder);
1090 return Builder.CreateICmp(Pred, LValue, RValue);
1091 }
1092
1093 /// Reduce logic-of-compares with equality to a constant by substituting a
1094 /// common operand with the constant. Callers are expected to call this with
1095 /// Cmp0/Cmp1 switched to handle logic op commutativity.
foldAndOrOfICmpsWithConstEq(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd,InstCombiner::BuilderTy & Builder,const SimplifyQuery & Q)1096 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1097 bool IsAnd,
1098 InstCombiner::BuilderTy &Builder,
1099 const SimplifyQuery &Q) {
1100 // Match an equality compare with a non-poison constant as Cmp0.
1101 // Also, give up if the compare can be constant-folded to avoid looping.
1102 ICmpInst::Predicate Pred0;
1103 Value *X;
1104 Constant *C;
1105 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1106 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1107 return nullptr;
1108 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1109 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1110 return nullptr;
1111
1112 // The other compare must include a common operand (X). Canonicalize the
1113 // common operand as operand 1 (Pred1 is swapped if the common operand was
1114 // operand 0).
1115 Value *Y;
1116 ICmpInst::Predicate Pred1;
1117 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1118 return nullptr;
1119
1120 // Replace variable with constant value equivalence to remove a variable use:
1121 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1122 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1123 // Can think of the 'or' substitution with the 'and' bool equivalent:
1124 // A || B --> A || (!A && B)
1125 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1126 if (!SubstituteCmp) {
1127 // If we need to create a new instruction, require that the old compare can
1128 // be removed.
1129 if (!Cmp1->hasOneUse())
1130 return nullptr;
1131 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1132 }
1133 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1134 SubstituteCmp);
1135 }
1136
1137 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1138 /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1139 /// into a single comparison using range-based reasoning.
1140 /// NOTE: This is also used for logical and/or, must be poison-safe!
foldAndOrOfICmpsUsingRanges(ICmpInst * ICmp1,ICmpInst * ICmp2,bool IsAnd)1141 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1142 ICmpInst *ICmp2,
1143 bool IsAnd) {
1144 ICmpInst::Predicate Pred1, Pred2;
1145 Value *V1, *V2;
1146 const APInt *C1, *C2;
1147 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1148 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1149 return nullptr;
1150
1151 // Look through add of a constant offset on V1, V2, or both operands. This
1152 // allows us to interpret the V + C' < C'' range idiom into a proper range.
1153 const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1154 if (V1 != V2) {
1155 Value *X;
1156 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1157 V1 = X;
1158 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1159 V2 = X;
1160 }
1161
1162 if (V1 != V2)
1163 return nullptr;
1164
1165 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
1166 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
1167 if (Offset1)
1168 CR1 = CR1.subtract(*Offset1);
1169
1170 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
1171 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
1172 if (Offset2)
1173 CR2 = CR2.subtract(*Offset2);
1174
1175 Type *Ty = V1->getType();
1176 Value *NewV = V1;
1177 Optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1178 if (!CR) {
1179 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1180 CR2.isWrappedSet())
1181 return nullptr;
1182
1183 // Check whether we have equal-size ranges that only differ by one bit.
1184 // In that case we can apply a mask to map one range onto the other.
1185 APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1186 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1187 APInt CR1Size = CR1.getUpper() - CR1.getLower();
1188 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1189 CR1Size != CR2.getUpper() - CR2.getLower())
1190 return nullptr;
1191
1192 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1193 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1194 }
1195
1196 if (IsAnd)
1197 CR = CR->inverse();
1198
1199 CmpInst::Predicate NewPred;
1200 APInt NewC, Offset;
1201 CR->getEquivalentICmp(NewPred, NewC, Offset);
1202
1203 if (Offset != 0)
1204 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1205 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1206 }
1207
foldLogicOfFCmps(FCmpInst * LHS,FCmpInst * RHS,bool IsAnd,bool IsLogicalSelect)1208 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1209 bool IsAnd, bool IsLogicalSelect) {
1210 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1211 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1212 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1213
1214 if (LHS0 == RHS1 && RHS0 == LHS1) {
1215 // Swap RHS operands to match LHS.
1216 PredR = FCmpInst::getSwappedPredicate(PredR);
1217 std::swap(RHS0, RHS1);
1218 }
1219
1220 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1221 // Suppose the relation between x and y is R, where R is one of
1222 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1223 // testing the desired relations.
1224 //
1225 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1226 // bool(R & CC0) && bool(R & CC1)
1227 // = bool((R & CC0) & (R & CC1))
1228 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1229 //
1230 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1231 // bool(R & CC0) || bool(R & CC1)
1232 // = bool((R & CC0) | (R & CC1))
1233 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1234 if (LHS0 == RHS0 && LHS1 == RHS1) {
1235 unsigned FCmpCodeL = getFCmpCode(PredL);
1236 unsigned FCmpCodeR = getFCmpCode(PredR);
1237 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1238
1239 // Intersect the fast math flags.
1240 // TODO: We can union the fast math flags unless this is a logical select.
1241 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1242 FastMathFlags FMF = LHS->getFastMathFlags();
1243 FMF &= RHS->getFastMathFlags();
1244 Builder.setFastMathFlags(FMF);
1245
1246 return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1247 }
1248
1249 // This transform is not valid for a logical select.
1250 if (!IsLogicalSelect &&
1251 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1252 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1253 !IsAnd))) {
1254 if (LHS0->getType() != RHS0->getType())
1255 return nullptr;
1256
1257 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1258 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1259 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1260 // Ignore the constants because they are obviously not NANs:
1261 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1262 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1263 return Builder.CreateFCmp(PredL, LHS0, RHS0);
1264 }
1265
1266 return nullptr;
1267 }
1268
1269 /// This a limited reassociation for a special case (see above) where we are
1270 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1271 /// This could be handled more generally in '-reassociation', but it seems like
1272 /// an unlikely pattern for a large number of logic ops and fcmps.
reassociateFCmps(BinaryOperator & BO,InstCombiner::BuilderTy & Builder)1273 static Instruction *reassociateFCmps(BinaryOperator &BO,
1274 InstCombiner::BuilderTy &Builder) {
1275 Instruction::BinaryOps Opcode = BO.getOpcode();
1276 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1277 "Expecting and/or op for fcmp transform");
1278
1279 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1280 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1281 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1282 FCmpInst::Predicate Pred;
1283 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1284 std::swap(Op0, Op1);
1285
1286 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1287 Value *BO10, *BO11;
1288 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1289 : FCmpInst::FCMP_UNO;
1290 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1291 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1292 return nullptr;
1293
1294 // The inner logic op must have a matching fcmp operand.
1295 Value *Y;
1296 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1297 Pred != NanPred || X->getType() != Y->getType())
1298 std::swap(BO10, BO11);
1299
1300 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1301 Pred != NanPred || X->getType() != Y->getType())
1302 return nullptr;
1303
1304 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1305 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1306 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1307 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1308 // Intersect FMF from the 2 source fcmps.
1309 NewFCmpInst->copyIRFlags(Op0);
1310 NewFCmpInst->andIRFlags(BO10);
1311 }
1312 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1313 }
1314
1315 /// Match variations of De Morgan's Laws:
1316 /// (~A & ~B) == (~(A | B))
1317 /// (~A | ~B) == (~(A & B))
matchDeMorgansLaws(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1318 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1319 InstCombiner::BuilderTy &Builder) {
1320 const Instruction::BinaryOps Opcode = I.getOpcode();
1321 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1322 "Trying to match De Morgan's Laws with something other than and/or");
1323
1324 // Flip the logic operation.
1325 const Instruction::BinaryOps FlippedOpcode =
1326 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1327
1328 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1329 Value *A, *B;
1330 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1331 match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1332 !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1333 !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1334 Value *AndOr =
1335 Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1336 return BinaryOperator::CreateNot(AndOr);
1337 }
1338
1339 // The 'not' ops may require reassociation.
1340 // (A & ~B) & ~C --> A & ~(B | C)
1341 // (~B & A) & ~C --> A & ~(B | C)
1342 // (A | ~B) | ~C --> A | ~(B & C)
1343 // (~B | A) | ~C --> A | ~(B & C)
1344 Value *C;
1345 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1346 match(Op1, m_Not(m_Value(C)))) {
1347 Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
1348 return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
1349 }
1350
1351 return nullptr;
1352 }
1353
shouldOptimizeCast(CastInst * CI)1354 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1355 Value *CastSrc = CI->getOperand(0);
1356
1357 // Noop casts and casts of constants should be eliminated trivially.
1358 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1359 return false;
1360
1361 // If this cast is paired with another cast that can be eliminated, we prefer
1362 // to have it eliminated.
1363 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1364 if (isEliminableCastPair(PrecedingCI, CI))
1365 return false;
1366
1367 return true;
1368 }
1369
1370 /// Fold {and,or,xor} (cast X), C.
foldLogicCastConstant(BinaryOperator & Logic,CastInst * Cast,InstCombiner::BuilderTy & Builder)1371 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1372 InstCombiner::BuilderTy &Builder) {
1373 Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1374 if (!C)
1375 return nullptr;
1376
1377 auto LogicOpc = Logic.getOpcode();
1378 Type *DestTy = Logic.getType();
1379 Type *SrcTy = Cast->getSrcTy();
1380
1381 // Move the logic operation ahead of a zext or sext if the constant is
1382 // unchanged in the smaller source type. Performing the logic in a smaller
1383 // type may provide more information to later folds, and the smaller logic
1384 // instruction may be cheaper (particularly in the case of vectors).
1385 Value *X;
1386 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1387 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1388 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1389 if (ZextTruncC == C) {
1390 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1391 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1392 return new ZExtInst(NewOp, DestTy);
1393 }
1394 }
1395
1396 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1397 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1398 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1399 if (SextTruncC == C) {
1400 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1401 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1402 return new SExtInst(NewOp, DestTy);
1403 }
1404 }
1405
1406 return nullptr;
1407 }
1408
1409 /// Fold {and,or,xor} (cast X), Y.
foldCastedBitwiseLogic(BinaryOperator & I)1410 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1411 auto LogicOpc = I.getOpcode();
1412 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1413
1414 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1415 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1416 if (!Cast0)
1417 return nullptr;
1418
1419 // This must be a cast from an integer or integer vector source type to allow
1420 // transformation of the logic operation to the source type.
1421 Type *DestTy = I.getType();
1422 Type *SrcTy = Cast0->getSrcTy();
1423 if (!SrcTy->isIntOrIntVectorTy())
1424 return nullptr;
1425
1426 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1427 return Ret;
1428
1429 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1430 if (!Cast1)
1431 return nullptr;
1432
1433 // Both operands of the logic operation are casts. The casts must be of the
1434 // same type for reduction.
1435 auto CastOpcode = Cast0->getOpcode();
1436 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1437 return nullptr;
1438
1439 Value *Cast0Src = Cast0->getOperand(0);
1440 Value *Cast1Src = Cast1->getOperand(0);
1441
1442 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1443 if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
1444 shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1445 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1446 I.getName());
1447 return CastInst::Create(CastOpcode, NewOp, DestTy);
1448 }
1449
1450 // For now, only 'and'/'or' have optimizations after this.
1451 if (LogicOpc == Instruction::Xor)
1452 return nullptr;
1453
1454 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1455 // cast is otherwise not optimizable. This happens for vector sexts.
1456 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1457 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1458 if (ICmp0 && ICmp1) {
1459 if (Value *Res =
1460 foldAndOrOfICmps(ICmp0, ICmp1, I, LogicOpc == Instruction::And))
1461 return CastInst::Create(CastOpcode, Res, DestTy);
1462 return nullptr;
1463 }
1464
1465 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1466 // cast is otherwise not optimizable. This happens for vector sexts.
1467 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1468 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1469 if (FCmp0 && FCmp1)
1470 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1471 return CastInst::Create(CastOpcode, R, DestTy);
1472
1473 return nullptr;
1474 }
1475
foldAndToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1476 static Instruction *foldAndToXor(BinaryOperator &I,
1477 InstCombiner::BuilderTy &Builder) {
1478 assert(I.getOpcode() == Instruction::And);
1479 Value *Op0 = I.getOperand(0);
1480 Value *Op1 = I.getOperand(1);
1481 Value *A, *B;
1482
1483 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1484 // (A | B) & ~(A & B) --> A ^ B
1485 // (A | B) & ~(B & A) --> A ^ B
1486 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1487 m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1488 return BinaryOperator::CreateXor(A, B);
1489
1490 // (A | ~B) & (~A | B) --> ~(A ^ B)
1491 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1492 // (~B | A) & (~A | B) --> ~(A ^ B)
1493 // (~B | A) & (B | ~A) --> ~(A ^ B)
1494 if (Op0->hasOneUse() || Op1->hasOneUse())
1495 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1496 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1497 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1498
1499 return nullptr;
1500 }
1501
foldOrToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1502 static Instruction *foldOrToXor(BinaryOperator &I,
1503 InstCombiner::BuilderTy &Builder) {
1504 assert(I.getOpcode() == Instruction::Or);
1505 Value *Op0 = I.getOperand(0);
1506 Value *Op1 = I.getOperand(1);
1507 Value *A, *B;
1508
1509 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1510 // (A & B) | ~(A | B) --> ~(A ^ B)
1511 // (A & B) | ~(B | A) --> ~(A ^ B)
1512 if (Op0->hasOneUse() || Op1->hasOneUse())
1513 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1514 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1515 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1516
1517 // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1518 // (A ^ B) | ~(A | B) --> ~(A & B)
1519 // (A ^ B) | ~(B | A) --> ~(A & B)
1520 if (Op0->hasOneUse() || Op1->hasOneUse())
1521 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1522 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1523 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1524
1525 // (A & ~B) | (~A & B) --> A ^ B
1526 // (A & ~B) | (B & ~A) --> A ^ B
1527 // (~B & A) | (~A & B) --> A ^ B
1528 // (~B & A) | (B & ~A) --> A ^ B
1529 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1530 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1531 return BinaryOperator::CreateXor(A, B);
1532
1533 return nullptr;
1534 }
1535
1536 /// Return true if a constant shift amount is always less than the specified
1537 /// bit-width. If not, the shift could create poison in the narrower type.
canNarrowShiftAmt(Constant * C,unsigned BitWidth)1538 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1539 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1540 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1541 }
1542
1543 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1544 /// a common zext operand: and (binop (zext X), C), (zext X).
narrowMaskedBinOp(BinaryOperator & And)1545 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1546 // This transform could also apply to {or, and, xor}, but there are better
1547 // folds for those cases, so we don't expect those patterns here. AShr is not
1548 // handled because it should always be transformed to LShr in this sequence.
1549 // The subtract transform is different because it has a constant on the left.
1550 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1551 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1552 Constant *C;
1553 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1554 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1555 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1556 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1557 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1558 return nullptr;
1559
1560 Value *X;
1561 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1562 return nullptr;
1563
1564 Type *Ty = And.getType();
1565 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1566 return nullptr;
1567
1568 // If we're narrowing a shift, the shift amount must be safe (less than the
1569 // width) in the narrower type. If the shift amount is greater, instsimplify
1570 // usually handles that case, but we can't guarantee/assert it.
1571 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1572 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1573 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1574 return nullptr;
1575
1576 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1577 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1578 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1579 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1580 : Builder.CreateBinOp(Opc, X, NewC);
1581 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1582 }
1583
1584 /// Try folding relatively complex patterns for both And and Or operations
1585 /// with all And and Or swapped.
foldComplexAndOrPatterns(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1586 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1587 InstCombiner::BuilderTy &Builder) {
1588 const Instruction::BinaryOps Opcode = I.getOpcode();
1589 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1590
1591 // Flip the logic operation.
1592 const Instruction::BinaryOps FlippedOpcode =
1593 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1594
1595 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1596 Value *A, *B, *C, *X, *Y, *Dummy;
1597
1598 // Match following expressions:
1599 // (~(A | B) & C)
1600 // (~(A & B) | C)
1601 // Captures X = ~(A | B) or ~(A & B)
1602 const auto matchNotOrAnd =
1603 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
1604 Value *&X, bool CountUses = false) -> bool {
1605 if (CountUses && !Op->hasOneUse())
1606 return false;
1607
1608 if (match(Op, m_c_BinOp(FlippedOpcode,
1609 m_CombineAnd(m_Value(X),
1610 m_Not(m_c_BinOp(Opcode, m_A, m_B))),
1611 m_C)))
1612 return !CountUses || X->hasOneUse();
1613
1614 return false;
1615 };
1616
1617 // (~(A | B) & C) | ... --> ...
1618 // (~(A & B) | C) & ... --> ...
1619 // TODO: One use checks are conservative. We just need to check that a total
1620 // number of multiple used values does not exceed reduction
1621 // in operations.
1622 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
1623 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1624 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1625 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
1626 true)) {
1627 Value *Xor = Builder.CreateXor(B, C);
1628 return (Opcode == Instruction::Or)
1629 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1630 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1631 }
1632
1633 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1634 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
1635 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
1636 true)) {
1637 Value *Xor = Builder.CreateXor(A, C);
1638 return (Opcode == Instruction::Or)
1639 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
1640 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
1641 }
1642
1643 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
1644 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
1645 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1646 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1647 return BinaryOperator::CreateNot(Builder.CreateBinOp(
1648 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
1649
1650 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
1651 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
1652 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1653 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
1654 return BinaryOperator::CreateNot(Builder.CreateBinOp(
1655 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
1656
1657 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
1658 // Note, the pattern with swapped and/or is not handled because the
1659 // result is more undefined than a source:
1660 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
1661 if (Opcode == Instruction::Or && Op0->hasOneUse() &&
1662 match(Op1, m_OneUse(m_Not(m_CombineAnd(
1663 m_Value(Y),
1664 m_c_BinOp(Opcode, m_Specific(C),
1665 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
1666 // X = ~(A | B)
1667 // Y = (C | (A ^ B)
1668 Value *Or = cast<BinaryOperator>(X)->getOperand(0);
1669 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
1670 }
1671 }
1672
1673 // (~A & B & C) | ... --> ...
1674 // (~A | B | C) | ... --> ...
1675 // TODO: One use checks are conservative. We just need to check that a total
1676 // number of multiple used values does not exceed reduction
1677 // in operations.
1678 if (match(Op0,
1679 m_OneUse(m_c_BinOp(FlippedOpcode,
1680 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
1681 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
1682 match(Op0, m_OneUse(m_c_BinOp(
1683 FlippedOpcode,
1684 m_c_BinOp(FlippedOpcode, m_Value(C),
1685 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
1686 m_Value(B))))) {
1687 // X = ~A
1688 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
1689 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
1690 if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
1691 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
1692 m_Specific(C))))) ||
1693 match(Op1, m_OneUse(m_Not(m_c_BinOp(
1694 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
1695 m_Specific(A))))) ||
1696 match(Op1, m_OneUse(m_Not(m_c_BinOp(
1697 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
1698 m_Specific(B)))))) {
1699 Value *Xor = Builder.CreateXor(B, C);
1700 return (Opcode == Instruction::Or)
1701 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
1702 : BinaryOperator::CreateOr(Xor, X);
1703 }
1704
1705 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
1706 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
1707 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1708 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
1709 return BinaryOperator::Create(
1710 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
1711 X);
1712
1713 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
1714 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
1715 if (match(Op1, m_OneUse(m_Not(m_OneUse(
1716 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
1717 return BinaryOperator::Create(
1718 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
1719 X);
1720 }
1721
1722 return nullptr;
1723 }
1724
1725 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1726 // here. We should standardize that construct where it is needed or choose some
1727 // other way to ensure that commutated variants of patterns are not missed.
visitAnd(BinaryOperator & I)1728 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
1729 Type *Ty = I.getType();
1730
1731 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
1732 SQ.getWithInstruction(&I)))
1733 return replaceInstUsesWith(I, V);
1734
1735 if (SimplifyAssociativeOrCommutative(I))
1736 return &I;
1737
1738 if (Instruction *X = foldVectorBinop(I))
1739 return X;
1740
1741 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1742 return Phi;
1743
1744 // See if we can simplify any instructions used by the instruction whose sole
1745 // purpose is to compute bits we don't care about.
1746 if (SimplifyDemandedInstructionBits(I))
1747 return &I;
1748
1749 // Do this before using distributive laws to catch simple and/or/not patterns.
1750 if (Instruction *Xor = foldAndToXor(I, Builder))
1751 return Xor;
1752
1753 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
1754 return X;
1755
1756 // (A|B)&(A|C) -> A|(B&C) etc
1757 if (Value *V = SimplifyUsingDistributiveLaws(I))
1758 return replaceInstUsesWith(I, V);
1759
1760 if (Value *V = SimplifyBSwap(I, Builder))
1761 return replaceInstUsesWith(I, V);
1762
1763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1764
1765 Value *X, *Y;
1766 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1767 match(Op1, m_One())) {
1768 // (1 << X) & 1 --> zext(X == 0)
1769 // (1 >> X) & 1 --> zext(X == 0)
1770 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
1771 return new ZExtInst(IsZero, Ty);
1772 }
1773
1774 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
1775 Value *Neg;
1776 if (match(&I,
1777 m_c_And(m_CombineAnd(m_Value(Neg),
1778 m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
1779 m_Value(Y)))) {
1780 Value *Cmp = Builder.CreateIsNull(Neg);
1781 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
1782 }
1783
1784 const APInt *C;
1785 if (match(Op1, m_APInt(C))) {
1786 const APInt *XorC;
1787 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1788 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1789 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
1790 Value *And = Builder.CreateAnd(X, Op1);
1791 And->takeName(Op0);
1792 return BinaryOperator::CreateXor(And, NewC);
1793 }
1794
1795 const APInt *OrC;
1796 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1797 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1798 // NOTE: This reduces the number of bits set in the & mask, which
1799 // can expose opportunities for store narrowing for scalars.
1800 // NOTE: SimplifyDemandedBits should have already removed bits from C1
1801 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1802 // above, but this feels safer.
1803 APInt Together = *C & *OrC;
1804 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
1805 And->takeName(Op0);
1806 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
1807 }
1808
1809 unsigned Width = Ty->getScalarSizeInBits();
1810 const APInt *ShiftC;
1811 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
1812 ShiftC->ult(Width)) {
1813 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
1814 // We are clearing high bits that were potentially set by sext+ashr:
1815 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
1816 Value *Sext = Builder.CreateSExt(X, Ty);
1817 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
1818 return BinaryOperator::CreateLShr(Sext, ShAmtC);
1819 }
1820 }
1821
1822 // If this 'and' clears the sign-bits added by ashr, replace with lshr:
1823 // and (ashr X, ShiftC), C --> lshr X, ShiftC
1824 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
1825 C->isMask(Width - ShiftC->getZExtValue()))
1826 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
1827
1828 const APInt *AddC;
1829 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
1830 // If we add zeros to every bit below a mask, the add has no effect:
1831 // (X + AddC) & LowMaskC --> X & LowMaskC
1832 unsigned Ctlz = C->countLeadingZeros();
1833 APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
1834 if ((*AddC & LowMask).isZero())
1835 return BinaryOperator::CreateAnd(X, Op1);
1836
1837 // If we are masking the result of the add down to exactly one bit and
1838 // the constant we are adding has no bits set below that bit, then the
1839 // add is flipping a single bit. Example:
1840 // (X + 4) & 4 --> (X & 4) ^ 4
1841 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
1842 assert((*C & *AddC) != 0 && "Expected common bit");
1843 Value *NewAnd = Builder.CreateAnd(X, Op1);
1844 return BinaryOperator::CreateXor(NewAnd, Op1);
1845 }
1846 }
1847
1848 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
1849 // bitwidth of X and OP behaves well when given trunc(C1) and X.
1850 auto isNarrowableBinOpcode = [](BinaryOperator *B) {
1851 switch (B->getOpcode()) {
1852 case Instruction::Xor:
1853 case Instruction::Or:
1854 case Instruction::Mul:
1855 case Instruction::Add:
1856 case Instruction::Sub:
1857 return true;
1858 default:
1859 return false;
1860 }
1861 };
1862 BinaryOperator *BO;
1863 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
1864 Instruction::BinaryOps BOpcode = BO->getOpcode();
1865 Value *X;
1866 const APInt *C1;
1867 // TODO: The one-use restrictions could be relaxed a little if the AND
1868 // is going to be removed.
1869 // Try to narrow the 'and' and a binop with constant operand:
1870 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
1871 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
1872 C->isIntN(X->getType()->getScalarSizeInBits())) {
1873 unsigned XWidth = X->getType()->getScalarSizeInBits();
1874 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
1875 Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
1876 ? Builder.CreateBinOp(BOpcode, X, TruncC1)
1877 : Builder.CreateBinOp(BOpcode, TruncC1, X);
1878 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
1879 Value *And = Builder.CreateAnd(BinOp, TruncC);
1880 return new ZExtInst(And, Ty);
1881 }
1882
1883 // Similar to above: if the mask matches the zext input width, then the
1884 // 'and' can be eliminated, so we can truncate the other variable op:
1885 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
1886 if (isa<Instruction>(BO->getOperand(0)) &&
1887 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
1888 C->isMask(X->getType()->getScalarSizeInBits())) {
1889 Y = BO->getOperand(1);
1890 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
1891 Value *NewBO =
1892 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
1893 return new ZExtInst(NewBO, Ty);
1894 }
1895 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
1896 if (isa<Instruction>(BO->getOperand(1)) &&
1897 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
1898 C->isMask(X->getType()->getScalarSizeInBits())) {
1899 Y = BO->getOperand(0);
1900 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
1901 Value *NewBO =
1902 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
1903 return new ZExtInst(NewBO, Ty);
1904 }
1905 }
1906
1907 // This is intentionally placed after the narrowing transforms for
1908 // efficiency (transform directly to the narrow logic op if possible).
1909 // If the mask is only needed on one incoming arm, push the 'and' op up.
1910 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1911 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1912 APInt NotAndMask(~(*C));
1913 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1914 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1915 // Not masking anything out for the LHS, move mask to RHS.
1916 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1917 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1918 return BinaryOperator::Create(BinOp, X, NewRHS);
1919 }
1920 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1921 // Not masking anything out for the RHS, move mask to LHS.
1922 // and ({x}or X, Y), C --> {x}or (and X, C), Y
1923 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1924 return BinaryOperator::Create(BinOp, NewLHS, Y);
1925 }
1926 }
1927
1928 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
1929 // constant, test if the shift amount equals the offset bit index:
1930 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
1931 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
1932 if (C->isPowerOf2() &&
1933 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
1934 int Log2ShiftC = ShiftC->exactLogBase2();
1935 int Log2C = C->exactLogBase2();
1936 bool IsShiftLeft =
1937 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
1938 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
1939 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
1940 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
1941 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
1942 ConstantInt::getNullValue(Ty));
1943 }
1944
1945 Constant *C1, *C2;
1946 const APInt *C3 = C;
1947 Value *X;
1948 if (C3->isPowerOf2()) {
1949 Constant *Log2C3 = ConstantInt::get(Ty, C3->countTrailingZeros());
1950 if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
1951 m_ImmConstant(C2)))) &&
1952 match(C1, m_Power2())) {
1953 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
1954 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
1955 KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
1956 if (KnownLShrc.getMaxValue().ult(Width)) {
1957 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
1958 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
1959 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
1960 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
1961 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
1962 ConstantInt::getNullValue(Ty));
1963 }
1964 }
1965
1966 if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
1967 m_ImmConstant(C2)))) &&
1968 match(C1, m_Power2())) {
1969 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
1970 Constant *Cmp =
1971 ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2);
1972 if (Cmp->isZeroValue()) {
1973 // iff C1,C3 is pow2 and Log2(C3) >= C2:
1974 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
1975 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
1976 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
1977 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
1978 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
1979 ConstantInt::getNullValue(Ty));
1980 }
1981 }
1982 }
1983 }
1984
1985 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
1986 m_SignMask())) &&
1987 match(Y, m_SpecificInt_ICMP(
1988 ICmpInst::Predicate::ICMP_EQ,
1989 APInt(Ty->getScalarSizeInBits(),
1990 Ty->getScalarSizeInBits() -
1991 X->getType()->getScalarSizeInBits())))) {
1992 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
1993 auto *SanitizedSignMask = cast<Constant>(Op1);
1994 // We must be careful with the undef elements of the sign bit mask, however:
1995 // the mask elt can be undef iff the shift amount for that lane was undef,
1996 // otherwise we need to sanitize undef masks to zero.
1997 SanitizedSignMask = Constant::replaceUndefsWith(
1998 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
1999 SanitizedSignMask =
2000 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
2001 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
2002 }
2003
2004 if (Instruction *Z = narrowMaskedBinOp(I))
2005 return Z;
2006
2007 if (I.getType()->isIntOrIntVectorTy(1)) {
2008 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2009 if (auto *I =
2010 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2011 return I;
2012 }
2013 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2014 if (auto *I =
2015 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2016 return I;
2017 }
2018 }
2019
2020 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2021 return FoldedLogic;
2022
2023 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2024 return DeMorgan;
2025
2026 {
2027 Value *A, *B, *C;
2028 // A & (A ^ B) --> A & ~B
2029 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2030 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
2031 // (A ^ B) & A --> A & ~B
2032 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2033 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
2034
2035 // A & ~(A ^ B) --> A & B
2036 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2037 return BinaryOperator::CreateAnd(Op0, B);
2038 // ~(A ^ B) & A --> A & B
2039 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2040 return BinaryOperator::CreateAnd(Op1, B);
2041
2042 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2043 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2044 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2045 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2046 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
2047
2048 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2049 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2050 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2051 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2052 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2053
2054 // (A | B) & (~A ^ B) -> A & B
2055 // (A | B) & (B ^ ~A) -> A & B
2056 // (B | A) & (~A ^ B) -> A & B
2057 // (B | A) & (B ^ ~A) -> A & B
2058 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2059 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2060 return BinaryOperator::CreateAnd(A, B);
2061
2062 // (~A ^ B) & (A | B) -> A & B
2063 // (~A ^ B) & (B | A) -> A & B
2064 // (B ^ ~A) & (A | B) -> A & B
2065 // (B ^ ~A) & (B | A) -> A & B
2066 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2067 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2068 return BinaryOperator::CreateAnd(A, B);
2069
2070 // (~A | B) & (A ^ B) -> ~A & B
2071 // (~A | B) & (B ^ A) -> ~A & B
2072 // (B | ~A) & (A ^ B) -> ~A & B
2073 // (B | ~A) & (B ^ A) -> ~A & B
2074 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2075 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2076 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2077
2078 // (A ^ B) & (~A | B) -> ~A & B
2079 // (B ^ A) & (~A | B) -> ~A & B
2080 // (A ^ B) & (B | ~A) -> ~A & B
2081 // (B ^ A) & (B | ~A) -> ~A & B
2082 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2083 match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
2084 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2085 }
2086
2087 {
2088 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2089 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2090 if (LHS && RHS)
2091 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true))
2092 return replaceInstUsesWith(I, Res);
2093
2094 // TODO: Make this recursive; it's a little tricky because an arbitrary
2095 // number of 'and' instructions might have to be created.
2096 if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2097 bool IsLogical = isa<SelectInst>(Op1);
2098 // LHS & (X && Y) --> (LHS && X) && Y
2099 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2100 if (Value *Res =
2101 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical))
2102 return replaceInstUsesWith(I, IsLogical
2103 ? Builder.CreateLogicalAnd(Res, Y)
2104 : Builder.CreateAnd(Res, Y));
2105 // LHS & (X && Y) --> X && (LHS & Y)
2106 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2107 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true,
2108 /* IsLogical */ false))
2109 return replaceInstUsesWith(I, IsLogical
2110 ? Builder.CreateLogicalAnd(X, Res)
2111 : Builder.CreateAnd(X, Res));
2112 }
2113 if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2114 bool IsLogical = isa<SelectInst>(Op0);
2115 // (X && Y) & RHS --> (X && RHS) && Y
2116 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2117 if (Value *Res =
2118 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical))
2119 return replaceInstUsesWith(I, IsLogical
2120 ? Builder.CreateLogicalAnd(Res, Y)
2121 : Builder.CreateAnd(Res, Y));
2122 // (X && Y) & RHS --> X && (Y & RHS)
2123 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2124 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true,
2125 /* IsLogical */ false))
2126 return replaceInstUsesWith(I, IsLogical
2127 ? Builder.CreateLogicalAnd(X, Res)
2128 : Builder.CreateAnd(X, Res));
2129 }
2130 }
2131
2132 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2133 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2134 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true))
2135 return replaceInstUsesWith(I, Res);
2136
2137 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2138 return FoldedFCmps;
2139
2140 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2141 return CastedAnd;
2142
2143 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2144 return Sel;
2145
2146 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2147 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2148 // with binop identity constant. But creating a select with non-constant
2149 // arm may not be reversible due to poison semantics. Is that a good
2150 // canonicalization?
2151 Value *A;
2152 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2153 A->getType()->isIntOrIntVectorTy(1))
2154 return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
2155 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2156 A->getType()->isIntOrIntVectorTy(1))
2157 return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
2158
2159 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0
2160 unsigned FullShift = Ty->getScalarSizeInBits() - 1;
2161 if (match(&I, m_c_And(m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))),
2162 m_Value(Y)))) {
2163 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2164 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
2165 }
2166 // If there's a 'not' of the shifted value, swap the select operands:
2167 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y
2168 if (match(&I, m_c_And(m_OneUse(m_Not(
2169 m_AShr(m_Value(X), m_SpecificInt(FullShift)))),
2170 m_Value(Y)))) {
2171 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2172 return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
2173 }
2174
2175 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
2176 if (sinkNotIntoOtherHandOfAndOrOr(I))
2177 return &I;
2178
2179 // An and recurrence w/loop invariant step is equivelent to (and start, step)
2180 PHINode *PN = nullptr;
2181 Value *Start = nullptr, *Step = nullptr;
2182 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2183 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2184
2185 return nullptr;
2186 }
2187
matchBSwapOrBitReverse(Instruction & I,bool MatchBSwaps,bool MatchBitReversals)2188 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2189 bool MatchBSwaps,
2190 bool MatchBitReversals) {
2191 SmallVector<Instruction *, 4> Insts;
2192 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2193 Insts))
2194 return nullptr;
2195 Instruction *LastInst = Insts.pop_back_val();
2196 LastInst->removeFromParent();
2197
2198 for (auto *Inst : Insts)
2199 Worklist.push(Inst);
2200 return LastInst;
2201 }
2202
2203 /// Match UB-safe variants of the funnel shift intrinsic.
matchFunnelShift(Instruction & Or,InstCombinerImpl & IC)2204 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2205 // TODO: Can we reduce the code duplication between this and the related
2206 // rotate matching code under visitSelect and visitTrunc?
2207 unsigned Width = Or.getType()->getScalarSizeInBits();
2208
2209 // First, find an or'd pair of opposite shifts:
2210 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2211 BinaryOperator *Or0, *Or1;
2212 if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2213 !match(Or.getOperand(1), m_BinOp(Or1)))
2214 return nullptr;
2215
2216 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2217 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2218 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2219 Or0->getOpcode() == Or1->getOpcode())
2220 return nullptr;
2221
2222 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2223 if (Or0->getOpcode() == BinaryOperator::LShr) {
2224 std::swap(Or0, Or1);
2225 std::swap(ShVal0, ShVal1);
2226 std::swap(ShAmt0, ShAmt1);
2227 }
2228 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2229 Or1->getOpcode() == BinaryOperator::LShr &&
2230 "Illegal or(shift,shift) pair");
2231
2232 // Match the shift amount operands for a funnel shift pattern. This always
2233 // matches a subtraction on the R operand.
2234 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2235 // Check for constant shift amounts that sum to the bitwidth.
2236 const APInt *LI, *RI;
2237 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2238 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2239 return ConstantInt::get(L->getType(), *LI);
2240
2241 Constant *LC, *RC;
2242 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2243 match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2244 match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2245 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2246 return ConstantExpr::mergeUndefsWith(LC, RC);
2247
2248 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2249 // We limit this to X < Width in case the backend re-expands the intrinsic,
2250 // and has to reintroduce a shift modulo operation (InstCombine might remove
2251 // it after this fold). This still doesn't guarantee that the final codegen
2252 // will match this original pattern.
2253 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2254 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2255 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2256 }
2257
2258 // For non-constant cases, the following patterns currently only work for
2259 // rotation patterns.
2260 // TODO: Add general funnel-shift compatible patterns.
2261 if (ShVal0 != ShVal1)
2262 return nullptr;
2263
2264 // For non-constant cases we don't support non-pow2 shift masks.
2265 // TODO: Is it worth matching urem as well?
2266 if (!isPowerOf2_32(Width))
2267 return nullptr;
2268
2269 // The shift amount may be masked with negation:
2270 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2271 Value *X;
2272 unsigned Mask = Width - 1;
2273 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2274 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2275 return X;
2276
2277 // Similar to above, but the shift amount may be extended after masking,
2278 // so return the extended value as the parameter for the intrinsic.
2279 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2280 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2281 m_SpecificInt(Mask))))
2282 return L;
2283
2284 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2285 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2286 return L;
2287
2288 return nullptr;
2289 };
2290
2291 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2292 bool IsFshl = true; // Sub on LSHR.
2293 if (!ShAmt) {
2294 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2295 IsFshl = false; // Sub on SHL.
2296 }
2297 if (!ShAmt)
2298 return nullptr;
2299
2300 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2301 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2302 return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
2303 }
2304
2305 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
matchOrConcat(Instruction & Or,InstCombiner::BuilderTy & Builder)2306 static Instruction *matchOrConcat(Instruction &Or,
2307 InstCombiner::BuilderTy &Builder) {
2308 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2309 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2310 Type *Ty = Or.getType();
2311
2312 unsigned Width = Ty->getScalarSizeInBits();
2313 if ((Width & 1) != 0)
2314 return nullptr;
2315 unsigned HalfWidth = Width / 2;
2316
2317 // Canonicalize zext (lower half) to LHS.
2318 if (!isa<ZExtInst>(Op0))
2319 std::swap(Op0, Op1);
2320
2321 // Find lower/upper half.
2322 Value *LowerSrc, *ShlVal, *UpperSrc;
2323 const APInt *C;
2324 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2325 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2326 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2327 return nullptr;
2328 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2329 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2330 return nullptr;
2331
2332 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2333 Value *NewLower = Builder.CreateZExt(Lo, Ty);
2334 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2335 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2336 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2337 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2338 return Builder.CreateCall(F, BinOp);
2339 };
2340
2341 // BSWAP: Push the concat down, swapping the lower/upper sources.
2342 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2343 Value *LowerBSwap, *UpperBSwap;
2344 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2345 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2346 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2347
2348 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2349 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2350 Value *LowerBRev, *UpperBRev;
2351 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2352 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2353 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2354
2355 return nullptr;
2356 }
2357
2358 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
areInverseVectorBitmasks(Constant * C1,Constant * C2)2359 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2360 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2361 for (unsigned i = 0; i != NumElts; ++i) {
2362 Constant *EltC1 = C1->getAggregateElement(i);
2363 Constant *EltC2 = C2->getAggregateElement(i);
2364 if (!EltC1 || !EltC2)
2365 return false;
2366
2367 // One element must be all ones, and the other must be all zeros.
2368 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2369 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2370 return false;
2371 }
2372 return true;
2373 }
2374
2375 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2376 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2377 /// B, it can be used as the condition operand of a select instruction.
getSelectCondition(Value * A,Value * B)2378 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) {
2379 // We may have peeked through bitcasts in the caller.
2380 // Exit immediately if we don't have (vector) integer types.
2381 Type *Ty = A->getType();
2382 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2383 return nullptr;
2384
2385 // If A is the 'not' operand of B and has enough signbits, we have our answer.
2386 if (match(B, m_Not(m_Specific(A)))) {
2387 // If these are scalars or vectors of i1, A can be used directly.
2388 if (Ty->isIntOrIntVectorTy(1))
2389 return A;
2390
2391 // If we look through a vector bitcast, the caller will bitcast the operands
2392 // to match the condition's number of bits (N x i1).
2393 // To make this poison-safe, disallow bitcast from wide element to narrow
2394 // element. That could allow poison in lanes where it was not present in the
2395 // original code.
2396 A = peekThroughBitcast(A);
2397 if (A->getType()->isIntOrIntVectorTy()) {
2398 unsigned NumSignBits = ComputeNumSignBits(A);
2399 if (NumSignBits == A->getType()->getScalarSizeInBits() &&
2400 NumSignBits <= Ty->getScalarSizeInBits())
2401 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
2402 }
2403 return nullptr;
2404 }
2405
2406 // If both operands are constants, see if the constants are inverse bitmasks.
2407 Constant *AConst, *BConst;
2408 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2409 if (AConst == ConstantExpr::getNot(BConst) &&
2410 ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
2411 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2412
2413 // Look for more complex patterns. The 'not' op may be hidden behind various
2414 // casts. Look through sexts and bitcasts to find the booleans.
2415 Value *Cond;
2416 Value *NotB;
2417 if (match(A, m_SExt(m_Value(Cond))) &&
2418 Cond->getType()->isIntOrIntVectorTy(1)) {
2419 // A = sext i1 Cond; B = sext (not (i1 Cond))
2420 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
2421 return Cond;
2422
2423 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
2424 // TODO: The one-use checks are unnecessary or misplaced. If the caller
2425 // checked for uses on logic ops/casts, that should be enough to
2426 // make this transform worthwhile.
2427 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2428 NotB = peekThroughBitcast(NotB, true);
2429 if (match(NotB, m_SExt(m_Specific(Cond))))
2430 return Cond;
2431 }
2432 }
2433
2434 // All scalar (and most vector) possibilities should be handled now.
2435 // Try more matches that only apply to non-splat constant vectors.
2436 if (!Ty->isVectorTy())
2437 return nullptr;
2438
2439 // If both operands are xor'd with constants using the same sexted boolean
2440 // operand, see if the constants are inverse bitmasks.
2441 // TODO: Use ConstantExpr::getNot()?
2442 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2443 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2444 Cond->getType()->isIntOrIntVectorTy(1) &&
2445 areInverseVectorBitmasks(AConst, BConst)) {
2446 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2447 return Builder.CreateXor(Cond, AConst);
2448 }
2449 return nullptr;
2450 }
2451
2452 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2453 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
matchSelectFromAndOr(Value * A,Value * C,Value * B,Value * D)2454 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2455 Value *D) {
2456 // The potential condition of the select may be bitcasted. In that case, look
2457 // through its bitcast and the corresponding bitcast of the 'not' condition.
2458 Type *OrigType = A->getType();
2459 A = peekThroughBitcast(A, true);
2460 B = peekThroughBitcast(B, true);
2461 if (Value *Cond = getSelectCondition(A, B)) {
2462 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2463 // If this is a vector, we may need to cast to match the condition's length.
2464 // The bitcasts will either all exist or all not exist. The builder will
2465 // not create unnecessary casts if the types already match.
2466 Type *SelTy = A->getType();
2467 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
2468 // For a fixed or scalable vector get N from <{vscale x} N x iM>
2469 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
2470 // For a fixed or scalable vector, get the size in bits of N x iM; for a
2471 // scalar this is just M.
2472 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinSize();
2473 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
2474 SelTy = VectorType::get(EltTy, VecTy->getElementCount());
2475 }
2476 Value *BitcastC = Builder.CreateBitCast(C, SelTy);
2477 Value *BitcastD = Builder.CreateBitCast(D, SelTy);
2478 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2479 return Builder.CreateBitCast(Select, OrigType);
2480 }
2481
2482 return nullptr;
2483 }
2484
2485 // (icmp eq X, 0) | (icmp ult Other, X) -> (icmp ule Other, X-1)
2486 // (icmp ne X, 0) & (icmp uge Other, X) -> (icmp ugt Other, X-1)
foldAndOrOfICmpEqZeroAndICmp(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,IRBuilderBase & Builder)2487 Value *foldAndOrOfICmpEqZeroAndICmp(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
2488 IRBuilderBase &Builder) {
2489 ICmpInst::Predicate LPred =
2490 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
2491 ICmpInst::Predicate RPred =
2492 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
2493 Value *LHS0 = LHS->getOperand(0);
2494 if (LPred != ICmpInst::ICMP_EQ || !match(LHS->getOperand(1), m_Zero()) ||
2495 !LHS0->getType()->isIntOrIntVectorTy() ||
2496 !(LHS->hasOneUse() || RHS->hasOneUse()))
2497 return nullptr;
2498
2499 Value *Other;
2500 if (RPred == ICmpInst::ICMP_ULT && RHS->getOperand(1) == LHS0)
2501 Other = RHS->getOperand(0);
2502 else if (RPred == ICmpInst::ICMP_UGT && RHS->getOperand(0) == LHS0)
2503 Other = RHS->getOperand(1);
2504 else
2505 return nullptr;
2506
2507 return Builder.CreateICmp(
2508 IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
2509 Builder.CreateAdd(LHS0, Constant::getAllOnesValue(LHS0->getType())),
2510 Other);
2511 }
2512
2513 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
2514 /// If IsLogical is true, then the and/or is in select form and the transform
2515 /// must be poison-safe.
foldAndOrOfICmps(ICmpInst * LHS,ICmpInst * RHS,Instruction & I,bool IsAnd,bool IsLogical)2516 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2517 Instruction &I, bool IsAnd,
2518 bool IsLogical) {
2519 const SimplifyQuery Q = SQ.getWithInstruction(&I);
2520
2521 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
2522 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
2523 // if K1 and K2 are a one-bit mask.
2524 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
2525 return V;
2526
2527 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2528 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2529 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
2530 const APInt *LHSC = nullptr, *RHSC = nullptr;
2531 match(LHS1, m_APInt(LHSC));
2532 match(RHS1, m_APInt(RHSC));
2533
2534 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2535 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2536 if (predicatesFoldable(PredL, PredR)) {
2537 if (LHS0 == RHS1 && LHS1 == RHS0) {
2538 PredL = ICmpInst::getSwappedPredicate(PredL);
2539 std::swap(LHS0, LHS1);
2540 }
2541 if (LHS0 == RHS0 && LHS1 == RHS1) {
2542 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
2543 : getICmpCode(PredL) | getICmpCode(PredR);
2544 bool IsSigned = LHS->isSigned() || RHS->isSigned();
2545 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
2546 }
2547 }
2548
2549 // handle (roughly):
2550 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2551 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
2552 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
2553 return V;
2554
2555 // TODO: One of these directions is fine with logical and/or, the other could
2556 // be supported by inserting freeze.
2557 if (!IsLogical) {
2558 if (Value *V = foldAndOrOfICmpEqZeroAndICmp(LHS, RHS, IsAnd, Builder))
2559 return V;
2560 if (Value *V = foldAndOrOfICmpEqZeroAndICmp(RHS, LHS, IsAnd, Builder))
2561 return V;
2562 }
2563
2564 // TODO: Verify whether this is safe for logical and/or.
2565 if (!IsLogical) {
2566 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, Builder, Q))
2567 return V;
2568 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd, Builder, Q))
2569 return V;
2570 }
2571
2572 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
2573 return V;
2574 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
2575 return V;
2576
2577 // TODO: One of these directions is fine with logical and/or, the other could
2578 // be supported by inserting freeze.
2579 if (!IsLogical) {
2580 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2581 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
2582 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
2583 return V;
2584
2585 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2586 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
2587 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
2588 return V;
2589 }
2590
2591 // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
2592 if (IsAnd && !IsLogical)
2593 if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
2594 return V;
2595
2596 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder))
2597 return V;
2598
2599 // TODO: Verify whether this is safe for logical and/or.
2600 if (!IsLogical) {
2601 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
2602 return X;
2603 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
2604 return X;
2605 }
2606
2607 if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
2608 return X;
2609
2610 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2611 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
2612 // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
2613 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
2614 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
2615 LHS0->getType() == RHS0->getType()) {
2616 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2617 return Builder.CreateICmp(PredL, NewOr,
2618 Constant::getNullValue(NewOr->getType()));
2619 }
2620
2621 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2622 if (!LHSC || !RHSC)
2623 return nullptr;
2624
2625 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
2626 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
2627 // where CMAX is the all ones value for the truncated type,
2628 // iff the lower bits of C2 and CA are zero.
2629 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
2630 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
2631 Value *V;
2632 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
2633
2634 // (trunc x) == C1 & (and x, CA) == C2
2635 // (and x, CA) == C2 & (trunc x) == C1
2636 if (match(RHS0, m_Trunc(m_Value(V))) &&
2637 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
2638 SmallC = RHSC;
2639 BigC = LHSC;
2640 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
2641 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
2642 SmallC = LHSC;
2643 BigC = RHSC;
2644 }
2645
2646 if (SmallC && BigC) {
2647 unsigned BigBitSize = BigC->getBitWidth();
2648 unsigned SmallBitSize = SmallC->getBitWidth();
2649
2650 // Check that the low bits are zero.
2651 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
2652 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
2653 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
2654 APInt N = SmallC->zext(BigBitSize) | *BigC;
2655 Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
2656 return Builder.CreateICmp(PredL, NewAnd, NewVal);
2657 }
2658 }
2659 }
2660
2661 // Match naive pattern (and its inverted form) for checking if two values
2662 // share same sign. An example of the pattern:
2663 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
2664 // Inverted form (example):
2665 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
2666 bool TrueIfSignedL, TrueIfSignedR;
2667 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
2668 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
2669 (RHS->hasOneUse() || LHS->hasOneUse())) {
2670 Value *X, *Y;
2671 if (IsAnd) {
2672 if ((TrueIfSignedL && !TrueIfSignedR &&
2673 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
2674 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
2675 (!TrueIfSignedL && TrueIfSignedR &&
2676 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
2677 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
2678 Value *NewXor = Builder.CreateXor(X, Y);
2679 return Builder.CreateIsNeg(NewXor);
2680 }
2681 } else {
2682 if ((TrueIfSignedL && !TrueIfSignedR &&
2683 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
2684 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
2685 (!TrueIfSignedL && TrueIfSignedR &&
2686 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
2687 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
2688 Value *NewXor = Builder.CreateXor(X, Y);
2689 return Builder.CreateIsNotNeg(NewXor);
2690 }
2691 }
2692 }
2693
2694 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
2695 }
2696
2697 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2698 // here. We should standardize that construct where it is needed or choose some
2699 // other way to ensure that commutated variants of patterns are not missed.
visitOr(BinaryOperator & I)2700 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
2701 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
2702 SQ.getWithInstruction(&I)))
2703 return replaceInstUsesWith(I, V);
2704
2705 if (SimplifyAssociativeOrCommutative(I))
2706 return &I;
2707
2708 if (Instruction *X = foldVectorBinop(I))
2709 return X;
2710
2711 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2712 return Phi;
2713
2714 // See if we can simplify any instructions used by the instruction whose sole
2715 // purpose is to compute bits we don't care about.
2716 if (SimplifyDemandedInstructionBits(I))
2717 return &I;
2718
2719 // Do this before using distributive laws to catch simple and/or/not patterns.
2720 if (Instruction *Xor = foldOrToXor(I, Builder))
2721 return Xor;
2722
2723 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2724 return X;
2725
2726 // (A&B)|(A&C) -> A&(B|C) etc
2727 if (Value *V = SimplifyUsingDistributiveLaws(I))
2728 return replaceInstUsesWith(I, V);
2729
2730 if (Value *V = SimplifyBSwap(I, Builder))
2731 return replaceInstUsesWith(I, V);
2732
2733 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2734 Type *Ty = I.getType();
2735 if (Ty->isIntOrIntVectorTy(1)) {
2736 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2737 if (auto *I =
2738 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
2739 return I;
2740 }
2741 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2742 if (auto *I =
2743 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
2744 return I;
2745 }
2746 }
2747
2748 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2749 return FoldedLogic;
2750
2751 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
2752 /*MatchBitReversals*/ true))
2753 return BitOp;
2754
2755 if (Instruction *Funnel = matchFunnelShift(I, *this))
2756 return Funnel;
2757
2758 if (Instruction *Concat = matchOrConcat(I, Builder))
2759 return replaceInstUsesWith(I, Concat);
2760
2761 Value *X, *Y;
2762 const APInt *CV;
2763 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2764 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2765 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2766 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2767 Value *Or = Builder.CreateOr(X, Y);
2768 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
2769 }
2770
2771 // If the operands have no common bits set:
2772 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
2773 if (match(&I,
2774 m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
2775 haveNoCommonBitsSet(Op0, Op1, DL)) {
2776 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
2777 return BinaryOperator::CreateMul(X, IncrementY);
2778 }
2779
2780 // (A & C) | (B & D)
2781 Value *A, *B, *C, *D;
2782 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2783 match(Op1, m_And(m_Value(B), m_Value(D)))) {
2784
2785 // (A & C0) | (B & C1)
2786 const APInt *C0, *C1;
2787 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
2788 Value *X;
2789 if (*C0 == ~*C1) {
2790 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
2791 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2792 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
2793 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
2794 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2795 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
2796
2797 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
2798 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2799 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
2800 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
2801 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2802 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
2803 }
2804
2805 if ((*C0 & *C1).isZero()) {
2806 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
2807 // iff (C0 & C1) == 0 and (X & ~C0) == 0
2808 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
2809 MaskedValueIsZero(X, ~*C0, 0, &I)) {
2810 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
2811 return BinaryOperator::CreateAnd(A, C01);
2812 }
2813 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
2814 // iff (C0 & C1) == 0 and (X & ~C1) == 0
2815 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
2816 MaskedValueIsZero(X, ~*C1, 0, &I)) {
2817 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
2818 return BinaryOperator::CreateAnd(B, C01);
2819 }
2820 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
2821 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
2822 const APInt *C2, *C3;
2823 if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
2824 match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
2825 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
2826 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
2827 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
2828 return BinaryOperator::CreateAnd(Or, C01);
2829 }
2830 }
2831 }
2832
2833 // Don't try to form a select if it's unlikely that we'll get rid of at
2834 // least one of the operands. A select is generally more expensive than the
2835 // 'or' that it is replacing.
2836 if (Op0->hasOneUse() || Op1->hasOneUse()) {
2837 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2838 if (Value *V = matchSelectFromAndOr(A, C, B, D))
2839 return replaceInstUsesWith(I, V);
2840 if (Value *V = matchSelectFromAndOr(A, C, D, B))
2841 return replaceInstUsesWith(I, V);
2842 if (Value *V = matchSelectFromAndOr(C, A, B, D))
2843 return replaceInstUsesWith(I, V);
2844 if (Value *V = matchSelectFromAndOr(C, A, D, B))
2845 return replaceInstUsesWith(I, V);
2846 if (Value *V = matchSelectFromAndOr(B, D, A, C))
2847 return replaceInstUsesWith(I, V);
2848 if (Value *V = matchSelectFromAndOr(B, D, C, A))
2849 return replaceInstUsesWith(I, V);
2850 if (Value *V = matchSelectFromAndOr(D, B, A, C))
2851 return replaceInstUsesWith(I, V);
2852 if (Value *V = matchSelectFromAndOr(D, B, C, A))
2853 return replaceInstUsesWith(I, V);
2854 }
2855 }
2856
2857 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2858 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2859 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2860 return BinaryOperator::CreateOr(Op0, C);
2861
2862 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2863 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2864 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2865 return BinaryOperator::CreateOr(Op1, C);
2866
2867 // ((A & B) ^ C) | B -> C | B
2868 if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C))))
2869 return BinaryOperator::CreateOr(C, Op1);
2870
2871 // B | ((A & B) ^ C) -> B | C
2872 if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C))))
2873 return BinaryOperator::CreateOr(Op0, C);
2874
2875 // ((B | C) & A) | B -> B | (A & C)
2876 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2877 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2878
2879 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2880 return DeMorgan;
2881
2882 // Canonicalize xor to the RHS.
2883 bool SwappedForXor = false;
2884 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2885 std::swap(Op0, Op1);
2886 SwappedForXor = true;
2887 }
2888
2889 // A | ( A ^ B) -> A | B
2890 // A | (~A ^ B) -> A | ~B
2891 // (A & B) | (A ^ B)
2892 // ~A | (A ^ B) -> ~(A & B)
2893 // The swap above should always make Op0 the 'not' for the last case.
2894 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2895 if (Op0 == A || Op0 == B)
2896 return BinaryOperator::CreateOr(A, B);
2897
2898 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2899 match(Op0, m_And(m_Specific(B), m_Specific(A))))
2900 return BinaryOperator::CreateOr(A, B);
2901
2902 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
2903 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
2904 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
2905
2906 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2907 Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2908 return BinaryOperator::CreateOr(Not, Op0);
2909 }
2910 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2911 Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2912 return BinaryOperator::CreateOr(Not, Op0);
2913 }
2914 }
2915
2916 // A | ~(A | B) -> A | ~B
2917 // A | ~(A ^ B) -> A | ~B
2918 if (match(Op1, m_Not(m_Value(A))))
2919 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2920 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2921 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2922 B->getOpcode() == Instruction::Xor)) {
2923 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2924 B->getOperand(0);
2925 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2926 return BinaryOperator::CreateOr(Not, Op0);
2927 }
2928
2929 if (SwappedForXor)
2930 std::swap(Op0, Op1);
2931
2932 {
2933 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2934 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2935 if (LHS && RHS)
2936 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false))
2937 return replaceInstUsesWith(I, Res);
2938
2939 // TODO: Make this recursive; it's a little tricky because an arbitrary
2940 // number of 'or' instructions might have to be created.
2941 Value *X, *Y;
2942 if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
2943 bool IsLogical = isa<SelectInst>(Op1);
2944 // LHS | (X || Y) --> (LHS || X) || Y
2945 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2946 if (Value *Res =
2947 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical))
2948 return replaceInstUsesWith(I, IsLogical
2949 ? Builder.CreateLogicalOr(Res, Y)
2950 : Builder.CreateOr(Res, Y));
2951 // LHS | (X || Y) --> X || (LHS | Y)
2952 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2953 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false,
2954 /* IsLogical */ false))
2955 return replaceInstUsesWith(I, IsLogical
2956 ? Builder.CreateLogicalOr(X, Res)
2957 : Builder.CreateOr(X, Res));
2958 }
2959 if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
2960 bool IsLogical = isa<SelectInst>(Op0);
2961 // (X || Y) | RHS --> (X || RHS) || Y
2962 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2963 if (Value *Res =
2964 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical))
2965 return replaceInstUsesWith(I, IsLogical
2966 ? Builder.CreateLogicalOr(Res, Y)
2967 : Builder.CreateOr(Res, Y));
2968 // (X || Y) | RHS --> X || (Y | RHS)
2969 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2970 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false,
2971 /* IsLogical */ false))
2972 return replaceInstUsesWith(I, IsLogical
2973 ? Builder.CreateLogicalOr(X, Res)
2974 : Builder.CreateOr(X, Res));
2975 }
2976 }
2977
2978 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2979 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2980 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false))
2981 return replaceInstUsesWith(I, Res);
2982
2983 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2984 return FoldedFCmps;
2985
2986 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2987 return CastedOr;
2988
2989 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2990 return Sel;
2991
2992 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2993 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2994 // with binop identity constant. But creating a select with non-constant
2995 // arm may not be reversible due to poison semantics. Is that a good
2996 // canonicalization?
2997 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2998 A->getType()->isIntOrIntVectorTy(1))
2999 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1);
3000 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
3001 A->getType()->isIntOrIntVectorTy(1))
3002 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0);
3003
3004 // Note: If we've gotten to the point of visiting the outer OR, then the
3005 // inner one couldn't be simplified. If it was a constant, then it won't
3006 // be simplified by a later pass either, so we try swapping the inner/outer
3007 // ORs in the hopes that we'll be able to simplify it this way.
3008 // (X|C) | V --> (X|V) | C
3009 ConstantInt *CI;
3010 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
3011 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
3012 Value *Inner = Builder.CreateOr(A, Op1);
3013 Inner->takeName(Op0);
3014 return BinaryOperator::CreateOr(Inner, CI);
3015 }
3016
3017 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
3018 // Since this OR statement hasn't been optimized further yet, we hope
3019 // that this transformation will allow the new ORs to be optimized.
3020 {
3021 Value *X = nullptr, *Y = nullptr;
3022 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3023 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
3024 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
3025 Value *orTrue = Builder.CreateOr(A, C);
3026 Value *orFalse = Builder.CreateOr(B, D);
3027 return SelectInst::Create(X, orTrue, orFalse);
3028 }
3029 }
3030
3031 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
3032 {
3033 Value *X, *Y;
3034 if (match(&I, m_c_Or(m_OneUse(m_AShr(
3035 m_NSWSub(m_Value(Y), m_Value(X)),
3036 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
3037 m_Deferred(X)))) {
3038 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
3039 Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
3040 return SelectInst::Create(NewICmpInst, AllOnes, X);
3041 }
3042 }
3043
3044 if (Instruction *V =
3045 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
3046 return V;
3047
3048 CmpInst::Predicate Pred;
3049 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
3050 // Check if the OR weakens the overflow condition for umul.with.overflow by
3051 // treating any non-zero result as overflow. In that case, we overflow if both
3052 // umul.with.overflow operands are != 0, as in that case the result can only
3053 // be 0, iff the multiplication overflows.
3054 if (match(&I,
3055 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
3056 m_Value(Ov)),
3057 m_CombineAnd(m_ICmp(Pred,
3058 m_CombineAnd(m_ExtractValue<0>(
3059 m_Deferred(UMulWithOv)),
3060 m_Value(Mul)),
3061 m_ZeroInt()),
3062 m_Value(MulIsNotZero)))) &&
3063 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
3064 Pred == CmpInst::ICMP_NE) {
3065 Value *A, *B;
3066 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
3067 m_Value(A), m_Value(B)))) {
3068 Value *NotNullA = Builder.CreateIsNotNull(A);
3069 Value *NotNullB = Builder.CreateIsNotNull(B);
3070 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
3071 }
3072 }
3073
3074 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
3075 if (sinkNotIntoOtherHandOfAndOrOr(I))
3076 return &I;
3077
3078 // Improve "get low bit mask up to and including bit X" pattern:
3079 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
3080 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
3081 m_Shl(m_One(), m_Deferred(X)))) &&
3082 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
3083 Value *Sub = Builder.CreateSub(
3084 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
3085 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
3086 }
3087
3088 // An or recurrence w/loop invariant step is equivelent to (or start, step)
3089 PHINode *PN = nullptr;
3090 Value *Start = nullptr, *Step = nullptr;
3091 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
3092 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
3093
3094 // (A & B) | (C | D) or (C | D) | (A & B)
3095 // Can be combined if C or D is of type (A/B & X)
3096 if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
3097 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
3098 // (A & B) | (C | ?) -> C | (? | (A & B))
3099 // (A & B) | (C | ?) -> C | (? | (A & B))
3100 // (A & B) | (C | ?) -> C | (? | (A & B))
3101 // (A & B) | (C | ?) -> C | (? | (A & B))
3102 // (C | ?) | (A & B) -> C | (? | (A & B))
3103 // (C | ?) | (A & B) -> C | (? | (A & B))
3104 // (C | ?) | (A & B) -> C | (? | (A & B))
3105 // (C | ?) | (A & B) -> C | (? | (A & B))
3106 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3107 match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3108 return BinaryOperator::CreateOr(
3109 C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
3110 // (A & B) | (? | D) -> (? | (A & B)) | D
3111 // (A & B) | (? | D) -> (? | (A & B)) | D
3112 // (A & B) | (? | D) -> (? | (A & B)) | D
3113 // (A & B) | (? | D) -> (? | (A & B)) | D
3114 // (? | D) | (A & B) -> (? | (A & B)) | D
3115 // (? | D) | (A & B) -> (? | (A & B)) | D
3116 // (? | D) | (A & B) -> (? | (A & B)) | D
3117 // (? | D) | (A & B) -> (? | (A & B)) | D
3118 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3119 match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3120 return BinaryOperator::CreateOr(
3121 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
3122 }
3123
3124 return nullptr;
3125 }
3126
3127 /// A ^ B can be specified using other logic ops in a variety of patterns. We
3128 /// can fold these early and efficiently by morphing an existing instruction.
foldXorToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3129 static Instruction *foldXorToXor(BinaryOperator &I,
3130 InstCombiner::BuilderTy &Builder) {
3131 assert(I.getOpcode() == Instruction::Xor);
3132 Value *Op0 = I.getOperand(0);
3133 Value *Op1 = I.getOperand(1);
3134 Value *A, *B;
3135
3136 // There are 4 commuted variants for each of the basic patterns.
3137
3138 // (A & B) ^ (A | B) -> A ^ B
3139 // (A & B) ^ (B | A) -> A ^ B
3140 // (A | B) ^ (A & B) -> A ^ B
3141 // (A | B) ^ (B & A) -> A ^ B
3142 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
3143 m_c_Or(m_Deferred(A), m_Deferred(B)))))
3144 return BinaryOperator::CreateXor(A, B);
3145
3146 // (A | ~B) ^ (~A | B) -> A ^ B
3147 // (~B | A) ^ (~A | B) -> A ^ B
3148 // (~A | B) ^ (A | ~B) -> A ^ B
3149 // (B | ~A) ^ (A | ~B) -> A ^ B
3150 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
3151 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
3152 return BinaryOperator::CreateXor(A, B);
3153
3154 // (A & ~B) ^ (~A & B) -> A ^ B
3155 // (~B & A) ^ (~A & B) -> A ^ B
3156 // (~A & B) ^ (A & ~B) -> A ^ B
3157 // (B & ~A) ^ (A & ~B) -> A ^ B
3158 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
3159 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
3160 return BinaryOperator::CreateXor(A, B);
3161
3162 // For the remaining cases we need to get rid of one of the operands.
3163 if (!Op0->hasOneUse() && !Op1->hasOneUse())
3164 return nullptr;
3165
3166 // (A | B) ^ ~(A & B) -> ~(A ^ B)
3167 // (A | B) ^ ~(B & A) -> ~(A ^ B)
3168 // (A & B) ^ ~(A | B) -> ~(A ^ B)
3169 // (A & B) ^ ~(B | A) -> ~(A ^ B)
3170 // Complexity sorting ensures the not will be on the right side.
3171 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
3172 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
3173 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3174 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
3175 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
3176
3177 return nullptr;
3178 }
3179
foldXorOfICmps(ICmpInst * LHS,ICmpInst * RHS,BinaryOperator & I)3180 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3181 BinaryOperator &I) {
3182 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
3183 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
3184
3185 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3186 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
3187 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
3188
3189 if (predicatesFoldable(PredL, PredR)) {
3190 if (LHS0 == RHS1 && LHS1 == RHS0) {
3191 std::swap(LHS0, LHS1);
3192 PredL = ICmpInst::getSwappedPredicate(PredL);
3193 }
3194 if (LHS0 == RHS0 && LHS1 == RHS1) {
3195 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
3196 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
3197 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3198 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3199 }
3200 }
3201
3202 // TODO: This can be generalized to compares of non-signbits using
3203 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
3204 // foldLogOpOfMaskedICmps().
3205 const APInt *LC, *RC;
3206 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
3207 LHS0->getType() == RHS0->getType() &&
3208 LHS0->getType()->isIntOrIntVectorTy() &&
3209 (LHS->hasOneUse() || RHS->hasOneUse())) {
3210 // Convert xor of signbit tests to signbit test of xor'd values:
3211 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
3212 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
3213 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
3214 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
3215 bool TrueIfSignedL, TrueIfSignedR;
3216 if (isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
3217 isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
3218 Value *XorLR = Builder.CreateXor(LHS0, RHS0);
3219 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
3220 Builder.CreateIsNotNeg(XorLR);
3221 }
3222
3223 // (X > C) ^ (X < C + 2) --> X != C + 1
3224 // (X < C + 2) ^ (X > C) --> X != C + 1
3225 // Considering the correctness of this pattern, we should avoid that C is
3226 // non-negative and C + 2 is negative, although it will be matched by other
3227 // patterns.
3228 const APInt *C1, *C2;
3229 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_APInt(C1)) &&
3230 PredR == CmpInst::ICMP_SLT && match(RHS1, m_APInt(C2))) ||
3231 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_APInt(C2)) &&
3232 PredR == CmpInst::ICMP_SGT && match(RHS1, m_APInt(C1))))
3233 if (LHS0 == RHS0 && *C1 + 2 == *C2 &&
3234 (C1->isNegative() || C2->isNonNegative()))
3235 return Builder.CreateICmpNE(LHS0,
3236 ConstantInt::get(LHS0->getType(), *C1 + 1));
3237 }
3238
3239 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
3240 // into those logic ops. That is, try to turn this into an and-of-icmps
3241 // because we have many folds for that pattern.
3242 //
3243 // This is based on a truth table definition of xor:
3244 // X ^ Y --> (X | Y) & !(X & Y)
3245 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
3246 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
3247 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
3248 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
3249 // TODO: Independently handle cases where the 'and' side is a constant.
3250 ICmpInst *X = nullptr, *Y = nullptr;
3251 if (OrICmp == LHS && AndICmp == RHS) {
3252 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
3253 X = LHS;
3254 Y = RHS;
3255 }
3256 if (OrICmp == RHS && AndICmp == LHS) {
3257 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
3258 X = RHS;
3259 Y = LHS;
3260 }
3261 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3262 // Invert the predicate of 'Y', thus inverting its output.
3263 Y->setPredicate(Y->getInversePredicate());
3264 // So, are there other uses of Y?
3265 if (!Y->hasOneUse()) {
3266 // We need to adapt other uses of Y though. Get a value that matches
3267 // the original value of Y before inversion. While this increases
3268 // immediate instruction count, we have just ensured that all the
3269 // users are freely-invertible, so that 'not' *will* get folded away.
3270 BuilderTy::InsertPointGuard Guard(Builder);
3271 // Set insertion point to right after the Y.
3272 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3273 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3274 // Replace all uses of Y (excluding the one in NotY!) with NotY.
3275 Worklist.pushUsersToWorkList(*Y);
3276 Y->replaceUsesWithIf(NotY,
3277 [NotY](Use &U) { return U.getUser() != NotY; });
3278 }
3279 // All done.
3280 return Builder.CreateAnd(LHS, RHS);
3281 }
3282 }
3283 }
3284
3285 return nullptr;
3286 }
3287
3288 /// If we have a masked merge, in the canonical form of:
3289 /// (assuming that A only has one use.)
3290 /// | A | |B|
3291 /// ((x ^ y) & M) ^ y
3292 /// | D |
3293 /// * If M is inverted:
3294 /// | D |
3295 /// ((x ^ y) & ~M) ^ y
3296 /// We can canonicalize by swapping the final xor operand
3297 /// to eliminate the 'not' of the mask.
3298 /// ((x ^ y) & M) ^ x
3299 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3300 /// because that shortens the dependency chain and improves analysis:
3301 /// (x & M) | (y & ~M)
visitMaskedMerge(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3302 static Instruction *visitMaskedMerge(BinaryOperator &I,
3303 InstCombiner::BuilderTy &Builder) {
3304 Value *B, *X, *D;
3305 Value *M;
3306 if (!match(&I, m_c_Xor(m_Value(B),
3307 m_OneUse(m_c_And(
3308 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3309 m_Value(D)),
3310 m_Value(M))))))
3311 return nullptr;
3312
3313 Value *NotM;
3314 if (match(M, m_Not(m_Value(NotM)))) {
3315 // De-invert the mask and swap the value in B part.
3316 Value *NewA = Builder.CreateAnd(D, NotM);
3317 return BinaryOperator::CreateXor(NewA, X);
3318 }
3319
3320 Constant *C;
3321 if (D->hasOneUse() && match(M, m_Constant(C))) {
3322 // Propagating undef is unsafe. Clamp undef elements to -1.
3323 Type *EltTy = C->getType()->getScalarType();
3324 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3325 // Unfold.
3326 Value *LHS = Builder.CreateAnd(X, C);
3327 Value *NotC = Builder.CreateNot(C);
3328 Value *RHS = Builder.CreateAnd(B, NotC);
3329 return BinaryOperator::CreateOr(LHS, RHS);
3330 }
3331
3332 return nullptr;
3333 }
3334
3335 // Transform
3336 // ~(x ^ y)
3337 // into:
3338 // (~x) ^ y
3339 // or into
3340 // x ^ (~y)
sinkNotIntoXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3341 static Instruction *sinkNotIntoXor(BinaryOperator &I,
3342 InstCombiner::BuilderTy &Builder) {
3343 Value *X, *Y;
3344 // FIXME: one-use check is not needed in general, but currently we are unable
3345 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3346 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3347 return nullptr;
3348
3349 // We only want to do the transform if it is free to do.
3350 if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
3351 // Ok, good.
3352 } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
3353 std::swap(X, Y);
3354 } else
3355 return nullptr;
3356
3357 Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3358 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3359 }
3360
3361 /// Canonicalize a shifty way to code absolute value to the more common pattern
3362 /// that uses negation and select.
canonicalizeAbs(BinaryOperator & Xor,InstCombiner::BuilderTy & Builder)3363 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
3364 InstCombiner::BuilderTy &Builder) {
3365 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
3366
3367 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3368 // We're relying on the fact that we only do this transform when the shift has
3369 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3370 // instructions).
3371 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
3372 if (Op0->hasNUses(2))
3373 std::swap(Op0, Op1);
3374
3375 Type *Ty = Xor.getType();
3376 Value *A;
3377 const APInt *ShAmt;
3378 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3379 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3380 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3381 // Op1 = ashr i32 A, 31 ; smear the sign bit
3382 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
3383 // --> (A < 0) ? -A : A
3384 Value *IsNeg = Builder.CreateIsNeg(A);
3385 // Copy the nuw/nsw flags from the add to the negate.
3386 auto *Add = cast<BinaryOperator>(Op0);
3387 Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3388 Add->hasNoSignedWrap());
3389 return SelectInst::Create(IsNeg, NegA, A);
3390 }
3391 return nullptr;
3392 }
3393
3394 // Transform
3395 // z = (~x) &/| y
3396 // into:
3397 // z = ~(x |/& (~y))
3398 // iff y is free to invert and all uses of z can be freely updated.
sinkNotIntoOtherHandOfAndOrOr(BinaryOperator & I)3399 bool InstCombinerImpl::sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I) {
3400 Instruction::BinaryOps NewOpc;
3401 switch (I.getOpcode()) {
3402 case Instruction::And:
3403 NewOpc = Instruction::Or;
3404 break;
3405 case Instruction::Or:
3406 NewOpc = Instruction::And;
3407 break;
3408 default:
3409 return false;
3410 };
3411
3412 Value *X, *Y;
3413 if (!match(&I, m_c_BinOp(m_Not(m_Value(X)), m_Value(Y))))
3414 return false;
3415
3416 // Will we be able to fold the `not` into Y eventually?
3417 if (!InstCombiner::isFreeToInvert(Y, Y->hasOneUse()))
3418 return false;
3419
3420 // And can our users be adapted?
3421 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3422 return false;
3423
3424 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3425 Value *NewBinOp =
3426 BinaryOperator::Create(NewOpc, X, NotY, I.getName() + ".not");
3427 Builder.Insert(NewBinOp);
3428 replaceInstUsesWith(I, NewBinOp);
3429 // We can not just create an outer `not`, it will most likely be immediately
3430 // folded back, reconstructing our initial pattern, and causing an
3431 // infinite combine loop, so immediately manually fold it away.
3432 freelyInvertAllUsersOf(NewBinOp);
3433 return true;
3434 }
3435
foldNot(BinaryOperator & I)3436 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
3437 Value *NotOp;
3438 if (!match(&I, m_Not(m_Value(NotOp))))
3439 return nullptr;
3440
3441 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3442 // We must eliminate the and/or (one-use) for these transforms to not increase
3443 // the instruction count.
3444 //
3445 // ~(~X & Y) --> (X | ~Y)
3446 // ~(Y & ~X) --> (X | ~Y)
3447 //
3448 // Note: The logical matches do not check for the commuted patterns because
3449 // those are handled via SimplifySelectsFeedingBinaryOp().
3450 Type *Ty = I.getType();
3451 Value *X, *Y;
3452 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
3453 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3454 return BinaryOperator::CreateOr(X, NotY);
3455 }
3456 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
3457 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3458 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
3459 }
3460
3461 // ~(~X | Y) --> (X & ~Y)
3462 // ~(Y | ~X) --> (X & ~Y)
3463 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
3464 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3465 return BinaryOperator::CreateAnd(X, NotY);
3466 }
3467 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
3468 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3469 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
3470 }
3471
3472 // Is this a 'not' (~) fed by a binary operator?
3473 BinaryOperator *NotVal;
3474 if (match(NotOp, m_BinOp(NotVal))) {
3475 if (NotVal->getOpcode() == Instruction::And ||
3476 NotVal->getOpcode() == Instruction::Or) {
3477 // Apply DeMorgan's Law when inverts are free:
3478 // ~(X & Y) --> (~X | ~Y)
3479 // ~(X | Y) --> (~X & ~Y)
3480 if (isFreeToInvert(NotVal->getOperand(0),
3481 NotVal->getOperand(0)->hasOneUse()) &&
3482 isFreeToInvert(NotVal->getOperand(1),
3483 NotVal->getOperand(1)->hasOneUse())) {
3484 Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
3485 Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
3486 if (NotVal->getOpcode() == Instruction::And)
3487 return BinaryOperator::CreateOr(NotX, NotY);
3488 return BinaryOperator::CreateAnd(NotX, NotY);
3489 }
3490 }
3491
3492 // ~((-X) | Y) --> (X - 1) & (~Y)
3493 if (match(NotVal,
3494 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
3495 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
3496 Value *NotY = Builder.CreateNot(Y);
3497 return BinaryOperator::CreateAnd(DecX, NotY);
3498 }
3499
3500 // ~(~X >>s Y) --> (X >>s Y)
3501 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3502 return BinaryOperator::CreateAShr(X, Y);
3503
3504 // If we are inverting a right-shifted constant, we may be able to eliminate
3505 // the 'not' by inverting the constant and using the opposite shift type.
3506 // Canonicalization rules ensure that only a negative constant uses 'ashr',
3507 // but we must check that in case that transform has not fired yet.
3508
3509 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3510 Constant *C;
3511 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3512 match(C, m_Negative())) {
3513 // We matched a negative constant, so propagating undef is unsafe.
3514 // Clamp undef elements to -1.
3515 Type *EltTy = Ty->getScalarType();
3516 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3517 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3518 }
3519
3520 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3521 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3522 match(C, m_NonNegative())) {
3523 // We matched a non-negative constant, so propagating undef is unsafe.
3524 // Clamp undef elements to 0.
3525 Type *EltTy = Ty->getScalarType();
3526 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3527 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3528 }
3529
3530 // ~(X + C) --> ~C - X
3531 if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
3532 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
3533
3534 // ~(X - Y) --> ~X + Y
3535 // FIXME: is it really beneficial to sink the `not` here?
3536 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3537 if (isa<Constant>(X) || NotVal->hasOneUse())
3538 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3539
3540 // ~(~X + Y) --> X - Y
3541 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
3542 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
3543 NotVal);
3544 }
3545
3546 // not (cmp A, B) = !cmp A, B
3547 CmpInst::Predicate Pred;
3548 if (match(NotOp, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
3549 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
3550 return replaceInstUsesWith(I, NotOp);
3551 }
3552
3553 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3554 // ~min(~X, ~Y) --> max(X, Y)
3555 // ~max(~X, Y) --> min(X, ~Y)
3556 auto *II = dyn_cast<IntrinsicInst>(NotOp);
3557 if (II && II->hasOneUse()) {
3558 if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
3559 isFreeToInvert(X, X->hasOneUse()) &&
3560 isFreeToInvert(Y, Y->hasOneUse())) {
3561 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3562 Value *NotX = Builder.CreateNot(X);
3563 Value *NotY = Builder.CreateNot(Y);
3564 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
3565 return replaceInstUsesWith(I, InvMaxMin);
3566 }
3567 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
3568 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3569 Value *NotY = Builder.CreateNot(Y);
3570 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
3571 return replaceInstUsesWith(I, InvMaxMin);
3572 }
3573 }
3574
3575 if (NotOp->hasOneUse()) {
3576 // Pull 'not' into operands of select if both operands are one-use compares
3577 // or one is one-use compare and the other one is a constant.
3578 // Inverting the predicates eliminates the 'not' operation.
3579 // Example:
3580 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
3581 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
3582 // not (select ?, (cmp TPred, ?, ?), true -->
3583 // select ?, (cmp InvTPred, ?, ?), false
3584 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
3585 Value *TV = Sel->getTrueValue();
3586 Value *FV = Sel->getFalseValue();
3587 auto *CmpT = dyn_cast<CmpInst>(TV);
3588 auto *CmpF = dyn_cast<CmpInst>(FV);
3589 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
3590 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
3591 if (InvertibleT && InvertibleF) {
3592 if (CmpT)
3593 CmpT->setPredicate(CmpT->getInversePredicate());
3594 else
3595 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
3596 if (CmpF)
3597 CmpF->setPredicate(CmpF->getInversePredicate());
3598 else
3599 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
3600 return replaceInstUsesWith(I, Sel);
3601 }
3602 }
3603 }
3604
3605 if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3606 return NewXor;
3607
3608 return nullptr;
3609 }
3610
3611 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3612 // here. We should standardize that construct where it is needed or choose some
3613 // other way to ensure that commutated variants of patterns are not missed.
visitXor(BinaryOperator & I)3614 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
3615 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
3616 SQ.getWithInstruction(&I)))
3617 return replaceInstUsesWith(I, V);
3618
3619 if (SimplifyAssociativeOrCommutative(I))
3620 return &I;
3621
3622 if (Instruction *X = foldVectorBinop(I))
3623 return X;
3624
3625 if (Instruction *Phi = foldBinopWithPhiOperands(I))
3626 return Phi;
3627
3628 if (Instruction *NewXor = foldXorToXor(I, Builder))
3629 return NewXor;
3630
3631 // (A&B)^(A&C) -> A&(B^C) etc
3632 if (Value *V = SimplifyUsingDistributiveLaws(I))
3633 return replaceInstUsesWith(I, V);
3634
3635 // See if we can simplify any instructions used by the instruction whose sole
3636 // purpose is to compute bits we don't care about.
3637 if (SimplifyDemandedInstructionBits(I))
3638 return &I;
3639
3640 if (Value *V = SimplifyBSwap(I, Builder))
3641 return replaceInstUsesWith(I, V);
3642
3643 if (Instruction *R = foldNot(I))
3644 return R;
3645
3646 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
3647 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
3648 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
3649 // have already taken care of those cases.
3650 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3651 Value *M;
3652 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
3653 m_c_And(m_Deferred(M), m_Value()))))
3654 return BinaryOperator::CreateOr(Op0, Op1);
3655
3656 if (Instruction *Xor = visitMaskedMerge(I, Builder))
3657 return Xor;
3658
3659 Value *X, *Y;
3660 Constant *C1;
3661 if (match(Op1, m_Constant(C1))) {
3662 Constant *C2;
3663
3664 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
3665 match(C1, m_ImmConstant())) {
3666 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
3667 C2 = Constant::replaceUndefsWith(
3668 C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
3669 Value *And = Builder.CreateAnd(
3670 X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
3671 return BinaryOperator::CreateXor(
3672 And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
3673 }
3674
3675 // Use DeMorgan and reassociation to eliminate a 'not' op.
3676 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
3677 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3678 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
3679 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
3680 }
3681 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
3682 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3683 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
3684 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
3685 }
3686
3687 // Convert xor ([trunc] (ashr X, BW-1)), C =>
3688 // select(X >s -1, C, ~C)
3689 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
3690 // constant depending on whether this input is less than 0.
3691 const APInt *CA;
3692 if (match(Op0, m_OneUse(m_TruncOrSelf(
3693 m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
3694 *CA == X->getType()->getScalarSizeInBits() - 1 &&
3695 !match(C1, m_AllOnes())) {
3696 assert(!C1->isZeroValue() && "Unexpected xor with 0");
3697 Value *IsNotNeg = Builder.CreateIsNotNeg(X);
3698 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
3699 }
3700 }
3701
3702 Type *Ty = I.getType();
3703 {
3704 const APInt *RHSC;
3705 if (match(Op1, m_APInt(RHSC))) {
3706 Value *X;
3707 const APInt *C;
3708 // (C - X) ^ signmaskC --> (C + signmaskC) - X
3709 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
3710 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
3711
3712 // (X + C) ^ signmaskC --> X + (C + signmaskC)
3713 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
3714 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
3715
3716 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
3717 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
3718 MaskedValueIsZero(X, *C, 0, &I))
3719 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
3720
3721 // If RHSC is inverting the remaining bits of shifted X,
3722 // canonicalize to a 'not' before the shift to help SCEV and codegen:
3723 // (X << C) ^ RHSC --> ~X << C
3724 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
3725 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
3726 Value *NotX = Builder.CreateNot(X);
3727 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
3728 }
3729 // (X >>u C) ^ RHSC --> ~X >>u C
3730 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
3731 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
3732 Value *NotX = Builder.CreateNot(X);
3733 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
3734 }
3735 // TODO: We could handle 'ashr' here as well. That would be matching
3736 // a 'not' op and moving it before the shift. Doing that requires
3737 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
3738 }
3739 }
3740
3741 // FIXME: This should not be limited to scalar (pull into APInt match above).
3742 {
3743 Value *X;
3744 ConstantInt *C1, *C2, *C3;
3745 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3746 if (match(Op1, m_ConstantInt(C3)) &&
3747 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
3748 m_ConstantInt(C2))) &&
3749 Op0->hasOneUse()) {
3750 // fold (C1 >> C2) ^ C3
3751 APInt FoldConst = C1->getValue().lshr(C2->getValue());
3752 FoldConst ^= C3->getValue();
3753 // Prepare the two operands.
3754 auto *Opnd0 = Builder.CreateLShr(X, C2);
3755 Opnd0->takeName(Op0);
3756 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
3757 }
3758 }
3759
3760 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3761 return FoldedLogic;
3762
3763 // Y ^ (X | Y) --> X & ~Y
3764 // Y ^ (Y | X) --> X & ~Y
3765 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
3766 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
3767 // (X | Y) ^ Y --> X & ~Y
3768 // (Y | X) ^ Y --> X & ~Y
3769 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
3770 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
3771
3772 // Y ^ (X & Y) --> ~X & Y
3773 // Y ^ (Y & X) --> ~X & Y
3774 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
3775 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
3776 // (X & Y) ^ Y --> ~X & Y
3777 // (Y & X) ^ Y --> ~X & Y
3778 // Canonical form is (X & C) ^ C; don't touch that.
3779 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3780 // be fixed to prefer that (otherwise we get infinite looping).
3781 if (!match(Op1, m_Constant()) &&
3782 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
3783 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
3784
3785 Value *A, *B, *C;
3786 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3787 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3788 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
3789 return BinaryOperator::CreateXor(
3790 Builder.CreateAnd(Builder.CreateNot(A), C), B);
3791
3792 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3793 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3794 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
3795 return BinaryOperator::CreateXor(
3796 Builder.CreateAnd(Builder.CreateNot(B), C), A);
3797
3798 // (A & B) ^ (A ^ B) -> (A | B)
3799 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3800 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
3801 return BinaryOperator::CreateOr(A, B);
3802 // (A ^ B) ^ (A & B) -> (A | B)
3803 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3804 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
3805 return BinaryOperator::CreateOr(A, B);
3806
3807 // (A & ~B) ^ ~A -> ~(A & B)
3808 // (~B & A) ^ ~A -> ~(A & B)
3809 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3810 match(Op1, m_Not(m_Specific(A))))
3811 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3812
3813 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
3814 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
3815 return BinaryOperator::CreateOr(A, B);
3816
3817 // (~A | B) ^ A --> ~(A & B)
3818 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
3819 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
3820
3821 // A ^ (~A | B) --> ~(A & B)
3822 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
3823 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
3824
3825 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
3826 // TODO: Loosen one-use restriction if common operand is a constant.
3827 Value *D;
3828 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
3829 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
3830 if (B == C || B == D)
3831 std::swap(A, B);
3832 if (A == C)
3833 std::swap(C, D);
3834 if (A == D) {
3835 Value *NotA = Builder.CreateNot(A);
3836 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
3837 }
3838 }
3839
3840 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3841 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3842 if (Value *V = foldXorOfICmps(LHS, RHS, I))
3843 return replaceInstUsesWith(I, V);
3844
3845 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3846 return CastedXor;
3847
3848 if (Instruction *Abs = canonicalizeAbs(I, Builder))
3849 return Abs;
3850
3851 // Otherwise, if all else failed, try to hoist the xor-by-constant:
3852 // (X ^ C) ^ Y --> (X ^ Y) ^ C
3853 // Just like we do in other places, we completely avoid the fold
3854 // for constantexprs, at least to avoid endless combine loop.
3855 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
3856 m_Unless(m_ConstantExpr())),
3857 m_ImmConstant(C1))),
3858 m_Value(Y))))
3859 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
3860
3861 return nullptr;
3862 }
3863