1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/AlignOf.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/KnownBits.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() 86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 87 88 const APFloat *getFpValPtr() const 89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Points to the constant addend of the resulting simplified expression. 523 // If the resulting expr has constant-addend, this constant-addend is 524 // desirable to reside at the top of the resulting expression tree. Placing 525 // constant close to supper-expr(s) will potentially reveal some optimization 526 // opportunities in super-expr(s). 527 const FAddend *ConstAdd = nullptr; 528 529 // Simplified addends are placed <SimpVect>. 530 AddendVect SimpVect; 531 532 // The outer loop works on one symbolic-value at a time. Suppose the input 533 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 534 // The symbolic-values will be processed in this order: x, y, z. 535 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 536 537 const FAddend *ThisAddend = Addends[SymIdx]; 538 if (!ThisAddend) { 539 // This addend was processed before. 540 continue; 541 } 542 543 Value *Val = ThisAddend->getSymVal(); 544 unsigned StartIdx = SimpVect.size(); 545 SimpVect.push_back(ThisAddend); 546 547 // The inner loop collects addends sharing same symbolic-value, and these 548 // addends will be later on folded into a single addend. Following above 549 // example, if the symbolic value "y" is being processed, the inner loop 550 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 551 // be later on folded into "<b1+b2, y>". 552 for (unsigned SameSymIdx = SymIdx + 1; 553 SameSymIdx < AddendNum; SameSymIdx++) { 554 const FAddend *T = Addends[SameSymIdx]; 555 if (T && T->getSymVal() == Val) { 556 // Set null such that next iteration of the outer loop will not process 557 // this addend again. 558 Addends[SameSymIdx] = nullptr; 559 SimpVect.push_back(T); 560 } 561 } 562 563 // If multiple addends share same symbolic value, fold them together. 564 if (StartIdx + 1 != SimpVect.size()) { 565 FAddend &R = TmpResult[NextTmpIdx ++]; 566 R = *SimpVect[StartIdx]; 567 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 568 R += *SimpVect[Idx]; 569 570 // Pop all addends being folded and push the resulting folded addend. 571 SimpVect.resize(StartIdx); 572 if (Val) { 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } else { 577 // Don't push constant addend at this time. It will be the last element 578 // of <SimpVect>. 579 ConstAdd = &R; 580 } 581 } 582 } 583 584 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 585 "out-of-bound access"); 586 587 if (ConstAdd) 588 SimpVect.push_back(ConstAdd); 589 590 Value *Result; 591 if (!SimpVect.empty()) 592 Result = createNaryFAdd(SimpVect, InstrQuota); 593 else { 594 // The addition is folded to 0.0. 595 Result = ConstantFP::get(Instr->getType(), 0.0); 596 } 597 598 return Result; 599 } 600 601 Value *FAddCombine::createNaryFAdd 602 (const AddendVect &Opnds, unsigned InstrQuota) { 603 assert(!Opnds.empty() && "Expect at least one addend"); 604 605 // Step 1: Check if the # of instructions needed exceeds the quota. 606 607 unsigned InstrNeeded = calcInstrNumber(Opnds); 608 if (InstrNeeded > InstrQuota) 609 return nullptr; 610 611 initCreateInstNum(); 612 613 // step 2: Emit the N-ary addition. 614 // Note that at most three instructions are involved in Fadd-InstCombine: the 615 // addition in question, and at most two neighboring instructions. 616 // The resulting optimized addition should have at least one less instruction 617 // than the original addition expression tree. This implies that the resulting 618 // N-ary addition has at most two instructions, and we don't need to worry 619 // about tree-height when constructing the N-ary addition. 620 621 Value *LastVal = nullptr; 622 bool LastValNeedNeg = false; 623 624 // Iterate the addends, creating fadd/fsub using adjacent two addends. 625 for (const FAddend *Opnd : Opnds) { 626 bool NeedNeg; 627 Value *V = createAddendVal(*Opnd, NeedNeg); 628 if (!LastVal) { 629 LastVal = V; 630 LastValNeedNeg = NeedNeg; 631 continue; 632 } 633 634 if (LastValNeedNeg == NeedNeg) { 635 LastVal = createFAdd(LastVal, V); 636 continue; 637 } 638 639 if (LastValNeedNeg) 640 LastVal = createFSub(V, LastVal); 641 else 642 LastVal = createFSub(LastVal, V); 643 644 LastValNeedNeg = false; 645 } 646 647 if (LastValNeedNeg) { 648 LastVal = createFNeg(LastVal); 649 } 650 651 #ifndef NDEBUG 652 assert(CreateInstrNum == InstrNeeded && 653 "Inconsistent in instruction numbers"); 654 #endif 655 656 return LastVal; 657 } 658 659 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 660 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 661 if (Instruction *I = dyn_cast<Instruction>(V)) 662 createInstPostProc(I); 663 return V; 664 } 665 666 Value *FAddCombine::createFNeg(Value *V) { 667 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 668 Value *NewV = createFSub(Zero, V); 669 if (Instruction *I = dyn_cast<Instruction>(NewV)) 670 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 671 return NewV; 672 } 673 674 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 675 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 676 if (Instruction *I = dyn_cast<Instruction>(V)) 677 createInstPostProc(I); 678 return V; 679 } 680 681 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 682 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 683 if (Instruction *I = dyn_cast<Instruction>(V)) 684 createInstPostProc(I); 685 return V; 686 } 687 688 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 689 NewInstr->setDebugLoc(Instr->getDebugLoc()); 690 691 // Keep track of the number of instruction created. 692 if (!NoNumber) 693 incCreateInstNum(); 694 695 // Propagate fast-math flags 696 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 697 } 698 699 // Return the number of instruction needed to emit the N-ary addition. 700 // NOTE: Keep this function in sync with createAddendVal(). 701 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 702 unsigned OpndNum = Opnds.size(); 703 unsigned InstrNeeded = OpndNum - 1; 704 705 // The number of addends in the form of "(-1)*x". 706 unsigned NegOpndNum = 0; 707 708 // Adjust the number of instructions needed to emit the N-ary add. 709 for (const FAddend *Opnd : Opnds) { 710 if (Opnd->isConstant()) 711 continue; 712 713 // The constant check above is really for a few special constant 714 // coefficients. 715 if (isa<UndefValue>(Opnd->getSymVal())) 716 continue; 717 718 const FAddendCoef &CE = Opnd->getCoef(); 719 if (CE.isMinusOne() || CE.isMinusTwo()) 720 NegOpndNum++; 721 722 // Let the addend be "c * x". If "c == +/-1", the value of the addend 723 // is immediately available; otherwise, it needs exactly one instruction 724 // to evaluate the value. 725 if (!CE.isMinusOne() && !CE.isOne()) 726 InstrNeeded++; 727 } 728 if (NegOpndNum == OpndNum) 729 InstrNeeded++; 730 return InstrNeeded; 731 } 732 733 // Input Addend Value NeedNeg(output) 734 // ================================================================ 735 // Constant C C false 736 // <+/-1, V> V coefficient is -1 737 // <2/-2, V> "fadd V, V" coefficient is -2 738 // <C, V> "fmul V, C" false 739 // 740 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 741 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 742 const FAddendCoef &Coeff = Opnd.getCoef(); 743 744 if (Opnd.isConstant()) { 745 NeedNeg = false; 746 return Coeff.getValue(Instr->getType()); 747 } 748 749 Value *OpndVal = Opnd.getSymVal(); 750 751 if (Coeff.isMinusOne() || Coeff.isOne()) { 752 NeedNeg = Coeff.isMinusOne(); 753 return OpndVal; 754 } 755 756 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 757 NeedNeg = Coeff.isMinusTwo(); 758 return createFAdd(OpndVal, OpndVal); 759 } 760 761 NeedNeg = false; 762 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 763 } 764 765 // Checks if any operand is negative and we can convert add to sub. 766 // This function checks for following negative patterns 767 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 768 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 769 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 770 static Value *checkForNegativeOperand(BinaryOperator &I, 771 InstCombiner::BuilderTy &Builder) { 772 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 773 774 // This function creates 2 instructions to replace ADD, we need at least one 775 // of LHS or RHS to have one use to ensure benefit in transform. 776 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 777 return nullptr; 778 779 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 780 const APInt *C1 = nullptr, *C2 = nullptr; 781 782 // if ONE is on other side, swap 783 if (match(RHS, m_Add(m_Value(X), m_One()))) 784 std::swap(LHS, RHS); 785 786 if (match(LHS, m_Add(m_Value(X), m_One()))) { 787 // if XOR on other side, swap 788 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 789 std::swap(X, RHS); 790 791 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 792 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 793 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 794 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 795 Value *NewAnd = Builder.CreateAnd(Z, *C1); 796 return Builder.CreateSub(RHS, NewAnd, "sub"); 797 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 798 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 799 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 800 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 801 return Builder.CreateSub(RHS, NewOr, "sub"); 802 } 803 } 804 } 805 806 // Restore LHS and RHS 807 LHS = I.getOperand(0); 808 RHS = I.getOperand(1); 809 810 // if XOR is on other side, swap 811 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 812 std::swap(LHS, RHS); 813 814 // C2 is ODD 815 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 816 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 817 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 818 if (C1->countTrailingZeros() == 0) 819 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 820 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 821 return Builder.CreateSub(RHS, NewOr, "sub"); 822 } 823 return nullptr; 824 } 825 826 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 827 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 828 Constant *Op1C; 829 if (!match(Op1, m_Constant(Op1C))) 830 return nullptr; 831 832 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 833 return NV; 834 835 Value *X, *Y; 836 837 // add (sub X, Y), -1 --> add (not Y), X 838 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 839 match(Op1, m_AllOnes())) 840 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 841 842 // zext(bool) + C -> bool ? C + 1 : C 843 if (match(Op0, m_ZExt(m_Value(X))) && 844 X->getType()->getScalarSizeInBits() == 1) 845 return SelectInst::Create(X, AddOne(Op1C), Op1); 846 847 // ~X + C --> (C-1) - X 848 if (match(Op0, m_Not(m_Value(X)))) 849 return BinaryOperator::CreateSub(SubOne(Op1C), X); 850 851 const APInt *C; 852 if (!match(Op1, m_APInt(C))) 853 return nullptr; 854 855 if (C->isSignMask()) { 856 // If wrapping is not allowed, then the addition must set the sign bit: 857 // X + (signmask) --> X | signmask 858 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 859 return BinaryOperator::CreateOr(Op0, Op1); 860 861 // If wrapping is allowed, then the addition flips the sign bit of LHS: 862 // X + (signmask) --> X ^ signmask 863 return BinaryOperator::CreateXor(Op0, Op1); 864 } 865 866 // Is this add the last step in a convoluted sext? 867 // add(zext(xor i16 X, -32768), -32768) --> sext X 868 Type *Ty = Add.getType(); 869 const APInt *C2; 870 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 871 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 872 return CastInst::Create(Instruction::SExt, X, Ty); 873 874 // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C)) 875 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 876 C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) { 877 Constant *NewC = 878 ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth())); 879 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 880 } 881 882 if (C->isOneValue() && Op0->hasOneUse()) { 883 // add (sext i1 X), 1 --> zext (not X) 884 // TODO: The smallest IR representation is (select X, 0, 1), and that would 885 // not require the one-use check. But we need to remove a transform in 886 // visitSelect and make sure that IR value tracking for select is equal or 887 // better than for these ops. 888 if (match(Op0, m_SExt(m_Value(X))) && 889 X->getType()->getScalarSizeInBits() == 1) 890 return new ZExtInst(Builder.CreateNot(X), Ty); 891 892 // Shifts and add used to flip and mask off the low bit: 893 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 894 const APInt *C3; 895 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 896 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 897 Value *NotX = Builder.CreateNot(X); 898 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 899 } 900 } 901 902 return nullptr; 903 } 904 905 // Matches multiplication expression Op * C where C is a constant. Returns the 906 // constant value in C and the other operand in Op. Returns true if such a 907 // match is found. 908 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 909 const APInt *AI; 910 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 911 C = *AI; 912 return true; 913 } 914 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 915 C = APInt(AI->getBitWidth(), 1); 916 C <<= *AI; 917 return true; 918 } 919 return false; 920 } 921 922 // Matches remainder expression Op % C where C is a constant. Returns the 923 // constant value in C and the other operand in Op. Returns the signedness of 924 // the remainder operation in IsSigned. Returns true if such a match is 925 // found. 926 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 927 const APInt *AI; 928 IsSigned = false; 929 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 930 IsSigned = true; 931 C = *AI; 932 return true; 933 } 934 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 935 C = *AI; 936 return true; 937 } 938 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 939 C = *AI + 1; 940 return true; 941 } 942 return false; 943 } 944 945 // Matches division expression Op / C with the given signedness as indicated 946 // by IsSigned, where C is a constant. Returns the constant value in C and the 947 // other operand in Op. Returns true if such a match is found. 948 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 949 const APInt *AI; 950 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 951 C = *AI; 952 return true; 953 } 954 if (!IsSigned) { 955 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 956 C = *AI; 957 return true; 958 } 959 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 960 C = APInt(AI->getBitWidth(), 1); 961 C <<= *AI; 962 return true; 963 } 964 } 965 return false; 966 } 967 968 // Returns whether C0 * C1 with the given signedness overflows. 969 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 970 bool overflow; 971 if (IsSigned) 972 (void)C0.smul_ov(C1, overflow); 973 else 974 (void)C0.umul_ov(C1, overflow); 975 return overflow; 976 } 977 978 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 979 // does not overflow. 980 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { 981 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 982 Value *X, *MulOpV; 983 APInt C0, MulOpC; 984 bool IsSigned; 985 // Match I = X % C0 + MulOpV * C0 986 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 987 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 988 C0 == MulOpC) { 989 Value *RemOpV; 990 APInt C1; 991 bool Rem2IsSigned; 992 // Match MulOpC = RemOpV % C1 993 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 994 IsSigned == Rem2IsSigned) { 995 Value *DivOpV; 996 APInt DivOpC; 997 // Match RemOpV = X / C0 998 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 999 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1000 Value *NewDivisor = 1001 ConstantInt::get(X->getType()->getContext(), C0 * C1); 1002 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1003 : Builder.CreateURem(X, NewDivisor, "urem"); 1004 } 1005 } 1006 } 1007 1008 return nullptr; 1009 } 1010 1011 /// Fold 1012 /// (1 << NBits) - 1 1013 /// Into: 1014 /// ~(-(1 << NBits)) 1015 /// Because a 'not' is better for bit-tracking analysis and other transforms 1016 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1017 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1018 InstCombiner::BuilderTy &Builder) { 1019 Value *NBits; 1020 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1021 return nullptr; 1022 1023 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1024 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1025 // Be wary of constant folding. 1026 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1027 // Always NSW. But NUW propagates from `add`. 1028 BOp->setHasNoSignedWrap(); 1029 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1030 } 1031 1032 return BinaryOperator::CreateNot(NotMask, I.getName()); 1033 } 1034 1035 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1036 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1037 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1038 SQ.getWithInstruction(&I))) 1039 return replaceInstUsesWith(I, V); 1040 1041 if (SimplifyAssociativeOrCommutative(I)) 1042 return &I; 1043 1044 if (Instruction *X = foldShuffledBinop(I)) 1045 return X; 1046 1047 // (A*B)+(A*C) -> A*(B+C) etc 1048 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1049 return replaceInstUsesWith(I, V); 1050 1051 if (Instruction *X = foldAddWithConstant(I)) 1052 return X; 1053 1054 // FIXME: This should be moved into the above helper function to allow these 1055 // transforms for general constant or constant splat vectors. 1056 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1057 Type *Ty = I.getType(); 1058 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1059 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1060 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1061 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1062 const APInt &RHSVal = CI->getValue(); 1063 unsigned ExtendAmt = 0; 1064 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1065 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1066 if (XorRHS->getValue() == -RHSVal) { 1067 if (RHSVal.isPowerOf2()) 1068 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1069 else if (XorRHS->getValue().isPowerOf2()) 1070 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1071 } 1072 1073 if (ExtendAmt) { 1074 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1075 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1076 ExtendAmt = 0; 1077 } 1078 1079 if (ExtendAmt) { 1080 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1081 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1082 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1083 } 1084 1085 // If this is a xor that was canonicalized from a sub, turn it back into 1086 // a sub and fuse this add with it. 1087 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1088 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1089 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1090 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1091 XorLHS); 1092 } 1093 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1094 // transform them into (X + (signmask ^ C)) 1095 if (XorRHS->getValue().isSignMask()) 1096 return BinaryOperator::CreateAdd(XorLHS, 1097 ConstantExpr::getXor(XorRHS, CI)); 1098 } 1099 } 1100 1101 if (Ty->isIntOrIntVectorTy(1)) 1102 return BinaryOperator::CreateXor(LHS, RHS); 1103 1104 // X + X --> X << 1 1105 if (LHS == RHS) { 1106 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1107 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1108 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1109 return Shl; 1110 } 1111 1112 Value *A, *B; 1113 if (match(LHS, m_Neg(m_Value(A)))) { 1114 // -A + -B --> -(A + B) 1115 if (match(RHS, m_Neg(m_Value(B)))) 1116 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1117 1118 // -A + B --> B - A 1119 return BinaryOperator::CreateSub(RHS, A); 1120 } 1121 1122 // A + -B --> A - B 1123 if (match(RHS, m_Neg(m_Value(B)))) 1124 return BinaryOperator::CreateSub(LHS, B); 1125 1126 if (Value *V = checkForNegativeOperand(I, Builder)) 1127 return replaceInstUsesWith(I, V); 1128 1129 // (A + 1) + ~B --> A - B 1130 // ~B + (A + 1) --> A - B 1131 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B))))) 1132 return BinaryOperator::CreateSub(A, B); 1133 1134 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1135 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1136 1137 // A+B --> A|B iff A and B have no bits set in common. 1138 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1139 return BinaryOperator::CreateOr(LHS, RHS); 1140 1141 // FIXME: We already did a check for ConstantInt RHS above this. 1142 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1143 // removal. 1144 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1145 // (X & FF00) + xx00 -> (X+xx00) & FF00 1146 Value *X; 1147 ConstantInt *C2; 1148 if (LHS->hasOneUse() && 1149 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1150 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1151 // See if all bits from the first bit set in the Add RHS up are included 1152 // in the mask. First, get the rightmost bit. 1153 const APInt &AddRHSV = CRHS->getValue(); 1154 1155 // Form a mask of all bits from the lowest bit added through the top. 1156 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1157 1158 // See if the and mask includes all of these bits. 1159 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1160 1161 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1162 // Okay, the xform is safe. Insert the new add pronto. 1163 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1164 return BinaryOperator::CreateAnd(NewAdd, C2); 1165 } 1166 } 1167 } 1168 1169 // add (select X 0 (sub n A)) A --> select X A n 1170 { 1171 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1172 Value *A = RHS; 1173 if (!SI) { 1174 SI = dyn_cast<SelectInst>(RHS); 1175 A = LHS; 1176 } 1177 if (SI && SI->hasOneUse()) { 1178 Value *TV = SI->getTrueValue(); 1179 Value *FV = SI->getFalseValue(); 1180 Value *N; 1181 1182 // Can we fold the add into the argument of the select? 1183 // We check both true and false select arguments for a matching subtract. 1184 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1185 // Fold the add into the true select value. 1186 return SelectInst::Create(SI->getCondition(), N, A); 1187 1188 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1189 // Fold the add into the false select value. 1190 return SelectInst::Create(SI->getCondition(), A, N); 1191 } 1192 } 1193 1194 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1195 return Ext; 1196 1197 // (add (xor A, B) (and A, B)) --> (or A, B) 1198 // (add (and A, B) (xor A, B)) --> (or A, B) 1199 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1200 m_c_And(m_Deferred(A), m_Deferred(B))))) 1201 return BinaryOperator::CreateOr(A, B); 1202 1203 // (add (or A, B) (and A, B)) --> (add A, B) 1204 // (add (and A, B) (or A, B)) --> (add A, B) 1205 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1206 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1207 I.setOperand(0, A); 1208 I.setOperand(1, B); 1209 return &I; 1210 } 1211 1212 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1213 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1214 // computeKnownBits. 1215 bool Changed = false; 1216 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1217 Changed = true; 1218 I.setHasNoSignedWrap(true); 1219 } 1220 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1221 Changed = true; 1222 I.setHasNoUnsignedWrap(true); 1223 } 1224 1225 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1226 return V; 1227 1228 return Changed ? &I : nullptr; 1229 } 1230 1231 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1232 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1233 InstCombiner::BuilderTy &Builder) { 1234 assert((I.getOpcode() == Instruction::FAdd || 1235 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1236 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1237 "FP factorization requires FMF"); 1238 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1239 Value *X, *Y, *Z; 1240 bool IsFMul; 1241 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && 1242 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || 1243 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && 1244 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) 1245 IsFMul = true; 1246 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && 1247 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) 1248 IsFMul = false; 1249 else 1250 return nullptr; 1251 1252 // (X * Z) + (Y * Z) --> (X + Y) * Z 1253 // (X * Z) - (Y * Z) --> (X - Y) * Z 1254 // (X / Z) + (Y / Z) --> (X + Y) / Z 1255 // (X / Z) - (Y / Z) --> (X - Y) / Z 1256 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1257 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1258 : Builder.CreateFSubFMF(X, Y, &I); 1259 1260 // Bail out if we just created a denormal constant. 1261 // TODO: This is copied from a previous implementation. Is it necessary? 1262 const APFloat *C; 1263 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1264 return nullptr; 1265 1266 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1267 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1268 } 1269 1270 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1271 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1272 I.getFastMathFlags(), 1273 SQ.getWithInstruction(&I))) 1274 return replaceInstUsesWith(I, V); 1275 1276 if (SimplifyAssociativeOrCommutative(I)) 1277 return &I; 1278 1279 if (Instruction *X = foldShuffledBinop(I)) 1280 return X; 1281 1282 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1283 return FoldedFAdd; 1284 1285 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1286 Value *X; 1287 // (-X) + Y --> Y - X 1288 if (match(LHS, m_FNeg(m_Value(X)))) 1289 return BinaryOperator::CreateFSubFMF(RHS, X, &I); 1290 // Y + (-X) --> Y - X 1291 if (match(RHS, m_FNeg(m_Value(X)))) 1292 return BinaryOperator::CreateFSubFMF(LHS, X, &I); 1293 1294 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1295 // integer add followed by a promotion. 1296 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1297 Value *LHSIntVal = LHSConv->getOperand(0); 1298 Type *FPType = LHSConv->getType(); 1299 1300 // TODO: This check is overly conservative. In many cases known bits 1301 // analysis can tell us that the result of the addition has less significant 1302 // bits than the integer type can hold. 1303 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1304 Type *FScalarTy = FTy->getScalarType(); 1305 Type *IScalarTy = ITy->getScalarType(); 1306 1307 // Do we have enough bits in the significand to represent the result of 1308 // the integer addition? 1309 unsigned MaxRepresentableBits = 1310 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1311 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1312 }; 1313 1314 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1315 // ... if the constant fits in the integer value. This is useful for things 1316 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1317 // requires a constant pool load, and generally allows the add to be better 1318 // instcombined. 1319 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1320 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1321 Constant *CI = 1322 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1323 if (LHSConv->hasOneUse() && 1324 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1325 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1326 // Insert the new integer add. 1327 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1328 return new SIToFPInst(NewAdd, I.getType()); 1329 } 1330 } 1331 1332 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1333 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1334 Value *RHSIntVal = RHSConv->getOperand(0); 1335 // It's enough to check LHS types only because we require int types to 1336 // be the same for this transform. 1337 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1338 // Only do this if x/y have the same type, if at least one of them has a 1339 // single use (so we don't increase the number of int->fp conversions), 1340 // and if the integer add will not overflow. 1341 if (LHSIntVal->getType() == RHSIntVal->getType() && 1342 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1343 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1344 // Insert the new integer add. 1345 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1346 return new SIToFPInst(NewAdd, I.getType()); 1347 } 1348 } 1349 } 1350 } 1351 1352 // Handle specials cases for FAdd with selects feeding the operation 1353 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1354 return replaceInstUsesWith(I, V); 1355 1356 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1357 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1358 return F; 1359 if (Value *V = FAddCombine(Builder).simplify(&I)) 1360 return replaceInstUsesWith(I, V); 1361 } 1362 1363 return nullptr; 1364 } 1365 1366 /// Optimize pointer differences into the same array into a size. Consider: 1367 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1368 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1369 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1370 Type *Ty) { 1371 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1372 // this. 1373 bool Swapped = false; 1374 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1375 1376 // For now we require one side to be the base pointer "A" or a constant 1377 // GEP derived from it. 1378 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1379 // (gep X, ...) - X 1380 if (LHSGEP->getOperand(0) == RHS) { 1381 GEP1 = LHSGEP; 1382 Swapped = false; 1383 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1384 // (gep X, ...) - (gep X, ...) 1385 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1386 RHSGEP->getOperand(0)->stripPointerCasts()) { 1387 GEP2 = RHSGEP; 1388 GEP1 = LHSGEP; 1389 Swapped = false; 1390 } 1391 } 1392 } 1393 1394 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1395 // X - (gep X, ...) 1396 if (RHSGEP->getOperand(0) == LHS) { 1397 GEP1 = RHSGEP; 1398 Swapped = true; 1399 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1400 // (gep X, ...) - (gep X, ...) 1401 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1402 LHSGEP->getOperand(0)->stripPointerCasts()) { 1403 GEP2 = LHSGEP; 1404 GEP1 = RHSGEP; 1405 Swapped = true; 1406 } 1407 } 1408 } 1409 1410 if (!GEP1) 1411 // No GEP found. 1412 return nullptr; 1413 1414 if (GEP2) { 1415 // (gep X, ...) - (gep X, ...) 1416 // 1417 // Avoid duplicating the arithmetic if there are more than one non-constant 1418 // indices between the two GEPs and either GEP has a non-constant index and 1419 // multiple users. If zero non-constant index, the result is a constant and 1420 // there is no duplication. If one non-constant index, the result is an add 1421 // or sub with a constant, which is no larger than the original code, and 1422 // there's no duplicated arithmetic, even if either GEP has multiple 1423 // users. If more than one non-constant indices combined, as long as the GEP 1424 // with at least one non-constant index doesn't have multiple users, there 1425 // is no duplication. 1426 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1427 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1428 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1429 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1430 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1431 return nullptr; 1432 } 1433 } 1434 1435 // Emit the offset of the GEP and an intptr_t. 1436 Value *Result = EmitGEPOffset(GEP1); 1437 1438 // If we had a constant expression GEP on the other side offsetting the 1439 // pointer, subtract it from the offset we have. 1440 if (GEP2) { 1441 Value *Offset = EmitGEPOffset(GEP2); 1442 Result = Builder.CreateSub(Result, Offset); 1443 } 1444 1445 // If we have p - gep(p, ...) then we have to negate the result. 1446 if (Swapped) 1447 Result = Builder.CreateNeg(Result, "diff.neg"); 1448 1449 return Builder.CreateIntCast(Result, Ty, true); 1450 } 1451 1452 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1453 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1454 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1455 SQ.getWithInstruction(&I))) 1456 return replaceInstUsesWith(I, V); 1457 1458 if (Instruction *X = foldShuffledBinop(I)) 1459 return X; 1460 1461 // (A*B)-(A*C) -> A*(B-C) etc 1462 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1463 return replaceInstUsesWith(I, V); 1464 1465 // If this is a 'B = x-(-A)', change to B = x+A. 1466 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1467 if (Value *V = dyn_castNegVal(Op1)) { 1468 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1469 1470 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1471 assert(BO->getOpcode() == Instruction::Sub && 1472 "Expected a subtraction operator!"); 1473 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1474 Res->setHasNoSignedWrap(true); 1475 } else { 1476 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1477 Res->setHasNoSignedWrap(true); 1478 } 1479 1480 return Res; 1481 } 1482 1483 if (I.getType()->isIntOrIntVectorTy(1)) 1484 return BinaryOperator::CreateXor(Op0, Op1); 1485 1486 // Replace (-1 - A) with (~A). 1487 if (match(Op0, m_AllOnes())) 1488 return BinaryOperator::CreateNot(Op1); 1489 1490 // (~X) - (~Y) --> Y - X 1491 Value *X, *Y; 1492 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1493 return BinaryOperator::CreateSub(Y, X); 1494 1495 // (X + -1) - Y --> ~Y + X 1496 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1497 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1498 1499 // Y - (X + 1) --> ~X + Y 1500 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One())))) 1501 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0); 1502 1503 if (Constant *C = dyn_cast<Constant>(Op0)) { 1504 bool IsNegate = match(C, m_ZeroInt()); 1505 Value *X; 1506 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1507 // 0 - (zext bool) --> sext bool 1508 // C - (zext bool) --> bool ? C - 1 : C 1509 if (IsNegate) 1510 return CastInst::CreateSExtOrBitCast(X, I.getType()); 1511 return SelectInst::Create(X, SubOne(C), C); 1512 } 1513 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1514 // 0 - (sext bool) --> zext bool 1515 // C - (sext bool) --> bool ? C + 1 : C 1516 if (IsNegate) 1517 return CastInst::CreateZExtOrBitCast(X, I.getType()); 1518 return SelectInst::Create(X, AddOne(C), C); 1519 } 1520 1521 // C - ~X == X + (1+C) 1522 if (match(Op1, m_Not(m_Value(X)))) 1523 return BinaryOperator::CreateAdd(X, AddOne(C)); 1524 1525 // Try to fold constant sub into select arguments. 1526 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1527 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1528 return R; 1529 1530 // Try to fold constant sub into PHI values. 1531 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1532 if (Instruction *R = foldOpIntoPhi(I, PN)) 1533 return R; 1534 1535 // C-(X+C2) --> (C-C2)-X 1536 Constant *C2; 1537 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1538 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1539 } 1540 1541 const APInt *Op0C; 1542 if (match(Op0, m_APInt(Op0C))) { 1543 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1544 1545 // -(X >>u 31) -> (X >>s 31) 1546 // -(X >>s 31) -> (X >>u 31) 1547 if (Op0C->isNullValue()) { 1548 Value *X; 1549 const APInt *ShAmt; 1550 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1551 *ShAmt == BitWidth - 1) { 1552 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1553 return BinaryOperator::CreateAShr(X, ShAmtOp); 1554 } 1555 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1556 *ShAmt == BitWidth - 1) { 1557 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1558 return BinaryOperator::CreateLShr(X, ShAmtOp); 1559 } 1560 1561 if (Op1->hasOneUse()) { 1562 Value *LHS, *RHS; 1563 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; 1564 if (SPF == SPF_ABS || SPF == SPF_NABS) { 1565 // This is a negate of an ABS/NABS pattern. Just swap the operands 1566 // of the select. 1567 SelectInst *SI = cast<SelectInst>(Op1); 1568 Value *TrueVal = SI->getTrueValue(); 1569 Value *FalseVal = SI->getFalseValue(); 1570 SI->setTrueValue(FalseVal); 1571 SI->setFalseValue(TrueVal); 1572 // Don't swap prof metadata, we didn't change the branch behavior. 1573 return replaceInstUsesWith(I, SI); 1574 } 1575 } 1576 } 1577 1578 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1579 // zero. 1580 if (Op0C->isMask()) { 1581 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1582 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1583 return BinaryOperator::CreateXor(Op1, Op0); 1584 } 1585 } 1586 1587 { 1588 Value *Y; 1589 // X-(X+Y) == -Y X-(Y+X) == -Y 1590 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1591 return BinaryOperator::CreateNeg(Y); 1592 1593 // (X-Y)-X == -Y 1594 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1595 return BinaryOperator::CreateNeg(Y); 1596 } 1597 1598 // (sub (or A, B), (xor A, B)) --> (and A, B) 1599 { 1600 Value *A, *B; 1601 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1602 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1603 return BinaryOperator::CreateAnd(A, B); 1604 } 1605 1606 { 1607 Value *Y; 1608 // ((X | Y) - X) --> (~X & Y) 1609 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1610 return BinaryOperator::CreateAnd( 1611 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1612 } 1613 1614 if (Op1->hasOneUse()) { 1615 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1616 Constant *C = nullptr; 1617 1618 // (X - (Y - Z)) --> (X + (Z - Y)). 1619 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1620 return BinaryOperator::CreateAdd(Op0, 1621 Builder.CreateSub(Z, Y, Op1->getName())); 1622 1623 // (X - (X & Y)) --> (X & ~Y) 1624 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1625 return BinaryOperator::CreateAnd(Op0, 1626 Builder.CreateNot(Y, Y->getName() + ".not")); 1627 1628 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1629 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1630 C->isNotMinSignedValue() && !C->isOneValue()) 1631 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1632 1633 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1634 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1635 if (Value *XNeg = dyn_castNegVal(X)) 1636 return BinaryOperator::CreateShl(XNeg, Y); 1637 1638 // Subtracting -1/0 is the same as adding 1/0: 1639 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1640 // 'nuw' is dropped in favor of the canonical form. 1641 if (match(Op1, m_SExt(m_Value(Y))) && 1642 Y->getType()->getScalarSizeInBits() == 1) { 1643 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1644 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1645 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1646 return Add; 1647 } 1648 1649 // X - A*-B -> X + A*B 1650 // X - -A*B -> X + A*B 1651 Value *A, *B; 1652 Constant *CI; 1653 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1654 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1655 1656 // X - A*CI -> X + A*-CI 1657 // No need to handle commuted multiply because multiply handling will 1658 // ensure constant will be move to the right hand side. 1659 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) { 1660 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI)); 1661 return BinaryOperator::CreateAdd(Op0, NewMul); 1662 } 1663 } 1664 1665 // Optimize pointer differences into the same array into a size. Consider: 1666 // &A[10] - &A[0]: we should compile this to "10". 1667 Value *LHSOp, *RHSOp; 1668 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1669 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1670 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1671 return replaceInstUsesWith(I, Res); 1672 1673 // trunc(p)-trunc(q) -> trunc(p-q) 1674 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1675 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1676 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1677 return replaceInstUsesWith(I, Res); 1678 1679 // Canonicalize a shifty way to code absolute value to the common pattern. 1680 // There are 2 potential commuted variants. 1681 // We're relying on the fact that we only do this transform when the shift has 1682 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 1683 // instructions). 1684 Value *A; 1685 const APInt *ShAmt; 1686 Type *Ty = I.getType(); 1687 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 1688 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 1689 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 1690 // B = ashr i32 A, 31 ; smear the sign bit 1691 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 1692 // --> (A < 0) ? -A : A 1693 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 1694 // Copy the nuw/nsw flags from the sub to the negate. 1695 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 1696 I.hasNoSignedWrap()); 1697 return SelectInst::Create(Cmp, Neg, A); 1698 } 1699 1700 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1701 return Ext; 1702 1703 bool Changed = false; 1704 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1705 Changed = true; 1706 I.setHasNoSignedWrap(true); 1707 } 1708 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1709 Changed = true; 1710 I.setHasNoUnsignedWrap(true); 1711 } 1712 1713 return Changed ? &I : nullptr; 1714 } 1715 1716 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1717 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 1718 I.getFastMathFlags(), 1719 SQ.getWithInstruction(&I))) 1720 return replaceInstUsesWith(I, V); 1721 1722 if (Instruction *X = foldShuffledBinop(I)) 1723 return X; 1724 1725 // Subtraction from -0.0 is the canonical form of fneg. 1726 // fsub nsz 0, X ==> fsub nsz -0.0, X 1727 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1728 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) 1729 return BinaryOperator::CreateFNegFMF(Op1, &I); 1730 1731 Value *X, *Y; 1732 Constant *C; 1733 1734 // Fold negation into constant operand. This is limited with one-use because 1735 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. 1736 // -(X * C) --> X * (-C) 1737 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) 1738 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 1739 // -(X / C) --> X / (-C) 1740 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) 1741 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1742 // -(C / X) --> (-C) / X 1743 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) 1744 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1745 1746 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 1747 // Canonicalize to fadd to make analysis easier. 1748 // This can also help codegen because fadd is commutative. 1749 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 1750 // killed later. We still limit that particular transform with 'hasOneUse' 1751 // because an fneg is assumed better/cheaper than a generic fsub. 1752 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 1753 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 1754 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 1755 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 1756 } 1757 } 1758 1759 if (isa<Constant>(Op0)) 1760 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1761 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1762 return NV; 1763 1764 // X - C --> X + (-C) 1765 // But don't transform constant expressions because there's an inverse fold 1766 // for X + (-Y) --> X - Y. 1767 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) 1768 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 1769 1770 // X - (-Y) --> X + Y 1771 if (match(Op1, m_FNeg(m_Value(Y)))) 1772 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 1773 1774 // Similar to above, but look through a cast of the negated value: 1775 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 1776 Type *Ty = I.getType(); 1777 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 1778 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 1779 1780 // X - (fpext(-Y)) --> X + fpext(Y) 1781 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 1782 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 1783 1784 // Handle special cases for FSub with selects feeding the operation 1785 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 1786 return replaceInstUsesWith(I, V); 1787 1788 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1789 // (Y - X) - Y --> -X 1790 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 1791 return BinaryOperator::CreateFNegFMF(X, &I); 1792 1793 // Y - (X + Y) --> -X 1794 // Y - (Y + X) --> -X 1795 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 1796 return BinaryOperator::CreateFNegFMF(X, &I); 1797 1798 // (X * C) - X --> X * (C - 1.0) 1799 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 1800 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 1801 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 1802 } 1803 // X - (X * C) --> X * (1.0 - C) 1804 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 1805 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 1806 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 1807 } 1808 1809 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1810 return F; 1811 1812 // TODO: This performs reassociative folds for FP ops. Some fraction of the 1813 // functionality has been subsumed by simple pattern matching here and in 1814 // InstSimplify. We should let a dedicated reassociation pass handle more 1815 // complex pattern matching and remove this from InstCombine. 1816 if (Value *V = FAddCombine(Builder).simplify(&I)) 1817 return replaceInstUsesWith(I, V); 1818 } 1819 1820 return nullptr; 1821 } 1822