1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 #define DEBUG_TYPE "instcombine"
40
41 namespace {
42
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
48 ///
49 class FAddendCoef {
50 public:
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
57 ~FAddendCoef();
58
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef &A);
62 void operator+=(const FAddendCoef &A);
63 void operator*=(const FAddendCoef &S);
64
set(short C)65 void set(short C) {
66 assert(!insaneIntVal(C) && "Insane coefficient");
67 IsFp = false; IntVal = C;
68 }
69
70 void set(const APFloat& C);
71
72 void negate();
73
isZero() const74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75 Value *getValue(Type *) const;
76
isOne() const77 bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const78 bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const79 bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const80 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82 private:
insaneIntVal(int V)83 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
getFpValPtr()85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86
getFpValPtr() const87 const APFloat *getFpValPtr() const {
88 return reinterpret_cast<const APFloat *>(&FpValBuf);
89 }
90
getFpVal() const91 const APFloat &getFpVal() const {
92 assert(IsFp && BufHasFpVal && "Incorret state");
93 return *getFpValPtr();
94 }
95
getFpVal()96 APFloat &getFpVal() {
97 assert(IsFp && BufHasFpVal && "Incorret state");
98 return *getFpValPtr();
99 }
100
isInt() const101 bool isInt() const { return !IsFp; }
102
103 // If the coefficient is represented by an integer, promote it to a
104 // floating point.
105 void convertToFpType(const fltSemantics &Sem);
106
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112 bool IsFp = false;
113
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal = false;
116
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
121 short IntVal = 0;
122
123 AlignedCharArrayUnion<APFloat> FpValBuf;
124 };
125
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
129 class FAddend {
130 public:
131 FAddend() = default;
132
operator +=(const FAddend & T)133 void operator+=(const FAddend &T) {
134 assert((Val == T.Val) && "Symbolic-values disagree");
135 Coeff += T.Coeff;
136 }
137
getSymVal() const138 Value *getSymVal() const { return Val; }
getCoef() const139 const FAddendCoef &getCoef() const { return Coeff; }
140
isConstant() const141 bool isConstant() const { return Val == nullptr; }
isZero() const142 bool isZero() const { return Coeff.isZero(); }
143
set(short Coefficient,Value * V)144 void set(short Coefficient, Value *V) {
145 Coeff.set(Coefficient);
146 Val = V;
147 }
set(const APFloat & Coefficient,Value * V)148 void set(const APFloat &Coefficient, Value *V) {
149 Coeff.set(Coefficient);
150 Val = V;
151 }
set(const ConstantFP * Coefficient,Value * V)152 void set(const ConstantFP *Coefficient, Value *V) {
153 Coeff.set(Coefficient->getValueAPF());
154 Val = V;
155 }
156
negate()157 void negate() { Coeff.negate(); }
158
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167 private:
Scale(const FAddendCoef & ScaleAmt)168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170 // This addend has the value of "Coeff * Val".
171 Value *Val = nullptr;
172 FAddendCoef Coeff;
173 };
174
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
177 ///
178 class FAddCombine {
179 public:
FAddCombine(InstCombiner::BuilderTy & B)180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
182 Value *simplify(Instruction *FAdd);
183
184 private:
185 using AddendVect = SmallVector<const FAddend *, 4>;
186
187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189 /// Convert given addend to a Value
190 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191
192 /// Return the number of instructions needed to emit the N-ary addition.
193 unsigned calcInstrNumber(const AddendVect& Vect);
194
195 Value *createFSub(Value *Opnd0, Value *Opnd1);
196 Value *createFAdd(Value *Opnd0, Value *Opnd1);
197 Value *createFMul(Value *Opnd0, Value *Opnd1);
198 Value *createFNeg(Value *V);
199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201
202 // Debugging stuff are clustered here.
203 #ifndef NDEBUG
204 unsigned CreateInstrNum;
initCreateInstNum()205 void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()206 void incCreateInstNum() { CreateInstrNum++; }
207 #else
initCreateInstNum()208 void initCreateInstNum() {}
incCreateInstNum()209 void incCreateInstNum() {}
210 #endif
211
212 InstCombiner::BuilderTy &Builder;
213 Instruction *Instr = nullptr;
214 };
215
216 } // end anonymous namespace
217
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
~FAddendCoef()224 FAddendCoef::~FAddendCoef() {
225 if (BufHasFpVal)
226 getFpValPtr()->~APFloat();
227 }
228
set(const APFloat & C)229 void FAddendCoef::set(const APFloat& C) {
230 APFloat *P = getFpValPtr();
231
232 if (isInt()) {
233 // As the buffer is meanless byte stream, we cannot call
234 // APFloat::operator=().
235 new(P) APFloat(C);
236 } else
237 *P = C;
238
239 IsFp = BufHasFpVal = true;
240 }
241
convertToFpType(const fltSemantics & Sem)242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243 if (!isInt())
244 return;
245
246 APFloat *P = getFpValPtr();
247 if (IntVal > 0)
248 new(P) APFloat(Sem, IntVal);
249 else {
250 new(P) APFloat(Sem, 0 - IntVal);
251 P->changeSign();
252 }
253 IsFp = BufHasFpVal = true;
254 }
255
createAPFloatFromInt(const fltSemantics & Sem,int Val)256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257 if (Val >= 0)
258 return APFloat(Sem, Val);
259
260 APFloat T(Sem, 0 - Val);
261 T.changeSign();
262
263 return T;
264 }
265
operator =(const FAddendCoef & That)266 void FAddendCoef::operator=(const FAddendCoef &That) {
267 if (That.isInt())
268 set(That.IntVal);
269 else
270 set(That.getFpVal());
271 }
272
operator +=(const FAddendCoef & That)273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274 RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275 if (isInt() == That.isInt()) {
276 if (isInt())
277 IntVal += That.IntVal;
278 else
279 getFpVal().add(That.getFpVal(), RndMode);
280 return;
281 }
282
283 if (isInt()) {
284 const APFloat &T = That.getFpVal();
285 convertToFpType(T.getSemantics());
286 getFpVal().add(T, RndMode);
287 return;
288 }
289
290 APFloat &T = getFpVal();
291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293
operator *=(const FAddendCoef & That)294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295 if (That.isOne())
296 return;
297
298 if (That.isMinusOne()) {
299 negate();
300 return;
301 }
302
303 if (isInt() && That.isInt()) {
304 int Res = IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) && "Insane int value");
306 IntVal = Res;
307 return;
308 }
309
310 const fltSemantics &Semantic =
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312
313 if (isInt())
314 convertToFpType(Semantic);
315 APFloat &F0 = getFpVal();
316
317 if (That.isInt())
318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319 APFloat::rmNearestTiesToEven);
320 else
321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323
negate()324 void FAddendCoef::negate() {
325 if (isInt())
326 IntVal = 0 - IntVal;
327 else
328 getFpVal().changeSign();
329 }
330
getValue(Type * Ty) const331 Value *FAddendCoef::getValue(Type *Ty) const {
332 return isInt() ?
333 ConstantFP::get(Ty, float(IntVal)) :
334 ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336
337 // The definition of <Val> Addends
338 // =========================================
339 // A + B <1, A>, <1,B>
340 // A - B <1, A>, <1,B>
341 // 0 - B <-1, B>
342 // C * A, <C, A>
343 // A + C <1, A> <C, NULL>
344 // 0 +/- 0 <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)347 unsigned FAddend::drillValueDownOneStep
348 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349 Instruction *I = nullptr;
350 if (!Val || !(I = dyn_cast<Instruction>(Val)))
351 return 0;
352
353 unsigned Opcode = I->getOpcode();
354
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356 ConstantFP *C0, *C1;
357 Value *Opnd0 = I->getOperand(0);
358 Value *Opnd1 = I->getOperand(1);
359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360 Opnd0 = nullptr;
361
362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363 Opnd1 = nullptr;
364
365 if (Opnd0) {
366 if (!C0)
367 Addend0.set(1, Opnd0);
368 else
369 Addend0.set(C0, nullptr);
370 }
371
372 if (Opnd1) {
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374 if (!C1)
375 Addend.set(1, Opnd1);
376 else
377 Addend.set(C1, nullptr);
378 if (Opcode == Instruction::FSub)
379 Addend.negate();
380 }
381
382 if (Opnd0 || Opnd1)
383 return Opnd0 && Opnd1 ? 2 : 1;
384
385 // Both operands are zero. Weird!
386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387 return 1;
388 }
389
390 if (I->getOpcode() == Instruction::FMul) {
391 Value *V0 = I->getOperand(0);
392 Value *V1 = I->getOperand(1);
393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394 Addend0.set(C, V1);
395 return 1;
396 }
397
398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399 Addend0.set(C, V0);
400 return 1;
401 }
402 }
403
404 return 0;
405 }
406
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const410 unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1) const {
412 if (isConstant())
413 return 0;
414
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
417 return BreakNum;
418
419 Addend0.Scale(Coeff);
420
421 if (BreakNum == 2)
422 Addend1.Scale(Coeff);
423
424 return BreakNum;
425 }
426
simplify(Instruction * I)427 Value *FAddCombine::simplify(Instruction *I) {
428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
430
431 // Currently we are not able to handle vector type.
432 if (I->getType()->isVectorTy())
433 return nullptr;
434
435 assert((I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437
438 // Save the instruction before calling other member-functions.
439 Instr = I;
440
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442
443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444
445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
448
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451
452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455
456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
458 AddendVect AllOpnds;
459 AllOpnds.push_back(&Opnd0_0);
460 AllOpnds.push_back(&Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(&Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(&Opnd1_1);
465
466 // Compute instruction quota. We should save at least one instruction.
467 unsigned InstQuota = 0;
468
469 Value *V0 = I->getOperand(0);
470 Value *V1 = I->getOperand(1);
471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473
474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475 return R;
476 }
477
478 if (OpndNum != 2) {
479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480 // splitted into two addends, say "V = X - Y", the instruction would have
481 // been optimized into "I = Y - X" in the previous steps.
482 //
483 const FAddendCoef &CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485 }
486
487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488 if (Opnd1_ExpNum) {
489 AddendVect AllOpnds;
490 AllOpnds.push_back(&Opnd0);
491 AllOpnds.push_back(&Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(&Opnd1_1);
494
495 if (Value *R = simplifyFAdd(AllOpnds, 1))
496 return R;
497 }
498
499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500 if (Opnd0_ExpNum) {
501 AddendVect AllOpnds;
502 AllOpnds.push_back(&Opnd1);
503 AllOpnds.push_back(&Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(&Opnd0_1);
506
507 if (Value *R = simplifyFAdd(AllOpnds, 1))
508 return R;
509 }
510
511 return nullptr;
512 }
513
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 && "Too many addends");
517
518 // For saving intermediate results;
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
521
522 // Simplified addends are placed <SimpVect>.
523 AddendVect SimpVect;
524
525 // The outer loop works on one symbolic-value at a time. Suppose the input
526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527 // The symbolic-values will be processed in this order: x, y, z.
528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529
530 const FAddend *ThisAddend = Addends[SymIdx];
531 if (!ThisAddend) {
532 // This addend was processed before.
533 continue;
534 }
535
536 Value *Val = ThisAddend->getSymVal();
537
538 // If the resulting expr has constant-addend, this constant-addend is
539 // desirable to reside at the top of the resulting expression tree. Placing
540 // constant close to super-expr(s) will potentially reveal some
541 // optimization opportunities in super-expr(s). Here we do not implement
542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543 // call later.
544
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(ThisAddend);
547
548 // The inner loop collects addends sharing same symbolic-value, and these
549 // addends will be later on folded into a single addend. Following above
550 // example, if the symbolic value "y" is being processed, the inner loop
551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552 // be later on folded into "<b1+b2, y>".
553 for (unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *T = Addends[SameSymIdx];
556 if (T && T->getSymVal() == Val) {
557 // Set null such that next iteration of the outer loop will not process
558 // this addend again.
559 Addends[SameSymIdx] = nullptr;
560 SimpVect.push_back(T);
561 }
562 }
563
564 // If multiple addends share same symbolic value, fold them together.
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569 R += *SimpVect[Idx];
570
571 // Pop all addends being folded and push the resulting folded addend.
572 SimpVect.resize(StartIdx);
573 if (!R.isZero()) {
574 SimpVect.push_back(&R);
575 }
576 }
577 }
578
579 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
580 "out-of-bound access");
581
582 Value *Result;
583 if (!SimpVect.empty())
584 Result = createNaryFAdd(SimpVect, InstrQuota);
585 else {
586 // The addition is folded to 0.0.
587 Result = ConstantFP::get(Instr->getType(), 0.0);
588 }
589
590 return Result;
591 }
592
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)593 Value *FAddCombine::createNaryFAdd
594 (const AddendVect &Opnds, unsigned InstrQuota) {
595 assert(!Opnds.empty() && "Expect at least one addend");
596
597 // Step 1: Check if the # of instructions needed exceeds the quota.
598
599 unsigned InstrNeeded = calcInstrNumber(Opnds);
600 if (InstrNeeded > InstrQuota)
601 return nullptr;
602
603 initCreateInstNum();
604
605 // step 2: Emit the N-ary addition.
606 // Note that at most three instructions are involved in Fadd-InstCombine: the
607 // addition in question, and at most two neighboring instructions.
608 // The resulting optimized addition should have at least one less instruction
609 // than the original addition expression tree. This implies that the resulting
610 // N-ary addition has at most two instructions, and we don't need to worry
611 // about tree-height when constructing the N-ary addition.
612
613 Value *LastVal = nullptr;
614 bool LastValNeedNeg = false;
615
616 // Iterate the addends, creating fadd/fsub using adjacent two addends.
617 for (const FAddend *Opnd : Opnds) {
618 bool NeedNeg;
619 Value *V = createAddendVal(*Opnd, NeedNeg);
620 if (!LastVal) {
621 LastVal = V;
622 LastValNeedNeg = NeedNeg;
623 continue;
624 }
625
626 if (LastValNeedNeg == NeedNeg) {
627 LastVal = createFAdd(LastVal, V);
628 continue;
629 }
630
631 if (LastValNeedNeg)
632 LastVal = createFSub(V, LastVal);
633 else
634 LastVal = createFSub(LastVal, V);
635
636 LastValNeedNeg = false;
637 }
638
639 if (LastValNeedNeg) {
640 LastVal = createFNeg(LastVal);
641 }
642
643 #ifndef NDEBUG
644 assert(CreateInstrNum == InstrNeeded &&
645 "Inconsistent in instruction numbers");
646 #endif
647
648 return LastVal;
649 }
650
createFSub(Value * Opnd0,Value * Opnd1)651 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
652 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
653 if (Instruction *I = dyn_cast<Instruction>(V))
654 createInstPostProc(I);
655 return V;
656 }
657
createFNeg(Value * V)658 Value *FAddCombine::createFNeg(Value *V) {
659 Value *NewV = Builder.CreateFNeg(V);
660 if (Instruction *I = dyn_cast<Instruction>(NewV))
661 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
662 return NewV;
663 }
664
createFAdd(Value * Opnd0,Value * Opnd1)665 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
666 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
667 if (Instruction *I = dyn_cast<Instruction>(V))
668 createInstPostProc(I);
669 return V;
670 }
671
createFMul(Value * Opnd0,Value * Opnd1)672 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
673 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
674 if (Instruction *I = dyn_cast<Instruction>(V))
675 createInstPostProc(I);
676 return V;
677 }
678
createInstPostProc(Instruction * NewInstr,bool NoNumber)679 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
680 NewInstr->setDebugLoc(Instr->getDebugLoc());
681
682 // Keep track of the number of instruction created.
683 if (!NoNumber)
684 incCreateInstNum();
685
686 // Propagate fast-math flags
687 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
688 }
689
690 // Return the number of instruction needed to emit the N-ary addition.
691 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)692 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
693 unsigned OpndNum = Opnds.size();
694 unsigned InstrNeeded = OpndNum - 1;
695
696 // Adjust the number of instructions needed to emit the N-ary add.
697 for (const FAddend *Opnd : Opnds) {
698 if (Opnd->isConstant())
699 continue;
700
701 // The constant check above is really for a few special constant
702 // coefficients.
703 if (isa<UndefValue>(Opnd->getSymVal()))
704 continue;
705
706 const FAddendCoef &CE = Opnd->getCoef();
707 // Let the addend be "c * x". If "c == +/-1", the value of the addend
708 // is immediately available; otherwise, it needs exactly one instruction
709 // to evaluate the value.
710 if (!CE.isMinusOne() && !CE.isOne())
711 InstrNeeded++;
712 }
713 return InstrNeeded;
714 }
715
716 // Input Addend Value NeedNeg(output)
717 // ================================================================
718 // Constant C C false
719 // <+/-1, V> V coefficient is -1
720 // <2/-2, V> "fadd V, V" coefficient is -2
721 // <C, V> "fmul V, C" false
722 //
723 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)724 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
725 const FAddendCoef &Coeff = Opnd.getCoef();
726
727 if (Opnd.isConstant()) {
728 NeedNeg = false;
729 return Coeff.getValue(Instr->getType());
730 }
731
732 Value *OpndVal = Opnd.getSymVal();
733
734 if (Coeff.isMinusOne() || Coeff.isOne()) {
735 NeedNeg = Coeff.isMinusOne();
736 return OpndVal;
737 }
738
739 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
740 NeedNeg = Coeff.isMinusTwo();
741 return createFAdd(OpndVal, OpndVal);
742 }
743
744 NeedNeg = false;
745 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
746 }
747
748 // Checks if any operand is negative and we can convert add to sub.
749 // This function checks for following negative patterns
750 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
751 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
752 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy & Builder)753 static Value *checkForNegativeOperand(BinaryOperator &I,
754 InstCombiner::BuilderTy &Builder) {
755 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
756
757 // This function creates 2 instructions to replace ADD, we need at least one
758 // of LHS or RHS to have one use to ensure benefit in transform.
759 if (!LHS->hasOneUse() && !RHS->hasOneUse())
760 return nullptr;
761
762 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
763 const APInt *C1 = nullptr, *C2 = nullptr;
764
765 // if ONE is on other side, swap
766 if (match(RHS, m_Add(m_Value(X), m_One())))
767 std::swap(LHS, RHS);
768
769 if (match(LHS, m_Add(m_Value(X), m_One()))) {
770 // if XOR on other side, swap
771 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
772 std::swap(X, RHS);
773
774 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
775 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
776 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
777 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
778 Value *NewAnd = Builder.CreateAnd(Z, *C1);
779 return Builder.CreateSub(RHS, NewAnd, "sub");
780 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
781 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
782 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
783 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
784 return Builder.CreateSub(RHS, NewOr, "sub");
785 }
786 }
787 }
788
789 // Restore LHS and RHS
790 LHS = I.getOperand(0);
791 RHS = I.getOperand(1);
792
793 // if XOR is on other side, swap
794 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
795 std::swap(LHS, RHS);
796
797 // C2 is ODD
798 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
799 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
800 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
801 if (C1->countTrailingZeros() == 0)
802 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
803 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
804 return Builder.CreateSub(RHS, NewOr, "sub");
805 }
806 return nullptr;
807 }
808
809 /// Wrapping flags may allow combining constants separated by an extend.
foldNoWrapAdd(BinaryOperator & Add,InstCombiner::BuilderTy & Builder)810 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
811 InstCombiner::BuilderTy &Builder) {
812 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
813 Type *Ty = Add.getType();
814 Constant *Op1C;
815 if (!match(Op1, m_Constant(Op1C)))
816 return nullptr;
817
818 // Try this match first because it results in an add in the narrow type.
819 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
820 Value *X;
821 const APInt *C1, *C2;
822 if (match(Op1, m_APInt(C1)) &&
823 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
824 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
825 Constant *NewC =
826 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
827 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
828 }
829
830 // More general combining of constants in the wide type.
831 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
832 Constant *NarrowC;
833 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
834 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
835 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
836 Value *WideX = Builder.CreateSExt(X, Ty);
837 return BinaryOperator::CreateAdd(WideX, NewC);
838 }
839 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
840 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
841 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
842 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
843 Value *WideX = Builder.CreateZExt(X, Ty);
844 return BinaryOperator::CreateAdd(WideX, NewC);
845 }
846
847 return nullptr;
848 }
849
foldAddWithConstant(BinaryOperator & Add)850 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
851 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
852 Constant *Op1C;
853 if (!match(Op1, m_ImmConstant(Op1C)))
854 return nullptr;
855
856 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
857 return NV;
858
859 Value *X;
860 Constant *Op00C;
861
862 // add (sub C1, X), C2 --> sub (add C1, C2), X
863 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
864 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
865
866 Value *Y;
867
868 // add (sub X, Y), -1 --> add (not Y), X
869 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
870 match(Op1, m_AllOnes()))
871 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
872
873 // zext(bool) + C -> bool ? C + 1 : C
874 if (match(Op0, m_ZExt(m_Value(X))) &&
875 X->getType()->getScalarSizeInBits() == 1)
876 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
877 // sext(bool) + C -> bool ? C - 1 : C
878 if (match(Op0, m_SExt(m_Value(X))) &&
879 X->getType()->getScalarSizeInBits() == 1)
880 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
881
882 // ~X + C --> (C-1) - X
883 if (match(Op0, m_Not(m_Value(X))))
884 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
885
886 const APInt *C;
887 if (!match(Op1, m_APInt(C)))
888 return nullptr;
889
890 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
891 Constant *Op01C;
892 if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
893 haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
894 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
895
896 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
897 const APInt *C2;
898 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
899 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
900
901 if (C->isSignMask()) {
902 // If wrapping is not allowed, then the addition must set the sign bit:
903 // X + (signmask) --> X | signmask
904 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
905 return BinaryOperator::CreateOr(Op0, Op1);
906
907 // If wrapping is allowed, then the addition flips the sign bit of LHS:
908 // X + (signmask) --> X ^ signmask
909 return BinaryOperator::CreateXor(Op0, Op1);
910 }
911
912 // Is this add the last step in a convoluted sext?
913 // add(zext(xor i16 X, -32768), -32768) --> sext X
914 Type *Ty = Add.getType();
915 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
916 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
917 return CastInst::Create(Instruction::SExt, X, Ty);
918
919 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
920 // (X ^ signmask) + C --> (X + (signmask ^ C))
921 if (C2->isSignMask())
922 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
923
924 // If X has no high-bits set above an xor mask:
925 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
926 if (C2->isMask()) {
927 KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
928 if ((*C2 | LHSKnown.Zero).isAllOnes())
929 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
930 }
931
932 // Look for a math+logic pattern that corresponds to sext-in-register of a
933 // value with cleared high bits. Convert that into a pair of shifts:
934 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
935 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
936 if (Op0->hasOneUse() && *C2 == -(*C)) {
937 unsigned BitWidth = Ty->getScalarSizeInBits();
938 unsigned ShAmt = 0;
939 if (C->isPowerOf2())
940 ShAmt = BitWidth - C->logBase2() - 1;
941 else if (C2->isPowerOf2())
942 ShAmt = BitWidth - C2->logBase2() - 1;
943 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
944 0, &Add)) {
945 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
946 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
947 return BinaryOperator::CreateAShr(NewShl, ShAmtC);
948 }
949 }
950 }
951
952 if (C->isOne() && Op0->hasOneUse()) {
953 // add (sext i1 X), 1 --> zext (not X)
954 // TODO: The smallest IR representation is (select X, 0, 1), and that would
955 // not require the one-use check. But we need to remove a transform in
956 // visitSelect and make sure that IR value tracking for select is equal or
957 // better than for these ops.
958 if (match(Op0, m_SExt(m_Value(X))) &&
959 X->getType()->getScalarSizeInBits() == 1)
960 return new ZExtInst(Builder.CreateNot(X), Ty);
961
962 // Shifts and add used to flip and mask off the low bit:
963 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
964 const APInt *C3;
965 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
966 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
967 Value *NotX = Builder.CreateNot(X);
968 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
969 }
970 }
971
972 // If all bits affected by the add are included in a high-bit-mask, do the
973 // add before the mask op:
974 // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
975 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
976 C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
977 Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
978 return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
979 }
980
981 return nullptr;
982 }
983
984 // Matches multiplication expression Op * C where C is a constant. Returns the
985 // constant value in C and the other operand in Op. Returns true if such a
986 // match is found.
MatchMul(Value * E,Value * & Op,APInt & C)987 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
988 const APInt *AI;
989 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
990 C = *AI;
991 return true;
992 }
993 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
994 C = APInt(AI->getBitWidth(), 1);
995 C <<= *AI;
996 return true;
997 }
998 return false;
999 }
1000
1001 // Matches remainder expression Op % C where C is a constant. Returns the
1002 // constant value in C and the other operand in Op. Returns the signedness of
1003 // the remainder operation in IsSigned. Returns true if such a match is
1004 // found.
MatchRem(Value * E,Value * & Op,APInt & C,bool & IsSigned)1005 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1006 const APInt *AI;
1007 IsSigned = false;
1008 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1009 IsSigned = true;
1010 C = *AI;
1011 return true;
1012 }
1013 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1014 C = *AI;
1015 return true;
1016 }
1017 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1018 C = *AI + 1;
1019 return true;
1020 }
1021 return false;
1022 }
1023
1024 // Matches division expression Op / C with the given signedness as indicated
1025 // by IsSigned, where C is a constant. Returns the constant value in C and the
1026 // other operand in Op. Returns true if such a match is found.
MatchDiv(Value * E,Value * & Op,APInt & C,bool IsSigned)1027 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1028 const APInt *AI;
1029 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1030 C = *AI;
1031 return true;
1032 }
1033 if (!IsSigned) {
1034 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1035 C = *AI;
1036 return true;
1037 }
1038 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1039 C = APInt(AI->getBitWidth(), 1);
1040 C <<= *AI;
1041 return true;
1042 }
1043 }
1044 return false;
1045 }
1046
1047 // Returns whether C0 * C1 with the given signedness overflows.
MulWillOverflow(APInt & C0,APInt & C1,bool IsSigned)1048 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1049 bool overflow;
1050 if (IsSigned)
1051 (void)C0.smul_ov(C1, overflow);
1052 else
1053 (void)C0.umul_ov(C1, overflow);
1054 return overflow;
1055 }
1056
1057 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1058 // does not overflow.
SimplifyAddWithRemainder(BinaryOperator & I)1059 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1060 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1061 Value *X, *MulOpV;
1062 APInt C0, MulOpC;
1063 bool IsSigned;
1064 // Match I = X % C0 + MulOpV * C0
1065 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1066 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1067 C0 == MulOpC) {
1068 Value *RemOpV;
1069 APInt C1;
1070 bool Rem2IsSigned;
1071 // Match MulOpC = RemOpV % C1
1072 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1073 IsSigned == Rem2IsSigned) {
1074 Value *DivOpV;
1075 APInt DivOpC;
1076 // Match RemOpV = X / C0
1077 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1078 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1079 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1080 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1081 : Builder.CreateURem(X, NewDivisor, "urem");
1082 }
1083 }
1084 }
1085
1086 return nullptr;
1087 }
1088
1089 /// Fold
1090 /// (1 << NBits) - 1
1091 /// Into:
1092 /// ~(-(1 << NBits))
1093 /// Because a 'not' is better for bit-tracking analysis and other transforms
1094 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
canonicalizeLowbitMask(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1095 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1096 InstCombiner::BuilderTy &Builder) {
1097 Value *NBits;
1098 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1099 return nullptr;
1100
1101 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1102 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1103 // Be wary of constant folding.
1104 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1105 // Always NSW. But NUW propagates from `add`.
1106 BOp->setHasNoSignedWrap();
1107 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1108 }
1109
1110 return BinaryOperator::CreateNot(NotMask, I.getName());
1111 }
1112
foldToUnsignedSaturatedAdd(BinaryOperator & I)1113 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1114 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1115 Type *Ty = I.getType();
1116 auto getUAddSat = [&]() {
1117 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1118 };
1119
1120 // add (umin X, ~Y), Y --> uaddsat X, Y
1121 Value *X, *Y;
1122 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1123 m_Deferred(Y))))
1124 return CallInst::Create(getUAddSat(), { X, Y });
1125
1126 // add (umin X, ~C), C --> uaddsat X, C
1127 const APInt *C, *NotC;
1128 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1129 *C == ~*NotC)
1130 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1131
1132 return nullptr;
1133 }
1134
1135 Instruction *InstCombinerImpl::
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator & I)1136 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1137 BinaryOperator &I) {
1138 assert((I.getOpcode() == Instruction::Add ||
1139 I.getOpcode() == Instruction::Or ||
1140 I.getOpcode() == Instruction::Sub) &&
1141 "Expecting add/or/sub instruction");
1142
1143 // We have a subtraction/addition between a (potentially truncated) *logical*
1144 // right-shift of X and a "select".
1145 Value *X, *Select;
1146 Instruction *LowBitsToSkip, *Extract;
1147 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1148 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1149 m_Instruction(Extract))),
1150 m_Value(Select))))
1151 return nullptr;
1152
1153 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1154 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1155 return nullptr;
1156
1157 Type *XTy = X->getType();
1158 bool HadTrunc = I.getType() != XTy;
1159
1160 // If there was a truncation of extracted value, then we'll need to produce
1161 // one extra instruction, so we need to ensure one instruction will go away.
1162 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1163 return nullptr;
1164
1165 // Extraction should extract high NBits bits, with shift amount calculated as:
1166 // low bits to skip = shift bitwidth - high bits to extract
1167 // The shift amount itself may be extended, and we need to look past zero-ext
1168 // when matching NBits, that will matter for matching later.
1169 Constant *C;
1170 Value *NBits;
1171 if (!match(
1172 LowBitsToSkip,
1173 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1174 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1175 APInt(C->getType()->getScalarSizeInBits(),
1176 X->getType()->getScalarSizeInBits()))))
1177 return nullptr;
1178
1179 // Sign-extending value can be zero-extended if we `sub`tract it,
1180 // or sign-extended otherwise.
1181 auto SkipExtInMagic = [&I](Value *&V) {
1182 if (I.getOpcode() == Instruction::Sub)
1183 match(V, m_ZExtOrSelf(m_Value(V)));
1184 else
1185 match(V, m_SExtOrSelf(m_Value(V)));
1186 };
1187
1188 // Now, finally validate the sign-extending magic.
1189 // `select` itself may be appropriately extended, look past that.
1190 SkipExtInMagic(Select);
1191
1192 ICmpInst::Predicate Pred;
1193 const APInt *Thr;
1194 Value *SignExtendingValue, *Zero;
1195 bool ShouldSignext;
1196 // It must be a select between two values we will later establish to be a
1197 // sign-extending value and a zero constant. The condition guarding the
1198 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1199 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1200 m_Value(SignExtendingValue), m_Value(Zero))) ||
1201 !isSignBitCheck(Pred, *Thr, ShouldSignext))
1202 return nullptr;
1203
1204 // icmp-select pair is commutative.
1205 if (!ShouldSignext)
1206 std::swap(SignExtendingValue, Zero);
1207
1208 // If we should not perform sign-extension then we must add/or/subtract zero.
1209 if (!match(Zero, m_Zero()))
1210 return nullptr;
1211 // Otherwise, it should be some constant, left-shifted by the same NBits we
1212 // had in `lshr`. Said left-shift can also be appropriately extended.
1213 // Again, we must look past zero-ext when looking for NBits.
1214 SkipExtInMagic(SignExtendingValue);
1215 Constant *SignExtendingValueBaseConstant;
1216 if (!match(SignExtendingValue,
1217 m_Shl(m_Constant(SignExtendingValueBaseConstant),
1218 m_ZExtOrSelf(m_Specific(NBits)))))
1219 return nullptr;
1220 // If we `sub`, then the constant should be one, else it should be all-ones.
1221 if (I.getOpcode() == Instruction::Sub
1222 ? !match(SignExtendingValueBaseConstant, m_One())
1223 : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1224 return nullptr;
1225
1226 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1227 Extract->getName() + ".sext");
1228 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1229 if (!HadTrunc)
1230 return NewAShr;
1231
1232 Builder.Insert(NewAShr);
1233 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1234 }
1235
1236 /// This is a specialization of a more general transform from
1237 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
1238 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
factorizeMathWithShlOps(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1239 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1240 InstCombiner::BuilderTy &Builder) {
1241 // TODO: Also handle mul by doubling the shift amount?
1242 assert((I.getOpcode() == Instruction::Add ||
1243 I.getOpcode() == Instruction::Sub) &&
1244 "Expected add/sub");
1245 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1246 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1247 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1248 return nullptr;
1249
1250 Value *X, *Y, *ShAmt;
1251 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1252 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1253 return nullptr;
1254
1255 // No-wrap propagates only when all ops have no-wrap.
1256 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1257 Op1->hasNoSignedWrap();
1258 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1259 Op1->hasNoUnsignedWrap();
1260
1261 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1262 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1263 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1264 NewI->setHasNoSignedWrap(HasNSW);
1265 NewI->setHasNoUnsignedWrap(HasNUW);
1266 }
1267 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1268 NewShl->setHasNoSignedWrap(HasNSW);
1269 NewShl->setHasNoUnsignedWrap(HasNUW);
1270 return NewShl;
1271 }
1272
visitAdd(BinaryOperator & I)1273 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1274 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1275 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1276 SQ.getWithInstruction(&I)))
1277 return replaceInstUsesWith(I, V);
1278
1279 if (SimplifyAssociativeOrCommutative(I))
1280 return &I;
1281
1282 if (Instruction *X = foldVectorBinop(I))
1283 return X;
1284
1285 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1286 return Phi;
1287
1288 // (A*B)+(A*C) -> A*(B+C) etc
1289 if (Value *V = SimplifyUsingDistributiveLaws(I))
1290 return replaceInstUsesWith(I, V);
1291
1292 if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1293 return R;
1294
1295 if (Instruction *X = foldAddWithConstant(I))
1296 return X;
1297
1298 if (Instruction *X = foldNoWrapAdd(I, Builder))
1299 return X;
1300
1301 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1302 Type *Ty = I.getType();
1303 if (Ty->isIntOrIntVectorTy(1))
1304 return BinaryOperator::CreateXor(LHS, RHS);
1305
1306 // X + X --> X << 1
1307 if (LHS == RHS) {
1308 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1309 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1310 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1311 return Shl;
1312 }
1313
1314 Value *A, *B;
1315 if (match(LHS, m_Neg(m_Value(A)))) {
1316 // -A + -B --> -(A + B)
1317 if (match(RHS, m_Neg(m_Value(B))))
1318 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1319
1320 // -A + B --> B - A
1321 return BinaryOperator::CreateSub(RHS, A);
1322 }
1323
1324 // A + -B --> A - B
1325 if (match(RHS, m_Neg(m_Value(B))))
1326 return BinaryOperator::CreateSub(LHS, B);
1327
1328 if (Value *V = checkForNegativeOperand(I, Builder))
1329 return replaceInstUsesWith(I, V);
1330
1331 // (A + 1) + ~B --> A - B
1332 // ~B + (A + 1) --> A - B
1333 // (~B + A) + 1 --> A - B
1334 // (A + ~B) + 1 --> A - B
1335 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1336 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1337 return BinaryOperator::CreateSub(A, B);
1338
1339 // (A + RHS) + RHS --> A + (RHS << 1)
1340 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1341 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1342
1343 // LHS + (A + LHS) --> A + (LHS << 1)
1344 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1345 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1346
1347 {
1348 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1349 Constant *C1, *C2;
1350 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1351 m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1352 (LHS->hasOneUse() || RHS->hasOneUse())) {
1353 Value *Sub = Builder.CreateSub(A, B);
1354 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1355 }
1356 }
1357
1358 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1359 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1360
1361 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1362 const APInt *C1, *C2;
1363 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1364 APInt one(C2->getBitWidth(), 1);
1365 APInt minusC1 = -(*C1);
1366 if (minusC1 == (one << *C2)) {
1367 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1368 return BinaryOperator::CreateSRem(RHS, NewRHS);
1369 }
1370 }
1371
1372 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1373 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1374 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) {
1375 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1376 return BinaryOperator::CreateAnd(A, NewMask);
1377 }
1378
1379 // A+B --> A|B iff A and B have no bits set in common.
1380 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1381 return BinaryOperator::CreateOr(LHS, RHS);
1382
1383 // add (select X 0 (sub n A)) A --> select X A n
1384 {
1385 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1386 Value *A = RHS;
1387 if (!SI) {
1388 SI = dyn_cast<SelectInst>(RHS);
1389 A = LHS;
1390 }
1391 if (SI && SI->hasOneUse()) {
1392 Value *TV = SI->getTrueValue();
1393 Value *FV = SI->getFalseValue();
1394 Value *N;
1395
1396 // Can we fold the add into the argument of the select?
1397 // We check both true and false select arguments for a matching subtract.
1398 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1399 // Fold the add into the true select value.
1400 return SelectInst::Create(SI->getCondition(), N, A);
1401
1402 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1403 // Fold the add into the false select value.
1404 return SelectInst::Create(SI->getCondition(), A, N);
1405 }
1406 }
1407
1408 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1409 return Ext;
1410
1411 // (add (xor A, B) (and A, B)) --> (or A, B)
1412 // (add (and A, B) (xor A, B)) --> (or A, B)
1413 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1414 m_c_And(m_Deferred(A), m_Deferred(B)))))
1415 return BinaryOperator::CreateOr(A, B);
1416
1417 // (add (or A, B) (and A, B)) --> (add A, B)
1418 // (add (and A, B) (or A, B)) --> (add A, B)
1419 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1420 m_c_And(m_Deferred(A), m_Deferred(B))))) {
1421 // Replacing operands in-place to preserve nuw/nsw flags.
1422 replaceOperand(I, 0, A);
1423 replaceOperand(I, 1, B);
1424 return &I;
1425 }
1426
1427 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1428 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1429 // computeKnownBits.
1430 bool Changed = false;
1431 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1432 Changed = true;
1433 I.setHasNoSignedWrap(true);
1434 }
1435 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1436 Changed = true;
1437 I.setHasNoUnsignedWrap(true);
1438 }
1439
1440 if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1441 return V;
1442
1443 if (Instruction *V =
1444 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1445 return V;
1446
1447 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1448 return SatAdd;
1449
1450 // usub.sat(A, B) + B => umax(A, B)
1451 if (match(&I, m_c_BinOp(
1452 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1453 m_Deferred(B)))) {
1454 return replaceInstUsesWith(I,
1455 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1456 }
1457
1458 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1459 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1460 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1461 haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1462 return replaceInstUsesWith(
1463 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1464 {Builder.CreateOr(A, B)}));
1465
1466 return Changed ? &I : nullptr;
1467 }
1468
1469 /// Eliminate an op from a linear interpolation (lerp) pattern.
factorizeLerp(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1470 static Instruction *factorizeLerp(BinaryOperator &I,
1471 InstCombiner::BuilderTy &Builder) {
1472 Value *X, *Y, *Z;
1473 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1474 m_OneUse(m_FSub(m_FPOne(),
1475 m_Value(Z))))),
1476 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1477 return nullptr;
1478
1479 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1480 Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1481 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1482 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1483 }
1484
1485 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
factorizeFAddFSub(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1486 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1487 InstCombiner::BuilderTy &Builder) {
1488 assert((I.getOpcode() == Instruction::FAdd ||
1489 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1490 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1491 "FP factorization requires FMF");
1492
1493 if (Instruction *Lerp = factorizeLerp(I, Builder))
1494 return Lerp;
1495
1496 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1497 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1498 return nullptr;
1499
1500 Value *X, *Y, *Z;
1501 bool IsFMul;
1502 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1503 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1504 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1505 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1506 IsFMul = true;
1507 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1508 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1509 IsFMul = false;
1510 else
1511 return nullptr;
1512
1513 // (X * Z) + (Y * Z) --> (X + Y) * Z
1514 // (X * Z) - (Y * Z) --> (X - Y) * Z
1515 // (X / Z) + (Y / Z) --> (X + Y) / Z
1516 // (X / Z) - (Y / Z) --> (X - Y) / Z
1517 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1518 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1519 : Builder.CreateFSubFMF(X, Y, &I);
1520
1521 // Bail out if we just created a denormal constant.
1522 // TODO: This is copied from a previous implementation. Is it necessary?
1523 const APFloat *C;
1524 if (match(XY, m_APFloat(C)) && !C->isNormal())
1525 return nullptr;
1526
1527 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1528 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1529 }
1530
visitFAdd(BinaryOperator & I)1531 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1532 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1533 I.getFastMathFlags(),
1534 SQ.getWithInstruction(&I)))
1535 return replaceInstUsesWith(I, V);
1536
1537 if (SimplifyAssociativeOrCommutative(I))
1538 return &I;
1539
1540 if (Instruction *X = foldVectorBinop(I))
1541 return X;
1542
1543 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1544 return Phi;
1545
1546 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1547 return FoldedFAdd;
1548
1549 // (-X) + Y --> Y - X
1550 Value *X, *Y;
1551 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1552 return BinaryOperator::CreateFSubFMF(Y, X, &I);
1553
1554 // Similar to above, but look through fmul/fdiv for the negated term.
1555 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1556 Value *Z;
1557 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1558 m_Value(Z)))) {
1559 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1560 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1561 }
1562 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1563 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1564 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1565 m_Value(Z))) ||
1566 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1567 m_Value(Z)))) {
1568 Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1569 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1570 }
1571
1572 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1573 // integer add followed by a promotion.
1574 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1575 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1576 Value *LHSIntVal = LHSConv->getOperand(0);
1577 Type *FPType = LHSConv->getType();
1578
1579 // TODO: This check is overly conservative. In many cases known bits
1580 // analysis can tell us that the result of the addition has less significant
1581 // bits than the integer type can hold.
1582 auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1583 Type *FScalarTy = FTy->getScalarType();
1584 Type *IScalarTy = ITy->getScalarType();
1585
1586 // Do we have enough bits in the significand to represent the result of
1587 // the integer addition?
1588 unsigned MaxRepresentableBits =
1589 APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1590 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1591 };
1592
1593 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1594 // ... if the constant fits in the integer value. This is useful for things
1595 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1596 // requires a constant pool load, and generally allows the add to be better
1597 // instcombined.
1598 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1599 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1600 Constant *CI =
1601 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1602 if (LHSConv->hasOneUse() &&
1603 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1604 willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1605 // Insert the new integer add.
1606 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1607 return new SIToFPInst(NewAdd, I.getType());
1608 }
1609 }
1610
1611 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1612 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1613 Value *RHSIntVal = RHSConv->getOperand(0);
1614 // It's enough to check LHS types only because we require int types to
1615 // be the same for this transform.
1616 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1617 // Only do this if x/y have the same type, if at least one of them has a
1618 // single use (so we don't increase the number of int->fp conversions),
1619 // and if the integer add will not overflow.
1620 if (LHSIntVal->getType() == RHSIntVal->getType() &&
1621 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1622 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1623 // Insert the new integer add.
1624 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1625 return new SIToFPInst(NewAdd, I.getType());
1626 }
1627 }
1628 }
1629 }
1630
1631 // Handle specials cases for FAdd with selects feeding the operation
1632 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1633 return replaceInstUsesWith(I, V);
1634
1635 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1636 if (Instruction *F = factorizeFAddFSub(I, Builder))
1637 return F;
1638
1639 // Try to fold fadd into start value of reduction intrinsic.
1640 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1641 m_AnyZeroFP(), m_Value(X))),
1642 m_Value(Y)))) {
1643 // fadd (rdx 0.0, X), Y --> rdx Y, X
1644 return replaceInstUsesWith(
1645 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1646 {X->getType()}, {Y, X}, &I));
1647 }
1648 const APFloat *StartC, *C;
1649 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1650 m_APFloat(StartC), m_Value(X)))) &&
1651 match(RHS, m_APFloat(C))) {
1652 // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1653 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1654 return replaceInstUsesWith(
1655 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1656 {X->getType()}, {NewStartC, X}, &I));
1657 }
1658
1659 // (X * MulC) + X --> X * (MulC + 1.0)
1660 Constant *MulC;
1661 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1662 m_Deferred(X)))) {
1663 if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1664 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1665 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
1666 }
1667
1668 if (Value *V = FAddCombine(Builder).simplify(&I))
1669 return replaceInstUsesWith(I, V);
1670 }
1671
1672 return nullptr;
1673 }
1674
1675 /// Optimize pointer differences into the same array into a size. Consider:
1676 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1677 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty,bool IsNUW)1678 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1679 Type *Ty, bool IsNUW) {
1680 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1681 // this.
1682 bool Swapped = false;
1683 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1684 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1685 std::swap(LHS, RHS);
1686 Swapped = true;
1687 }
1688
1689 // Require at least one GEP with a common base pointer on both sides.
1690 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1691 // (gep X, ...) - X
1692 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1693 RHS->stripPointerCasts()) {
1694 GEP1 = LHSGEP;
1695 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1696 // (gep X, ...) - (gep X, ...)
1697 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1698 RHSGEP->getOperand(0)->stripPointerCasts()) {
1699 GEP1 = LHSGEP;
1700 GEP2 = RHSGEP;
1701 }
1702 }
1703 }
1704
1705 if (!GEP1)
1706 return nullptr;
1707
1708 if (GEP2) {
1709 // (gep X, ...) - (gep X, ...)
1710 //
1711 // Avoid duplicating the arithmetic if there are more than one non-constant
1712 // indices between the two GEPs and either GEP has a non-constant index and
1713 // multiple users. If zero non-constant index, the result is a constant and
1714 // there is no duplication. If one non-constant index, the result is an add
1715 // or sub with a constant, which is no larger than the original code, and
1716 // there's no duplicated arithmetic, even if either GEP has multiple
1717 // users. If more than one non-constant indices combined, as long as the GEP
1718 // with at least one non-constant index doesn't have multiple users, there
1719 // is no duplication.
1720 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1721 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1722 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1723 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1724 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1725 return nullptr;
1726 }
1727 }
1728
1729 // Emit the offset of the GEP and an intptr_t.
1730 Value *Result = EmitGEPOffset(GEP1);
1731
1732 // If this is a single inbounds GEP and the original sub was nuw,
1733 // then the final multiplication is also nuw.
1734 if (auto *I = dyn_cast<Instruction>(Result))
1735 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1736 I->getOpcode() == Instruction::Mul)
1737 I->setHasNoUnsignedWrap();
1738
1739 // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1740 // If both GEPs are inbounds, then the subtract does not have signed overflow.
1741 if (GEP2) {
1742 Value *Offset = EmitGEPOffset(GEP2);
1743 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1744 GEP1->isInBounds() && GEP2->isInBounds());
1745 }
1746
1747 // If we have p - gep(p, ...) then we have to negate the result.
1748 if (Swapped)
1749 Result = Builder.CreateNeg(Result, "diff.neg");
1750
1751 return Builder.CreateIntCast(Result, Ty, true);
1752 }
1753
foldSubOfMinMax(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1754 static Instruction *foldSubOfMinMax(BinaryOperator &I,
1755 InstCombiner::BuilderTy &Builder) {
1756 Value *Op0 = I.getOperand(0);
1757 Value *Op1 = I.getOperand(1);
1758 Type *Ty = I.getType();
1759 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
1760 if (!MinMax)
1761 return nullptr;
1762
1763 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
1764 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
1765 Value *X = MinMax->getLHS();
1766 Value *Y = MinMax->getRHS();
1767 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
1768 (Op0->hasOneUse() || Op1->hasOneUse())) {
1769 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1770 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1771 return CallInst::Create(F, {X, Y});
1772 }
1773
1774 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
1775 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
1776 Value *Z;
1777 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
1778 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
1779 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
1780 return BinaryOperator::CreateAdd(X, USub);
1781 }
1782 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
1783 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
1784 return BinaryOperator::CreateAdd(X, USub);
1785 }
1786 }
1787
1788 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
1789 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
1790 if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
1791 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
1792 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1793 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1794 return CallInst::Create(F, {Op0, Z});
1795 }
1796
1797 return nullptr;
1798 }
1799
visitSub(BinaryOperator & I)1800 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1801 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
1802 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1803 SQ.getWithInstruction(&I)))
1804 return replaceInstUsesWith(I, V);
1805
1806 if (Instruction *X = foldVectorBinop(I))
1807 return X;
1808
1809 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1810 return Phi;
1811
1812 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1813
1814 // If this is a 'B = x-(-A)', change to B = x+A.
1815 // We deal with this without involving Negator to preserve NSW flag.
1816 if (Value *V = dyn_castNegVal(Op1)) {
1817 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1818
1819 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1820 assert(BO->getOpcode() == Instruction::Sub &&
1821 "Expected a subtraction operator!");
1822 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1823 Res->setHasNoSignedWrap(true);
1824 } else {
1825 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1826 Res->setHasNoSignedWrap(true);
1827 }
1828
1829 return Res;
1830 }
1831
1832 // Try this before Negator to preserve NSW flag.
1833 if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1834 return R;
1835
1836 Constant *C;
1837 if (match(Op0, m_ImmConstant(C))) {
1838 Value *X;
1839 Constant *C2;
1840
1841 // C-(X+C2) --> (C-C2)-X
1842 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1843 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1844 }
1845
1846 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1847 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1848 return Ext;
1849
1850 bool Changed = false;
1851 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1852 Changed = true;
1853 I.setHasNoSignedWrap(true);
1854 }
1855 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1856 Changed = true;
1857 I.setHasNoUnsignedWrap(true);
1858 }
1859
1860 return Changed ? &I : nullptr;
1861 };
1862
1863 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1864 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1865 // a pure negation used by a select that looks like abs/nabs.
1866 bool IsNegation = match(Op0, m_ZeroInt());
1867 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1868 const Instruction *UI = dyn_cast<Instruction>(U);
1869 if (!UI)
1870 return false;
1871 return match(UI,
1872 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1873 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1874 })) {
1875 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1876 return BinaryOperator::CreateAdd(NegOp1, Op0);
1877 }
1878 if (IsNegation)
1879 return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1880
1881 // (A*B)-(A*C) -> A*(B-C) etc
1882 if (Value *V = SimplifyUsingDistributiveLaws(I))
1883 return replaceInstUsesWith(I, V);
1884
1885 if (I.getType()->isIntOrIntVectorTy(1))
1886 return BinaryOperator::CreateXor(Op0, Op1);
1887
1888 // Replace (-1 - A) with (~A).
1889 if (match(Op0, m_AllOnes()))
1890 return BinaryOperator::CreateNot(Op1);
1891
1892 // (X + -1) - Y --> ~Y + X
1893 Value *X, *Y;
1894 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1895 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1896
1897 // Reassociate sub/add sequences to create more add instructions and
1898 // reduce dependency chains:
1899 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
1900 Value *Z;
1901 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
1902 m_Value(Z))))) {
1903 Value *XZ = Builder.CreateAdd(X, Z);
1904 Value *YW = Builder.CreateAdd(Y, Op1);
1905 return BinaryOperator::CreateSub(XZ, YW);
1906 }
1907
1908 // ((X - Y) - Op1) --> X - (Y + Op1)
1909 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
1910 Value *Add = Builder.CreateAdd(Y, Op1);
1911 return BinaryOperator::CreateSub(X, Add);
1912 }
1913
1914 // (~X) - (~Y) --> Y - X
1915 // This is placed after the other reassociations and explicitly excludes a
1916 // sub-of-sub pattern to avoid infinite looping.
1917 if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
1918 isFreeToInvert(Op1, Op1->hasOneUse()) &&
1919 !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
1920 Value *NotOp0 = Builder.CreateNot(Op0);
1921 Value *NotOp1 = Builder.CreateNot(Op1);
1922 return BinaryOperator::CreateSub(NotOp1, NotOp0);
1923 }
1924
1925 auto m_AddRdx = [](Value *&Vec) {
1926 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
1927 };
1928 Value *V0, *V1;
1929 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
1930 V0->getType() == V1->getType()) {
1931 // Difference of sums is sum of differences:
1932 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
1933 Value *Sub = Builder.CreateSub(V0, V1);
1934 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
1935 {Sub->getType()}, {Sub});
1936 return replaceInstUsesWith(I, Rdx);
1937 }
1938
1939 if (Constant *C = dyn_cast<Constant>(Op0)) {
1940 Value *X;
1941 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1942 // C - (zext bool) --> bool ? C - 1 : C
1943 return SelectInst::Create(X, InstCombiner::SubOne(C), C);
1944 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1945 // C - (sext bool) --> bool ? C + 1 : C
1946 return SelectInst::Create(X, InstCombiner::AddOne(C), C);
1947
1948 // C - ~X == X + (1+C)
1949 if (match(Op1, m_Not(m_Value(X))))
1950 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
1951
1952 // Try to fold constant sub into select arguments.
1953 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1954 if (Instruction *R = FoldOpIntoSelect(I, SI))
1955 return R;
1956
1957 // Try to fold constant sub into PHI values.
1958 if (PHINode *PN = dyn_cast<PHINode>(Op1))
1959 if (Instruction *R = foldOpIntoPhi(I, PN))
1960 return R;
1961
1962 Constant *C2;
1963
1964 // C-(C2-X) --> X+(C-C2)
1965 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
1966 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1967 }
1968
1969 const APInt *Op0C;
1970 if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
1971 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1972 // zero.
1973 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1974 if ((*Op0C | RHSKnown.Zero).isAllOnes())
1975 return BinaryOperator::CreateXor(Op1, Op0);
1976 }
1977
1978 {
1979 Value *Y;
1980 // X-(X+Y) == -Y X-(Y+X) == -Y
1981 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1982 return BinaryOperator::CreateNeg(Y);
1983
1984 // (X-Y)-X == -Y
1985 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1986 return BinaryOperator::CreateNeg(Y);
1987 }
1988
1989 // (sub (or A, B) (and A, B)) --> (xor A, B)
1990 {
1991 Value *A, *B;
1992 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1993 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1994 return BinaryOperator::CreateXor(A, B);
1995 }
1996
1997 // (sub (add A, B) (or A, B)) --> (and A, B)
1998 {
1999 Value *A, *B;
2000 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2001 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2002 return BinaryOperator::CreateAnd(A, B);
2003 }
2004
2005 // (sub (add A, B) (and A, B)) --> (or A, B)
2006 {
2007 Value *A, *B;
2008 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2009 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2010 return BinaryOperator::CreateOr(A, B);
2011 }
2012
2013 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2014 {
2015 Value *A, *B;
2016 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2017 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2018 (Op0->hasOneUse() || Op1->hasOneUse()))
2019 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2020 }
2021
2022 // (sub (or A, B), (xor A, B)) --> (and A, B)
2023 {
2024 Value *A, *B;
2025 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2026 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2027 return BinaryOperator::CreateAnd(A, B);
2028 }
2029
2030 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2031 {
2032 Value *A, *B;
2033 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2034 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2035 (Op0->hasOneUse() || Op1->hasOneUse()))
2036 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2037 }
2038
2039 {
2040 Value *Y;
2041 // ((X | Y) - X) --> (~X & Y)
2042 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2043 return BinaryOperator::CreateAnd(
2044 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2045 }
2046
2047 {
2048 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2049 Value *X;
2050 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2051 m_OneUse(m_Neg(m_Value(X))))))) {
2052 return BinaryOperator::CreateNeg(Builder.CreateAnd(
2053 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2054 }
2055 }
2056
2057 {
2058 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2059 Constant *C;
2060 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2061 return BinaryOperator::CreateNeg(
2062 Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2063 }
2064 }
2065
2066 if (Instruction *R = foldSubOfMinMax(I, Builder))
2067 return R;
2068
2069 {
2070 // If we have a subtraction between some value and a select between
2071 // said value and something else, sink subtraction into select hands, i.e.:
2072 // sub (select %Cond, %TrueVal, %FalseVal), %Op1
2073 // ->
2074 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2075 // or
2076 // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2077 // ->
2078 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2079 // This will result in select between new subtraction and 0.
2080 auto SinkSubIntoSelect =
2081 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2082 auto SubBuilder) -> Instruction * {
2083 Value *Cond, *TrueVal, *FalseVal;
2084 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2085 m_Value(FalseVal)))))
2086 return nullptr;
2087 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2088 return nullptr;
2089 // While it is really tempting to just create two subtractions and let
2090 // InstCombine fold one of those to 0, it isn't possible to do so
2091 // because of worklist visitation order. So ugly it is.
2092 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2093 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2094 Constant *Zero = Constant::getNullValue(Ty);
2095 SelectInst *NewSel =
2096 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2097 OtherHandOfSubIsTrueVal ? NewSub : Zero);
2098 // Preserve prof metadata if any.
2099 NewSel->copyMetadata(cast<Instruction>(*Select));
2100 return NewSel;
2101 };
2102 if (Instruction *NewSel = SinkSubIntoSelect(
2103 /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2104 [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2105 return Builder->CreateSub(OtherHandOfSelect,
2106 /*OtherHandOfSub=*/Op1);
2107 }))
2108 return NewSel;
2109 if (Instruction *NewSel = SinkSubIntoSelect(
2110 /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2111 [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2112 return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2113 OtherHandOfSelect);
2114 }))
2115 return NewSel;
2116 }
2117
2118 // (X - (X & Y)) --> (X & ~Y)
2119 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2120 (Op1->hasOneUse() || isa<Constant>(Y)))
2121 return BinaryOperator::CreateAnd(
2122 Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2123
2124 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2125 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2126 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2127 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2128 // As long as Y is freely invertible, this will be neutral or a win.
2129 // Note: We don't generate the inverse max/min, just create the 'not' of
2130 // it and let other folds do the rest.
2131 if (match(Op0, m_Not(m_Value(X))) &&
2132 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2133 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2134 Value *Not = Builder.CreateNot(Op1);
2135 return BinaryOperator::CreateSub(Not, X);
2136 }
2137 if (match(Op1, m_Not(m_Value(X))) &&
2138 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2139 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2140 Value *Not = Builder.CreateNot(Op0);
2141 return BinaryOperator::CreateSub(X, Not);
2142 }
2143
2144 // Optimize pointer differences into the same array into a size. Consider:
2145 // &A[10] - &A[0]: we should compile this to "10".
2146 Value *LHSOp, *RHSOp;
2147 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2148 match(Op1, m_PtrToInt(m_Value(RHSOp))))
2149 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2150 I.hasNoUnsignedWrap()))
2151 return replaceInstUsesWith(I, Res);
2152
2153 // trunc(p)-trunc(q) -> trunc(p-q)
2154 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2155 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2156 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2157 /* IsNUW */ false))
2158 return replaceInstUsesWith(I, Res);
2159
2160 // Canonicalize a shifty way to code absolute value to the common pattern.
2161 // There are 2 potential commuted variants.
2162 // We're relying on the fact that we only do this transform when the shift has
2163 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2164 // instructions).
2165 Value *A;
2166 const APInt *ShAmt;
2167 Type *Ty = I.getType();
2168 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2169 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2170 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2171 // B = ashr i32 A, 31 ; smear the sign bit
2172 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2173 // --> (A < 0) ? -A : A
2174 Value *IsNeg = Builder.CreateIsNeg(A);
2175 // Copy the nuw/nsw flags from the sub to the negate.
2176 Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2177 I.hasNoSignedWrap());
2178 return SelectInst::Create(IsNeg, NegA, A);
2179 }
2180
2181 // If we are subtracting a low-bit masked subset of some value from an add
2182 // of that same value with no low bits changed, that is clearing some low bits
2183 // of the sum:
2184 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2185 const APInt *AddC, *AndC;
2186 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2187 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2188 unsigned BitWidth = Ty->getScalarSizeInBits();
2189 unsigned Cttz = AddC->countTrailingZeros();
2190 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2191 if ((HighMask & *AndC).isZero())
2192 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2193 }
2194
2195 if (Instruction *V =
2196 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2197 return V;
2198
2199 // X - usub.sat(X, Y) => umin(X, Y)
2200 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2201 m_Value(Y)))))
2202 return replaceInstUsesWith(
2203 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2204
2205 // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2206 // TODO: The one-use restriction is not strictly necessary, but it may
2207 // require improving other pattern matching and/or codegen.
2208 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2209 return replaceInstUsesWith(
2210 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2211
2212 // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2213 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2214 return replaceInstUsesWith(
2215 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2216
2217 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2218 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2219 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2220 return BinaryOperator::CreateNeg(USub);
2221 }
2222
2223 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2224 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2225 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2226 return BinaryOperator::CreateNeg(USub);
2227 }
2228
2229 // C - ctpop(X) => ctpop(~X) if C is bitwidth
2230 if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) &&
2231 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2232 return replaceInstUsesWith(
2233 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2234 {Builder.CreateNot(X)}));
2235
2236 return TryToNarrowDeduceFlags();
2237 }
2238
2239 /// This eliminates floating-point negation in either 'fneg(X)' or
2240 /// 'fsub(-0.0, X)' form by combining into a constant operand.
foldFNegIntoConstant(Instruction & I)2241 static Instruction *foldFNegIntoConstant(Instruction &I) {
2242 // This is limited with one-use because fneg is assumed better for
2243 // reassociation and cheaper in codegen than fmul/fdiv.
2244 // TODO: Should the m_OneUse restriction be removed?
2245 Instruction *FNegOp;
2246 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2247 return nullptr;
2248
2249 Value *X;
2250 Constant *C;
2251
2252 // Fold negation into constant operand.
2253 // -(X * C) --> X * (-C)
2254 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2255 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2256 // -(X / C) --> X / (-C)
2257 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2258 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2259 // -(C / X) --> (-C) / X
2260 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) {
2261 Instruction *FDiv =
2262 BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2263
2264 // Intersect 'nsz' and 'ninf' because those special value exceptions may not
2265 // apply to the fdiv. Everything else propagates from the fneg.
2266 // TODO: We could propagate nsz/ninf from fdiv alone?
2267 FastMathFlags FMF = I.getFastMathFlags();
2268 FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2269 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2270 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2271 return FDiv;
2272 }
2273 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2274 // -(X + C) --> -X + -C --> -C - X
2275 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2276 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
2277
2278 return nullptr;
2279 }
2280
hoistFNegAboveFMulFDiv(Instruction & I,InstCombiner::BuilderTy & Builder)2281 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2282 InstCombiner::BuilderTy &Builder) {
2283 Value *FNeg;
2284 if (!match(&I, m_FNeg(m_Value(FNeg))))
2285 return nullptr;
2286
2287 Value *X, *Y;
2288 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2289 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2290
2291 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2292 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2293
2294 return nullptr;
2295 }
2296
visitFNeg(UnaryOperator & I)2297 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2298 Value *Op = I.getOperand(0);
2299
2300 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2301 getSimplifyQuery().getWithInstruction(&I)))
2302 return replaceInstUsesWith(I, V);
2303
2304 if (Instruction *X = foldFNegIntoConstant(I))
2305 return X;
2306
2307 Value *X, *Y;
2308
2309 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2310 if (I.hasNoSignedZeros() &&
2311 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2312 return BinaryOperator::CreateFSubFMF(Y, X, &I);
2313
2314 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2315 return R;
2316
2317 // Try to eliminate fneg if at least 1 arm of the select is negated.
2318 Value *Cond;
2319 if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) {
2320 // Unlike most transforms, this one is not safe to propagate nsz unless
2321 // it is present on the original select. (We are conservatively intersecting
2322 // the nsz flags from the select and root fneg instruction.)
2323 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2324 S->copyFastMathFlags(&I);
2325 if (auto *OldSel = dyn_cast<SelectInst>(Op))
2326 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2327 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2328 S->setHasNoSignedZeros(false);
2329 };
2330 // -(Cond ? -P : Y) --> Cond ? P : -Y
2331 Value *P;
2332 if (match(X, m_FNeg(m_Value(P)))) {
2333 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2334 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2335 propagateSelectFMF(NewSel, P == Y);
2336 return NewSel;
2337 }
2338 // -(Cond ? X : -P) --> Cond ? -X : P
2339 if (match(Y, m_FNeg(m_Value(P)))) {
2340 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2341 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2342 propagateSelectFMF(NewSel, P == X);
2343 return NewSel;
2344 }
2345 }
2346
2347 return nullptr;
2348 }
2349
visitFSub(BinaryOperator & I)2350 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2351 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2352 I.getFastMathFlags(),
2353 getSimplifyQuery().getWithInstruction(&I)))
2354 return replaceInstUsesWith(I, V);
2355
2356 if (Instruction *X = foldVectorBinop(I))
2357 return X;
2358
2359 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2360 return Phi;
2361
2362 // Subtraction from -0.0 is the canonical form of fneg.
2363 // fsub -0.0, X ==> fneg X
2364 // fsub nsz 0.0, X ==> fneg nsz X
2365 //
2366 // FIXME This matcher does not respect FTZ or DAZ yet:
2367 // fsub -0.0, Denorm ==> +-0
2368 // fneg Denorm ==> -Denorm
2369 Value *Op;
2370 if (match(&I, m_FNeg(m_Value(Op))))
2371 return UnaryOperator::CreateFNegFMF(Op, &I);
2372
2373 if (Instruction *X = foldFNegIntoConstant(I))
2374 return X;
2375
2376 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2377 return R;
2378
2379 Value *X, *Y;
2380 Constant *C;
2381
2382 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2383 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2384 // Canonicalize to fadd to make analysis easier.
2385 // This can also help codegen because fadd is commutative.
2386 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2387 // killed later. We still limit that particular transform with 'hasOneUse'
2388 // because an fneg is assumed better/cheaper than a generic fsub.
2389 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2390 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2391 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2392 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2393 }
2394 }
2395
2396 // (-X) - Op1 --> -(X + Op1)
2397 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2398 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2399 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2400 return UnaryOperator::CreateFNegFMF(FAdd, &I);
2401 }
2402
2403 if (isa<Constant>(Op0))
2404 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2405 if (Instruction *NV = FoldOpIntoSelect(I, SI))
2406 return NV;
2407
2408 // X - C --> X + (-C)
2409 // But don't transform constant expressions because there's an inverse fold
2410 // for X + (-Y) --> X - Y.
2411 if (match(Op1, m_ImmConstant(C)))
2412 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2413
2414 // X - (-Y) --> X + Y
2415 if (match(Op1, m_FNeg(m_Value(Y))))
2416 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2417
2418 // Similar to above, but look through a cast of the negated value:
2419 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2420 Type *Ty = I.getType();
2421 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2422 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2423
2424 // X - (fpext(-Y)) --> X + fpext(Y)
2425 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2426 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2427
2428 // Similar to above, but look through fmul/fdiv of the negated value:
2429 // Op0 - (-X * Y) --> Op0 + (X * Y)
2430 // Op0 - (Y * -X) --> Op0 + (X * Y)
2431 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2432 Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2433 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2434 }
2435 // Op0 - (-X / Y) --> Op0 + (X / Y)
2436 // Op0 - (X / -Y) --> Op0 + (X / Y)
2437 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2438 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2439 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2440 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2441 }
2442
2443 // Handle special cases for FSub with selects feeding the operation
2444 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2445 return replaceInstUsesWith(I, V);
2446
2447 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2448 // (Y - X) - Y --> -X
2449 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2450 return UnaryOperator::CreateFNegFMF(X, &I);
2451
2452 // Y - (X + Y) --> -X
2453 // Y - (Y + X) --> -X
2454 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2455 return UnaryOperator::CreateFNegFMF(X, &I);
2456
2457 // (X * C) - X --> X * (C - 1.0)
2458 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2459 if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2460 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
2461 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2462 }
2463 // X - (X * C) --> X * (1.0 - C)
2464 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2465 if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2466 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
2467 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2468 }
2469
2470 // Reassociate fsub/fadd sequences to create more fadd instructions and
2471 // reduce dependency chains:
2472 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2473 Value *Z;
2474 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2475 m_Value(Z))))) {
2476 Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2477 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2478 return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2479 }
2480
2481 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2482 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2483 m_Value(Vec)));
2484 };
2485 Value *A0, *A1, *V0, *V1;
2486 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2487 V0->getType() == V1->getType()) {
2488 // Difference of sums is sum of differences:
2489 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2490 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2491 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2492 {Sub->getType()}, {A0, Sub}, &I);
2493 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2494 }
2495
2496 if (Instruction *F = factorizeFAddFSub(I, Builder))
2497 return F;
2498
2499 // TODO: This performs reassociative folds for FP ops. Some fraction of the
2500 // functionality has been subsumed by simple pattern matching here and in
2501 // InstSimplify. We should let a dedicated reassociation pass handle more
2502 // complex pattern matching and remove this from InstCombine.
2503 if (Value *V = FAddCombine(Builder).simplify(&I))
2504 return replaceInstUsesWith(I, V);
2505
2506 // (X - Y) - Op1 --> X - (Y + Op1)
2507 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2508 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2509 return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2510 }
2511 }
2512
2513 return nullptr;
2514 }
2515