1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/AlignOf.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/KnownBits.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() 86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 87 88 const APFloat *getFpValPtr() const 89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 Value *performFactorization(Instruction *I); 190 191 /// Convert given addend to a Value 192 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 193 194 /// Return the number of instructions needed to emit the N-ary addition. 195 unsigned calcInstrNumber(const AddendVect& Vect); 196 197 Value *createFSub(Value *Opnd0, Value *Opnd1); 198 Value *createFAdd(Value *Opnd0, Value *Opnd1); 199 Value *createFMul(Value *Opnd0, Value *Opnd1); 200 Value *createFDiv(Value *Opnd0, Value *Opnd1); 201 Value *createFNeg(Value *V); 202 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 203 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 204 205 // Debugging stuff are clustered here. 206 #ifndef NDEBUG 207 unsigned CreateInstrNum; 208 void initCreateInstNum() { CreateInstrNum = 0; } 209 void incCreateInstNum() { CreateInstrNum++; } 210 #else 211 void initCreateInstNum() {} 212 void incCreateInstNum() {} 213 #endif 214 215 InstCombiner::BuilderTy &Builder; 216 Instruction *Instr = nullptr; 217 }; 218 219 } // end anonymous namespace 220 221 //===----------------------------------------------------------------------===// 222 // 223 // Implementation of 224 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 225 // 226 //===----------------------------------------------------------------------===// 227 FAddendCoef::~FAddendCoef() { 228 if (BufHasFpVal) 229 getFpValPtr()->~APFloat(); 230 } 231 232 void FAddendCoef::set(const APFloat& C) { 233 APFloat *P = getFpValPtr(); 234 235 if (isInt()) { 236 // As the buffer is meanless byte stream, we cannot call 237 // APFloat::operator=(). 238 new(P) APFloat(C); 239 } else 240 *P = C; 241 242 IsFp = BufHasFpVal = true; 243 } 244 245 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 246 if (!isInt()) 247 return; 248 249 APFloat *P = getFpValPtr(); 250 if (IntVal > 0) 251 new(P) APFloat(Sem, IntVal); 252 else { 253 new(P) APFloat(Sem, 0 - IntVal); 254 P->changeSign(); 255 } 256 IsFp = BufHasFpVal = true; 257 } 258 259 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 260 if (Val >= 0) 261 return APFloat(Sem, Val); 262 263 APFloat T(Sem, 0 - Val); 264 T.changeSign(); 265 266 return T; 267 } 268 269 void FAddendCoef::operator=(const FAddendCoef &That) { 270 if (That.isInt()) 271 set(That.IntVal); 272 else 273 set(That.getFpVal()); 274 } 275 276 void FAddendCoef::operator+=(const FAddendCoef &That) { 277 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 278 if (isInt() == That.isInt()) { 279 if (isInt()) 280 IntVal += That.IntVal; 281 else 282 getFpVal().add(That.getFpVal(), RndMode); 283 return; 284 } 285 286 if (isInt()) { 287 const APFloat &T = That.getFpVal(); 288 convertToFpType(T.getSemantics()); 289 getFpVal().add(T, RndMode); 290 return; 291 } 292 293 APFloat &T = getFpVal(); 294 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 295 } 296 297 void FAddendCoef::operator*=(const FAddendCoef &That) { 298 if (That.isOne()) 299 return; 300 301 if (That.isMinusOne()) { 302 negate(); 303 return; 304 } 305 306 if (isInt() && That.isInt()) { 307 int Res = IntVal * (int)That.IntVal; 308 assert(!insaneIntVal(Res) && "Insane int value"); 309 IntVal = Res; 310 return; 311 } 312 313 const fltSemantics &Semantic = 314 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 315 316 if (isInt()) 317 convertToFpType(Semantic); 318 APFloat &F0 = getFpVal(); 319 320 if (That.isInt()) 321 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 322 APFloat::rmNearestTiesToEven); 323 else 324 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 325 } 326 327 void FAddendCoef::negate() { 328 if (isInt()) 329 IntVal = 0 - IntVal; 330 else 331 getFpVal().changeSign(); 332 } 333 334 Value *FAddendCoef::getValue(Type *Ty) const { 335 return isInt() ? 336 ConstantFP::get(Ty, float(IntVal)) : 337 ConstantFP::get(Ty->getContext(), getFpVal()); 338 } 339 340 // The definition of <Val> Addends 341 // ========================================= 342 // A + B <1, A>, <1,B> 343 // A - B <1, A>, <1,B> 344 // 0 - B <-1, B> 345 // C * A, <C, A> 346 // A + C <1, A> <C, NULL> 347 // 0 +/- 0 <0, NULL> (corner case) 348 // 349 // Legend: A and B are not constant, C is constant 350 unsigned FAddend::drillValueDownOneStep 351 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 352 Instruction *I = nullptr; 353 if (!Val || !(I = dyn_cast<Instruction>(Val))) 354 return 0; 355 356 unsigned Opcode = I->getOpcode(); 357 358 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 359 ConstantFP *C0, *C1; 360 Value *Opnd0 = I->getOperand(0); 361 Value *Opnd1 = I->getOperand(1); 362 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 363 Opnd0 = nullptr; 364 365 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 366 Opnd1 = nullptr; 367 368 if (Opnd0) { 369 if (!C0) 370 Addend0.set(1, Opnd0); 371 else 372 Addend0.set(C0, nullptr); 373 } 374 375 if (Opnd1) { 376 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 377 if (!C1) 378 Addend.set(1, Opnd1); 379 else 380 Addend.set(C1, nullptr); 381 if (Opcode == Instruction::FSub) 382 Addend.negate(); 383 } 384 385 if (Opnd0 || Opnd1) 386 return Opnd0 && Opnd1 ? 2 : 1; 387 388 // Both operands are zero. Weird! 389 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 390 return 1; 391 } 392 393 if (I->getOpcode() == Instruction::FMul) { 394 Value *V0 = I->getOperand(0); 395 Value *V1 = I->getOperand(1); 396 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 397 Addend0.set(C, V1); 398 return 1; 399 } 400 401 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 402 Addend0.set(C, V0); 403 return 1; 404 } 405 } 406 407 return 0; 408 } 409 410 // Try to break *this* addend into two addends. e.g. Suppose this addend is 411 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 412 // i.e. <2.3, X> and <2.3, Y>. 413 unsigned FAddend::drillAddendDownOneStep 414 (FAddend &Addend0, FAddend &Addend1) const { 415 if (isConstant()) 416 return 0; 417 418 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 419 if (!BreakNum || Coeff.isOne()) 420 return BreakNum; 421 422 Addend0.Scale(Coeff); 423 424 if (BreakNum == 2) 425 Addend1.Scale(Coeff); 426 427 return BreakNum; 428 } 429 430 // Try to perform following optimization on the input instruction I. Return the 431 // simplified expression if was successful; otherwise, return 0. 432 // 433 // Instruction "I" is Simplified into 434 // ------------------------------------------------------- 435 // (x * y) +/- (x * z) x * (y +/- z) 436 // (y / x) +/- (z / x) (y +/- z) / x 437 Value *FAddCombine::performFactorization(Instruction *I) { 438 assert((I->getOpcode() == Instruction::FAdd || 439 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 440 441 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0)); 442 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1)); 443 444 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode()) 445 return nullptr; 446 447 bool isMpy = false; 448 if (I0->getOpcode() == Instruction::FMul) 449 isMpy = true; 450 else if (I0->getOpcode() != Instruction::FDiv) 451 return nullptr; 452 453 Value *Opnd0_0 = I0->getOperand(0); 454 Value *Opnd0_1 = I0->getOperand(1); 455 Value *Opnd1_0 = I1->getOperand(0); 456 Value *Opnd1_1 = I1->getOperand(1); 457 458 // Input Instr I Factor AddSub0 AddSub1 459 // ---------------------------------------------- 460 // (x*y) +/- (x*z) x y z 461 // (y/x) +/- (z/x) x y z 462 Value *Factor = nullptr; 463 Value *AddSub0 = nullptr, *AddSub1 = nullptr; 464 465 if (isMpy) { 466 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1) 467 Factor = Opnd0_0; 468 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1) 469 Factor = Opnd0_1; 470 471 if (Factor) { 472 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0; 473 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0; 474 } 475 } else if (Opnd0_1 == Opnd1_1) { 476 Factor = Opnd0_1; 477 AddSub0 = Opnd0_0; 478 AddSub1 = Opnd1_0; 479 } 480 481 if (!Factor) 482 return nullptr; 483 484 FastMathFlags Flags; 485 Flags.setFast(); 486 if (I0) Flags &= I->getFastMathFlags(); 487 if (I1) Flags &= I->getFastMathFlags(); 488 489 // Create expression "NewAddSub = AddSub0 +/- AddsSub1" 490 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ? 491 createFAdd(AddSub0, AddSub1) : 492 createFSub(AddSub0, AddSub1); 493 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { 494 const APFloat &F = CFP->getValueAPF(); 495 if (!F.isNormal()) 496 return nullptr; 497 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub)) 498 II->setFastMathFlags(Flags); 499 500 if (isMpy) { 501 Value *RI = createFMul(Factor, NewAddSub); 502 if (Instruction *II = dyn_cast<Instruction>(RI)) 503 II->setFastMathFlags(Flags); 504 return RI; 505 } 506 507 Value *RI = createFDiv(NewAddSub, Factor); 508 if (Instruction *II = dyn_cast<Instruction>(RI)) 509 II->setFastMathFlags(Flags); 510 return RI; 511 } 512 513 Value *FAddCombine::simplify(Instruction *I) { 514 assert(I->isFast() && "Expected 'fast' instruction"); 515 516 // Currently we are not able to handle vector type. 517 if (I->getType()->isVectorTy()) 518 return nullptr; 519 520 assert((I->getOpcode() == Instruction::FAdd || 521 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 522 523 // Save the instruction before calling other member-functions. 524 Instr = I; 525 526 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 527 528 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 529 530 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 531 unsigned Opnd0_ExpNum = 0; 532 unsigned Opnd1_ExpNum = 0; 533 534 if (!Opnd0.isConstant()) 535 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 536 537 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 538 if (OpndNum == 2 && !Opnd1.isConstant()) 539 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 540 541 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 542 if (Opnd0_ExpNum && Opnd1_ExpNum) { 543 AddendVect AllOpnds; 544 AllOpnds.push_back(&Opnd0_0); 545 AllOpnds.push_back(&Opnd1_0); 546 if (Opnd0_ExpNum == 2) 547 AllOpnds.push_back(&Opnd0_1); 548 if (Opnd1_ExpNum == 2) 549 AllOpnds.push_back(&Opnd1_1); 550 551 // Compute instruction quota. We should save at least one instruction. 552 unsigned InstQuota = 0; 553 554 Value *V0 = I->getOperand(0); 555 Value *V1 = I->getOperand(1); 556 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 557 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 558 559 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 560 return R; 561 } 562 563 if (OpndNum != 2) { 564 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 565 // splitted into two addends, say "V = X - Y", the instruction would have 566 // been optimized into "I = Y - X" in the previous steps. 567 // 568 const FAddendCoef &CE = Opnd0.getCoef(); 569 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 570 } 571 572 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 573 if (Opnd1_ExpNum) { 574 AddendVect AllOpnds; 575 AllOpnds.push_back(&Opnd0); 576 AllOpnds.push_back(&Opnd1_0); 577 if (Opnd1_ExpNum == 2) 578 AllOpnds.push_back(&Opnd1_1); 579 580 if (Value *R = simplifyFAdd(AllOpnds, 1)) 581 return R; 582 } 583 584 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 585 if (Opnd0_ExpNum) { 586 AddendVect AllOpnds; 587 AllOpnds.push_back(&Opnd1); 588 AllOpnds.push_back(&Opnd0_0); 589 if (Opnd0_ExpNum == 2) 590 AllOpnds.push_back(&Opnd0_1); 591 592 if (Value *R = simplifyFAdd(AllOpnds, 1)) 593 return R; 594 } 595 596 // step 6: Try factorization as the last resort, 597 return performFactorization(I); 598 } 599 600 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 601 unsigned AddendNum = Addends.size(); 602 assert(AddendNum <= 4 && "Too many addends"); 603 604 // For saving intermediate results; 605 unsigned NextTmpIdx = 0; 606 FAddend TmpResult[3]; 607 608 // Points to the constant addend of the resulting simplified expression. 609 // If the resulting expr has constant-addend, this constant-addend is 610 // desirable to reside at the top of the resulting expression tree. Placing 611 // constant close to supper-expr(s) will potentially reveal some optimization 612 // opportunities in super-expr(s). 613 const FAddend *ConstAdd = nullptr; 614 615 // Simplified addends are placed <SimpVect>. 616 AddendVect SimpVect; 617 618 // The outer loop works on one symbolic-value at a time. Suppose the input 619 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 620 // The symbolic-values will be processed in this order: x, y, z. 621 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 622 623 const FAddend *ThisAddend = Addends[SymIdx]; 624 if (!ThisAddend) { 625 // This addend was processed before. 626 continue; 627 } 628 629 Value *Val = ThisAddend->getSymVal(); 630 unsigned StartIdx = SimpVect.size(); 631 SimpVect.push_back(ThisAddend); 632 633 // The inner loop collects addends sharing same symbolic-value, and these 634 // addends will be later on folded into a single addend. Following above 635 // example, if the symbolic value "y" is being processed, the inner loop 636 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 637 // be later on folded into "<b1+b2, y>". 638 for (unsigned SameSymIdx = SymIdx + 1; 639 SameSymIdx < AddendNum; SameSymIdx++) { 640 const FAddend *T = Addends[SameSymIdx]; 641 if (T && T->getSymVal() == Val) { 642 // Set null such that next iteration of the outer loop will not process 643 // this addend again. 644 Addends[SameSymIdx] = nullptr; 645 SimpVect.push_back(T); 646 } 647 } 648 649 // If multiple addends share same symbolic value, fold them together. 650 if (StartIdx + 1 != SimpVect.size()) { 651 FAddend &R = TmpResult[NextTmpIdx ++]; 652 R = *SimpVect[StartIdx]; 653 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 654 R += *SimpVect[Idx]; 655 656 // Pop all addends being folded and push the resulting folded addend. 657 SimpVect.resize(StartIdx); 658 if (Val) { 659 if (!R.isZero()) { 660 SimpVect.push_back(&R); 661 } 662 } else { 663 // Don't push constant addend at this time. It will be the last element 664 // of <SimpVect>. 665 ConstAdd = &R; 666 } 667 } 668 } 669 670 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 671 "out-of-bound access"); 672 673 if (ConstAdd) 674 SimpVect.push_back(ConstAdd); 675 676 Value *Result; 677 if (!SimpVect.empty()) 678 Result = createNaryFAdd(SimpVect, InstrQuota); 679 else { 680 // The addition is folded to 0.0. 681 Result = ConstantFP::get(Instr->getType(), 0.0); 682 } 683 684 return Result; 685 } 686 687 Value *FAddCombine::createNaryFAdd 688 (const AddendVect &Opnds, unsigned InstrQuota) { 689 assert(!Opnds.empty() && "Expect at least one addend"); 690 691 // Step 1: Check if the # of instructions needed exceeds the quota. 692 693 unsigned InstrNeeded = calcInstrNumber(Opnds); 694 if (InstrNeeded > InstrQuota) 695 return nullptr; 696 697 initCreateInstNum(); 698 699 // step 2: Emit the N-ary addition. 700 // Note that at most three instructions are involved in Fadd-InstCombine: the 701 // addition in question, and at most two neighboring instructions. 702 // The resulting optimized addition should have at least one less instruction 703 // than the original addition expression tree. This implies that the resulting 704 // N-ary addition has at most two instructions, and we don't need to worry 705 // about tree-height when constructing the N-ary addition. 706 707 Value *LastVal = nullptr; 708 bool LastValNeedNeg = false; 709 710 // Iterate the addends, creating fadd/fsub using adjacent two addends. 711 for (const FAddend *Opnd : Opnds) { 712 bool NeedNeg; 713 Value *V = createAddendVal(*Opnd, NeedNeg); 714 if (!LastVal) { 715 LastVal = V; 716 LastValNeedNeg = NeedNeg; 717 continue; 718 } 719 720 if (LastValNeedNeg == NeedNeg) { 721 LastVal = createFAdd(LastVal, V); 722 continue; 723 } 724 725 if (LastValNeedNeg) 726 LastVal = createFSub(V, LastVal); 727 else 728 LastVal = createFSub(LastVal, V); 729 730 LastValNeedNeg = false; 731 } 732 733 if (LastValNeedNeg) { 734 LastVal = createFNeg(LastVal); 735 } 736 737 #ifndef NDEBUG 738 assert(CreateInstrNum == InstrNeeded && 739 "Inconsistent in instruction numbers"); 740 #endif 741 742 return LastVal; 743 } 744 745 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 746 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 747 if (Instruction *I = dyn_cast<Instruction>(V)) 748 createInstPostProc(I); 749 return V; 750 } 751 752 Value *FAddCombine::createFNeg(Value *V) { 753 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 754 Value *NewV = createFSub(Zero, V); 755 if (Instruction *I = dyn_cast<Instruction>(NewV)) 756 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 757 return NewV; 758 } 759 760 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 761 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 762 if (Instruction *I = dyn_cast<Instruction>(V)) 763 createInstPostProc(I); 764 return V; 765 } 766 767 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 768 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 769 if (Instruction *I = dyn_cast<Instruction>(V)) 770 createInstPostProc(I); 771 return V; 772 } 773 774 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 775 Value *V = Builder.CreateFDiv(Opnd0, Opnd1); 776 if (Instruction *I = dyn_cast<Instruction>(V)) 777 createInstPostProc(I); 778 return V; 779 } 780 781 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 782 NewInstr->setDebugLoc(Instr->getDebugLoc()); 783 784 // Keep track of the number of instruction created. 785 if (!NoNumber) 786 incCreateInstNum(); 787 788 // Propagate fast-math flags 789 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 790 } 791 792 // Return the number of instruction needed to emit the N-ary addition. 793 // NOTE: Keep this function in sync with createAddendVal(). 794 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 795 unsigned OpndNum = Opnds.size(); 796 unsigned InstrNeeded = OpndNum - 1; 797 798 // The number of addends in the form of "(-1)*x". 799 unsigned NegOpndNum = 0; 800 801 // Adjust the number of instructions needed to emit the N-ary add. 802 for (const FAddend *Opnd : Opnds) { 803 if (Opnd->isConstant()) 804 continue; 805 806 // The constant check above is really for a few special constant 807 // coefficients. 808 if (isa<UndefValue>(Opnd->getSymVal())) 809 continue; 810 811 const FAddendCoef &CE = Opnd->getCoef(); 812 if (CE.isMinusOne() || CE.isMinusTwo()) 813 NegOpndNum++; 814 815 // Let the addend be "c * x". If "c == +/-1", the value of the addend 816 // is immediately available; otherwise, it needs exactly one instruction 817 // to evaluate the value. 818 if (!CE.isMinusOne() && !CE.isOne()) 819 InstrNeeded++; 820 } 821 if (NegOpndNum == OpndNum) 822 InstrNeeded++; 823 return InstrNeeded; 824 } 825 826 // Input Addend Value NeedNeg(output) 827 // ================================================================ 828 // Constant C C false 829 // <+/-1, V> V coefficient is -1 830 // <2/-2, V> "fadd V, V" coefficient is -2 831 // <C, V> "fmul V, C" false 832 // 833 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 834 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 835 const FAddendCoef &Coeff = Opnd.getCoef(); 836 837 if (Opnd.isConstant()) { 838 NeedNeg = false; 839 return Coeff.getValue(Instr->getType()); 840 } 841 842 Value *OpndVal = Opnd.getSymVal(); 843 844 if (Coeff.isMinusOne() || Coeff.isOne()) { 845 NeedNeg = Coeff.isMinusOne(); 846 return OpndVal; 847 } 848 849 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 850 NeedNeg = Coeff.isMinusTwo(); 851 return createFAdd(OpndVal, OpndVal); 852 } 853 854 NeedNeg = false; 855 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 856 } 857 858 /// \brief Return true if we can prove that: 859 /// (sub LHS, RHS) === (sub nsw LHS, RHS) 860 /// This basically requires proving that the add in the original type would not 861 /// overflow to change the sign bit or have a carry out. 862 /// TODO: Handle this for Vectors. 863 bool InstCombiner::willNotOverflowSignedSub(const Value *LHS, 864 const Value *RHS, 865 const Instruction &CxtI) const { 866 // If LHS and RHS each have at least two sign bits, the subtraction 867 // cannot overflow. 868 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 && 869 ComputeNumSignBits(RHS, 0, &CxtI) > 1) 870 return true; 871 872 KnownBits LHSKnown = computeKnownBits(LHS, 0, &CxtI); 873 874 KnownBits RHSKnown = computeKnownBits(RHS, 0, &CxtI); 875 876 // Subtraction of two 2's complement numbers having identical signs will 877 // never overflow. 878 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 879 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 880 return true; 881 882 // TODO: implement logic similar to checkRippleForAdd 883 return false; 884 } 885 886 /// \brief Return true if we can prove that: 887 /// (sub LHS, RHS) === (sub nuw LHS, RHS) 888 bool InstCombiner::willNotOverflowUnsignedSub(const Value *LHS, 889 const Value *RHS, 890 const Instruction &CxtI) const { 891 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 892 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, &CxtI); 893 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, &CxtI); 894 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 895 return true; 896 897 return false; 898 } 899 900 // Checks if any operand is negative and we can convert add to sub. 901 // This function checks for following negative patterns 902 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 903 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 904 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 905 static Value *checkForNegativeOperand(BinaryOperator &I, 906 InstCombiner::BuilderTy &Builder) { 907 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 908 909 // This function creates 2 instructions to replace ADD, we need at least one 910 // of LHS or RHS to have one use to ensure benefit in transform. 911 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 912 return nullptr; 913 914 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 915 const APInt *C1 = nullptr, *C2 = nullptr; 916 917 // if ONE is on other side, swap 918 if (match(RHS, m_Add(m_Value(X), m_One()))) 919 std::swap(LHS, RHS); 920 921 if (match(LHS, m_Add(m_Value(X), m_One()))) { 922 // if XOR on other side, swap 923 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 924 std::swap(X, RHS); 925 926 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 927 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 928 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 929 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 930 Value *NewAnd = Builder.CreateAnd(Z, *C1); 931 return Builder.CreateSub(RHS, NewAnd, "sub"); 932 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 933 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 934 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 935 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 936 return Builder.CreateSub(RHS, NewOr, "sub"); 937 } 938 } 939 } 940 941 // Restore LHS and RHS 942 LHS = I.getOperand(0); 943 RHS = I.getOperand(1); 944 945 // if XOR is on other side, swap 946 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 947 std::swap(LHS, RHS); 948 949 // C2 is ODD 950 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 951 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 952 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 953 if (C1->countTrailingZeros() == 0) 954 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 955 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 956 return Builder.CreateSub(RHS, NewOr, "sub"); 957 } 958 return nullptr; 959 } 960 961 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 962 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 963 Constant *Op1C; 964 if (!match(Op1, m_Constant(Op1C))) 965 return nullptr; 966 967 if (Instruction *NV = foldOpWithConstantIntoOperand(Add)) 968 return NV; 969 970 Value *X; 971 // zext(bool) + C -> bool ? C + 1 : C 972 if (match(Op0, m_ZExt(m_Value(X))) && 973 X->getType()->getScalarSizeInBits() == 1) 974 return SelectInst::Create(X, AddOne(Op1C), Op1); 975 976 // ~X + C --> (C-1) - X 977 if (match(Op0, m_Not(m_Value(X)))) 978 return BinaryOperator::CreateSub(SubOne(Op1C), X); 979 980 const APInt *C; 981 if (!match(Op1, m_APInt(C))) 982 return nullptr; 983 984 if (C->isSignMask()) { 985 // If wrapping is not allowed, then the addition must set the sign bit: 986 // X + (signmask) --> X | signmask 987 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 988 return BinaryOperator::CreateOr(Op0, Op1); 989 990 // If wrapping is allowed, then the addition flips the sign bit of LHS: 991 // X + (signmask) --> X ^ signmask 992 return BinaryOperator::CreateXor(Op0, Op1); 993 } 994 995 // Is this add the last step in a convoluted sext? 996 // add(zext(xor i16 X, -32768), -32768) --> sext X 997 Type *Ty = Add.getType(); 998 const APInt *C2; 999 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 1000 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 1001 return CastInst::Create(Instruction::SExt, X, Ty); 1002 1003 // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C)) 1004 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 1005 C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) { 1006 Constant *NewC = 1007 ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth())); 1008 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 1009 } 1010 1011 if (C->isOneValue() && Op0->hasOneUse()) { 1012 // add (sext i1 X), 1 --> zext (not X) 1013 // TODO: The smallest IR representation is (select X, 0, 1), and that would 1014 // not require the one-use check. But we need to remove a transform in 1015 // visitSelect and make sure that IR value tracking for select is equal or 1016 // better than for these ops. 1017 if (match(Op0, m_SExt(m_Value(X))) && 1018 X->getType()->getScalarSizeInBits() == 1) 1019 return new ZExtInst(Builder.CreateNot(X), Ty); 1020 1021 // Shifts and add used to flip and mask off the low bit: 1022 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 1023 const APInt *C3; 1024 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 1025 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 1026 Value *NotX = Builder.CreateNot(X); 1027 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 1028 } 1029 } 1030 1031 return nullptr; 1032 } 1033 1034 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1035 bool Changed = SimplifyAssociativeOrCommutative(I); 1036 if (Value *V = SimplifyVectorOp(I)) 1037 return replaceInstUsesWith(I, V); 1038 1039 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1040 if (Value *V = 1041 SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1042 SQ.getWithInstruction(&I))) 1043 return replaceInstUsesWith(I, V); 1044 1045 // (A*B)+(A*C) -> A*(B+C) etc 1046 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1047 return replaceInstUsesWith(I, V); 1048 1049 if (Instruction *X = foldAddWithConstant(I)) 1050 return X; 1051 1052 // FIXME: This should be moved into the above helper function to allow these 1053 // transforms for general constant or constant splat vectors. 1054 Type *Ty = I.getType(); 1055 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1056 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1057 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1058 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1059 const APInt &RHSVal = CI->getValue(); 1060 unsigned ExtendAmt = 0; 1061 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1062 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1063 if (XorRHS->getValue() == -RHSVal) { 1064 if (RHSVal.isPowerOf2()) 1065 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1066 else if (XorRHS->getValue().isPowerOf2()) 1067 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1068 } 1069 1070 if (ExtendAmt) { 1071 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1072 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1073 ExtendAmt = 0; 1074 } 1075 1076 if (ExtendAmt) { 1077 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1078 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1079 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1080 } 1081 1082 // If this is a xor that was canonicalized from a sub, turn it back into 1083 // a sub and fuse this add with it. 1084 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1085 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1086 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1087 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1088 XorLHS); 1089 } 1090 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1091 // transform them into (X + (signmask ^ C)) 1092 if (XorRHS->getValue().isSignMask()) 1093 return BinaryOperator::CreateAdd(XorLHS, 1094 ConstantExpr::getXor(XorRHS, CI)); 1095 } 1096 } 1097 1098 if (Ty->isIntOrIntVectorTy(1)) 1099 return BinaryOperator::CreateXor(LHS, RHS); 1100 1101 // X + X --> X << 1 1102 if (LHS == RHS) { 1103 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1104 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1105 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1106 return Shl; 1107 } 1108 1109 Value *A, *B; 1110 if (match(LHS, m_Neg(m_Value(A)))) { 1111 // -A + -B --> -(A + B) 1112 if (match(RHS, m_Neg(m_Value(B)))) 1113 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1114 1115 // -A + B --> B - A 1116 return BinaryOperator::CreateSub(RHS, A); 1117 } 1118 1119 // A + -B --> A - B 1120 if (match(RHS, m_Neg(m_Value(B)))) 1121 return BinaryOperator::CreateSub(LHS, B); 1122 1123 if (Value *V = checkForNegativeOperand(I, Builder)) 1124 return replaceInstUsesWith(I, V); 1125 1126 // A+B --> A|B iff A and B have no bits set in common. 1127 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1128 return BinaryOperator::CreateOr(LHS, RHS); 1129 1130 // FIXME: We already did a check for ConstantInt RHS above this. 1131 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1132 // removal. 1133 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1134 // (X & FF00) + xx00 -> (X+xx00) & FF00 1135 Value *X; 1136 ConstantInt *C2; 1137 if (LHS->hasOneUse() && 1138 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1139 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1140 // See if all bits from the first bit set in the Add RHS up are included 1141 // in the mask. First, get the rightmost bit. 1142 const APInt &AddRHSV = CRHS->getValue(); 1143 1144 // Form a mask of all bits from the lowest bit added through the top. 1145 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1146 1147 // See if the and mask includes all of these bits. 1148 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1149 1150 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1151 // Okay, the xform is safe. Insert the new add pronto. 1152 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1153 return BinaryOperator::CreateAnd(NewAdd, C2); 1154 } 1155 } 1156 } 1157 1158 // add (select X 0 (sub n A)) A --> select X A n 1159 { 1160 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1161 Value *A = RHS; 1162 if (!SI) { 1163 SI = dyn_cast<SelectInst>(RHS); 1164 A = LHS; 1165 } 1166 if (SI && SI->hasOneUse()) { 1167 Value *TV = SI->getTrueValue(); 1168 Value *FV = SI->getFalseValue(); 1169 Value *N; 1170 1171 // Can we fold the add into the argument of the select? 1172 // We check both true and false select arguments for a matching subtract. 1173 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1174 // Fold the add into the true select value. 1175 return SelectInst::Create(SI->getCondition(), N, A); 1176 1177 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1178 // Fold the add into the false select value. 1179 return SelectInst::Create(SI->getCondition(), A, N); 1180 } 1181 } 1182 1183 // Check for (add (sext x), y), see if we can merge this into an 1184 // integer add followed by a sext. 1185 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1186 // (add (sext x), cst) --> (sext (add x, cst')) 1187 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1188 if (LHSConv->hasOneUse()) { 1189 Constant *CI = 1190 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1191 if (ConstantExpr::getSExt(CI, Ty) == RHSC && 1192 willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1193 // Insert the new, smaller add. 1194 Value *NewAdd = 1195 Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv"); 1196 return new SExtInst(NewAdd, Ty); 1197 } 1198 } 1199 } 1200 1201 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1202 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1203 // Only do this if x/y have the same type, if at least one of them has a 1204 // single use (so we don't increase the number of sexts), and if the 1205 // integer add will not overflow. 1206 if (LHSConv->getOperand(0)->getType() == 1207 RHSConv->getOperand(0)->getType() && 1208 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1209 willNotOverflowSignedAdd(LHSConv->getOperand(0), 1210 RHSConv->getOperand(0), I)) { 1211 // Insert the new integer add. 1212 Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0), 1213 RHSConv->getOperand(0), "addconv"); 1214 return new SExtInst(NewAdd, Ty); 1215 } 1216 } 1217 } 1218 1219 // Check for (add (zext x), y), see if we can merge this into an 1220 // integer add followed by a zext. 1221 if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) { 1222 // (add (zext x), cst) --> (zext (add x, cst')) 1223 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1224 if (LHSConv->hasOneUse()) { 1225 Constant *CI = 1226 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1227 if (ConstantExpr::getZExt(CI, Ty) == RHSC && 1228 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) { 1229 // Insert the new, smaller add. 1230 Value *NewAdd = 1231 Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv"); 1232 return new ZExtInst(NewAdd, Ty); 1233 } 1234 } 1235 } 1236 1237 // (add (zext x), (zext y)) --> (zext (add int x, y)) 1238 if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) { 1239 // Only do this if x/y have the same type, if at least one of them has a 1240 // single use (so we don't increase the number of zexts), and if the 1241 // integer add will not overflow. 1242 if (LHSConv->getOperand(0)->getType() == 1243 RHSConv->getOperand(0)->getType() && 1244 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1245 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), 1246 RHSConv->getOperand(0), I)) { 1247 // Insert the new integer add. 1248 Value *NewAdd = Builder.CreateNUWAdd( 1249 LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); 1250 return new ZExtInst(NewAdd, Ty); 1251 } 1252 } 1253 } 1254 1255 // (add (xor A, B) (and A, B)) --> (or A, B) 1256 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 1257 match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) 1258 return BinaryOperator::CreateOr(A, B); 1259 1260 // (add (and A, B) (xor A, B)) --> (or A, B) 1261 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 1262 match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) 1263 return BinaryOperator::CreateOr(A, B); 1264 1265 // (add (or A, B) (and A, B)) --> (add A, B) 1266 if (match(LHS, m_Or(m_Value(A), m_Value(B))) && 1267 match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) { 1268 I.setOperand(0, A); 1269 I.setOperand(1, B); 1270 return &I; 1271 } 1272 1273 // (add (and A, B) (or A, B)) --> (add A, B) 1274 if (match(RHS, m_Or(m_Value(A), m_Value(B))) && 1275 match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) { 1276 I.setOperand(0, A); 1277 I.setOperand(1, B); 1278 return &I; 1279 } 1280 1281 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1282 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1283 // computeKnownBits. 1284 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1285 Changed = true; 1286 I.setHasNoSignedWrap(true); 1287 } 1288 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1289 Changed = true; 1290 I.setHasNoUnsignedWrap(true); 1291 } 1292 1293 return Changed ? &I : nullptr; 1294 } 1295 1296 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1297 bool Changed = SimplifyAssociativeOrCommutative(I); 1298 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1299 1300 if (Value *V = SimplifyVectorOp(I)) 1301 return replaceInstUsesWith(I, V); 1302 1303 if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), 1304 SQ.getWithInstruction(&I))) 1305 return replaceInstUsesWith(I, V); 1306 1307 if (isa<Constant>(RHS)) 1308 if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I)) 1309 return FoldedFAdd; 1310 1311 // -A + B --> B - A 1312 // -A + -B --> -(A + B) 1313 if (Value *LHSV = dyn_castFNegVal(LHS)) { 1314 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV); 1315 RI->copyFastMathFlags(&I); 1316 return RI; 1317 } 1318 1319 // A + -B --> A - B 1320 if (!isa<Constant>(RHS)) 1321 if (Value *V = dyn_castFNegVal(RHS)) { 1322 Instruction *RI = BinaryOperator::CreateFSub(LHS, V); 1323 RI->copyFastMathFlags(&I); 1324 return RI; 1325 } 1326 1327 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1328 // integer add followed by a promotion. 1329 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1330 Value *LHSIntVal = LHSConv->getOperand(0); 1331 Type *FPType = LHSConv->getType(); 1332 1333 // TODO: This check is overly conservative. In many cases known bits 1334 // analysis can tell us that the result of the addition has less significant 1335 // bits than the integer type can hold. 1336 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1337 Type *FScalarTy = FTy->getScalarType(); 1338 Type *IScalarTy = ITy->getScalarType(); 1339 1340 // Do we have enough bits in the significand to represent the result of 1341 // the integer addition? 1342 unsigned MaxRepresentableBits = 1343 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1344 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1345 }; 1346 1347 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1348 // ... if the constant fits in the integer value. This is useful for things 1349 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1350 // requires a constant pool load, and generally allows the add to be better 1351 // instcombined. 1352 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1353 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1354 Constant *CI = 1355 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1356 if (LHSConv->hasOneUse() && 1357 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1358 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1359 // Insert the new integer add. 1360 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1361 return new SIToFPInst(NewAdd, I.getType()); 1362 } 1363 } 1364 1365 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1366 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1367 Value *RHSIntVal = RHSConv->getOperand(0); 1368 // It's enough to check LHS types only because we require int types to 1369 // be the same for this transform. 1370 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1371 // Only do this if x/y have the same type, if at least one of them has a 1372 // single use (so we don't increase the number of int->fp conversions), 1373 // and if the integer add will not overflow. 1374 if (LHSIntVal->getType() == RHSIntVal->getType() && 1375 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1376 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1377 // Insert the new integer add. 1378 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1379 return new SIToFPInst(NewAdd, I.getType()); 1380 } 1381 } 1382 } 1383 } 1384 1385 // Handle specials cases for FAdd with selects feeding the operation 1386 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1387 return replaceInstUsesWith(I, V); 1388 1389 if (I.isFast()) { 1390 if (Value *V = FAddCombine(Builder).simplify(&I)) 1391 return replaceInstUsesWith(I, V); 1392 } 1393 1394 return Changed ? &I : nullptr; 1395 } 1396 1397 /// Optimize pointer differences into the same array into a size. Consider: 1398 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1399 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1400 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1401 Type *Ty) { 1402 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1403 // this. 1404 bool Swapped = false; 1405 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1406 1407 // For now we require one side to be the base pointer "A" or a constant 1408 // GEP derived from it. 1409 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1410 // (gep X, ...) - X 1411 if (LHSGEP->getOperand(0) == RHS) { 1412 GEP1 = LHSGEP; 1413 Swapped = false; 1414 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1415 // (gep X, ...) - (gep X, ...) 1416 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1417 RHSGEP->getOperand(0)->stripPointerCasts()) { 1418 GEP2 = RHSGEP; 1419 GEP1 = LHSGEP; 1420 Swapped = false; 1421 } 1422 } 1423 } 1424 1425 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1426 // X - (gep X, ...) 1427 if (RHSGEP->getOperand(0) == LHS) { 1428 GEP1 = RHSGEP; 1429 Swapped = true; 1430 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1431 // (gep X, ...) - (gep X, ...) 1432 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1433 LHSGEP->getOperand(0)->stripPointerCasts()) { 1434 GEP2 = LHSGEP; 1435 GEP1 = RHSGEP; 1436 Swapped = true; 1437 } 1438 } 1439 } 1440 1441 if (!GEP1) 1442 // No GEP found. 1443 return nullptr; 1444 1445 if (GEP2) { 1446 // (gep X, ...) - (gep X, ...) 1447 // 1448 // Avoid duplicating the arithmetic if there are more than one non-constant 1449 // indices between the two GEPs and either GEP has a non-constant index and 1450 // multiple users. If zero non-constant index, the result is a constant and 1451 // there is no duplication. If one non-constant index, the result is an add 1452 // or sub with a constant, which is no larger than the original code, and 1453 // there's no duplicated arithmetic, even if either GEP has multiple 1454 // users. If more than one non-constant indices combined, as long as the GEP 1455 // with at least one non-constant index doesn't have multiple users, there 1456 // is no duplication. 1457 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1458 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1459 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1460 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1461 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1462 return nullptr; 1463 } 1464 } 1465 1466 // Emit the offset of the GEP and an intptr_t. 1467 Value *Result = EmitGEPOffset(GEP1); 1468 1469 // If we had a constant expression GEP on the other side offsetting the 1470 // pointer, subtract it from the offset we have. 1471 if (GEP2) { 1472 Value *Offset = EmitGEPOffset(GEP2); 1473 Result = Builder.CreateSub(Result, Offset); 1474 } 1475 1476 // If we have p - gep(p, ...) then we have to negate the result. 1477 if (Swapped) 1478 Result = Builder.CreateNeg(Result, "diff.neg"); 1479 1480 return Builder.CreateIntCast(Result, Ty, true); 1481 } 1482 1483 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1484 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1485 1486 if (Value *V = SimplifyVectorOp(I)) 1487 return replaceInstUsesWith(I, V); 1488 1489 if (Value *V = 1490 SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1491 SQ.getWithInstruction(&I))) 1492 return replaceInstUsesWith(I, V); 1493 1494 // (A*B)-(A*C) -> A*(B-C) etc 1495 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1496 return replaceInstUsesWith(I, V); 1497 1498 // If this is a 'B = x-(-A)', change to B = x+A. 1499 if (Value *V = dyn_castNegVal(Op1)) { 1500 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1501 1502 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1503 assert(BO->getOpcode() == Instruction::Sub && 1504 "Expected a subtraction operator!"); 1505 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1506 Res->setHasNoSignedWrap(true); 1507 } else { 1508 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1509 Res->setHasNoSignedWrap(true); 1510 } 1511 1512 return Res; 1513 } 1514 1515 if (I.getType()->isIntOrIntVectorTy(1)) 1516 return BinaryOperator::CreateXor(Op0, Op1); 1517 1518 // Replace (-1 - A) with (~A). 1519 if (match(Op0, m_AllOnes())) 1520 return BinaryOperator::CreateNot(Op1); 1521 1522 if (Constant *C = dyn_cast<Constant>(Op0)) { 1523 Value *X; 1524 // C - zext(bool) -> bool ? C - 1 : C 1525 if (match(Op1, m_ZExt(m_Value(X))) && 1526 X->getType()->getScalarSizeInBits() == 1) 1527 return SelectInst::Create(X, SubOne(C), C); 1528 1529 // C - ~X == X + (1+C) 1530 if (match(Op1, m_Not(m_Value(X)))) 1531 return BinaryOperator::CreateAdd(X, AddOne(C)); 1532 1533 // Try to fold constant sub into select arguments. 1534 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1535 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1536 return R; 1537 1538 // Try to fold constant sub into PHI values. 1539 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1540 if (Instruction *R = foldOpIntoPhi(I, PN)) 1541 return R; 1542 1543 // C-(X+C2) --> (C-C2)-X 1544 Constant *C2; 1545 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1546 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1547 1548 // Fold (sub 0, (zext bool to B)) --> (sext bool to B) 1549 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X)))) 1550 if (X->getType()->isIntOrIntVectorTy(1)) 1551 return CastInst::CreateSExtOrBitCast(X, Op1->getType()); 1552 1553 // Fold (sub 0, (sext bool to B)) --> (zext bool to B) 1554 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X)))) 1555 if (X->getType()->isIntOrIntVectorTy(1)) 1556 return CastInst::CreateZExtOrBitCast(X, Op1->getType()); 1557 } 1558 1559 const APInt *Op0C; 1560 if (match(Op0, m_APInt(Op0C))) { 1561 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1562 1563 // -(X >>u 31) -> (X >>s 31) 1564 // -(X >>s 31) -> (X >>u 31) 1565 if (Op0C->isNullValue()) { 1566 Value *X; 1567 const APInt *ShAmt; 1568 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1569 *ShAmt == BitWidth - 1) { 1570 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1571 return BinaryOperator::CreateAShr(X, ShAmtOp); 1572 } 1573 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1574 *ShAmt == BitWidth - 1) { 1575 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1576 return BinaryOperator::CreateLShr(X, ShAmtOp); 1577 } 1578 } 1579 1580 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1581 // zero. 1582 if (Op0C->isMask()) { 1583 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1584 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1585 return BinaryOperator::CreateXor(Op1, Op0); 1586 } 1587 } 1588 1589 { 1590 Value *Y; 1591 // X-(X+Y) == -Y X-(Y+X) == -Y 1592 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1593 return BinaryOperator::CreateNeg(Y); 1594 1595 // (X-Y)-X == -Y 1596 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1597 return BinaryOperator::CreateNeg(Y); 1598 } 1599 1600 // (sub (or A, B), (xor A, B)) --> (and A, B) 1601 { 1602 Value *A, *B; 1603 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1604 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1605 return BinaryOperator::CreateAnd(A, B); 1606 } 1607 1608 { 1609 Value *Y; 1610 // ((X | Y) - X) --> (~X & Y) 1611 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1612 return BinaryOperator::CreateAnd( 1613 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1614 } 1615 1616 if (Op1->hasOneUse()) { 1617 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1618 Constant *C = nullptr; 1619 1620 // (X - (Y - Z)) --> (X + (Z - Y)). 1621 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1622 return BinaryOperator::CreateAdd(Op0, 1623 Builder.CreateSub(Z, Y, Op1->getName())); 1624 1625 // (X - (X & Y)) --> (X & ~Y) 1626 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1627 return BinaryOperator::CreateAnd(Op0, 1628 Builder.CreateNot(Y, Y->getName() + ".not")); 1629 1630 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1631 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1632 C->isNotMinSignedValue() && !C->isOneValue()) 1633 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1634 1635 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1636 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1637 if (Value *XNeg = dyn_castNegVal(X)) 1638 return BinaryOperator::CreateShl(XNeg, Y); 1639 1640 // Subtracting -1/0 is the same as adding 1/0: 1641 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1642 // 'nuw' is dropped in favor of the canonical form. 1643 if (match(Op1, m_SExt(m_Value(Y))) && 1644 Y->getType()->getScalarSizeInBits() == 1) { 1645 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1646 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1647 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1648 return Add; 1649 } 1650 1651 // X - A*-B -> X + A*B 1652 // X - -A*B -> X + A*B 1653 Value *A, *B; 1654 Constant *CI; 1655 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1656 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1657 1658 // X - A*CI -> X + A*-CI 1659 // No need to handle commuted multiply because multiply handling will 1660 // ensure constant will be move to the right hand side. 1661 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) { 1662 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI)); 1663 return BinaryOperator::CreateAdd(Op0, NewMul); 1664 } 1665 } 1666 1667 // Optimize pointer differences into the same array into a size. Consider: 1668 // &A[10] - &A[0]: we should compile this to "10". 1669 Value *LHSOp, *RHSOp; 1670 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1671 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1672 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1673 return replaceInstUsesWith(I, Res); 1674 1675 // trunc(p)-trunc(q) -> trunc(p-q) 1676 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1677 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1678 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1679 return replaceInstUsesWith(I, Res); 1680 1681 bool Changed = false; 1682 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1683 Changed = true; 1684 I.setHasNoSignedWrap(true); 1685 } 1686 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1687 Changed = true; 1688 I.setHasNoUnsignedWrap(true); 1689 } 1690 1691 return Changed ? &I : nullptr; 1692 } 1693 1694 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1695 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1696 1697 if (Value *V = SimplifyVectorOp(I)) 1698 return replaceInstUsesWith(I, V); 1699 1700 if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), 1701 SQ.getWithInstruction(&I))) 1702 return replaceInstUsesWith(I, V); 1703 1704 // fsub nsz 0, X ==> fsub nsz -0.0, X 1705 if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) { 1706 // Subtraction from -0.0 is the canonical form of fneg. 1707 Instruction *NewI = BinaryOperator::CreateFNeg(Op1); 1708 NewI->copyFastMathFlags(&I); 1709 return NewI; 1710 } 1711 1712 if (isa<Constant>(Op0)) 1713 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1714 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1715 return NV; 1716 1717 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking 1718 // through FP extensions/truncations along the way. 1719 if (Value *V = dyn_castFNegVal(Op1)) { 1720 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V); 1721 NewI->copyFastMathFlags(&I); 1722 return NewI; 1723 } 1724 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) { 1725 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) { 1726 Value *NewTrunc = Builder.CreateFPTrunc(V, I.getType()); 1727 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc); 1728 NewI->copyFastMathFlags(&I); 1729 return NewI; 1730 } 1731 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) { 1732 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) { 1733 Value *NewExt = Builder.CreateFPExt(V, I.getType()); 1734 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt); 1735 NewI->copyFastMathFlags(&I); 1736 return NewI; 1737 } 1738 } 1739 1740 // Handle specials cases for FSub with selects feeding the operation 1741 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 1742 return replaceInstUsesWith(I, V); 1743 1744 if (I.isFast()) { 1745 if (Value *V = FAddCombine(Builder).simplify(&I)) 1746 return replaceInstUsesWith(I, V); 1747 } 1748 1749 return nullptr; 1750 } 1751