1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include <cassert> 33 #include <utility> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 #define DEBUG_TYPE "instcombine" 39 40 namespace { 41 42 /// Class representing coefficient of floating-point addend. 43 /// This class needs to be highly efficient, which is especially true for 44 /// the constructor. As of I write this comment, the cost of the default 45 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 46 /// perform write-merging). 47 /// 48 class FAddendCoef { 49 public: 50 // The constructor has to initialize a APFloat, which is unnecessary for 51 // most addends which have coefficient either 1 or -1. So, the constructor 52 // is expensive. In order to avoid the cost of the constructor, we should 53 // reuse some instances whenever possible. The pre-created instances 54 // FAddCombine::Add[0-5] embodies this idea. 55 FAddendCoef() = default; 56 ~FAddendCoef(); 57 58 // If possible, don't define operator+/operator- etc because these 59 // operators inevitably call FAddendCoef's constructor which is not cheap. 60 void operator=(const FAddendCoef &A); 61 void operator+=(const FAddendCoef &A); 62 void operator*=(const FAddendCoef &S); 63 64 void set(short C) { 65 assert(!insaneIntVal(C) && "Insane coefficient"); 66 IsFp = false; IntVal = C; 67 } 68 69 void set(const APFloat& C); 70 71 void negate(); 72 73 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 74 Value *getValue(Type *) const; 75 76 bool isOne() const { return isInt() && IntVal == 1; } 77 bool isTwo() const { return isInt() && IntVal == 2; } 78 bool isMinusOne() const { return isInt() && IntVal == -1; } 79 bool isMinusTwo() const { return isInt() && IntVal == -2; } 80 81 private: 82 bool insaneIntVal(int V) { return V > 4 || V < -4; } 83 84 APFloat *getFpValPtr() 85 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 86 87 const APFloat *getFpValPtr() const 88 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 89 90 const APFloat &getFpVal() const { 91 assert(IsFp && BufHasFpVal && "Incorret state"); 92 return *getFpValPtr(); 93 } 94 95 APFloat &getFpVal() { 96 assert(IsFp && BufHasFpVal && "Incorret state"); 97 return *getFpValPtr(); 98 } 99 100 bool isInt() const { return !IsFp; } 101 102 // If the coefficient is represented by an integer, promote it to a 103 // floating point. 104 void convertToFpType(const fltSemantics &Sem); 105 106 // Construct an APFloat from a signed integer. 107 // TODO: We should get rid of this function when APFloat can be constructed 108 // from an *SIGNED* integer. 109 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 110 111 bool IsFp = false; 112 113 // True iff FpValBuf contains an instance of APFloat. 114 bool BufHasFpVal = false; 115 116 // The integer coefficient of an individual addend is either 1 or -1, 117 // and we try to simplify at most 4 addends from neighboring at most 118 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 119 // is overkill of this end. 120 short IntVal = 0; 121 122 AlignedCharArrayUnion<APFloat> FpValBuf; 123 }; 124 125 /// FAddend is used to represent floating-point addend. An addend is 126 /// represented as <C, V>, where the V is a symbolic value, and C is a 127 /// constant coefficient. A constant addend is represented as <C, 0>. 128 class FAddend { 129 public: 130 FAddend() = default; 131 132 void operator+=(const FAddend &T) { 133 assert((Val == T.Val) && "Symbolic-values disagree"); 134 Coeff += T.Coeff; 135 } 136 137 Value *getSymVal() const { return Val; } 138 const FAddendCoef &getCoef() const { return Coeff; } 139 140 bool isConstant() const { return Val == nullptr; } 141 bool isZero() const { return Coeff.isZero(); } 142 143 void set(short Coefficient, Value *V) { 144 Coeff.set(Coefficient); 145 Val = V; 146 } 147 void set(const APFloat &Coefficient, Value *V) { 148 Coeff.set(Coefficient); 149 Val = V; 150 } 151 void set(const ConstantFP *Coefficient, Value *V) { 152 Coeff.set(Coefficient->getValueAPF()); 153 Val = V; 154 } 155 156 void negate() { Coeff.negate(); } 157 158 /// Drill down the U-D chain one step to find the definition of V, and 159 /// try to break the definition into one or two addends. 160 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 161 162 /// Similar to FAddend::drillDownOneStep() except that the value being 163 /// splitted is the addend itself. 164 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 165 166 private: 167 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 168 169 // This addend has the value of "Coeff * Val". 170 Value *Val = nullptr; 171 FAddendCoef Coeff; 172 }; 173 174 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 175 /// with its neighboring at most two instructions. 176 /// 177 class FAddCombine { 178 public: 179 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 180 181 Value *simplify(Instruction *FAdd); 182 183 private: 184 using AddendVect = SmallVector<const FAddend *, 4>; 185 186 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 187 188 /// Convert given addend to a Value 189 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 190 191 /// Return the number of instructions needed to emit the N-ary addition. 192 unsigned calcInstrNumber(const AddendVect& Vect); 193 194 Value *createFSub(Value *Opnd0, Value *Opnd1); 195 Value *createFAdd(Value *Opnd0, Value *Opnd1); 196 Value *createFMul(Value *Opnd0, Value *Opnd1); 197 Value *createFNeg(Value *V); 198 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 199 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 200 201 // Debugging stuff are clustered here. 202 #ifndef NDEBUG 203 unsigned CreateInstrNum; 204 void initCreateInstNum() { CreateInstrNum = 0; } 205 void incCreateInstNum() { CreateInstrNum++; } 206 #else 207 void initCreateInstNum() {} 208 void incCreateInstNum() {} 209 #endif 210 211 InstCombiner::BuilderTy &Builder; 212 Instruction *Instr = nullptr; 213 }; 214 215 } // end anonymous namespace 216 217 //===----------------------------------------------------------------------===// 218 // 219 // Implementation of 220 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 221 // 222 //===----------------------------------------------------------------------===// 223 FAddendCoef::~FAddendCoef() { 224 if (BufHasFpVal) 225 getFpValPtr()->~APFloat(); 226 } 227 228 void FAddendCoef::set(const APFloat& C) { 229 APFloat *P = getFpValPtr(); 230 231 if (isInt()) { 232 // As the buffer is meanless byte stream, we cannot call 233 // APFloat::operator=(). 234 new(P) APFloat(C); 235 } else 236 *P = C; 237 238 IsFp = BufHasFpVal = true; 239 } 240 241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 242 if (!isInt()) 243 return; 244 245 APFloat *P = getFpValPtr(); 246 if (IntVal > 0) 247 new(P) APFloat(Sem, IntVal); 248 else { 249 new(P) APFloat(Sem, 0 - IntVal); 250 P->changeSign(); 251 } 252 IsFp = BufHasFpVal = true; 253 } 254 255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 256 if (Val >= 0) 257 return APFloat(Sem, Val); 258 259 APFloat T(Sem, 0 - Val); 260 T.changeSign(); 261 262 return T; 263 } 264 265 void FAddendCoef::operator=(const FAddendCoef &That) { 266 if (That.isInt()) 267 set(That.IntVal); 268 else 269 set(That.getFpVal()); 270 } 271 272 void FAddendCoef::operator+=(const FAddendCoef &That) { 273 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 274 if (isInt() == That.isInt()) { 275 if (isInt()) 276 IntVal += That.IntVal; 277 else 278 getFpVal().add(That.getFpVal(), RndMode); 279 return; 280 } 281 282 if (isInt()) { 283 const APFloat &T = That.getFpVal(); 284 convertToFpType(T.getSemantics()); 285 getFpVal().add(T, RndMode); 286 return; 287 } 288 289 APFloat &T = getFpVal(); 290 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 291 } 292 293 void FAddendCoef::operator*=(const FAddendCoef &That) { 294 if (That.isOne()) 295 return; 296 297 if (That.isMinusOne()) { 298 negate(); 299 return; 300 } 301 302 if (isInt() && That.isInt()) { 303 int Res = IntVal * (int)That.IntVal; 304 assert(!insaneIntVal(Res) && "Insane int value"); 305 IntVal = Res; 306 return; 307 } 308 309 const fltSemantics &Semantic = 310 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 311 312 if (isInt()) 313 convertToFpType(Semantic); 314 APFloat &F0 = getFpVal(); 315 316 if (That.isInt()) 317 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 318 APFloat::rmNearestTiesToEven); 319 else 320 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 321 } 322 323 void FAddendCoef::negate() { 324 if (isInt()) 325 IntVal = 0 - IntVal; 326 else 327 getFpVal().changeSign(); 328 } 329 330 Value *FAddendCoef::getValue(Type *Ty) const { 331 return isInt() ? 332 ConstantFP::get(Ty, float(IntVal)) : 333 ConstantFP::get(Ty->getContext(), getFpVal()); 334 } 335 336 // The definition of <Val> Addends 337 // ========================================= 338 // A + B <1, A>, <1,B> 339 // A - B <1, A>, <1,B> 340 // 0 - B <-1, B> 341 // C * A, <C, A> 342 // A + C <1, A> <C, NULL> 343 // 0 +/- 0 <0, NULL> (corner case) 344 // 345 // Legend: A and B are not constant, C is constant 346 unsigned FAddend::drillValueDownOneStep 347 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 348 Instruction *I = nullptr; 349 if (!Val || !(I = dyn_cast<Instruction>(Val))) 350 return 0; 351 352 unsigned Opcode = I->getOpcode(); 353 354 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 355 ConstantFP *C0, *C1; 356 Value *Opnd0 = I->getOperand(0); 357 Value *Opnd1 = I->getOperand(1); 358 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 359 Opnd0 = nullptr; 360 361 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 362 Opnd1 = nullptr; 363 364 if (Opnd0) { 365 if (!C0) 366 Addend0.set(1, Opnd0); 367 else 368 Addend0.set(C0, nullptr); 369 } 370 371 if (Opnd1) { 372 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 373 if (!C1) 374 Addend.set(1, Opnd1); 375 else 376 Addend.set(C1, nullptr); 377 if (Opcode == Instruction::FSub) 378 Addend.negate(); 379 } 380 381 if (Opnd0 || Opnd1) 382 return Opnd0 && Opnd1 ? 2 : 1; 383 384 // Both operands are zero. Weird! 385 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 386 return 1; 387 } 388 389 if (I->getOpcode() == Instruction::FMul) { 390 Value *V0 = I->getOperand(0); 391 Value *V1 = I->getOperand(1); 392 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 393 Addend0.set(C, V1); 394 return 1; 395 } 396 397 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 398 Addend0.set(C, V0); 399 return 1; 400 } 401 } 402 403 return 0; 404 } 405 406 // Try to break *this* addend into two addends. e.g. Suppose this addend is 407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 408 // i.e. <2.3, X> and <2.3, Y>. 409 unsigned FAddend::drillAddendDownOneStep 410 (FAddend &Addend0, FAddend &Addend1) const { 411 if (isConstant()) 412 return 0; 413 414 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 415 if (!BreakNum || Coeff.isOne()) 416 return BreakNum; 417 418 Addend0.Scale(Coeff); 419 420 if (BreakNum == 2) 421 Addend1.Scale(Coeff); 422 423 return BreakNum; 424 } 425 426 Value *FAddCombine::simplify(Instruction *I) { 427 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 428 "Expected 'reassoc'+'nsz' instruction"); 429 430 // Currently we are not able to handle vector type. 431 if (I->getType()->isVectorTy()) 432 return nullptr; 433 434 assert((I->getOpcode() == Instruction::FAdd || 435 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 436 437 // Save the instruction before calling other member-functions. 438 Instr = I; 439 440 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 441 442 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 443 444 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 445 unsigned Opnd0_ExpNum = 0; 446 unsigned Opnd1_ExpNum = 0; 447 448 if (!Opnd0.isConstant()) 449 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 450 451 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 452 if (OpndNum == 2 && !Opnd1.isConstant()) 453 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 454 455 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 456 if (Opnd0_ExpNum && Opnd1_ExpNum) { 457 AddendVect AllOpnds; 458 AllOpnds.push_back(&Opnd0_0); 459 AllOpnds.push_back(&Opnd1_0); 460 if (Opnd0_ExpNum == 2) 461 AllOpnds.push_back(&Opnd0_1); 462 if (Opnd1_ExpNum == 2) 463 AllOpnds.push_back(&Opnd1_1); 464 465 // Compute instruction quota. We should save at least one instruction. 466 unsigned InstQuota = 0; 467 468 Value *V0 = I->getOperand(0); 469 Value *V1 = I->getOperand(1); 470 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 471 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 472 473 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 474 return R; 475 } 476 477 if (OpndNum != 2) { 478 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 479 // splitted into two addends, say "V = X - Y", the instruction would have 480 // been optimized into "I = Y - X" in the previous steps. 481 // 482 const FAddendCoef &CE = Opnd0.getCoef(); 483 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 484 } 485 486 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 487 if (Opnd1_ExpNum) { 488 AddendVect AllOpnds; 489 AllOpnds.push_back(&Opnd0); 490 AllOpnds.push_back(&Opnd1_0); 491 if (Opnd1_ExpNum == 2) 492 AllOpnds.push_back(&Opnd1_1); 493 494 if (Value *R = simplifyFAdd(AllOpnds, 1)) 495 return R; 496 } 497 498 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 499 if (Opnd0_ExpNum) { 500 AddendVect AllOpnds; 501 AllOpnds.push_back(&Opnd1); 502 AllOpnds.push_back(&Opnd0_0); 503 if (Opnd0_ExpNum == 2) 504 AllOpnds.push_back(&Opnd0_1); 505 506 if (Value *R = simplifyFAdd(AllOpnds, 1)) 507 return R; 508 } 509 510 return nullptr; 511 } 512 513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 514 unsigned AddendNum = Addends.size(); 515 assert(AddendNum <= 4 && "Too many addends"); 516 517 // For saving intermediate results; 518 unsigned NextTmpIdx = 0; 519 FAddend TmpResult[3]; 520 521 // Points to the constant addend of the resulting simplified expression. 522 // If the resulting expr has constant-addend, this constant-addend is 523 // desirable to reside at the top of the resulting expression tree. Placing 524 // constant close to supper-expr(s) will potentially reveal some optimization 525 // opportunities in super-expr(s). 526 const FAddend *ConstAdd = nullptr; 527 528 // Simplified addends are placed <SimpVect>. 529 AddendVect SimpVect; 530 531 // The outer loop works on one symbolic-value at a time. Suppose the input 532 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 533 // The symbolic-values will be processed in this order: x, y, z. 534 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 535 536 const FAddend *ThisAddend = Addends[SymIdx]; 537 if (!ThisAddend) { 538 // This addend was processed before. 539 continue; 540 } 541 542 Value *Val = ThisAddend->getSymVal(); 543 unsigned StartIdx = SimpVect.size(); 544 SimpVect.push_back(ThisAddend); 545 546 // The inner loop collects addends sharing same symbolic-value, and these 547 // addends will be later on folded into a single addend. Following above 548 // example, if the symbolic value "y" is being processed, the inner loop 549 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 550 // be later on folded into "<b1+b2, y>". 551 for (unsigned SameSymIdx = SymIdx + 1; 552 SameSymIdx < AddendNum; SameSymIdx++) { 553 const FAddend *T = Addends[SameSymIdx]; 554 if (T && T->getSymVal() == Val) { 555 // Set null such that next iteration of the outer loop will not process 556 // this addend again. 557 Addends[SameSymIdx] = nullptr; 558 SimpVect.push_back(T); 559 } 560 } 561 562 // If multiple addends share same symbolic value, fold them together. 563 if (StartIdx + 1 != SimpVect.size()) { 564 FAddend &R = TmpResult[NextTmpIdx ++]; 565 R = *SimpVect[StartIdx]; 566 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 567 R += *SimpVect[Idx]; 568 569 // Pop all addends being folded and push the resulting folded addend. 570 SimpVect.resize(StartIdx); 571 if (Val) { 572 if (!R.isZero()) { 573 SimpVect.push_back(&R); 574 } 575 } else { 576 // Don't push constant addend at this time. It will be the last element 577 // of <SimpVect>. 578 ConstAdd = &R; 579 } 580 } 581 } 582 583 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 584 "out-of-bound access"); 585 586 if (ConstAdd) 587 SimpVect.push_back(ConstAdd); 588 589 Value *Result; 590 if (!SimpVect.empty()) 591 Result = createNaryFAdd(SimpVect, InstrQuota); 592 else { 593 // The addition is folded to 0.0. 594 Result = ConstantFP::get(Instr->getType(), 0.0); 595 } 596 597 return Result; 598 } 599 600 Value *FAddCombine::createNaryFAdd 601 (const AddendVect &Opnds, unsigned InstrQuota) { 602 assert(!Opnds.empty() && "Expect at least one addend"); 603 604 // Step 1: Check if the # of instructions needed exceeds the quota. 605 606 unsigned InstrNeeded = calcInstrNumber(Opnds); 607 if (InstrNeeded > InstrQuota) 608 return nullptr; 609 610 initCreateInstNum(); 611 612 // step 2: Emit the N-ary addition. 613 // Note that at most three instructions are involved in Fadd-InstCombine: the 614 // addition in question, and at most two neighboring instructions. 615 // The resulting optimized addition should have at least one less instruction 616 // than the original addition expression tree. This implies that the resulting 617 // N-ary addition has at most two instructions, and we don't need to worry 618 // about tree-height when constructing the N-ary addition. 619 620 Value *LastVal = nullptr; 621 bool LastValNeedNeg = false; 622 623 // Iterate the addends, creating fadd/fsub using adjacent two addends. 624 for (const FAddend *Opnd : Opnds) { 625 bool NeedNeg; 626 Value *V = createAddendVal(*Opnd, NeedNeg); 627 if (!LastVal) { 628 LastVal = V; 629 LastValNeedNeg = NeedNeg; 630 continue; 631 } 632 633 if (LastValNeedNeg == NeedNeg) { 634 LastVal = createFAdd(LastVal, V); 635 continue; 636 } 637 638 if (LastValNeedNeg) 639 LastVal = createFSub(V, LastVal); 640 else 641 LastVal = createFSub(LastVal, V); 642 643 LastValNeedNeg = false; 644 } 645 646 if (LastValNeedNeg) { 647 LastVal = createFNeg(LastVal); 648 } 649 650 #ifndef NDEBUG 651 assert(CreateInstrNum == InstrNeeded && 652 "Inconsistent in instruction numbers"); 653 #endif 654 655 return LastVal; 656 } 657 658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 659 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 660 if (Instruction *I = dyn_cast<Instruction>(V)) 661 createInstPostProc(I); 662 return V; 663 } 664 665 Value *FAddCombine::createFNeg(Value *V) { 666 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 667 Value *NewV = createFSub(Zero, V); 668 if (Instruction *I = dyn_cast<Instruction>(NewV)) 669 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 670 return NewV; 671 } 672 673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 674 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 675 if (Instruction *I = dyn_cast<Instruction>(V)) 676 createInstPostProc(I); 677 return V; 678 } 679 680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 681 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 682 if (Instruction *I = dyn_cast<Instruction>(V)) 683 createInstPostProc(I); 684 return V; 685 } 686 687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 688 NewInstr->setDebugLoc(Instr->getDebugLoc()); 689 690 // Keep track of the number of instruction created. 691 if (!NoNumber) 692 incCreateInstNum(); 693 694 // Propagate fast-math flags 695 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 696 } 697 698 // Return the number of instruction needed to emit the N-ary addition. 699 // NOTE: Keep this function in sync with createAddendVal(). 700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 701 unsigned OpndNum = Opnds.size(); 702 unsigned InstrNeeded = OpndNum - 1; 703 704 // The number of addends in the form of "(-1)*x". 705 unsigned NegOpndNum = 0; 706 707 // Adjust the number of instructions needed to emit the N-ary add. 708 for (const FAddend *Opnd : Opnds) { 709 if (Opnd->isConstant()) 710 continue; 711 712 // The constant check above is really for a few special constant 713 // coefficients. 714 if (isa<UndefValue>(Opnd->getSymVal())) 715 continue; 716 717 const FAddendCoef &CE = Opnd->getCoef(); 718 if (CE.isMinusOne() || CE.isMinusTwo()) 719 NegOpndNum++; 720 721 // Let the addend be "c * x". If "c == +/-1", the value of the addend 722 // is immediately available; otherwise, it needs exactly one instruction 723 // to evaluate the value. 724 if (!CE.isMinusOne() && !CE.isOne()) 725 InstrNeeded++; 726 } 727 if (NegOpndNum == OpndNum) 728 InstrNeeded++; 729 return InstrNeeded; 730 } 731 732 // Input Addend Value NeedNeg(output) 733 // ================================================================ 734 // Constant C C false 735 // <+/-1, V> V coefficient is -1 736 // <2/-2, V> "fadd V, V" coefficient is -2 737 // <C, V> "fmul V, C" false 738 // 739 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 740 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 741 const FAddendCoef &Coeff = Opnd.getCoef(); 742 743 if (Opnd.isConstant()) { 744 NeedNeg = false; 745 return Coeff.getValue(Instr->getType()); 746 } 747 748 Value *OpndVal = Opnd.getSymVal(); 749 750 if (Coeff.isMinusOne() || Coeff.isOne()) { 751 NeedNeg = Coeff.isMinusOne(); 752 return OpndVal; 753 } 754 755 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 756 NeedNeg = Coeff.isMinusTwo(); 757 return createFAdd(OpndVal, OpndVal); 758 } 759 760 NeedNeg = false; 761 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 762 } 763 764 // Checks if any operand is negative and we can convert add to sub. 765 // This function checks for following negative patterns 766 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 767 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 768 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 769 static Value *checkForNegativeOperand(BinaryOperator &I, 770 InstCombiner::BuilderTy &Builder) { 771 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 772 773 // This function creates 2 instructions to replace ADD, we need at least one 774 // of LHS or RHS to have one use to ensure benefit in transform. 775 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 776 return nullptr; 777 778 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 779 const APInt *C1 = nullptr, *C2 = nullptr; 780 781 // if ONE is on other side, swap 782 if (match(RHS, m_Add(m_Value(X), m_One()))) 783 std::swap(LHS, RHS); 784 785 if (match(LHS, m_Add(m_Value(X), m_One()))) { 786 // if XOR on other side, swap 787 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 788 std::swap(X, RHS); 789 790 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 791 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 792 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 793 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 794 Value *NewAnd = Builder.CreateAnd(Z, *C1); 795 return Builder.CreateSub(RHS, NewAnd, "sub"); 796 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 797 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 798 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 799 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 800 return Builder.CreateSub(RHS, NewOr, "sub"); 801 } 802 } 803 } 804 805 // Restore LHS and RHS 806 LHS = I.getOperand(0); 807 RHS = I.getOperand(1); 808 809 // if XOR is on other side, swap 810 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 811 std::swap(LHS, RHS); 812 813 // C2 is ODD 814 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 815 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 816 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 817 if (C1->countTrailingZeros() == 0) 818 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 819 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 820 return Builder.CreateSub(RHS, NewOr, "sub"); 821 } 822 return nullptr; 823 } 824 825 /// Wrapping flags may allow combining constants separated by an extend. 826 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 827 InstCombiner::BuilderTy &Builder) { 828 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 829 Type *Ty = Add.getType(); 830 Constant *Op1C; 831 if (!match(Op1, m_Constant(Op1C))) 832 return nullptr; 833 834 // Try this match first because it results in an add in the narrow type. 835 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 836 Value *X; 837 const APInt *C1, *C2; 838 if (match(Op1, m_APInt(C1)) && 839 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 840 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 841 Constant *NewC = 842 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 843 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 844 } 845 846 // More general combining of constants in the wide type. 847 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 848 Constant *NarrowC; 849 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 850 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 851 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 852 Value *WideX = Builder.CreateSExt(X, Ty); 853 return BinaryOperator::CreateAdd(WideX, NewC); 854 } 855 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 856 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 857 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 858 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 859 Value *WideX = Builder.CreateZExt(X, Ty); 860 return BinaryOperator::CreateAdd(WideX, NewC); 861 } 862 863 return nullptr; 864 } 865 866 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 867 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 868 Constant *Op1C; 869 if (!match(Op1, m_Constant(Op1C))) 870 return nullptr; 871 872 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 873 return NV; 874 875 Value *X; 876 Constant *Op00C; 877 878 // add (sub C1, X), C2 --> sub (add C1, C2), X 879 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 880 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 881 882 Value *Y; 883 884 // add (sub X, Y), -1 --> add (not Y), X 885 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 886 match(Op1, m_AllOnes())) 887 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 888 889 // zext(bool) + C -> bool ? C + 1 : C 890 if (match(Op0, m_ZExt(m_Value(X))) && 891 X->getType()->getScalarSizeInBits() == 1) 892 return SelectInst::Create(X, AddOne(Op1C), Op1); 893 894 // ~X + C --> (C-1) - X 895 if (match(Op0, m_Not(m_Value(X)))) 896 return BinaryOperator::CreateSub(SubOne(Op1C), X); 897 898 const APInt *C; 899 if (!match(Op1, m_APInt(C))) 900 return nullptr; 901 902 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 903 const APInt *C2; 904 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 905 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 906 907 if (C->isSignMask()) { 908 // If wrapping is not allowed, then the addition must set the sign bit: 909 // X + (signmask) --> X | signmask 910 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 911 return BinaryOperator::CreateOr(Op0, Op1); 912 913 // If wrapping is allowed, then the addition flips the sign bit of LHS: 914 // X + (signmask) --> X ^ signmask 915 return BinaryOperator::CreateXor(Op0, Op1); 916 } 917 918 // Is this add the last step in a convoluted sext? 919 // add(zext(xor i16 X, -32768), -32768) --> sext X 920 Type *Ty = Add.getType(); 921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 923 return CastInst::Create(Instruction::SExt, X, Ty); 924 925 if (C->isOneValue() && Op0->hasOneUse()) { 926 // add (sext i1 X), 1 --> zext (not X) 927 // TODO: The smallest IR representation is (select X, 0, 1), and that would 928 // not require the one-use check. But we need to remove a transform in 929 // visitSelect and make sure that IR value tracking for select is equal or 930 // better than for these ops. 931 if (match(Op0, m_SExt(m_Value(X))) && 932 X->getType()->getScalarSizeInBits() == 1) 933 return new ZExtInst(Builder.CreateNot(X), Ty); 934 935 // Shifts and add used to flip and mask off the low bit: 936 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 937 const APInt *C3; 938 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 939 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 940 Value *NotX = Builder.CreateNot(X); 941 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 942 } 943 } 944 945 return nullptr; 946 } 947 948 // Matches multiplication expression Op * C where C is a constant. Returns the 949 // constant value in C and the other operand in Op. Returns true if such a 950 // match is found. 951 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 952 const APInt *AI; 953 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 954 C = *AI; 955 return true; 956 } 957 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 958 C = APInt(AI->getBitWidth(), 1); 959 C <<= *AI; 960 return true; 961 } 962 return false; 963 } 964 965 // Matches remainder expression Op % C where C is a constant. Returns the 966 // constant value in C and the other operand in Op. Returns the signedness of 967 // the remainder operation in IsSigned. Returns true if such a match is 968 // found. 969 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 970 const APInt *AI; 971 IsSigned = false; 972 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 973 IsSigned = true; 974 C = *AI; 975 return true; 976 } 977 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 978 C = *AI; 979 return true; 980 } 981 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 982 C = *AI + 1; 983 return true; 984 } 985 return false; 986 } 987 988 // Matches division expression Op / C with the given signedness as indicated 989 // by IsSigned, where C is a constant. Returns the constant value in C and the 990 // other operand in Op. Returns true if such a match is found. 991 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 992 const APInt *AI; 993 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 994 C = *AI; 995 return true; 996 } 997 if (!IsSigned) { 998 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 999 C = *AI; 1000 return true; 1001 } 1002 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1003 C = APInt(AI->getBitWidth(), 1); 1004 C <<= *AI; 1005 return true; 1006 } 1007 } 1008 return false; 1009 } 1010 1011 // Returns whether C0 * C1 with the given signedness overflows. 1012 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1013 bool overflow; 1014 if (IsSigned) 1015 (void)C0.smul_ov(C1, overflow); 1016 else 1017 (void)C0.umul_ov(C1, overflow); 1018 return overflow; 1019 } 1020 1021 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1022 // does not overflow. 1023 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { 1024 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1025 Value *X, *MulOpV; 1026 APInt C0, MulOpC; 1027 bool IsSigned; 1028 // Match I = X % C0 + MulOpV * C0 1029 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1030 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1031 C0 == MulOpC) { 1032 Value *RemOpV; 1033 APInt C1; 1034 bool Rem2IsSigned; 1035 // Match MulOpC = RemOpV % C1 1036 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1037 IsSigned == Rem2IsSigned) { 1038 Value *DivOpV; 1039 APInt DivOpC; 1040 // Match RemOpV = X / C0 1041 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1042 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1043 Value *NewDivisor = 1044 ConstantInt::get(X->getType()->getContext(), C0 * C1); 1045 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1046 : Builder.CreateURem(X, NewDivisor, "urem"); 1047 } 1048 } 1049 } 1050 1051 return nullptr; 1052 } 1053 1054 /// Fold 1055 /// (1 << NBits) - 1 1056 /// Into: 1057 /// ~(-(1 << NBits)) 1058 /// Because a 'not' is better for bit-tracking analysis and other transforms 1059 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1060 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1061 InstCombiner::BuilderTy &Builder) { 1062 Value *NBits; 1063 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1064 return nullptr; 1065 1066 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1067 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1068 // Be wary of constant folding. 1069 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1070 // Always NSW. But NUW propagates from `add`. 1071 BOp->setHasNoSignedWrap(); 1072 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1073 } 1074 1075 return BinaryOperator::CreateNot(NotMask, I.getName()); 1076 } 1077 1078 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1079 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1080 Type *Ty = I.getType(); 1081 auto getUAddSat = [&]() { 1082 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1083 }; 1084 1085 // add (umin X, ~Y), Y --> uaddsat X, Y 1086 Value *X, *Y; 1087 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1088 m_Deferred(Y)))) 1089 return CallInst::Create(getUAddSat(), { X, Y }); 1090 1091 // add (umin X, ~C), C --> uaddsat X, C 1092 const APInt *C, *NotC; 1093 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1094 *C == ~*NotC) 1095 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1096 1097 return nullptr; 1098 } 1099 1100 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1101 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1102 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1103 SQ.getWithInstruction(&I))) 1104 return replaceInstUsesWith(I, V); 1105 1106 if (SimplifyAssociativeOrCommutative(I)) 1107 return &I; 1108 1109 if (Instruction *X = foldVectorBinop(I)) 1110 return X; 1111 1112 // (A*B)+(A*C) -> A*(B+C) etc 1113 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1114 return replaceInstUsesWith(I, V); 1115 1116 if (Instruction *X = foldAddWithConstant(I)) 1117 return X; 1118 1119 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1120 return X; 1121 1122 // FIXME: This should be moved into the above helper function to allow these 1123 // transforms for general constant or constant splat vectors. 1124 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1125 Type *Ty = I.getType(); 1126 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1127 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1128 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1129 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1130 const APInt &RHSVal = CI->getValue(); 1131 unsigned ExtendAmt = 0; 1132 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1133 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1134 if (XorRHS->getValue() == -RHSVal) { 1135 if (RHSVal.isPowerOf2()) 1136 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1137 else if (XorRHS->getValue().isPowerOf2()) 1138 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1139 } 1140 1141 if (ExtendAmt) { 1142 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1143 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1144 ExtendAmt = 0; 1145 } 1146 1147 if (ExtendAmt) { 1148 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1149 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1150 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1151 } 1152 1153 // If this is a xor that was canonicalized from a sub, turn it back into 1154 // a sub and fuse this add with it. 1155 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1156 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1157 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1158 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1159 XorLHS); 1160 } 1161 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1162 // transform them into (X + (signmask ^ C)) 1163 if (XorRHS->getValue().isSignMask()) 1164 return BinaryOperator::CreateAdd(XorLHS, 1165 ConstantExpr::getXor(XorRHS, CI)); 1166 } 1167 } 1168 1169 if (Ty->isIntOrIntVectorTy(1)) 1170 return BinaryOperator::CreateXor(LHS, RHS); 1171 1172 // X + X --> X << 1 1173 if (LHS == RHS) { 1174 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1175 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1176 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1177 return Shl; 1178 } 1179 1180 Value *A, *B; 1181 if (match(LHS, m_Neg(m_Value(A)))) { 1182 // -A + -B --> -(A + B) 1183 if (match(RHS, m_Neg(m_Value(B)))) 1184 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1185 1186 // -A + B --> B - A 1187 return BinaryOperator::CreateSub(RHS, A); 1188 } 1189 1190 // Canonicalize sext to zext for better value tracking potential. 1191 // add A, sext(B) --> sub A, zext(B) 1192 if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) && 1193 B->getType()->isIntOrIntVectorTy(1)) 1194 return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty)); 1195 1196 // A + -B --> A - B 1197 if (match(RHS, m_Neg(m_Value(B)))) 1198 return BinaryOperator::CreateSub(LHS, B); 1199 1200 if (Value *V = checkForNegativeOperand(I, Builder)) 1201 return replaceInstUsesWith(I, V); 1202 1203 // (A + 1) + ~B --> A - B 1204 // ~B + (A + 1) --> A - B 1205 // (~B + A) + 1 --> A - B 1206 // (A + ~B) + 1 --> A - B 1207 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1208 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1209 return BinaryOperator::CreateSub(A, B); 1210 1211 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1212 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1213 1214 // A+B --> A|B iff A and B have no bits set in common. 1215 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1216 return BinaryOperator::CreateOr(LHS, RHS); 1217 1218 // FIXME: We already did a check for ConstantInt RHS above this. 1219 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1220 // removal. 1221 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1222 // (X & FF00) + xx00 -> (X+xx00) & FF00 1223 Value *X; 1224 ConstantInt *C2; 1225 if (LHS->hasOneUse() && 1226 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1227 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1228 // See if all bits from the first bit set in the Add RHS up are included 1229 // in the mask. First, get the rightmost bit. 1230 const APInt &AddRHSV = CRHS->getValue(); 1231 1232 // Form a mask of all bits from the lowest bit added through the top. 1233 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1234 1235 // See if the and mask includes all of these bits. 1236 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1237 1238 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1239 // Okay, the xform is safe. Insert the new add pronto. 1240 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1241 return BinaryOperator::CreateAnd(NewAdd, C2); 1242 } 1243 } 1244 } 1245 1246 // add (select X 0 (sub n A)) A --> select X A n 1247 { 1248 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1249 Value *A = RHS; 1250 if (!SI) { 1251 SI = dyn_cast<SelectInst>(RHS); 1252 A = LHS; 1253 } 1254 if (SI && SI->hasOneUse()) { 1255 Value *TV = SI->getTrueValue(); 1256 Value *FV = SI->getFalseValue(); 1257 Value *N; 1258 1259 // Can we fold the add into the argument of the select? 1260 // We check both true and false select arguments for a matching subtract. 1261 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1262 // Fold the add into the true select value. 1263 return SelectInst::Create(SI->getCondition(), N, A); 1264 1265 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1266 // Fold the add into the false select value. 1267 return SelectInst::Create(SI->getCondition(), A, N); 1268 } 1269 } 1270 1271 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1272 return Ext; 1273 1274 // (add (xor A, B) (and A, B)) --> (or A, B) 1275 // (add (and A, B) (xor A, B)) --> (or A, B) 1276 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1277 m_c_And(m_Deferred(A), m_Deferred(B))))) 1278 return BinaryOperator::CreateOr(A, B); 1279 1280 // (add (or A, B) (and A, B)) --> (add A, B) 1281 // (add (and A, B) (or A, B)) --> (add A, B) 1282 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1283 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1284 I.setOperand(0, A); 1285 I.setOperand(1, B); 1286 return &I; 1287 } 1288 1289 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1290 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1291 // computeKnownBits. 1292 bool Changed = false; 1293 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1294 Changed = true; 1295 I.setHasNoSignedWrap(true); 1296 } 1297 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1298 Changed = true; 1299 I.setHasNoUnsignedWrap(true); 1300 } 1301 1302 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1303 return V; 1304 1305 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1306 return SatAdd; 1307 1308 return Changed ? &I : nullptr; 1309 } 1310 1311 /// Eliminate an op from a linear interpolation (lerp) pattern. 1312 static Instruction *factorizeLerp(BinaryOperator &I, 1313 InstCombiner::BuilderTy &Builder) { 1314 Value *X, *Y, *Z; 1315 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1316 m_OneUse(m_FSub(m_FPOne(), 1317 m_Value(Z))))), 1318 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1319 return nullptr; 1320 1321 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1322 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1323 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1324 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1325 } 1326 1327 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1328 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1329 InstCombiner::BuilderTy &Builder) { 1330 assert((I.getOpcode() == Instruction::FAdd || 1331 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1332 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1333 "FP factorization requires FMF"); 1334 1335 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1336 return Lerp; 1337 1338 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1339 Value *X, *Y, *Z; 1340 bool IsFMul; 1341 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && 1342 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || 1343 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && 1344 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) 1345 IsFMul = true; 1346 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && 1347 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) 1348 IsFMul = false; 1349 else 1350 return nullptr; 1351 1352 // (X * Z) + (Y * Z) --> (X + Y) * Z 1353 // (X * Z) - (Y * Z) --> (X - Y) * Z 1354 // (X / Z) + (Y / Z) --> (X + Y) / Z 1355 // (X / Z) - (Y / Z) --> (X - Y) / Z 1356 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1357 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1358 : Builder.CreateFSubFMF(X, Y, &I); 1359 1360 // Bail out if we just created a denormal constant. 1361 // TODO: This is copied from a previous implementation. Is it necessary? 1362 const APFloat *C; 1363 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1364 return nullptr; 1365 1366 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1367 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1368 } 1369 1370 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1371 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1372 I.getFastMathFlags(), 1373 SQ.getWithInstruction(&I))) 1374 return replaceInstUsesWith(I, V); 1375 1376 if (SimplifyAssociativeOrCommutative(I)) 1377 return &I; 1378 1379 if (Instruction *X = foldVectorBinop(I)) 1380 return X; 1381 1382 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1383 return FoldedFAdd; 1384 1385 // (-X) + Y --> Y - X 1386 Value *X, *Y; 1387 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1388 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1389 1390 // Similar to above, but look through fmul/fdiv for the negated term. 1391 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1392 Value *Z; 1393 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1394 m_Value(Z)))) { 1395 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1396 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1397 } 1398 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1399 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1400 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1401 m_Value(Z))) || 1402 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1403 m_Value(Z)))) { 1404 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1405 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1406 } 1407 1408 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1409 // integer add followed by a promotion. 1410 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1411 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1412 Value *LHSIntVal = LHSConv->getOperand(0); 1413 Type *FPType = LHSConv->getType(); 1414 1415 // TODO: This check is overly conservative. In many cases known bits 1416 // analysis can tell us that the result of the addition has less significant 1417 // bits than the integer type can hold. 1418 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1419 Type *FScalarTy = FTy->getScalarType(); 1420 Type *IScalarTy = ITy->getScalarType(); 1421 1422 // Do we have enough bits in the significand to represent the result of 1423 // the integer addition? 1424 unsigned MaxRepresentableBits = 1425 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1426 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1427 }; 1428 1429 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1430 // ... if the constant fits in the integer value. This is useful for things 1431 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1432 // requires a constant pool load, and generally allows the add to be better 1433 // instcombined. 1434 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1435 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1436 Constant *CI = 1437 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1438 if (LHSConv->hasOneUse() && 1439 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1440 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1441 // Insert the new integer add. 1442 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1443 return new SIToFPInst(NewAdd, I.getType()); 1444 } 1445 } 1446 1447 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1448 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1449 Value *RHSIntVal = RHSConv->getOperand(0); 1450 // It's enough to check LHS types only because we require int types to 1451 // be the same for this transform. 1452 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1453 // Only do this if x/y have the same type, if at least one of them has a 1454 // single use (so we don't increase the number of int->fp conversions), 1455 // and if the integer add will not overflow. 1456 if (LHSIntVal->getType() == RHSIntVal->getType() && 1457 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1458 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1459 // Insert the new integer add. 1460 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1461 return new SIToFPInst(NewAdd, I.getType()); 1462 } 1463 } 1464 } 1465 } 1466 1467 // Handle specials cases for FAdd with selects feeding the operation 1468 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1469 return replaceInstUsesWith(I, V); 1470 1471 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1472 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1473 return F; 1474 if (Value *V = FAddCombine(Builder).simplify(&I)) 1475 return replaceInstUsesWith(I, V); 1476 } 1477 1478 return nullptr; 1479 } 1480 1481 /// Optimize pointer differences into the same array into a size. Consider: 1482 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1483 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1484 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1485 Type *Ty) { 1486 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1487 // this. 1488 bool Swapped = false; 1489 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1490 1491 // For now we require one side to be the base pointer "A" or a constant 1492 // GEP derived from it. 1493 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1494 // (gep X, ...) - X 1495 if (LHSGEP->getOperand(0) == RHS) { 1496 GEP1 = LHSGEP; 1497 Swapped = false; 1498 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1499 // (gep X, ...) - (gep X, ...) 1500 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1501 RHSGEP->getOperand(0)->stripPointerCasts()) { 1502 GEP2 = RHSGEP; 1503 GEP1 = LHSGEP; 1504 Swapped = false; 1505 } 1506 } 1507 } 1508 1509 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1510 // X - (gep X, ...) 1511 if (RHSGEP->getOperand(0) == LHS) { 1512 GEP1 = RHSGEP; 1513 Swapped = true; 1514 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1515 // (gep X, ...) - (gep X, ...) 1516 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1517 LHSGEP->getOperand(0)->stripPointerCasts()) { 1518 GEP2 = LHSGEP; 1519 GEP1 = RHSGEP; 1520 Swapped = true; 1521 } 1522 } 1523 } 1524 1525 if (!GEP1) 1526 // No GEP found. 1527 return nullptr; 1528 1529 if (GEP2) { 1530 // (gep X, ...) - (gep X, ...) 1531 // 1532 // Avoid duplicating the arithmetic if there are more than one non-constant 1533 // indices between the two GEPs and either GEP has a non-constant index and 1534 // multiple users. If zero non-constant index, the result is a constant and 1535 // there is no duplication. If one non-constant index, the result is an add 1536 // or sub with a constant, which is no larger than the original code, and 1537 // there's no duplicated arithmetic, even if either GEP has multiple 1538 // users. If more than one non-constant indices combined, as long as the GEP 1539 // with at least one non-constant index doesn't have multiple users, there 1540 // is no duplication. 1541 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1542 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1543 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1544 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1545 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1546 return nullptr; 1547 } 1548 } 1549 1550 // Emit the offset of the GEP and an intptr_t. 1551 Value *Result = EmitGEPOffset(GEP1); 1552 1553 // If we had a constant expression GEP on the other side offsetting the 1554 // pointer, subtract it from the offset we have. 1555 if (GEP2) { 1556 Value *Offset = EmitGEPOffset(GEP2); 1557 Result = Builder.CreateSub(Result, Offset); 1558 } 1559 1560 // If we have p - gep(p, ...) then we have to negate the result. 1561 if (Swapped) 1562 Result = Builder.CreateNeg(Result, "diff.neg"); 1563 1564 return Builder.CreateIntCast(Result, Ty, true); 1565 } 1566 1567 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1568 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1569 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1570 SQ.getWithInstruction(&I))) 1571 return replaceInstUsesWith(I, V); 1572 1573 if (Instruction *X = foldVectorBinop(I)) 1574 return X; 1575 1576 // (A*B)-(A*C) -> A*(B-C) etc 1577 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1578 return replaceInstUsesWith(I, V); 1579 1580 // If this is a 'B = x-(-A)', change to B = x+A. 1581 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1582 if (Value *V = dyn_castNegVal(Op1)) { 1583 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1584 1585 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1586 assert(BO->getOpcode() == Instruction::Sub && 1587 "Expected a subtraction operator!"); 1588 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1589 Res->setHasNoSignedWrap(true); 1590 } else { 1591 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1592 Res->setHasNoSignedWrap(true); 1593 } 1594 1595 return Res; 1596 } 1597 1598 if (I.getType()->isIntOrIntVectorTy(1)) 1599 return BinaryOperator::CreateXor(Op0, Op1); 1600 1601 // Replace (-1 - A) with (~A). 1602 if (match(Op0, m_AllOnes())) 1603 return BinaryOperator::CreateNot(Op1); 1604 1605 // (~X) - (~Y) --> Y - X 1606 Value *X, *Y; 1607 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1608 return BinaryOperator::CreateSub(Y, X); 1609 1610 // (X + -1) - Y --> ~Y + X 1611 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1612 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1613 1614 // Y - (X + 1) --> ~X + Y 1615 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One())))) 1616 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0); 1617 1618 // Y - ~X --> (X + 1) + Y 1619 if (match(Op1, m_OneUse(m_Not(m_Value(X))))) { 1620 return BinaryOperator::CreateAdd( 1621 Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X); 1622 } 1623 1624 if (Constant *C = dyn_cast<Constant>(Op0)) { 1625 bool IsNegate = match(C, m_ZeroInt()); 1626 Value *X; 1627 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1628 // 0 - (zext bool) --> sext bool 1629 // C - (zext bool) --> bool ? C - 1 : C 1630 if (IsNegate) 1631 return CastInst::CreateSExtOrBitCast(X, I.getType()); 1632 return SelectInst::Create(X, SubOne(C), C); 1633 } 1634 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1635 // 0 - (sext bool) --> zext bool 1636 // C - (sext bool) --> bool ? C + 1 : C 1637 if (IsNegate) 1638 return CastInst::CreateZExtOrBitCast(X, I.getType()); 1639 return SelectInst::Create(X, AddOne(C), C); 1640 } 1641 1642 // C - ~X == X + (1+C) 1643 if (match(Op1, m_Not(m_Value(X)))) 1644 return BinaryOperator::CreateAdd(X, AddOne(C)); 1645 1646 // Try to fold constant sub into select arguments. 1647 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1648 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1649 return R; 1650 1651 // Try to fold constant sub into PHI values. 1652 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1653 if (Instruction *R = foldOpIntoPhi(I, PN)) 1654 return R; 1655 1656 Constant *C2; 1657 1658 // C-(C2-X) --> X+(C-C2) 1659 if (match(Op1, m_Sub(m_Constant(C2), m_Value(X)))) 1660 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1661 1662 // C-(X+C2) --> (C-C2)-X 1663 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1664 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1665 } 1666 1667 const APInt *Op0C; 1668 if (match(Op0, m_APInt(Op0C))) { 1669 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1670 1671 // -(X >>u 31) -> (X >>s 31) 1672 // -(X >>s 31) -> (X >>u 31) 1673 if (Op0C->isNullValue()) { 1674 Value *X; 1675 const APInt *ShAmt; 1676 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1677 *ShAmt == BitWidth - 1) { 1678 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1679 return BinaryOperator::CreateAShr(X, ShAmtOp); 1680 } 1681 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1682 *ShAmt == BitWidth - 1) { 1683 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1684 return BinaryOperator::CreateLShr(X, ShAmtOp); 1685 } 1686 1687 if (Op1->hasOneUse()) { 1688 Value *LHS, *RHS; 1689 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; 1690 if (SPF == SPF_ABS || SPF == SPF_NABS) { 1691 // This is a negate of an ABS/NABS pattern. Just swap the operands 1692 // of the select. 1693 SelectInst *SI = cast<SelectInst>(Op1); 1694 Value *TrueVal = SI->getTrueValue(); 1695 Value *FalseVal = SI->getFalseValue(); 1696 SI->setTrueValue(FalseVal); 1697 SI->setFalseValue(TrueVal); 1698 // Don't swap prof metadata, we didn't change the branch behavior. 1699 return replaceInstUsesWith(I, SI); 1700 } 1701 } 1702 } 1703 1704 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1705 // zero. 1706 if (Op0C->isMask()) { 1707 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1708 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1709 return BinaryOperator::CreateXor(Op1, Op0); 1710 } 1711 } 1712 1713 { 1714 Value *Y; 1715 // X-(X+Y) == -Y X-(Y+X) == -Y 1716 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1717 return BinaryOperator::CreateNeg(Y); 1718 1719 // (X-Y)-X == -Y 1720 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1721 return BinaryOperator::CreateNeg(Y); 1722 } 1723 1724 // (sub (or A, B), (xor A, B)) --> (and A, B) 1725 { 1726 Value *A, *B; 1727 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1728 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1729 return BinaryOperator::CreateAnd(A, B); 1730 } 1731 1732 { 1733 Value *Y; 1734 // ((X | Y) - X) --> (~X & Y) 1735 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1736 return BinaryOperator::CreateAnd( 1737 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1738 } 1739 1740 if (Op1->hasOneUse()) { 1741 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1742 Constant *C = nullptr; 1743 1744 // (X - (Y - Z)) --> (X + (Z - Y)). 1745 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1746 return BinaryOperator::CreateAdd(Op0, 1747 Builder.CreateSub(Z, Y, Op1->getName())); 1748 1749 // (X - (X & Y)) --> (X & ~Y) 1750 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1751 return BinaryOperator::CreateAnd(Op0, 1752 Builder.CreateNot(Y, Y->getName() + ".not")); 1753 1754 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1755 // TODO: This could be extended to match arbitrary vector constants. 1756 const APInt *DivC; 1757 if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) && 1758 !DivC->isMinSignedValue() && *DivC != 1) { 1759 Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC)); 1760 Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC); 1761 BO->setIsExact(cast<BinaryOperator>(Op1)->isExact()); 1762 return BO; 1763 } 1764 1765 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1766 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1767 if (Value *XNeg = dyn_castNegVal(X)) 1768 return BinaryOperator::CreateShl(XNeg, Y); 1769 1770 // Subtracting -1/0 is the same as adding 1/0: 1771 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1772 // 'nuw' is dropped in favor of the canonical form. 1773 if (match(Op1, m_SExt(m_Value(Y))) && 1774 Y->getType()->getScalarSizeInBits() == 1) { 1775 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1776 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1777 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1778 return Add; 1779 } 1780 1781 // X - A*-B -> X + A*B 1782 // X - -A*B -> X + A*B 1783 Value *A, *B; 1784 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1785 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1786 1787 // X - A*C -> X + A*-C 1788 // No need to handle commuted multiply because multiply handling will 1789 // ensure constant will be move to the right hand side. 1790 if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) { 1791 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C)); 1792 return BinaryOperator::CreateAdd(Op0, NewMul); 1793 } 1794 } 1795 1796 { 1797 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A 1798 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A 1799 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O) 1800 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O) 1801 // So long as O here is freely invertible, this will be neutral or a win. 1802 Value *LHS, *RHS, *A; 1803 Value *NotA = Op0, *MinMax = Op1; 1804 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 1805 if (!SelectPatternResult::isMinOrMax(SPF)) { 1806 NotA = Op1; 1807 MinMax = Op0; 1808 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 1809 } 1810 if (SelectPatternResult::isMinOrMax(SPF) && 1811 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { 1812 if (NotA == LHS) 1813 std::swap(LHS, RHS); 1814 // LHS is now O above and expected to have at least 2 uses (the min/max) 1815 // NotA is epected to have 2 uses from the min/max and 1 from the sub. 1816 if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 1817 !NotA->hasNUsesOrMore(4)) { 1818 // Note: We don't generate the inverse max/min, just create the not of 1819 // it and let other folds do the rest. 1820 Value *Not = Builder.CreateNot(MinMax); 1821 if (NotA == Op0) 1822 return BinaryOperator::CreateSub(Not, A); 1823 else 1824 return BinaryOperator::CreateSub(A, Not); 1825 } 1826 } 1827 } 1828 1829 // Optimize pointer differences into the same array into a size. Consider: 1830 // &A[10] - &A[0]: we should compile this to "10". 1831 Value *LHSOp, *RHSOp; 1832 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1833 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1834 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1835 return replaceInstUsesWith(I, Res); 1836 1837 // trunc(p)-trunc(q) -> trunc(p-q) 1838 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1839 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1840 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1841 return replaceInstUsesWith(I, Res); 1842 1843 // Canonicalize a shifty way to code absolute value to the common pattern. 1844 // There are 2 potential commuted variants. 1845 // We're relying on the fact that we only do this transform when the shift has 1846 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 1847 // instructions). 1848 Value *A; 1849 const APInt *ShAmt; 1850 Type *Ty = I.getType(); 1851 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 1852 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 1853 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 1854 // B = ashr i32 A, 31 ; smear the sign bit 1855 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 1856 // --> (A < 0) ? -A : A 1857 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 1858 // Copy the nuw/nsw flags from the sub to the negate. 1859 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 1860 I.hasNoSignedWrap()); 1861 return SelectInst::Create(Cmp, Neg, A); 1862 } 1863 1864 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1865 return Ext; 1866 1867 bool Changed = false; 1868 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1869 Changed = true; 1870 I.setHasNoSignedWrap(true); 1871 } 1872 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1873 Changed = true; 1874 I.setHasNoUnsignedWrap(true); 1875 } 1876 1877 return Changed ? &I : nullptr; 1878 } 1879 1880 /// This eliminates floating-point negation in either 'fneg(X)' or 1881 /// 'fsub(-0.0, X)' form by combining into a constant operand. 1882 static Instruction *foldFNegIntoConstant(Instruction &I) { 1883 Value *X; 1884 Constant *C; 1885 1886 // Fold negation into constant operand. This is limited with one-use because 1887 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. 1888 // -(X * C) --> X * (-C) 1889 // FIXME: It's arguable whether these should be m_OneUse or not. The current 1890 // belief is that the FNeg allows for better reassociation opportunities. 1891 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) 1892 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 1893 // -(X / C) --> X / (-C) 1894 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) 1895 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1896 // -(C / X) --> (-C) / X 1897 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) 1898 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1899 1900 return nullptr; 1901 } 1902 1903 Instruction *InstCombiner::visitFNeg(UnaryOperator &I) { 1904 Value *Op = I.getOperand(0); 1905 1906 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), 1907 SQ.getWithInstruction(&I))) 1908 return replaceInstUsesWith(I, V); 1909 1910 if (Instruction *X = foldFNegIntoConstant(I)) 1911 return X; 1912 1913 Value *X, *Y; 1914 1915 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 1916 if (I.hasNoSignedZeros() && 1917 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 1918 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1919 1920 return nullptr; 1921 } 1922 1923 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1924 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 1925 I.getFastMathFlags(), 1926 SQ.getWithInstruction(&I))) 1927 return replaceInstUsesWith(I, V); 1928 1929 if (Instruction *X = foldVectorBinop(I)) 1930 return X; 1931 1932 // Subtraction from -0.0 is the canonical form of fneg. 1933 // fsub nsz 0, X ==> fsub nsz -0.0, X 1934 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1935 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) 1936 return BinaryOperator::CreateFNegFMF(Op1, &I); 1937 1938 if (Instruction *X = foldFNegIntoConstant(I)) 1939 return X; 1940 1941 Value *X, *Y; 1942 Constant *C; 1943 1944 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 1945 // Canonicalize to fadd to make analysis easier. 1946 // This can also help codegen because fadd is commutative. 1947 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 1948 // killed later. We still limit that particular transform with 'hasOneUse' 1949 // because an fneg is assumed better/cheaper than a generic fsub. 1950 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 1951 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 1952 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 1953 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 1954 } 1955 } 1956 1957 if (isa<Constant>(Op0)) 1958 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1959 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1960 return NV; 1961 1962 // X - C --> X + (-C) 1963 // But don't transform constant expressions because there's an inverse fold 1964 // for X + (-Y) --> X - Y. 1965 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) 1966 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 1967 1968 // X - (-Y) --> X + Y 1969 if (match(Op1, m_FNeg(m_Value(Y)))) 1970 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 1971 1972 // Similar to above, but look through a cast of the negated value: 1973 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 1974 Type *Ty = I.getType(); 1975 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 1976 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 1977 1978 // X - (fpext(-Y)) --> X + fpext(Y) 1979 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 1980 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 1981 1982 // Similar to above, but look through fmul/fdiv of the negated value: 1983 // Op0 - (-X * Y) --> Op0 + (X * Y) 1984 // Op0 - (Y * -X) --> Op0 + (X * Y) 1985 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 1986 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 1987 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 1988 } 1989 // Op0 - (-X / Y) --> Op0 + (X / Y) 1990 // Op0 - (X / -Y) --> Op0 + (X / Y) 1991 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 1992 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 1993 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 1994 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 1995 } 1996 1997 // Handle special cases for FSub with selects feeding the operation 1998 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 1999 return replaceInstUsesWith(I, V); 2000 2001 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2002 // (Y - X) - Y --> -X 2003 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2004 return BinaryOperator::CreateFNegFMF(X, &I); 2005 2006 // Y - (X + Y) --> -X 2007 // Y - (Y + X) --> -X 2008 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2009 return BinaryOperator::CreateFNegFMF(X, &I); 2010 2011 // (X * C) - X --> X * (C - 1.0) 2012 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2013 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 2014 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2015 } 2016 // X - (X * C) --> X * (1.0 - C) 2017 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2018 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 2019 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2020 } 2021 2022 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2023 return F; 2024 2025 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2026 // functionality has been subsumed by simple pattern matching here and in 2027 // InstSimplify. We should let a dedicated reassociation pass handle more 2028 // complex pattern matching and remove this from InstCombine. 2029 if (Value *V = FAddCombine(Builder).simplify(&I)) 2030 return replaceInstUsesWith(I, V); 2031 } 2032 2033 return nullptr; 2034 } 2035