1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/AlignOf.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/KnownBits.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() 86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 87 88 const APFloat *getFpValPtr() const 89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFDiv(Value *Opnd0, Value *Opnd1); 199 Value *createFNeg(Value *V); 200 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 201 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 202 203 // Debugging stuff are clustered here. 204 #ifndef NDEBUG 205 unsigned CreateInstrNum; 206 void initCreateInstNum() { CreateInstrNum = 0; } 207 void incCreateInstNum() { CreateInstrNum++; } 208 #else 209 void initCreateInstNum() {} 210 void incCreateInstNum() {} 211 #endif 212 213 InstCombiner::BuilderTy &Builder; 214 Instruction *Instr = nullptr; 215 }; 216 217 } // end anonymous namespace 218 219 //===----------------------------------------------------------------------===// 220 // 221 // Implementation of 222 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 223 // 224 //===----------------------------------------------------------------------===// 225 FAddendCoef::~FAddendCoef() { 226 if (BufHasFpVal) 227 getFpValPtr()->~APFloat(); 228 } 229 230 void FAddendCoef::set(const APFloat& C) { 231 APFloat *P = getFpValPtr(); 232 233 if (isInt()) { 234 // As the buffer is meanless byte stream, we cannot call 235 // APFloat::operator=(). 236 new(P) APFloat(C); 237 } else 238 *P = C; 239 240 IsFp = BufHasFpVal = true; 241 } 242 243 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 244 if (!isInt()) 245 return; 246 247 APFloat *P = getFpValPtr(); 248 if (IntVal > 0) 249 new(P) APFloat(Sem, IntVal); 250 else { 251 new(P) APFloat(Sem, 0 - IntVal); 252 P->changeSign(); 253 } 254 IsFp = BufHasFpVal = true; 255 } 256 257 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 258 if (Val >= 0) 259 return APFloat(Sem, Val); 260 261 APFloat T(Sem, 0 - Val); 262 T.changeSign(); 263 264 return T; 265 } 266 267 void FAddendCoef::operator=(const FAddendCoef &That) { 268 if (That.isInt()) 269 set(That.IntVal); 270 else 271 set(That.getFpVal()); 272 } 273 274 void FAddendCoef::operator+=(const FAddendCoef &That) { 275 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 276 if (isInt() == That.isInt()) { 277 if (isInt()) 278 IntVal += That.IntVal; 279 else 280 getFpVal().add(That.getFpVal(), RndMode); 281 return; 282 } 283 284 if (isInt()) { 285 const APFloat &T = That.getFpVal(); 286 convertToFpType(T.getSemantics()); 287 getFpVal().add(T, RndMode); 288 return; 289 } 290 291 APFloat &T = getFpVal(); 292 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 293 } 294 295 void FAddendCoef::operator*=(const FAddendCoef &That) { 296 if (That.isOne()) 297 return; 298 299 if (That.isMinusOne()) { 300 negate(); 301 return; 302 } 303 304 if (isInt() && That.isInt()) { 305 int Res = IntVal * (int)That.IntVal; 306 assert(!insaneIntVal(Res) && "Insane int value"); 307 IntVal = Res; 308 return; 309 } 310 311 const fltSemantics &Semantic = 312 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 313 314 if (isInt()) 315 convertToFpType(Semantic); 316 APFloat &F0 = getFpVal(); 317 318 if (That.isInt()) 319 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 320 APFloat::rmNearestTiesToEven); 321 else 322 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 323 } 324 325 void FAddendCoef::negate() { 326 if (isInt()) 327 IntVal = 0 - IntVal; 328 else 329 getFpVal().changeSign(); 330 } 331 332 Value *FAddendCoef::getValue(Type *Ty) const { 333 return isInt() ? 334 ConstantFP::get(Ty, float(IntVal)) : 335 ConstantFP::get(Ty->getContext(), getFpVal()); 336 } 337 338 // The definition of <Val> Addends 339 // ========================================= 340 // A + B <1, A>, <1,B> 341 // A - B <1, A>, <1,B> 342 // 0 - B <-1, B> 343 // C * A, <C, A> 344 // A + C <1, A> <C, NULL> 345 // 0 +/- 0 <0, NULL> (corner case) 346 // 347 // Legend: A and B are not constant, C is constant 348 unsigned FAddend::drillValueDownOneStep 349 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 350 Instruction *I = nullptr; 351 if (!Val || !(I = dyn_cast<Instruction>(Val))) 352 return 0; 353 354 unsigned Opcode = I->getOpcode(); 355 356 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 357 ConstantFP *C0, *C1; 358 Value *Opnd0 = I->getOperand(0); 359 Value *Opnd1 = I->getOperand(1); 360 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 361 Opnd0 = nullptr; 362 363 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 364 Opnd1 = nullptr; 365 366 if (Opnd0) { 367 if (!C0) 368 Addend0.set(1, Opnd0); 369 else 370 Addend0.set(C0, nullptr); 371 } 372 373 if (Opnd1) { 374 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 375 if (!C1) 376 Addend.set(1, Opnd1); 377 else 378 Addend.set(C1, nullptr); 379 if (Opcode == Instruction::FSub) 380 Addend.negate(); 381 } 382 383 if (Opnd0 || Opnd1) 384 return Opnd0 && Opnd1 ? 2 : 1; 385 386 // Both operands are zero. Weird! 387 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 388 return 1; 389 } 390 391 if (I->getOpcode() == Instruction::FMul) { 392 Value *V0 = I->getOperand(0); 393 Value *V1 = I->getOperand(1); 394 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 395 Addend0.set(C, V1); 396 return 1; 397 } 398 399 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 400 Addend0.set(C, V0); 401 return 1; 402 } 403 } 404 405 return 0; 406 } 407 408 // Try to break *this* addend into two addends. e.g. Suppose this addend is 409 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 410 // i.e. <2.3, X> and <2.3, Y>. 411 unsigned FAddend::drillAddendDownOneStep 412 (FAddend &Addend0, FAddend &Addend1) const { 413 if (isConstant()) 414 return 0; 415 416 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 417 if (!BreakNum || Coeff.isOne()) 418 return BreakNum; 419 420 Addend0.Scale(Coeff); 421 422 if (BreakNum == 2) 423 Addend1.Scale(Coeff); 424 425 return BreakNum; 426 } 427 428 Value *FAddCombine::simplify(Instruction *I) { 429 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 430 "Expected 'reassoc'+'nsz' instruction"); 431 432 // Currently we are not able to handle vector type. 433 if (I->getType()->isVectorTy()) 434 return nullptr; 435 436 assert((I->getOpcode() == Instruction::FAdd || 437 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 438 439 // Save the instruction before calling other member-functions. 440 Instr = I; 441 442 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 443 444 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 445 446 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 447 unsigned Opnd0_ExpNum = 0; 448 unsigned Opnd1_ExpNum = 0; 449 450 if (!Opnd0.isConstant()) 451 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 452 453 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 454 if (OpndNum == 2 && !Opnd1.isConstant()) 455 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 456 457 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 458 if (Opnd0_ExpNum && Opnd1_ExpNum) { 459 AddendVect AllOpnds; 460 AllOpnds.push_back(&Opnd0_0); 461 AllOpnds.push_back(&Opnd1_0); 462 if (Opnd0_ExpNum == 2) 463 AllOpnds.push_back(&Opnd0_1); 464 if (Opnd1_ExpNum == 2) 465 AllOpnds.push_back(&Opnd1_1); 466 467 // Compute instruction quota. We should save at least one instruction. 468 unsigned InstQuota = 0; 469 470 Value *V0 = I->getOperand(0); 471 Value *V1 = I->getOperand(1); 472 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 473 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 474 475 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 476 return R; 477 } 478 479 if (OpndNum != 2) { 480 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 481 // splitted into two addends, say "V = X - Y", the instruction would have 482 // been optimized into "I = Y - X" in the previous steps. 483 // 484 const FAddendCoef &CE = Opnd0.getCoef(); 485 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 486 } 487 488 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 489 if (Opnd1_ExpNum) { 490 AddendVect AllOpnds; 491 AllOpnds.push_back(&Opnd0); 492 AllOpnds.push_back(&Opnd1_0); 493 if (Opnd1_ExpNum == 2) 494 AllOpnds.push_back(&Opnd1_1); 495 496 if (Value *R = simplifyFAdd(AllOpnds, 1)) 497 return R; 498 } 499 500 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 501 if (Opnd0_ExpNum) { 502 AddendVect AllOpnds; 503 AllOpnds.push_back(&Opnd1); 504 AllOpnds.push_back(&Opnd0_0); 505 if (Opnd0_ExpNum == 2) 506 AllOpnds.push_back(&Opnd0_1); 507 508 if (Value *R = simplifyFAdd(AllOpnds, 1)) 509 return R; 510 } 511 512 return nullptr; 513 } 514 515 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 516 unsigned AddendNum = Addends.size(); 517 assert(AddendNum <= 4 && "Too many addends"); 518 519 // For saving intermediate results; 520 unsigned NextTmpIdx = 0; 521 FAddend TmpResult[3]; 522 523 // Points to the constant addend of the resulting simplified expression. 524 // If the resulting expr has constant-addend, this constant-addend is 525 // desirable to reside at the top of the resulting expression tree. Placing 526 // constant close to supper-expr(s) will potentially reveal some optimization 527 // opportunities in super-expr(s). 528 const FAddend *ConstAdd = nullptr; 529 530 // Simplified addends are placed <SimpVect>. 531 AddendVect SimpVect; 532 533 // The outer loop works on one symbolic-value at a time. Suppose the input 534 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 535 // The symbolic-values will be processed in this order: x, y, z. 536 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 537 538 const FAddend *ThisAddend = Addends[SymIdx]; 539 if (!ThisAddend) { 540 // This addend was processed before. 541 continue; 542 } 543 544 Value *Val = ThisAddend->getSymVal(); 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (Val) { 574 if (!R.isZero()) { 575 SimpVect.push_back(&R); 576 } 577 } else { 578 // Don't push constant addend at this time. It will be the last element 579 // of <SimpVect>. 580 ConstAdd = &R; 581 } 582 } 583 } 584 585 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 586 "out-of-bound access"); 587 588 if (ConstAdd) 589 SimpVect.push_back(ConstAdd); 590 591 Value *Result; 592 if (!SimpVect.empty()) 593 Result = createNaryFAdd(SimpVect, InstrQuota); 594 else { 595 // The addition is folded to 0.0. 596 Result = ConstantFP::get(Instr->getType(), 0.0); 597 } 598 599 return Result; 600 } 601 602 Value *FAddCombine::createNaryFAdd 603 (const AddendVect &Opnds, unsigned InstrQuota) { 604 assert(!Opnds.empty() && "Expect at least one addend"); 605 606 // Step 1: Check if the # of instructions needed exceeds the quota. 607 608 unsigned InstrNeeded = calcInstrNumber(Opnds); 609 if (InstrNeeded > InstrQuota) 610 return nullptr; 611 612 initCreateInstNum(); 613 614 // step 2: Emit the N-ary addition. 615 // Note that at most three instructions are involved in Fadd-InstCombine: the 616 // addition in question, and at most two neighboring instructions. 617 // The resulting optimized addition should have at least one less instruction 618 // than the original addition expression tree. This implies that the resulting 619 // N-ary addition has at most two instructions, and we don't need to worry 620 // about tree-height when constructing the N-ary addition. 621 622 Value *LastVal = nullptr; 623 bool LastValNeedNeg = false; 624 625 // Iterate the addends, creating fadd/fsub using adjacent two addends. 626 for (const FAddend *Opnd : Opnds) { 627 bool NeedNeg; 628 Value *V = createAddendVal(*Opnd, NeedNeg); 629 if (!LastVal) { 630 LastVal = V; 631 LastValNeedNeg = NeedNeg; 632 continue; 633 } 634 635 if (LastValNeedNeg == NeedNeg) { 636 LastVal = createFAdd(LastVal, V); 637 continue; 638 } 639 640 if (LastValNeedNeg) 641 LastVal = createFSub(V, LastVal); 642 else 643 LastVal = createFSub(LastVal, V); 644 645 LastValNeedNeg = false; 646 } 647 648 if (LastValNeedNeg) { 649 LastVal = createFNeg(LastVal); 650 } 651 652 #ifndef NDEBUG 653 assert(CreateInstrNum == InstrNeeded && 654 "Inconsistent in instruction numbers"); 655 #endif 656 657 return LastVal; 658 } 659 660 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 661 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 662 if (Instruction *I = dyn_cast<Instruction>(V)) 663 createInstPostProc(I); 664 return V; 665 } 666 667 Value *FAddCombine::createFNeg(Value *V) { 668 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 669 Value *NewV = createFSub(Zero, V); 670 if (Instruction *I = dyn_cast<Instruction>(NewV)) 671 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 672 return NewV; 673 } 674 675 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 676 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 677 if (Instruction *I = dyn_cast<Instruction>(V)) 678 createInstPostProc(I); 679 return V; 680 } 681 682 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 683 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 684 if (Instruction *I = dyn_cast<Instruction>(V)) 685 createInstPostProc(I); 686 return V; 687 } 688 689 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) { 690 Value *V = Builder.CreateFDiv(Opnd0, Opnd1); 691 if (Instruction *I = dyn_cast<Instruction>(V)) 692 createInstPostProc(I); 693 return V; 694 } 695 696 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 697 NewInstr->setDebugLoc(Instr->getDebugLoc()); 698 699 // Keep track of the number of instruction created. 700 if (!NoNumber) 701 incCreateInstNum(); 702 703 // Propagate fast-math flags 704 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 705 } 706 707 // Return the number of instruction needed to emit the N-ary addition. 708 // NOTE: Keep this function in sync with createAddendVal(). 709 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 710 unsigned OpndNum = Opnds.size(); 711 unsigned InstrNeeded = OpndNum - 1; 712 713 // The number of addends in the form of "(-1)*x". 714 unsigned NegOpndNum = 0; 715 716 // Adjust the number of instructions needed to emit the N-ary add. 717 for (const FAddend *Opnd : Opnds) { 718 if (Opnd->isConstant()) 719 continue; 720 721 // The constant check above is really for a few special constant 722 // coefficients. 723 if (isa<UndefValue>(Opnd->getSymVal())) 724 continue; 725 726 const FAddendCoef &CE = Opnd->getCoef(); 727 if (CE.isMinusOne() || CE.isMinusTwo()) 728 NegOpndNum++; 729 730 // Let the addend be "c * x". If "c == +/-1", the value of the addend 731 // is immediately available; otherwise, it needs exactly one instruction 732 // to evaluate the value. 733 if (!CE.isMinusOne() && !CE.isOne()) 734 InstrNeeded++; 735 } 736 if (NegOpndNum == OpndNum) 737 InstrNeeded++; 738 return InstrNeeded; 739 } 740 741 // Input Addend Value NeedNeg(output) 742 // ================================================================ 743 // Constant C C false 744 // <+/-1, V> V coefficient is -1 745 // <2/-2, V> "fadd V, V" coefficient is -2 746 // <C, V> "fmul V, C" false 747 // 748 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 749 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 750 const FAddendCoef &Coeff = Opnd.getCoef(); 751 752 if (Opnd.isConstant()) { 753 NeedNeg = false; 754 return Coeff.getValue(Instr->getType()); 755 } 756 757 Value *OpndVal = Opnd.getSymVal(); 758 759 if (Coeff.isMinusOne() || Coeff.isOne()) { 760 NeedNeg = Coeff.isMinusOne(); 761 return OpndVal; 762 } 763 764 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 765 NeedNeg = Coeff.isMinusTwo(); 766 return createFAdd(OpndVal, OpndVal); 767 } 768 769 NeedNeg = false; 770 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 771 } 772 773 // Checks if any operand is negative and we can convert add to sub. 774 // This function checks for following negative patterns 775 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 776 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 777 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 778 static Value *checkForNegativeOperand(BinaryOperator &I, 779 InstCombiner::BuilderTy &Builder) { 780 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 781 782 // This function creates 2 instructions to replace ADD, we need at least one 783 // of LHS or RHS to have one use to ensure benefit in transform. 784 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 785 return nullptr; 786 787 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 788 const APInt *C1 = nullptr, *C2 = nullptr; 789 790 // if ONE is on other side, swap 791 if (match(RHS, m_Add(m_Value(X), m_One()))) 792 std::swap(LHS, RHS); 793 794 if (match(LHS, m_Add(m_Value(X), m_One()))) { 795 // if XOR on other side, swap 796 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 797 std::swap(X, RHS); 798 799 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 800 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 801 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 802 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 803 Value *NewAnd = Builder.CreateAnd(Z, *C1); 804 return Builder.CreateSub(RHS, NewAnd, "sub"); 805 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 806 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 807 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 808 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 809 return Builder.CreateSub(RHS, NewOr, "sub"); 810 } 811 } 812 } 813 814 // Restore LHS and RHS 815 LHS = I.getOperand(0); 816 RHS = I.getOperand(1); 817 818 // if XOR is on other side, swap 819 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 820 std::swap(LHS, RHS); 821 822 // C2 is ODD 823 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 824 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 825 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 826 if (C1->countTrailingZeros() == 0) 827 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 828 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 829 return Builder.CreateSub(RHS, NewOr, "sub"); 830 } 831 return nullptr; 832 } 833 834 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 835 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 836 Constant *Op1C; 837 if (!match(Op1, m_Constant(Op1C))) 838 return nullptr; 839 840 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 841 return NV; 842 843 Value *X, *Y; 844 845 // add (sub X, Y), -1 --> add (not Y), X 846 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 847 match(Op1, m_AllOnes())) 848 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 849 850 // zext(bool) + C -> bool ? C + 1 : C 851 if (match(Op0, m_ZExt(m_Value(X))) && 852 X->getType()->getScalarSizeInBits() == 1) 853 return SelectInst::Create(X, AddOne(Op1C), Op1); 854 855 // ~X + C --> (C-1) - X 856 if (match(Op0, m_Not(m_Value(X)))) 857 return BinaryOperator::CreateSub(SubOne(Op1C), X); 858 859 const APInt *C; 860 if (!match(Op1, m_APInt(C))) 861 return nullptr; 862 863 if (C->isSignMask()) { 864 // If wrapping is not allowed, then the addition must set the sign bit: 865 // X + (signmask) --> X | signmask 866 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 867 return BinaryOperator::CreateOr(Op0, Op1); 868 869 // If wrapping is allowed, then the addition flips the sign bit of LHS: 870 // X + (signmask) --> X ^ signmask 871 return BinaryOperator::CreateXor(Op0, Op1); 872 } 873 874 // Is this add the last step in a convoluted sext? 875 // add(zext(xor i16 X, -32768), -32768) --> sext X 876 Type *Ty = Add.getType(); 877 const APInt *C2; 878 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 879 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 880 return CastInst::Create(Instruction::SExt, X, Ty); 881 882 // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C)) 883 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 884 C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) { 885 Constant *NewC = 886 ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth())); 887 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 888 } 889 890 if (C->isOneValue() && Op0->hasOneUse()) { 891 // add (sext i1 X), 1 --> zext (not X) 892 // TODO: The smallest IR representation is (select X, 0, 1), and that would 893 // not require the one-use check. But we need to remove a transform in 894 // visitSelect and make sure that IR value tracking for select is equal or 895 // better than for these ops. 896 if (match(Op0, m_SExt(m_Value(X))) && 897 X->getType()->getScalarSizeInBits() == 1) 898 return new ZExtInst(Builder.CreateNot(X), Ty); 899 900 // Shifts and add used to flip and mask off the low bit: 901 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 902 const APInt *C3; 903 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 904 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 905 Value *NotX = Builder.CreateNot(X); 906 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 907 } 908 } 909 910 return nullptr; 911 } 912 913 // Matches multiplication expression Op * C where C is a constant. Returns the 914 // constant value in C and the other operand in Op. Returns true if such a 915 // match is found. 916 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 917 const APInt *AI; 918 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 919 C = *AI; 920 return true; 921 } 922 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 923 C = APInt(AI->getBitWidth(), 1); 924 C <<= *AI; 925 return true; 926 } 927 return false; 928 } 929 930 // Matches remainder expression Op % C where C is a constant. Returns the 931 // constant value in C and the other operand in Op. Returns the signedness of 932 // the remainder operation in IsSigned. Returns true if such a match is 933 // found. 934 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 935 const APInt *AI; 936 IsSigned = false; 937 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 938 IsSigned = true; 939 C = *AI; 940 return true; 941 } 942 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 943 C = *AI; 944 return true; 945 } 946 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 947 C = *AI + 1; 948 return true; 949 } 950 return false; 951 } 952 953 // Matches division expression Op / C with the given signedness as indicated 954 // by IsSigned, where C is a constant. Returns the constant value in C and the 955 // other operand in Op. Returns true if such a match is found. 956 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 957 const APInt *AI; 958 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 959 C = *AI; 960 return true; 961 } 962 if (!IsSigned) { 963 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 964 C = *AI; 965 return true; 966 } 967 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 968 C = APInt(AI->getBitWidth(), 1); 969 C <<= *AI; 970 return true; 971 } 972 } 973 return false; 974 } 975 976 // Returns whether C0 * C1 with the given signedness overflows. 977 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 978 bool overflow; 979 if (IsSigned) 980 (void)C0.smul_ov(C1, overflow); 981 else 982 (void)C0.umul_ov(C1, overflow); 983 return overflow; 984 } 985 986 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 987 // does not overflow. 988 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { 989 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 990 Value *X, *MulOpV; 991 APInt C0, MulOpC; 992 bool IsSigned; 993 // Match I = X % C0 + MulOpV * C0 994 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 995 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 996 C0 == MulOpC) { 997 Value *RemOpV; 998 APInt C1; 999 bool Rem2IsSigned; 1000 // Match MulOpC = RemOpV % C1 1001 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1002 IsSigned == Rem2IsSigned) { 1003 Value *DivOpV; 1004 APInt DivOpC; 1005 // Match RemOpV = X / C0 1006 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1007 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1008 Value *NewDivisor = 1009 ConstantInt::get(X->getType()->getContext(), C0 * C1); 1010 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1011 : Builder.CreateURem(X, NewDivisor, "urem"); 1012 } 1013 } 1014 } 1015 1016 return nullptr; 1017 } 1018 1019 /// Fold 1020 /// (1 << NBits) - 1 1021 /// Into: 1022 /// ~(-(1 << NBits)) 1023 /// Because a 'not' is better for bit-tracking analysis and other transforms 1024 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1025 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1026 InstCombiner::BuilderTy &Builder) { 1027 Value *NBits; 1028 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1029 return nullptr; 1030 1031 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1032 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1033 // Be wary of constant folding. 1034 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1035 // Always NSW. But NUW propagates from `add`. 1036 BOp->setHasNoSignedWrap(); 1037 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1038 } 1039 1040 return BinaryOperator::CreateNot(NotMask, I.getName()); 1041 } 1042 1043 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1044 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1045 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1046 SQ.getWithInstruction(&I))) 1047 return replaceInstUsesWith(I, V); 1048 1049 if (SimplifyAssociativeOrCommutative(I)) 1050 return &I; 1051 1052 if (Instruction *X = foldShuffledBinop(I)) 1053 return X; 1054 1055 // (A*B)+(A*C) -> A*(B+C) etc 1056 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1057 return replaceInstUsesWith(I, V); 1058 1059 if (Instruction *X = foldAddWithConstant(I)) 1060 return X; 1061 1062 // FIXME: This should be moved into the above helper function to allow these 1063 // transforms for general constant or constant splat vectors. 1064 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1065 Type *Ty = I.getType(); 1066 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1067 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1068 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1069 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1070 const APInt &RHSVal = CI->getValue(); 1071 unsigned ExtendAmt = 0; 1072 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1073 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1074 if (XorRHS->getValue() == -RHSVal) { 1075 if (RHSVal.isPowerOf2()) 1076 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1077 else if (XorRHS->getValue().isPowerOf2()) 1078 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1079 } 1080 1081 if (ExtendAmt) { 1082 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1083 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1084 ExtendAmt = 0; 1085 } 1086 1087 if (ExtendAmt) { 1088 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1089 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1090 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1091 } 1092 1093 // If this is a xor that was canonicalized from a sub, turn it back into 1094 // a sub and fuse this add with it. 1095 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1096 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1097 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1098 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1099 XorLHS); 1100 } 1101 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1102 // transform them into (X + (signmask ^ C)) 1103 if (XorRHS->getValue().isSignMask()) 1104 return BinaryOperator::CreateAdd(XorLHS, 1105 ConstantExpr::getXor(XorRHS, CI)); 1106 } 1107 } 1108 1109 if (Ty->isIntOrIntVectorTy(1)) 1110 return BinaryOperator::CreateXor(LHS, RHS); 1111 1112 // X + X --> X << 1 1113 if (LHS == RHS) { 1114 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1115 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1116 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1117 return Shl; 1118 } 1119 1120 Value *A, *B; 1121 if (match(LHS, m_Neg(m_Value(A)))) { 1122 // -A + -B --> -(A + B) 1123 if (match(RHS, m_Neg(m_Value(B)))) 1124 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1125 1126 // -A + B --> B - A 1127 return BinaryOperator::CreateSub(RHS, A); 1128 } 1129 1130 // A + -B --> A - B 1131 if (match(RHS, m_Neg(m_Value(B)))) 1132 return BinaryOperator::CreateSub(LHS, B); 1133 1134 if (Value *V = checkForNegativeOperand(I, Builder)) 1135 return replaceInstUsesWith(I, V); 1136 1137 // (A + 1) + ~B --> A - B 1138 // ~B + (A + 1) --> A - B 1139 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B))))) 1140 return BinaryOperator::CreateSub(A, B); 1141 1142 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1143 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1144 1145 // A+B --> A|B iff A and B have no bits set in common. 1146 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1147 return BinaryOperator::CreateOr(LHS, RHS); 1148 1149 // FIXME: We already did a check for ConstantInt RHS above this. 1150 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1151 // removal. 1152 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1153 // (X & FF00) + xx00 -> (X+xx00) & FF00 1154 Value *X; 1155 ConstantInt *C2; 1156 if (LHS->hasOneUse() && 1157 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1158 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1159 // See if all bits from the first bit set in the Add RHS up are included 1160 // in the mask. First, get the rightmost bit. 1161 const APInt &AddRHSV = CRHS->getValue(); 1162 1163 // Form a mask of all bits from the lowest bit added through the top. 1164 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1165 1166 // See if the and mask includes all of these bits. 1167 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1168 1169 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1170 // Okay, the xform is safe. Insert the new add pronto. 1171 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1172 return BinaryOperator::CreateAnd(NewAdd, C2); 1173 } 1174 } 1175 } 1176 1177 // add (select X 0 (sub n A)) A --> select X A n 1178 { 1179 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1180 Value *A = RHS; 1181 if (!SI) { 1182 SI = dyn_cast<SelectInst>(RHS); 1183 A = LHS; 1184 } 1185 if (SI && SI->hasOneUse()) { 1186 Value *TV = SI->getTrueValue(); 1187 Value *FV = SI->getFalseValue(); 1188 Value *N; 1189 1190 // Can we fold the add into the argument of the select? 1191 // We check both true and false select arguments for a matching subtract. 1192 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1193 // Fold the add into the true select value. 1194 return SelectInst::Create(SI->getCondition(), N, A); 1195 1196 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1197 // Fold the add into the false select value. 1198 return SelectInst::Create(SI->getCondition(), A, N); 1199 } 1200 } 1201 1202 // Check for (add (sext x), y), see if we can merge this into an 1203 // integer add followed by a sext. 1204 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 1205 // (add (sext x), cst) --> (sext (add x, cst')) 1206 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1207 if (LHSConv->hasOneUse()) { 1208 Constant *CI = 1209 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1210 if (ConstantExpr::getSExt(CI, Ty) == RHSC && 1211 willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) { 1212 // Insert the new, smaller add. 1213 Value *NewAdd = 1214 Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv"); 1215 return new SExtInst(NewAdd, Ty); 1216 } 1217 } 1218 } 1219 1220 // (add (sext x), (sext y)) --> (sext (add int x, y)) 1221 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 1222 // Only do this if x/y have the same type, if at least one of them has a 1223 // single use (so we don't increase the number of sexts), and if the 1224 // integer add will not overflow. 1225 if (LHSConv->getOperand(0)->getType() == 1226 RHSConv->getOperand(0)->getType() && 1227 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1228 willNotOverflowSignedAdd(LHSConv->getOperand(0), 1229 RHSConv->getOperand(0), I)) { 1230 // Insert the new integer add. 1231 Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0), 1232 RHSConv->getOperand(0), "addconv"); 1233 return new SExtInst(NewAdd, Ty); 1234 } 1235 } 1236 } 1237 1238 // Check for (add (zext x), y), see if we can merge this into an 1239 // integer add followed by a zext. 1240 if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) { 1241 // (add (zext x), cst) --> (zext (add x, cst')) 1242 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 1243 if (LHSConv->hasOneUse()) { 1244 Constant *CI = 1245 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 1246 if (ConstantExpr::getZExt(CI, Ty) == RHSC && 1247 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) { 1248 // Insert the new, smaller add. 1249 Value *NewAdd = 1250 Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv"); 1251 return new ZExtInst(NewAdd, Ty); 1252 } 1253 } 1254 } 1255 1256 // (add (zext x), (zext y)) --> (zext (add int x, y)) 1257 if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) { 1258 // Only do this if x/y have the same type, if at least one of them has a 1259 // single use (so we don't increase the number of zexts), and if the 1260 // integer add will not overflow. 1261 if (LHSConv->getOperand(0)->getType() == 1262 RHSConv->getOperand(0)->getType() && 1263 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1264 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), 1265 RHSConv->getOperand(0), I)) { 1266 // Insert the new integer add. 1267 Value *NewAdd = Builder.CreateNUWAdd( 1268 LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv"); 1269 return new ZExtInst(NewAdd, Ty); 1270 } 1271 } 1272 } 1273 1274 // (add (xor A, B) (and A, B)) --> (or A, B) 1275 // (add (and A, B) (xor A, B)) --> (or A, B) 1276 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1277 m_c_And(m_Deferred(A), m_Deferred(B))))) 1278 return BinaryOperator::CreateOr(A, B); 1279 1280 // (add (or A, B) (and A, B)) --> (add A, B) 1281 // (add (and A, B) (or A, B)) --> (add A, B) 1282 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1283 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1284 I.setOperand(0, A); 1285 I.setOperand(1, B); 1286 return &I; 1287 } 1288 1289 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1290 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1291 // computeKnownBits. 1292 bool Changed = false; 1293 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1294 Changed = true; 1295 I.setHasNoSignedWrap(true); 1296 } 1297 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1298 Changed = true; 1299 I.setHasNoUnsignedWrap(true); 1300 } 1301 1302 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1303 return V; 1304 1305 return Changed ? &I : nullptr; 1306 } 1307 1308 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1309 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1310 InstCombiner::BuilderTy &Builder) { 1311 assert((I.getOpcode() == Instruction::FAdd || 1312 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1313 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1314 "FP factorization requires FMF"); 1315 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1316 Value *X, *Y, *Z; 1317 bool IsFMul; 1318 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && 1319 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || 1320 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && 1321 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) 1322 IsFMul = true; 1323 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && 1324 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) 1325 IsFMul = false; 1326 else 1327 return nullptr; 1328 1329 // (X * Z) + (Y * Z) --> (X + Y) * Z 1330 // (X * Z) - (Y * Z) --> (X - Y) * Z 1331 // (X / Z) + (Y / Z) --> (X + Y) / Z 1332 // (X / Z) - (Y / Z) --> (X - Y) / Z 1333 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1334 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1335 : Builder.CreateFSubFMF(X, Y, &I); 1336 1337 // Bail out if we just created a denormal constant. 1338 // TODO: This is copied from a previous implementation. Is it necessary? 1339 const APFloat *C; 1340 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1341 return nullptr; 1342 1343 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1344 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1345 } 1346 1347 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1348 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1349 I.getFastMathFlags(), 1350 SQ.getWithInstruction(&I))) 1351 return replaceInstUsesWith(I, V); 1352 1353 if (SimplifyAssociativeOrCommutative(I)) 1354 return &I; 1355 1356 if (Instruction *X = foldShuffledBinop(I)) 1357 return X; 1358 1359 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1360 return FoldedFAdd; 1361 1362 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1363 Value *X; 1364 // (-X) + Y --> Y - X 1365 if (match(LHS, m_FNeg(m_Value(X)))) 1366 return BinaryOperator::CreateFSubFMF(RHS, X, &I); 1367 // Y + (-X) --> Y - X 1368 if (match(RHS, m_FNeg(m_Value(X)))) 1369 return BinaryOperator::CreateFSubFMF(LHS, X, &I); 1370 1371 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1372 // integer add followed by a promotion. 1373 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1374 Value *LHSIntVal = LHSConv->getOperand(0); 1375 Type *FPType = LHSConv->getType(); 1376 1377 // TODO: This check is overly conservative. In many cases known bits 1378 // analysis can tell us that the result of the addition has less significant 1379 // bits than the integer type can hold. 1380 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1381 Type *FScalarTy = FTy->getScalarType(); 1382 Type *IScalarTy = ITy->getScalarType(); 1383 1384 // Do we have enough bits in the significand to represent the result of 1385 // the integer addition? 1386 unsigned MaxRepresentableBits = 1387 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1388 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1389 }; 1390 1391 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1392 // ... if the constant fits in the integer value. This is useful for things 1393 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1394 // requires a constant pool load, and generally allows the add to be better 1395 // instcombined. 1396 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1397 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1398 Constant *CI = 1399 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1400 if (LHSConv->hasOneUse() && 1401 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1402 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1403 // Insert the new integer add. 1404 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1405 return new SIToFPInst(NewAdd, I.getType()); 1406 } 1407 } 1408 1409 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1410 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1411 Value *RHSIntVal = RHSConv->getOperand(0); 1412 // It's enough to check LHS types only because we require int types to 1413 // be the same for this transform. 1414 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1415 // Only do this if x/y have the same type, if at least one of them has a 1416 // single use (so we don't increase the number of int->fp conversions), 1417 // and if the integer add will not overflow. 1418 if (LHSIntVal->getType() == RHSIntVal->getType() && 1419 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1420 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1421 // Insert the new integer add. 1422 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1423 return new SIToFPInst(NewAdd, I.getType()); 1424 } 1425 } 1426 } 1427 } 1428 1429 // Handle specials cases for FAdd with selects feeding the operation 1430 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1431 return replaceInstUsesWith(I, V); 1432 1433 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1434 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1435 return F; 1436 if (Value *V = FAddCombine(Builder).simplify(&I)) 1437 return replaceInstUsesWith(I, V); 1438 } 1439 1440 return nullptr; 1441 } 1442 1443 /// Optimize pointer differences into the same array into a size. Consider: 1444 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1445 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1446 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1447 Type *Ty) { 1448 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1449 // this. 1450 bool Swapped = false; 1451 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1452 1453 // For now we require one side to be the base pointer "A" or a constant 1454 // GEP derived from it. 1455 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1456 // (gep X, ...) - X 1457 if (LHSGEP->getOperand(0) == RHS) { 1458 GEP1 = LHSGEP; 1459 Swapped = false; 1460 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1461 // (gep X, ...) - (gep X, ...) 1462 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1463 RHSGEP->getOperand(0)->stripPointerCasts()) { 1464 GEP2 = RHSGEP; 1465 GEP1 = LHSGEP; 1466 Swapped = false; 1467 } 1468 } 1469 } 1470 1471 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1472 // X - (gep X, ...) 1473 if (RHSGEP->getOperand(0) == LHS) { 1474 GEP1 = RHSGEP; 1475 Swapped = true; 1476 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1477 // (gep X, ...) - (gep X, ...) 1478 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1479 LHSGEP->getOperand(0)->stripPointerCasts()) { 1480 GEP2 = LHSGEP; 1481 GEP1 = RHSGEP; 1482 Swapped = true; 1483 } 1484 } 1485 } 1486 1487 if (!GEP1) 1488 // No GEP found. 1489 return nullptr; 1490 1491 if (GEP2) { 1492 // (gep X, ...) - (gep X, ...) 1493 // 1494 // Avoid duplicating the arithmetic if there are more than one non-constant 1495 // indices between the two GEPs and either GEP has a non-constant index and 1496 // multiple users. If zero non-constant index, the result is a constant and 1497 // there is no duplication. If one non-constant index, the result is an add 1498 // or sub with a constant, which is no larger than the original code, and 1499 // there's no duplicated arithmetic, even if either GEP has multiple 1500 // users. If more than one non-constant indices combined, as long as the GEP 1501 // with at least one non-constant index doesn't have multiple users, there 1502 // is no duplication. 1503 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1504 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1505 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1506 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1507 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1508 return nullptr; 1509 } 1510 } 1511 1512 // Emit the offset of the GEP and an intptr_t. 1513 Value *Result = EmitGEPOffset(GEP1); 1514 1515 // If we had a constant expression GEP on the other side offsetting the 1516 // pointer, subtract it from the offset we have. 1517 if (GEP2) { 1518 Value *Offset = EmitGEPOffset(GEP2); 1519 Result = Builder.CreateSub(Result, Offset); 1520 } 1521 1522 // If we have p - gep(p, ...) then we have to negate the result. 1523 if (Swapped) 1524 Result = Builder.CreateNeg(Result, "diff.neg"); 1525 1526 return Builder.CreateIntCast(Result, Ty, true); 1527 } 1528 1529 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1530 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1531 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1532 SQ.getWithInstruction(&I))) 1533 return replaceInstUsesWith(I, V); 1534 1535 if (Instruction *X = foldShuffledBinop(I)) 1536 return X; 1537 1538 // (A*B)-(A*C) -> A*(B-C) etc 1539 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1540 return replaceInstUsesWith(I, V); 1541 1542 // If this is a 'B = x-(-A)', change to B = x+A. 1543 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1544 if (Value *V = dyn_castNegVal(Op1)) { 1545 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1546 1547 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1548 assert(BO->getOpcode() == Instruction::Sub && 1549 "Expected a subtraction operator!"); 1550 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1551 Res->setHasNoSignedWrap(true); 1552 } else { 1553 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1554 Res->setHasNoSignedWrap(true); 1555 } 1556 1557 return Res; 1558 } 1559 1560 if (I.getType()->isIntOrIntVectorTy(1)) 1561 return BinaryOperator::CreateXor(Op0, Op1); 1562 1563 // Replace (-1 - A) with (~A). 1564 if (match(Op0, m_AllOnes())) 1565 return BinaryOperator::CreateNot(Op1); 1566 1567 // (~X) - (~Y) --> Y - X 1568 Value *X, *Y; 1569 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1570 return BinaryOperator::CreateSub(Y, X); 1571 1572 // (X + -1) - Y --> ~Y + X 1573 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1574 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1575 1576 // Y - (X + 1) --> ~X + Y 1577 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One())))) 1578 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0); 1579 1580 if (Constant *C = dyn_cast<Constant>(Op0)) { 1581 bool IsNegate = match(C, m_ZeroInt()); 1582 Value *X; 1583 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1584 // 0 - (zext bool) --> sext bool 1585 // C - (zext bool) --> bool ? C - 1 : C 1586 if (IsNegate) 1587 return CastInst::CreateSExtOrBitCast(X, I.getType()); 1588 return SelectInst::Create(X, SubOne(C), C); 1589 } 1590 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1591 // 0 - (sext bool) --> zext bool 1592 // C - (sext bool) --> bool ? C + 1 : C 1593 if (IsNegate) 1594 return CastInst::CreateZExtOrBitCast(X, I.getType()); 1595 return SelectInst::Create(X, AddOne(C), C); 1596 } 1597 1598 // C - ~X == X + (1+C) 1599 if (match(Op1, m_Not(m_Value(X)))) 1600 return BinaryOperator::CreateAdd(X, AddOne(C)); 1601 1602 // Try to fold constant sub into select arguments. 1603 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1604 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1605 return R; 1606 1607 // Try to fold constant sub into PHI values. 1608 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1609 if (Instruction *R = foldOpIntoPhi(I, PN)) 1610 return R; 1611 1612 // C-(X+C2) --> (C-C2)-X 1613 Constant *C2; 1614 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1615 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1616 } 1617 1618 const APInt *Op0C; 1619 if (match(Op0, m_APInt(Op0C))) { 1620 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1621 1622 // -(X >>u 31) -> (X >>s 31) 1623 // -(X >>s 31) -> (X >>u 31) 1624 if (Op0C->isNullValue()) { 1625 Value *X; 1626 const APInt *ShAmt; 1627 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1628 *ShAmt == BitWidth - 1) { 1629 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1630 return BinaryOperator::CreateAShr(X, ShAmtOp); 1631 } 1632 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1633 *ShAmt == BitWidth - 1) { 1634 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1); 1635 return BinaryOperator::CreateLShr(X, ShAmtOp); 1636 } 1637 1638 if (Op1->hasOneUse()) { 1639 Value *LHS, *RHS; 1640 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; 1641 if (SPF == SPF_ABS || SPF == SPF_NABS) { 1642 // This is a negate of an ABS/NABS pattern. Just swap the operands 1643 // of the select. 1644 SelectInst *SI = cast<SelectInst>(Op1); 1645 Value *TrueVal = SI->getTrueValue(); 1646 Value *FalseVal = SI->getFalseValue(); 1647 SI->setTrueValue(FalseVal); 1648 SI->setFalseValue(TrueVal); 1649 // Don't swap prof metadata, we didn't change the branch behavior. 1650 return replaceInstUsesWith(I, SI); 1651 } 1652 } 1653 } 1654 1655 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1656 // zero. 1657 if (Op0C->isMask()) { 1658 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1659 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1660 return BinaryOperator::CreateXor(Op1, Op0); 1661 } 1662 } 1663 1664 { 1665 Value *Y; 1666 // X-(X+Y) == -Y X-(Y+X) == -Y 1667 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1668 return BinaryOperator::CreateNeg(Y); 1669 1670 // (X-Y)-X == -Y 1671 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1672 return BinaryOperator::CreateNeg(Y); 1673 } 1674 1675 // (sub (or A, B), (xor A, B)) --> (and A, B) 1676 { 1677 Value *A, *B; 1678 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1679 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1680 return BinaryOperator::CreateAnd(A, B); 1681 } 1682 1683 { 1684 Value *Y; 1685 // ((X | Y) - X) --> (~X & Y) 1686 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1687 return BinaryOperator::CreateAnd( 1688 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1689 } 1690 1691 if (Op1->hasOneUse()) { 1692 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1693 Constant *C = nullptr; 1694 1695 // (X - (Y - Z)) --> (X + (Z - Y)). 1696 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1697 return BinaryOperator::CreateAdd(Op0, 1698 Builder.CreateSub(Z, Y, Op1->getName())); 1699 1700 // (X - (X & Y)) --> (X & ~Y) 1701 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1702 return BinaryOperator::CreateAnd(Op0, 1703 Builder.CreateNot(Y, Y->getName() + ".not")); 1704 1705 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1706 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) && 1707 C->isNotMinSignedValue() && !C->isOneValue()) 1708 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 1709 1710 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1711 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1712 if (Value *XNeg = dyn_castNegVal(X)) 1713 return BinaryOperator::CreateShl(XNeg, Y); 1714 1715 // Subtracting -1/0 is the same as adding 1/0: 1716 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1717 // 'nuw' is dropped in favor of the canonical form. 1718 if (match(Op1, m_SExt(m_Value(Y))) && 1719 Y->getType()->getScalarSizeInBits() == 1) { 1720 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1721 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1722 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1723 return Add; 1724 } 1725 1726 // X - A*-B -> X + A*B 1727 // X - -A*B -> X + A*B 1728 Value *A, *B; 1729 Constant *CI; 1730 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1731 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1732 1733 // X - A*CI -> X + A*-CI 1734 // No need to handle commuted multiply because multiply handling will 1735 // ensure constant will be move to the right hand side. 1736 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) { 1737 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI)); 1738 return BinaryOperator::CreateAdd(Op0, NewMul); 1739 } 1740 } 1741 1742 // Optimize pointer differences into the same array into a size. Consider: 1743 // &A[10] - &A[0]: we should compile this to "10". 1744 Value *LHSOp, *RHSOp; 1745 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1746 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1747 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1748 return replaceInstUsesWith(I, Res); 1749 1750 // trunc(p)-trunc(q) -> trunc(p-q) 1751 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1752 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1753 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1754 return replaceInstUsesWith(I, Res); 1755 1756 // Canonicalize a shifty way to code absolute value to the common pattern. 1757 // There are 2 potential commuted variants. 1758 // We're relying on the fact that we only do this transform when the shift has 1759 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 1760 // instructions). 1761 Value *A; 1762 const APInt *ShAmt; 1763 Type *Ty = I.getType(); 1764 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 1765 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 1766 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 1767 // B = ashr i32 A, 31 ; smear the sign bit 1768 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 1769 // --> (A < 0) ? -A : A 1770 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 1771 // Copy the nuw/nsw flags from the sub to the negate. 1772 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 1773 I.hasNoSignedWrap()); 1774 return SelectInst::Create(Cmp, Neg, A); 1775 } 1776 1777 bool Changed = false; 1778 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1779 Changed = true; 1780 I.setHasNoSignedWrap(true); 1781 } 1782 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1783 Changed = true; 1784 I.setHasNoUnsignedWrap(true); 1785 } 1786 1787 return Changed ? &I : nullptr; 1788 } 1789 1790 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 1791 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 1792 I.getFastMathFlags(), 1793 SQ.getWithInstruction(&I))) 1794 return replaceInstUsesWith(I, V); 1795 1796 if (Instruction *X = foldShuffledBinop(I)) 1797 return X; 1798 1799 // Subtraction from -0.0 is the canonical form of fneg. 1800 // fsub nsz 0, X ==> fsub nsz -0.0, X 1801 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1802 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) 1803 return BinaryOperator::CreateFNegFMF(Op1, &I); 1804 1805 Value *X, *Y; 1806 Constant *C; 1807 1808 // Fold negation into constant operand. This is limited with one-use because 1809 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. 1810 // -(X * C) --> X * (-C) 1811 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) 1812 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 1813 // -(X / C) --> X / (-C) 1814 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) 1815 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 1816 // -(C / X) --> (-C) / X 1817 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) 1818 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 1819 1820 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 1821 // Canonicalize to fadd to make analysis easier. 1822 // This can also help codegen because fadd is commutative. 1823 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 1824 // killed later. We still limit that particular transform with 'hasOneUse' 1825 // because an fneg is assumed better/cheaper than a generic fsub. 1826 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 1827 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 1828 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 1829 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 1830 } 1831 } 1832 1833 if (isa<Constant>(Op0)) 1834 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1835 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 1836 return NV; 1837 1838 // X - C --> X + (-C) 1839 // But don't transform constant expressions because there's an inverse fold 1840 // for X + (-Y) --> X - Y. 1841 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) 1842 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 1843 1844 // X - (-Y) --> X + Y 1845 if (match(Op1, m_FNeg(m_Value(Y)))) 1846 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 1847 1848 // Similar to above, but look through a cast of the negated value: 1849 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 1850 Type *Ty = I.getType(); 1851 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 1852 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 1853 1854 // X - (fpext(-Y)) --> X + fpext(Y) 1855 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 1856 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 1857 1858 // Handle special cases for FSub with selects feeding the operation 1859 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 1860 return replaceInstUsesWith(I, V); 1861 1862 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1863 // (Y - X) - Y --> -X 1864 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 1865 return BinaryOperator::CreateFNegFMF(X, &I); 1866 1867 // Y - (X + Y) --> -X 1868 // Y - (Y + X) --> -X 1869 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 1870 return BinaryOperator::CreateFNegFMF(X, &I); 1871 1872 // (X * C) - X --> X * (C - 1.0) 1873 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 1874 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 1875 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 1876 } 1877 // X - (X * C) --> X * (1.0 - C) 1878 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 1879 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 1880 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 1881 } 1882 1883 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1884 return F; 1885 1886 // TODO: This performs reassociative folds for FP ops. Some fraction of the 1887 // functionality has been subsumed by simple pattern matching here and in 1888 // InstSimplify. We should let a dedicated reassociation pass handle more 1889 // complex pattern matching and remove this from InstCombine. 1890 if (Value *V = FAddCombine(Builder).simplify(&I)) 1891 return replaceInstUsesWith(I, V); 1892 } 1893 1894 return nullptr; 1895 } 1896