1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/AlignOf.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/KnownBits.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr()
86       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87 
88     const APFloat *getFpValPtr() const
89       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFDiv(Value *Opnd0, Value *Opnd1);
199     Value *createFNeg(Value *V);
200     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
201     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
202 
203      // Debugging stuff are clustered here.
204     #ifndef NDEBUG
205       unsigned CreateInstrNum;
206       void initCreateInstNum() { CreateInstrNum = 0; }
207       void incCreateInstNum() { CreateInstrNum++; }
208     #else
209       void initCreateInstNum() {}
210       void incCreateInstNum() {}
211     #endif
212 
213     InstCombiner::BuilderTy &Builder;
214     Instruction *Instr = nullptr;
215   };
216 
217 } // end anonymous namespace
218 
219 //===----------------------------------------------------------------------===//
220 //
221 // Implementation of
222 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
223 //
224 //===----------------------------------------------------------------------===//
225 FAddendCoef::~FAddendCoef() {
226   if (BufHasFpVal)
227     getFpValPtr()->~APFloat();
228 }
229 
230 void FAddendCoef::set(const APFloat& C) {
231   APFloat *P = getFpValPtr();
232 
233   if (isInt()) {
234     // As the buffer is meanless byte stream, we cannot call
235     // APFloat::operator=().
236     new(P) APFloat(C);
237   } else
238     *P = C;
239 
240   IsFp = BufHasFpVal = true;
241 }
242 
243 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
244   if (!isInt())
245     return;
246 
247   APFloat *P = getFpValPtr();
248   if (IntVal > 0)
249     new(P) APFloat(Sem, IntVal);
250   else {
251     new(P) APFloat(Sem, 0 - IntVal);
252     P->changeSign();
253   }
254   IsFp = BufHasFpVal = true;
255 }
256 
257 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
258   if (Val >= 0)
259     return APFloat(Sem, Val);
260 
261   APFloat T(Sem, 0 - Val);
262   T.changeSign();
263 
264   return T;
265 }
266 
267 void FAddendCoef::operator=(const FAddendCoef &That) {
268   if (That.isInt())
269     set(That.IntVal);
270   else
271     set(That.getFpVal());
272 }
273 
274 void FAddendCoef::operator+=(const FAddendCoef &That) {
275   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
276   if (isInt() == That.isInt()) {
277     if (isInt())
278       IntVal += That.IntVal;
279     else
280       getFpVal().add(That.getFpVal(), RndMode);
281     return;
282   }
283 
284   if (isInt()) {
285     const APFloat &T = That.getFpVal();
286     convertToFpType(T.getSemantics());
287     getFpVal().add(T, RndMode);
288     return;
289   }
290 
291   APFloat &T = getFpVal();
292   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
293 }
294 
295 void FAddendCoef::operator*=(const FAddendCoef &That) {
296   if (That.isOne())
297     return;
298 
299   if (That.isMinusOne()) {
300     negate();
301     return;
302   }
303 
304   if (isInt() && That.isInt()) {
305     int Res = IntVal * (int)That.IntVal;
306     assert(!insaneIntVal(Res) && "Insane int value");
307     IntVal = Res;
308     return;
309   }
310 
311   const fltSemantics &Semantic =
312     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
313 
314   if (isInt())
315     convertToFpType(Semantic);
316   APFloat &F0 = getFpVal();
317 
318   if (That.isInt())
319     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
320                 APFloat::rmNearestTiesToEven);
321   else
322     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
323 }
324 
325 void FAddendCoef::negate() {
326   if (isInt())
327     IntVal = 0 - IntVal;
328   else
329     getFpVal().changeSign();
330 }
331 
332 Value *FAddendCoef::getValue(Type *Ty) const {
333   return isInt() ?
334     ConstantFP::get(Ty, float(IntVal)) :
335     ConstantFP::get(Ty->getContext(), getFpVal());
336 }
337 
338 // The definition of <Val>     Addends
339 // =========================================
340 //  A + B                     <1, A>, <1,B>
341 //  A - B                     <1, A>, <1,B>
342 //  0 - B                     <-1, B>
343 //  C * A,                    <C, A>
344 //  A + C                     <1, A> <C, NULL>
345 //  0 +/- 0                   <0, NULL> (corner case)
346 //
347 // Legend: A and B are not constant, C is constant
348 unsigned FAddend::drillValueDownOneStep
349   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
350   Instruction *I = nullptr;
351   if (!Val || !(I = dyn_cast<Instruction>(Val)))
352     return 0;
353 
354   unsigned Opcode = I->getOpcode();
355 
356   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
357     ConstantFP *C0, *C1;
358     Value *Opnd0 = I->getOperand(0);
359     Value *Opnd1 = I->getOperand(1);
360     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
361       Opnd0 = nullptr;
362 
363     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
364       Opnd1 = nullptr;
365 
366     if (Opnd0) {
367       if (!C0)
368         Addend0.set(1, Opnd0);
369       else
370         Addend0.set(C0, nullptr);
371     }
372 
373     if (Opnd1) {
374       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
375       if (!C1)
376         Addend.set(1, Opnd1);
377       else
378         Addend.set(C1, nullptr);
379       if (Opcode == Instruction::FSub)
380         Addend.negate();
381     }
382 
383     if (Opnd0 || Opnd1)
384       return Opnd0 && Opnd1 ? 2 : 1;
385 
386     // Both operands are zero. Weird!
387     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
388     return 1;
389   }
390 
391   if (I->getOpcode() == Instruction::FMul) {
392     Value *V0 = I->getOperand(0);
393     Value *V1 = I->getOperand(1);
394     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
395       Addend0.set(C, V1);
396       return 1;
397     }
398 
399     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
400       Addend0.set(C, V0);
401       return 1;
402     }
403   }
404 
405   return 0;
406 }
407 
408 // Try to break *this* addend into two addends. e.g. Suppose this addend is
409 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
410 // i.e. <2.3, X> and <2.3, Y>.
411 unsigned FAddend::drillAddendDownOneStep
412   (FAddend &Addend0, FAddend &Addend1) const {
413   if (isConstant())
414     return 0;
415 
416   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
417   if (!BreakNum || Coeff.isOne())
418     return BreakNum;
419 
420   Addend0.Scale(Coeff);
421 
422   if (BreakNum == 2)
423     Addend1.Scale(Coeff);
424 
425   return BreakNum;
426 }
427 
428 Value *FAddCombine::simplify(Instruction *I) {
429   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
430          "Expected 'reassoc'+'nsz' instruction");
431 
432   // Currently we are not able to handle vector type.
433   if (I->getType()->isVectorTy())
434     return nullptr;
435 
436   assert((I->getOpcode() == Instruction::FAdd ||
437           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
438 
439   // Save the instruction before calling other member-functions.
440   Instr = I;
441 
442   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
443 
444   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
445 
446   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
447   unsigned Opnd0_ExpNum = 0;
448   unsigned Opnd1_ExpNum = 0;
449 
450   if (!Opnd0.isConstant())
451     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
452 
453   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
454   if (OpndNum == 2 && !Opnd1.isConstant())
455     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
456 
457   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
458   if (Opnd0_ExpNum && Opnd1_ExpNum) {
459     AddendVect AllOpnds;
460     AllOpnds.push_back(&Opnd0_0);
461     AllOpnds.push_back(&Opnd1_0);
462     if (Opnd0_ExpNum == 2)
463       AllOpnds.push_back(&Opnd0_1);
464     if (Opnd1_ExpNum == 2)
465       AllOpnds.push_back(&Opnd1_1);
466 
467     // Compute instruction quota. We should save at least one instruction.
468     unsigned InstQuota = 0;
469 
470     Value *V0 = I->getOperand(0);
471     Value *V1 = I->getOperand(1);
472     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
473                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
474 
475     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
476       return R;
477   }
478 
479   if (OpndNum != 2) {
480     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
481     // splitted into two addends, say "V = X - Y", the instruction would have
482     // been optimized into "I = Y - X" in the previous steps.
483     //
484     const FAddendCoef &CE = Opnd0.getCoef();
485     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
486   }
487 
488   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
489   if (Opnd1_ExpNum) {
490     AddendVect AllOpnds;
491     AllOpnds.push_back(&Opnd0);
492     AllOpnds.push_back(&Opnd1_0);
493     if (Opnd1_ExpNum == 2)
494       AllOpnds.push_back(&Opnd1_1);
495 
496     if (Value *R = simplifyFAdd(AllOpnds, 1))
497       return R;
498   }
499 
500   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
501   if (Opnd0_ExpNum) {
502     AddendVect AllOpnds;
503     AllOpnds.push_back(&Opnd1);
504     AllOpnds.push_back(&Opnd0_0);
505     if (Opnd0_ExpNum == 2)
506       AllOpnds.push_back(&Opnd0_1);
507 
508     if (Value *R = simplifyFAdd(AllOpnds, 1))
509       return R;
510   }
511 
512   return nullptr;
513 }
514 
515 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
516   unsigned AddendNum = Addends.size();
517   assert(AddendNum <= 4 && "Too many addends");
518 
519   // For saving intermediate results;
520   unsigned NextTmpIdx = 0;
521   FAddend TmpResult[3];
522 
523   // Points to the constant addend of the resulting simplified expression.
524   // If the resulting expr has constant-addend, this constant-addend is
525   // desirable to reside at the top of the resulting expression tree. Placing
526   // constant close to supper-expr(s) will potentially reveal some optimization
527   // opportunities in super-expr(s).
528   const FAddend *ConstAdd = nullptr;
529 
530   // Simplified addends are placed <SimpVect>.
531   AddendVect SimpVect;
532 
533   // The outer loop works on one symbolic-value at a time. Suppose the input
534   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
535   // The symbolic-values will be processed in this order: x, y, z.
536   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
537 
538     const FAddend *ThisAddend = Addends[SymIdx];
539     if (!ThisAddend) {
540       // This addend was processed before.
541       continue;
542     }
543 
544     Value *Val = ThisAddend->getSymVal();
545     unsigned StartIdx = SimpVect.size();
546     SimpVect.push_back(ThisAddend);
547 
548     // The inner loop collects addends sharing same symbolic-value, and these
549     // addends will be later on folded into a single addend. Following above
550     // example, if the symbolic value "y" is being processed, the inner loop
551     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552     // be later on folded into "<b1+b2, y>".
553     for (unsigned SameSymIdx = SymIdx + 1;
554          SameSymIdx < AddendNum; SameSymIdx++) {
555       const FAddend *T = Addends[SameSymIdx];
556       if (T && T->getSymVal() == Val) {
557         // Set null such that next iteration of the outer loop will not process
558         // this addend again.
559         Addends[SameSymIdx] = nullptr;
560         SimpVect.push_back(T);
561       }
562     }
563 
564     // If multiple addends share same symbolic value, fold them together.
565     if (StartIdx + 1 != SimpVect.size()) {
566       FAddend &R = TmpResult[NextTmpIdx ++];
567       R = *SimpVect[StartIdx];
568       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569         R += *SimpVect[Idx];
570 
571       // Pop all addends being folded and push the resulting folded addend.
572       SimpVect.resize(StartIdx);
573       if (Val) {
574         if (!R.isZero()) {
575           SimpVect.push_back(&R);
576         }
577       } else {
578         // Don't push constant addend at this time. It will be the last element
579         // of <SimpVect>.
580         ConstAdd = &R;
581       }
582     }
583   }
584 
585   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
586          "out-of-bound access");
587 
588   if (ConstAdd)
589     SimpVect.push_back(ConstAdd);
590 
591   Value *Result;
592   if (!SimpVect.empty())
593     Result = createNaryFAdd(SimpVect, InstrQuota);
594   else {
595     // The addition is folded to 0.0.
596     Result = ConstantFP::get(Instr->getType(), 0.0);
597   }
598 
599   return Result;
600 }
601 
602 Value *FAddCombine::createNaryFAdd
603   (const AddendVect &Opnds, unsigned InstrQuota) {
604   assert(!Opnds.empty() && "Expect at least one addend");
605 
606   // Step 1: Check if the # of instructions needed exceeds the quota.
607 
608   unsigned InstrNeeded = calcInstrNumber(Opnds);
609   if (InstrNeeded > InstrQuota)
610     return nullptr;
611 
612   initCreateInstNum();
613 
614   // step 2: Emit the N-ary addition.
615   // Note that at most three instructions are involved in Fadd-InstCombine: the
616   // addition in question, and at most two neighboring instructions.
617   // The resulting optimized addition should have at least one less instruction
618   // than the original addition expression tree. This implies that the resulting
619   // N-ary addition has at most two instructions, and we don't need to worry
620   // about tree-height when constructing the N-ary addition.
621 
622   Value *LastVal = nullptr;
623   bool LastValNeedNeg = false;
624 
625   // Iterate the addends, creating fadd/fsub using adjacent two addends.
626   for (const FAddend *Opnd : Opnds) {
627     bool NeedNeg;
628     Value *V = createAddendVal(*Opnd, NeedNeg);
629     if (!LastVal) {
630       LastVal = V;
631       LastValNeedNeg = NeedNeg;
632       continue;
633     }
634 
635     if (LastValNeedNeg == NeedNeg) {
636       LastVal = createFAdd(LastVal, V);
637       continue;
638     }
639 
640     if (LastValNeedNeg)
641       LastVal = createFSub(V, LastVal);
642     else
643       LastVal = createFSub(LastVal, V);
644 
645     LastValNeedNeg = false;
646   }
647 
648   if (LastValNeedNeg) {
649     LastVal = createFNeg(LastVal);
650   }
651 
652 #ifndef NDEBUG
653   assert(CreateInstrNum == InstrNeeded &&
654          "Inconsistent in instruction numbers");
655 #endif
656 
657   return LastVal;
658 }
659 
660 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
661   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
662   if (Instruction *I = dyn_cast<Instruction>(V))
663     createInstPostProc(I);
664   return V;
665 }
666 
667 Value *FAddCombine::createFNeg(Value *V) {
668   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
669   Value *NewV = createFSub(Zero, V);
670   if (Instruction *I = dyn_cast<Instruction>(NewV))
671     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
672   return NewV;
673 }
674 
675 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
676   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
677   if (Instruction *I = dyn_cast<Instruction>(V))
678     createInstPostProc(I);
679   return V;
680 }
681 
682 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
683   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
684   if (Instruction *I = dyn_cast<Instruction>(V))
685     createInstPostProc(I);
686   return V;
687 }
688 
689 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
690   Value *V = Builder.CreateFDiv(Opnd0, Opnd1);
691   if (Instruction *I = dyn_cast<Instruction>(V))
692     createInstPostProc(I);
693   return V;
694 }
695 
696 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
697   NewInstr->setDebugLoc(Instr->getDebugLoc());
698 
699   // Keep track of the number of instruction created.
700   if (!NoNumber)
701     incCreateInstNum();
702 
703   // Propagate fast-math flags
704   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
705 }
706 
707 // Return the number of instruction needed to emit the N-ary addition.
708 // NOTE: Keep this function in sync with createAddendVal().
709 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
710   unsigned OpndNum = Opnds.size();
711   unsigned InstrNeeded = OpndNum - 1;
712 
713   // The number of addends in the form of "(-1)*x".
714   unsigned NegOpndNum = 0;
715 
716   // Adjust the number of instructions needed to emit the N-ary add.
717   for (const FAddend *Opnd : Opnds) {
718     if (Opnd->isConstant())
719       continue;
720 
721     // The constant check above is really for a few special constant
722     // coefficients.
723     if (isa<UndefValue>(Opnd->getSymVal()))
724       continue;
725 
726     const FAddendCoef &CE = Opnd->getCoef();
727     if (CE.isMinusOne() || CE.isMinusTwo())
728       NegOpndNum++;
729 
730     // Let the addend be "c * x". If "c == +/-1", the value of the addend
731     // is immediately available; otherwise, it needs exactly one instruction
732     // to evaluate the value.
733     if (!CE.isMinusOne() && !CE.isOne())
734       InstrNeeded++;
735   }
736   if (NegOpndNum == OpndNum)
737     InstrNeeded++;
738   return InstrNeeded;
739 }
740 
741 // Input Addend        Value           NeedNeg(output)
742 // ================================================================
743 // Constant C          C               false
744 // <+/-1, V>           V               coefficient is -1
745 // <2/-2, V>          "fadd V, V"      coefficient is -2
746 // <C, V>             "fmul V, C"      false
747 //
748 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
749 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
750   const FAddendCoef &Coeff = Opnd.getCoef();
751 
752   if (Opnd.isConstant()) {
753     NeedNeg = false;
754     return Coeff.getValue(Instr->getType());
755   }
756 
757   Value *OpndVal = Opnd.getSymVal();
758 
759   if (Coeff.isMinusOne() || Coeff.isOne()) {
760     NeedNeg = Coeff.isMinusOne();
761     return OpndVal;
762   }
763 
764   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
765     NeedNeg = Coeff.isMinusTwo();
766     return createFAdd(OpndVal, OpndVal);
767   }
768 
769   NeedNeg = false;
770   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
771 }
772 
773 // Checks if any operand is negative and we can convert add to sub.
774 // This function checks for following negative patterns
775 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
776 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
777 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
778 static Value *checkForNegativeOperand(BinaryOperator &I,
779                                       InstCombiner::BuilderTy &Builder) {
780   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
781 
782   // This function creates 2 instructions to replace ADD, we need at least one
783   // of LHS or RHS to have one use to ensure benefit in transform.
784   if (!LHS->hasOneUse() && !RHS->hasOneUse())
785     return nullptr;
786 
787   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
788   const APInt *C1 = nullptr, *C2 = nullptr;
789 
790   // if ONE is on other side, swap
791   if (match(RHS, m_Add(m_Value(X), m_One())))
792     std::swap(LHS, RHS);
793 
794   if (match(LHS, m_Add(m_Value(X), m_One()))) {
795     // if XOR on other side, swap
796     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
797       std::swap(X, RHS);
798 
799     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
800       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
801       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
802       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
803         Value *NewAnd = Builder.CreateAnd(Z, *C1);
804         return Builder.CreateSub(RHS, NewAnd, "sub");
805       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
806         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
807         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
808         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
809         return Builder.CreateSub(RHS, NewOr, "sub");
810       }
811     }
812   }
813 
814   // Restore LHS and RHS
815   LHS = I.getOperand(0);
816   RHS = I.getOperand(1);
817 
818   // if XOR is on other side, swap
819   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
820     std::swap(LHS, RHS);
821 
822   // C2 is ODD
823   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
824   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
825   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
826     if (C1->countTrailingZeros() == 0)
827       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
828         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
829         return Builder.CreateSub(RHS, NewOr, "sub");
830       }
831   return nullptr;
832 }
833 
834 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
835   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
836   Constant *Op1C;
837   if (!match(Op1, m_Constant(Op1C)))
838     return nullptr;
839 
840   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
841     return NV;
842 
843   Value *X, *Y;
844 
845   // add (sub X, Y), -1 --> add (not Y), X
846   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
847       match(Op1, m_AllOnes()))
848     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
849 
850   // zext(bool) + C -> bool ? C + 1 : C
851   if (match(Op0, m_ZExt(m_Value(X))) &&
852       X->getType()->getScalarSizeInBits() == 1)
853     return SelectInst::Create(X, AddOne(Op1C), Op1);
854 
855   // ~X + C --> (C-1) - X
856   if (match(Op0, m_Not(m_Value(X))))
857     return BinaryOperator::CreateSub(SubOne(Op1C), X);
858 
859   const APInt *C;
860   if (!match(Op1, m_APInt(C)))
861     return nullptr;
862 
863   if (C->isSignMask()) {
864     // If wrapping is not allowed, then the addition must set the sign bit:
865     // X + (signmask) --> X | signmask
866     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
867       return BinaryOperator::CreateOr(Op0, Op1);
868 
869     // If wrapping is allowed, then the addition flips the sign bit of LHS:
870     // X + (signmask) --> X ^ signmask
871     return BinaryOperator::CreateXor(Op0, Op1);
872   }
873 
874   // Is this add the last step in a convoluted sext?
875   // add(zext(xor i16 X, -32768), -32768) --> sext X
876   Type *Ty = Add.getType();
877   const APInt *C2;
878   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
879       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
880     return CastInst::Create(Instruction::SExt, X, Ty);
881 
882   // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
883   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
884       C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) {
885     Constant *NewC =
886         ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
887     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
888   }
889 
890   if (C->isOneValue() && Op0->hasOneUse()) {
891     // add (sext i1 X), 1 --> zext (not X)
892     // TODO: The smallest IR representation is (select X, 0, 1), and that would
893     // not require the one-use check. But we need to remove a transform in
894     // visitSelect and make sure that IR value tracking for select is equal or
895     // better than for these ops.
896     if (match(Op0, m_SExt(m_Value(X))) &&
897         X->getType()->getScalarSizeInBits() == 1)
898       return new ZExtInst(Builder.CreateNot(X), Ty);
899 
900     // Shifts and add used to flip and mask off the low bit:
901     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
902     const APInt *C3;
903     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
904         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
905       Value *NotX = Builder.CreateNot(X);
906       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
907     }
908   }
909 
910   return nullptr;
911 }
912 
913 // Matches multiplication expression Op * C where C is a constant. Returns the
914 // constant value in C and the other operand in Op. Returns true if such a
915 // match is found.
916 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
917   const APInt *AI;
918   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
919     C = *AI;
920     return true;
921   }
922   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
923     C = APInt(AI->getBitWidth(), 1);
924     C <<= *AI;
925     return true;
926   }
927   return false;
928 }
929 
930 // Matches remainder expression Op % C where C is a constant. Returns the
931 // constant value in C and the other operand in Op. Returns the signedness of
932 // the remainder operation in IsSigned. Returns true if such a match is
933 // found.
934 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
935   const APInt *AI;
936   IsSigned = false;
937   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
938     IsSigned = true;
939     C = *AI;
940     return true;
941   }
942   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
943     C = *AI;
944     return true;
945   }
946   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
947     C = *AI + 1;
948     return true;
949   }
950   return false;
951 }
952 
953 // Matches division expression Op / C with the given signedness as indicated
954 // by IsSigned, where C is a constant. Returns the constant value in C and the
955 // other operand in Op. Returns true if such a match is found.
956 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
957   const APInt *AI;
958   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
959     C = *AI;
960     return true;
961   }
962   if (!IsSigned) {
963     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
964       C = *AI;
965       return true;
966     }
967     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
968       C = APInt(AI->getBitWidth(), 1);
969       C <<= *AI;
970       return true;
971     }
972   }
973   return false;
974 }
975 
976 // Returns whether C0 * C1 with the given signedness overflows.
977 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
978   bool overflow;
979   if (IsSigned)
980     (void)C0.smul_ov(C1, overflow);
981   else
982     (void)C0.umul_ov(C1, overflow);
983   return overflow;
984 }
985 
986 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
987 // does not overflow.
988 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
989   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
990   Value *X, *MulOpV;
991   APInt C0, MulOpC;
992   bool IsSigned;
993   // Match I = X % C0 + MulOpV * C0
994   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
995        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
996       C0 == MulOpC) {
997     Value *RemOpV;
998     APInt C1;
999     bool Rem2IsSigned;
1000     // Match MulOpC = RemOpV % C1
1001     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1002         IsSigned == Rem2IsSigned) {
1003       Value *DivOpV;
1004       APInt DivOpC;
1005       // Match RemOpV = X / C0
1006       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1007           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1008         Value *NewDivisor =
1009             ConstantInt::get(X->getType()->getContext(), C0 * C1);
1010         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1011                         : Builder.CreateURem(X, NewDivisor, "urem");
1012       }
1013     }
1014   }
1015 
1016   return nullptr;
1017 }
1018 
1019 /// Fold
1020 ///   (1 << NBits) - 1
1021 /// Into:
1022 ///   ~(-(1 << NBits))
1023 /// Because a 'not' is better for bit-tracking analysis and other transforms
1024 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1025 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1026                                            InstCombiner::BuilderTy &Builder) {
1027   Value *NBits;
1028   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1029     return nullptr;
1030 
1031   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1032   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1033   // Be wary of constant folding.
1034   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1035     // Always NSW. But NUW propagates from `add`.
1036     BOp->setHasNoSignedWrap();
1037     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1038   }
1039 
1040   return BinaryOperator::CreateNot(NotMask, I.getName());
1041 }
1042 
1043 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1044   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1045                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1046                                  SQ.getWithInstruction(&I)))
1047     return replaceInstUsesWith(I, V);
1048 
1049   if (SimplifyAssociativeOrCommutative(I))
1050     return &I;
1051 
1052   if (Instruction *X = foldShuffledBinop(I))
1053     return X;
1054 
1055   // (A*B)+(A*C) -> A*(B+C) etc
1056   if (Value *V = SimplifyUsingDistributiveLaws(I))
1057     return replaceInstUsesWith(I, V);
1058 
1059   if (Instruction *X = foldAddWithConstant(I))
1060     return X;
1061 
1062   // FIXME: This should be moved into the above helper function to allow these
1063   // transforms for general constant or constant splat vectors.
1064   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1065   Type *Ty = I.getType();
1066   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1067     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1068     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1069       unsigned TySizeBits = Ty->getScalarSizeInBits();
1070       const APInt &RHSVal = CI->getValue();
1071       unsigned ExtendAmt = 0;
1072       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1073       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1074       if (XorRHS->getValue() == -RHSVal) {
1075         if (RHSVal.isPowerOf2())
1076           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1077         else if (XorRHS->getValue().isPowerOf2())
1078           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1079       }
1080 
1081       if (ExtendAmt) {
1082         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1083         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1084           ExtendAmt = 0;
1085       }
1086 
1087       if (ExtendAmt) {
1088         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1089         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1090         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1091       }
1092 
1093       // If this is a xor that was canonicalized from a sub, turn it back into
1094       // a sub and fuse this add with it.
1095       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1096         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1097         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1098           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1099                                            XorLHS);
1100       }
1101       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1102       // transform them into (X + (signmask ^ C))
1103       if (XorRHS->getValue().isSignMask())
1104         return BinaryOperator::CreateAdd(XorLHS,
1105                                          ConstantExpr::getXor(XorRHS, CI));
1106     }
1107   }
1108 
1109   if (Ty->isIntOrIntVectorTy(1))
1110     return BinaryOperator::CreateXor(LHS, RHS);
1111 
1112   // X + X --> X << 1
1113   if (LHS == RHS) {
1114     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1115     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1116     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1117     return Shl;
1118   }
1119 
1120   Value *A, *B;
1121   if (match(LHS, m_Neg(m_Value(A)))) {
1122     // -A + -B --> -(A + B)
1123     if (match(RHS, m_Neg(m_Value(B))))
1124       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1125 
1126     // -A + B --> B - A
1127     return BinaryOperator::CreateSub(RHS, A);
1128   }
1129 
1130   // A + -B  -->  A - B
1131   if (match(RHS, m_Neg(m_Value(B))))
1132     return BinaryOperator::CreateSub(LHS, B);
1133 
1134   if (Value *V = checkForNegativeOperand(I, Builder))
1135     return replaceInstUsesWith(I, V);
1136 
1137   // (A + 1) + ~B --> A - B
1138   // ~B + (A + 1) --> A - B
1139   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))))
1140     return BinaryOperator::CreateSub(A, B);
1141 
1142   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1143   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1144 
1145   // A+B --> A|B iff A and B have no bits set in common.
1146   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1147     return BinaryOperator::CreateOr(LHS, RHS);
1148 
1149   // FIXME: We already did a check for ConstantInt RHS above this.
1150   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1151   // removal.
1152   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1153     // (X & FF00) + xx00  -> (X+xx00) & FF00
1154     Value *X;
1155     ConstantInt *C2;
1156     if (LHS->hasOneUse() &&
1157         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1158         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1159       // See if all bits from the first bit set in the Add RHS up are included
1160       // in the mask.  First, get the rightmost bit.
1161       const APInt &AddRHSV = CRHS->getValue();
1162 
1163       // Form a mask of all bits from the lowest bit added through the top.
1164       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1165 
1166       // See if the and mask includes all of these bits.
1167       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1168 
1169       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1170         // Okay, the xform is safe.  Insert the new add pronto.
1171         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1172         return BinaryOperator::CreateAnd(NewAdd, C2);
1173       }
1174     }
1175   }
1176 
1177   // add (select X 0 (sub n A)) A  -->  select X A n
1178   {
1179     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1180     Value *A = RHS;
1181     if (!SI) {
1182       SI = dyn_cast<SelectInst>(RHS);
1183       A = LHS;
1184     }
1185     if (SI && SI->hasOneUse()) {
1186       Value *TV = SI->getTrueValue();
1187       Value *FV = SI->getFalseValue();
1188       Value *N;
1189 
1190       // Can we fold the add into the argument of the select?
1191       // We check both true and false select arguments for a matching subtract.
1192       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1193         // Fold the add into the true select value.
1194         return SelectInst::Create(SI->getCondition(), N, A);
1195 
1196       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1197         // Fold the add into the false select value.
1198         return SelectInst::Create(SI->getCondition(), A, N);
1199     }
1200   }
1201 
1202   // Check for (add (sext x), y), see if we can merge this into an
1203   // integer add followed by a sext.
1204   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1205     // (add (sext x), cst) --> (sext (add x, cst'))
1206     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1207       if (LHSConv->hasOneUse()) {
1208         Constant *CI =
1209             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1210         if (ConstantExpr::getSExt(CI, Ty) == RHSC &&
1211             willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1212           // Insert the new, smaller add.
1213           Value *NewAdd =
1214               Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1215           return new SExtInst(NewAdd, Ty);
1216         }
1217       }
1218     }
1219 
1220     // (add (sext x), (sext y)) --> (sext (add int x, y))
1221     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1222       // Only do this if x/y have the same type, if at least one of them has a
1223       // single use (so we don't increase the number of sexts), and if the
1224       // integer add will not overflow.
1225       if (LHSConv->getOperand(0)->getType() ==
1226               RHSConv->getOperand(0)->getType() &&
1227           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1228           willNotOverflowSignedAdd(LHSConv->getOperand(0),
1229                                    RHSConv->getOperand(0), I)) {
1230         // Insert the new integer add.
1231         Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0),
1232                                              RHSConv->getOperand(0), "addconv");
1233         return new SExtInst(NewAdd, Ty);
1234       }
1235     }
1236   }
1237 
1238   // Check for (add (zext x), y), see if we can merge this into an
1239   // integer add followed by a zext.
1240   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1241     // (add (zext x), cst) --> (zext (add x, cst'))
1242     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1243       if (LHSConv->hasOneUse()) {
1244         Constant *CI =
1245             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1246         if (ConstantExpr::getZExt(CI, Ty) == RHSC &&
1247             willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) {
1248           // Insert the new, smaller add.
1249           Value *NewAdd =
1250               Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1251           return new ZExtInst(NewAdd, Ty);
1252         }
1253       }
1254     }
1255 
1256     // (add (zext x), (zext y)) --> (zext (add int x, y))
1257     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1258       // Only do this if x/y have the same type, if at least one of them has a
1259       // single use (so we don't increase the number of zexts), and if the
1260       // integer add will not overflow.
1261       if (LHSConv->getOperand(0)->getType() ==
1262               RHSConv->getOperand(0)->getType() &&
1263           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1264           willNotOverflowUnsignedAdd(LHSConv->getOperand(0),
1265                                      RHSConv->getOperand(0), I)) {
1266         // Insert the new integer add.
1267         Value *NewAdd = Builder.CreateNUWAdd(
1268             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1269         return new ZExtInst(NewAdd, Ty);
1270       }
1271     }
1272   }
1273 
1274   // (add (xor A, B) (and A, B)) --> (or A, B)
1275   // (add (and A, B) (xor A, B)) --> (or A, B)
1276   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1277                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1278     return BinaryOperator::CreateOr(A, B);
1279 
1280   // (add (or A, B) (and A, B)) --> (add A, B)
1281   // (add (and A, B) (or A, B)) --> (add A, B)
1282   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1283                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1284     I.setOperand(0, A);
1285     I.setOperand(1, B);
1286     return &I;
1287   }
1288 
1289   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1290   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1291   // computeKnownBits.
1292   bool Changed = false;
1293   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1294     Changed = true;
1295     I.setHasNoSignedWrap(true);
1296   }
1297   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1298     Changed = true;
1299     I.setHasNoUnsignedWrap(true);
1300   }
1301 
1302   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1303     return V;
1304 
1305   return Changed ? &I : nullptr;
1306 }
1307 
1308 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1309 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1310                                       InstCombiner::BuilderTy &Builder) {
1311   assert((I.getOpcode() == Instruction::FAdd ||
1312           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1313   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1314          "FP factorization requires FMF");
1315   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1316   Value *X, *Y, *Z;
1317   bool IsFMul;
1318   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1319        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1320       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1321        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1322     IsFMul = true;
1323   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1324            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1325     IsFMul = false;
1326   else
1327     return nullptr;
1328 
1329   // (X * Z) + (Y * Z) --> (X + Y) * Z
1330   // (X * Z) - (Y * Z) --> (X - Y) * Z
1331   // (X / Z) + (Y / Z) --> (X + Y) / Z
1332   // (X / Z) - (Y / Z) --> (X - Y) / Z
1333   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1334   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1335                      : Builder.CreateFSubFMF(X, Y, &I);
1336 
1337   // Bail out if we just created a denormal constant.
1338   // TODO: This is copied from a previous implementation. Is it necessary?
1339   const APFloat *C;
1340   if (match(XY, m_APFloat(C)) && !C->isNormal())
1341     return nullptr;
1342 
1343   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1344                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1345 }
1346 
1347 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1348   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1349                                   I.getFastMathFlags(),
1350                                   SQ.getWithInstruction(&I)))
1351     return replaceInstUsesWith(I, V);
1352 
1353   if (SimplifyAssociativeOrCommutative(I))
1354     return &I;
1355 
1356   if (Instruction *X = foldShuffledBinop(I))
1357     return X;
1358 
1359   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1360     return FoldedFAdd;
1361 
1362   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1363   Value *X;
1364   // (-X) + Y --> Y - X
1365   if (match(LHS, m_FNeg(m_Value(X))))
1366     return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1367   // Y + (-X) --> Y - X
1368   if (match(RHS, m_FNeg(m_Value(X))))
1369     return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1370 
1371   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1372   // integer add followed by a promotion.
1373   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1374     Value *LHSIntVal = LHSConv->getOperand(0);
1375     Type *FPType = LHSConv->getType();
1376 
1377     // TODO: This check is overly conservative. In many cases known bits
1378     // analysis can tell us that the result of the addition has less significant
1379     // bits than the integer type can hold.
1380     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1381       Type *FScalarTy = FTy->getScalarType();
1382       Type *IScalarTy = ITy->getScalarType();
1383 
1384       // Do we have enough bits in the significand to represent the result of
1385       // the integer addition?
1386       unsigned MaxRepresentableBits =
1387           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1388       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1389     };
1390 
1391     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1392     // ... if the constant fits in the integer value.  This is useful for things
1393     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1394     // requires a constant pool load, and generally allows the add to be better
1395     // instcombined.
1396     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1397       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1398         Constant *CI =
1399           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1400         if (LHSConv->hasOneUse() &&
1401             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1402             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1403           // Insert the new integer add.
1404           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1405           return new SIToFPInst(NewAdd, I.getType());
1406         }
1407       }
1408 
1409     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1410     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1411       Value *RHSIntVal = RHSConv->getOperand(0);
1412       // It's enough to check LHS types only because we require int types to
1413       // be the same for this transform.
1414       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1415         // Only do this if x/y have the same type, if at least one of them has a
1416         // single use (so we don't increase the number of int->fp conversions),
1417         // and if the integer add will not overflow.
1418         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1419             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1420             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1421           // Insert the new integer add.
1422           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1423           return new SIToFPInst(NewAdd, I.getType());
1424         }
1425       }
1426     }
1427   }
1428 
1429   // Handle specials cases for FAdd with selects feeding the operation
1430   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1431     return replaceInstUsesWith(I, V);
1432 
1433   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1434     if (Instruction *F = factorizeFAddFSub(I, Builder))
1435       return F;
1436     if (Value *V = FAddCombine(Builder).simplify(&I))
1437       return replaceInstUsesWith(I, V);
1438   }
1439 
1440   return nullptr;
1441 }
1442 
1443 /// Optimize pointer differences into the same array into a size.  Consider:
1444 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1445 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1446 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1447                                                Type *Ty) {
1448   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1449   // this.
1450   bool Swapped = false;
1451   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1452 
1453   // For now we require one side to be the base pointer "A" or a constant
1454   // GEP derived from it.
1455   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1456     // (gep X, ...) - X
1457     if (LHSGEP->getOperand(0) == RHS) {
1458       GEP1 = LHSGEP;
1459       Swapped = false;
1460     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1461       // (gep X, ...) - (gep X, ...)
1462       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1463             RHSGEP->getOperand(0)->stripPointerCasts()) {
1464         GEP2 = RHSGEP;
1465         GEP1 = LHSGEP;
1466         Swapped = false;
1467       }
1468     }
1469   }
1470 
1471   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1472     // X - (gep X, ...)
1473     if (RHSGEP->getOperand(0) == LHS) {
1474       GEP1 = RHSGEP;
1475       Swapped = true;
1476     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1477       // (gep X, ...) - (gep X, ...)
1478       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1479             LHSGEP->getOperand(0)->stripPointerCasts()) {
1480         GEP2 = LHSGEP;
1481         GEP1 = RHSGEP;
1482         Swapped = true;
1483       }
1484     }
1485   }
1486 
1487   if (!GEP1)
1488     // No GEP found.
1489     return nullptr;
1490 
1491   if (GEP2) {
1492     // (gep X, ...) - (gep X, ...)
1493     //
1494     // Avoid duplicating the arithmetic if there are more than one non-constant
1495     // indices between the two GEPs and either GEP has a non-constant index and
1496     // multiple users. If zero non-constant index, the result is a constant and
1497     // there is no duplication. If one non-constant index, the result is an add
1498     // or sub with a constant, which is no larger than the original code, and
1499     // there's no duplicated arithmetic, even if either GEP has multiple
1500     // users. If more than one non-constant indices combined, as long as the GEP
1501     // with at least one non-constant index doesn't have multiple users, there
1502     // is no duplication.
1503     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1504     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1505     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1506         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1507          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1508       return nullptr;
1509     }
1510   }
1511 
1512   // Emit the offset of the GEP and an intptr_t.
1513   Value *Result = EmitGEPOffset(GEP1);
1514 
1515   // If we had a constant expression GEP on the other side offsetting the
1516   // pointer, subtract it from the offset we have.
1517   if (GEP2) {
1518     Value *Offset = EmitGEPOffset(GEP2);
1519     Result = Builder.CreateSub(Result, Offset);
1520   }
1521 
1522   // If we have p - gep(p, ...)  then we have to negate the result.
1523   if (Swapped)
1524     Result = Builder.CreateNeg(Result, "diff.neg");
1525 
1526   return Builder.CreateIntCast(Result, Ty, true);
1527 }
1528 
1529 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1530   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1531                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1532                                  SQ.getWithInstruction(&I)))
1533     return replaceInstUsesWith(I, V);
1534 
1535   if (Instruction *X = foldShuffledBinop(I))
1536     return X;
1537 
1538   // (A*B)-(A*C) -> A*(B-C) etc
1539   if (Value *V = SimplifyUsingDistributiveLaws(I))
1540     return replaceInstUsesWith(I, V);
1541 
1542   // If this is a 'B = x-(-A)', change to B = x+A.
1543   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1544   if (Value *V = dyn_castNegVal(Op1)) {
1545     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1546 
1547     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1548       assert(BO->getOpcode() == Instruction::Sub &&
1549              "Expected a subtraction operator!");
1550       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1551         Res->setHasNoSignedWrap(true);
1552     } else {
1553       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1554         Res->setHasNoSignedWrap(true);
1555     }
1556 
1557     return Res;
1558   }
1559 
1560   if (I.getType()->isIntOrIntVectorTy(1))
1561     return BinaryOperator::CreateXor(Op0, Op1);
1562 
1563   // Replace (-1 - A) with (~A).
1564   if (match(Op0, m_AllOnes()))
1565     return BinaryOperator::CreateNot(Op1);
1566 
1567   // (~X) - (~Y) --> Y - X
1568   Value *X, *Y;
1569   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1570     return BinaryOperator::CreateSub(Y, X);
1571 
1572   // (X + -1) - Y --> ~Y + X
1573   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1574     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1575 
1576   // Y - (X + 1) --> ~X + Y
1577   if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1578     return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1579 
1580   if (Constant *C = dyn_cast<Constant>(Op0)) {
1581     bool IsNegate = match(C, m_ZeroInt());
1582     Value *X;
1583     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1584       // 0 - (zext bool) --> sext bool
1585       // C - (zext bool) --> bool ? C - 1 : C
1586       if (IsNegate)
1587         return CastInst::CreateSExtOrBitCast(X, I.getType());
1588       return SelectInst::Create(X, SubOne(C), C);
1589     }
1590     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1591       // 0 - (sext bool) --> zext bool
1592       // C - (sext bool) --> bool ? C + 1 : C
1593       if (IsNegate)
1594         return CastInst::CreateZExtOrBitCast(X, I.getType());
1595       return SelectInst::Create(X, AddOne(C), C);
1596     }
1597 
1598     // C - ~X == X + (1+C)
1599     if (match(Op1, m_Not(m_Value(X))))
1600       return BinaryOperator::CreateAdd(X, AddOne(C));
1601 
1602     // Try to fold constant sub into select arguments.
1603     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1604       if (Instruction *R = FoldOpIntoSelect(I, SI))
1605         return R;
1606 
1607     // Try to fold constant sub into PHI values.
1608     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1609       if (Instruction *R = foldOpIntoPhi(I, PN))
1610         return R;
1611 
1612     // C-(X+C2) --> (C-C2)-X
1613     Constant *C2;
1614     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1615       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1616   }
1617 
1618   const APInt *Op0C;
1619   if (match(Op0, m_APInt(Op0C))) {
1620     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1621 
1622     // -(X >>u 31) -> (X >>s 31)
1623     // -(X >>s 31) -> (X >>u 31)
1624     if (Op0C->isNullValue()) {
1625       Value *X;
1626       const APInt *ShAmt;
1627       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1628           *ShAmt == BitWidth - 1) {
1629         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1630         return BinaryOperator::CreateAShr(X, ShAmtOp);
1631       }
1632       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1633           *ShAmt == BitWidth - 1) {
1634         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1635         return BinaryOperator::CreateLShr(X, ShAmtOp);
1636       }
1637 
1638       if (Op1->hasOneUse()) {
1639         Value *LHS, *RHS;
1640         SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1641         if (SPF == SPF_ABS || SPF == SPF_NABS) {
1642           // This is a negate of an ABS/NABS pattern. Just swap the operands
1643           // of the select.
1644           SelectInst *SI = cast<SelectInst>(Op1);
1645           Value *TrueVal = SI->getTrueValue();
1646           Value *FalseVal = SI->getFalseValue();
1647           SI->setTrueValue(FalseVal);
1648           SI->setFalseValue(TrueVal);
1649           // Don't swap prof metadata, we didn't change the branch behavior.
1650           return replaceInstUsesWith(I, SI);
1651         }
1652       }
1653     }
1654 
1655     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1656     // zero.
1657     if (Op0C->isMask()) {
1658       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1659       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1660         return BinaryOperator::CreateXor(Op1, Op0);
1661     }
1662   }
1663 
1664   {
1665     Value *Y;
1666     // X-(X+Y) == -Y    X-(Y+X) == -Y
1667     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1668       return BinaryOperator::CreateNeg(Y);
1669 
1670     // (X-Y)-X == -Y
1671     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1672       return BinaryOperator::CreateNeg(Y);
1673   }
1674 
1675   // (sub (or A, B), (xor A, B)) --> (and A, B)
1676   {
1677     Value *A, *B;
1678     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1679         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1680       return BinaryOperator::CreateAnd(A, B);
1681   }
1682 
1683   {
1684     Value *Y;
1685     // ((X | Y) - X) --> (~X & Y)
1686     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1687       return BinaryOperator::CreateAnd(
1688           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1689   }
1690 
1691   if (Op1->hasOneUse()) {
1692     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1693     Constant *C = nullptr;
1694 
1695     // (X - (Y - Z))  -->  (X + (Z - Y)).
1696     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1697       return BinaryOperator::CreateAdd(Op0,
1698                                       Builder.CreateSub(Z, Y, Op1->getName()));
1699 
1700     // (X - (X & Y))   -->   (X & ~Y)
1701     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1702       return BinaryOperator::CreateAnd(Op0,
1703                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1704 
1705     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1706     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1707         C->isNotMinSignedValue() && !C->isOneValue())
1708       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1709 
1710     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1711     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1712       if (Value *XNeg = dyn_castNegVal(X))
1713         return BinaryOperator::CreateShl(XNeg, Y);
1714 
1715     // Subtracting -1/0 is the same as adding 1/0:
1716     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1717     // 'nuw' is dropped in favor of the canonical form.
1718     if (match(Op1, m_SExt(m_Value(Y))) &&
1719         Y->getType()->getScalarSizeInBits() == 1) {
1720       Value *Zext = Builder.CreateZExt(Y, I.getType());
1721       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1722       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1723       return Add;
1724     }
1725 
1726     // X - A*-B -> X + A*B
1727     // X - -A*B -> X + A*B
1728     Value *A, *B;
1729     Constant *CI;
1730     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1731       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1732 
1733     // X - A*CI -> X + A*-CI
1734     // No need to handle commuted multiply because multiply handling will
1735     // ensure constant will be move to the right hand side.
1736     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1737       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI));
1738       return BinaryOperator::CreateAdd(Op0, NewMul);
1739     }
1740   }
1741 
1742   // Optimize pointer differences into the same array into a size.  Consider:
1743   //  &A[10] - &A[0]: we should compile this to "10".
1744   Value *LHSOp, *RHSOp;
1745   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1746       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1747     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1748       return replaceInstUsesWith(I, Res);
1749 
1750   // trunc(p)-trunc(q) -> trunc(p-q)
1751   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1752       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1753     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1754       return replaceInstUsesWith(I, Res);
1755 
1756   // Canonicalize a shifty way to code absolute value to the common pattern.
1757   // There are 2 potential commuted variants.
1758   // We're relying on the fact that we only do this transform when the shift has
1759   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1760   // instructions).
1761   Value *A;
1762   const APInt *ShAmt;
1763   Type *Ty = I.getType();
1764   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1765       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1766       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1767     // B = ashr i32 A, 31 ; smear the sign bit
1768     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
1769     // --> (A < 0) ? -A : A
1770     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1771     // Copy the nuw/nsw flags from the sub to the negate.
1772     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1773                                    I.hasNoSignedWrap());
1774     return SelectInst::Create(Cmp, Neg, A);
1775   }
1776 
1777   bool Changed = false;
1778   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1779     Changed = true;
1780     I.setHasNoSignedWrap(true);
1781   }
1782   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1783     Changed = true;
1784     I.setHasNoUnsignedWrap(true);
1785   }
1786 
1787   return Changed ? &I : nullptr;
1788 }
1789 
1790 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1791   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1792                                   I.getFastMathFlags(),
1793                                   SQ.getWithInstruction(&I)))
1794     return replaceInstUsesWith(I, V);
1795 
1796   if (Instruction *X = foldShuffledBinop(I))
1797     return X;
1798 
1799   // Subtraction from -0.0 is the canonical form of fneg.
1800   // fsub nsz 0, X ==> fsub nsz -0.0, X
1801   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1802   if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1803     return BinaryOperator::CreateFNegFMF(Op1, &I);
1804 
1805   Value *X, *Y;
1806   Constant *C;
1807 
1808   // Fold negation into constant operand. This is limited with one-use because
1809   // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
1810   // -(X * C) --> X * (-C)
1811   if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
1812     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
1813   // -(X / C) --> X / (-C)
1814   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
1815     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1816   // -(C / X) --> (-C) / X
1817   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
1818     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1819 
1820   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1821   // Canonicalize to fadd to make analysis easier.
1822   // This can also help codegen because fadd is commutative.
1823   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1824   // killed later. We still limit that particular transform with 'hasOneUse'
1825   // because an fneg is assumed better/cheaper than a generic fsub.
1826   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1827     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1828       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1829       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1830     }
1831   }
1832 
1833   if (isa<Constant>(Op0))
1834     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1835       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1836         return NV;
1837 
1838   // X - C --> X + (-C)
1839   // But don't transform constant expressions because there's an inverse fold
1840   // for X + (-Y) --> X - Y.
1841   if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
1842     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1843 
1844   // X - (-Y) --> X + Y
1845   if (match(Op1, m_FNeg(m_Value(Y))))
1846     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1847 
1848   // Similar to above, but look through a cast of the negated value:
1849   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1850   Type *Ty = I.getType();
1851   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
1852     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
1853 
1854   // X - (fpext(-Y)) --> X + fpext(Y)
1855   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
1856     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
1857 
1858   // Handle special cases for FSub with selects feeding the operation
1859   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1860     return replaceInstUsesWith(I, V);
1861 
1862   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1863     // (Y - X) - Y --> -X
1864     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
1865       return BinaryOperator::CreateFNegFMF(X, &I);
1866 
1867     // Y - (X + Y) --> -X
1868     // Y - (Y + X) --> -X
1869     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
1870       return BinaryOperator::CreateFNegFMF(X, &I);
1871 
1872     // (X * C) - X --> X * (C - 1.0)
1873     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
1874       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
1875       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
1876     }
1877     // X - (X * C) --> X * (1.0 - C)
1878     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
1879       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
1880       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
1881     }
1882 
1883     if (Instruction *F = factorizeFAddFSub(I, Builder))
1884       return F;
1885 
1886     // TODO: This performs reassociative folds for FP ops. Some fraction of the
1887     // functionality has been subsumed by simple pattern matching here and in
1888     // InstSimplify. We should let a dedicated reassociation pass handle more
1889     // complex pattern matching and remove this from InstCombine.
1890     if (Value *V = FAddCombine(Builder).simplify(&I))
1891       return replaceInstUsesWith(I, V);
1892   }
1893 
1894   return nullptr;
1895 }
1896