1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() 86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 87 88 const APFloat *getFpValPtr() const 89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Points to the constant addend of the resulting simplified expression. 523 // If the resulting expr has constant-addend, this constant-addend is 524 // desirable to reside at the top of the resulting expression tree. Placing 525 // constant close to supper-expr(s) will potentially reveal some optimization 526 // opportunities in super-expr(s). 527 const FAddend *ConstAdd = nullptr; 528 529 // Simplified addends are placed <SimpVect>. 530 AddendVect SimpVect; 531 532 // The outer loop works on one symbolic-value at a time. Suppose the input 533 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 534 // The symbolic-values will be processed in this order: x, y, z. 535 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 536 537 const FAddend *ThisAddend = Addends[SymIdx]; 538 if (!ThisAddend) { 539 // This addend was processed before. 540 continue; 541 } 542 543 Value *Val = ThisAddend->getSymVal(); 544 unsigned StartIdx = SimpVect.size(); 545 SimpVect.push_back(ThisAddend); 546 547 // The inner loop collects addends sharing same symbolic-value, and these 548 // addends will be later on folded into a single addend. Following above 549 // example, if the symbolic value "y" is being processed, the inner loop 550 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 551 // be later on folded into "<b1+b2, y>". 552 for (unsigned SameSymIdx = SymIdx + 1; 553 SameSymIdx < AddendNum; SameSymIdx++) { 554 const FAddend *T = Addends[SameSymIdx]; 555 if (T && T->getSymVal() == Val) { 556 // Set null such that next iteration of the outer loop will not process 557 // this addend again. 558 Addends[SameSymIdx] = nullptr; 559 SimpVect.push_back(T); 560 } 561 } 562 563 // If multiple addends share same symbolic value, fold them together. 564 if (StartIdx + 1 != SimpVect.size()) { 565 FAddend &R = TmpResult[NextTmpIdx ++]; 566 R = *SimpVect[StartIdx]; 567 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 568 R += *SimpVect[Idx]; 569 570 // Pop all addends being folded and push the resulting folded addend. 571 SimpVect.resize(StartIdx); 572 if (Val) { 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } else { 577 // Don't push constant addend at this time. It will be the last element 578 // of <SimpVect>. 579 ConstAdd = &R; 580 } 581 } 582 } 583 584 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 585 "out-of-bound access"); 586 587 if (ConstAdd) 588 SimpVect.push_back(ConstAdd); 589 590 Value *Result; 591 if (!SimpVect.empty()) 592 Result = createNaryFAdd(SimpVect, InstrQuota); 593 else { 594 // The addition is folded to 0.0. 595 Result = ConstantFP::get(Instr->getType(), 0.0); 596 } 597 598 return Result; 599 } 600 601 Value *FAddCombine::createNaryFAdd 602 (const AddendVect &Opnds, unsigned InstrQuota) { 603 assert(!Opnds.empty() && "Expect at least one addend"); 604 605 // Step 1: Check if the # of instructions needed exceeds the quota. 606 607 unsigned InstrNeeded = calcInstrNumber(Opnds); 608 if (InstrNeeded > InstrQuota) 609 return nullptr; 610 611 initCreateInstNum(); 612 613 // step 2: Emit the N-ary addition. 614 // Note that at most three instructions are involved in Fadd-InstCombine: the 615 // addition in question, and at most two neighboring instructions. 616 // The resulting optimized addition should have at least one less instruction 617 // than the original addition expression tree. This implies that the resulting 618 // N-ary addition has at most two instructions, and we don't need to worry 619 // about tree-height when constructing the N-ary addition. 620 621 Value *LastVal = nullptr; 622 bool LastValNeedNeg = false; 623 624 // Iterate the addends, creating fadd/fsub using adjacent two addends. 625 for (const FAddend *Opnd : Opnds) { 626 bool NeedNeg; 627 Value *V = createAddendVal(*Opnd, NeedNeg); 628 if (!LastVal) { 629 LastVal = V; 630 LastValNeedNeg = NeedNeg; 631 continue; 632 } 633 634 if (LastValNeedNeg == NeedNeg) { 635 LastVal = createFAdd(LastVal, V); 636 continue; 637 } 638 639 if (LastValNeedNeg) 640 LastVal = createFSub(V, LastVal); 641 else 642 LastVal = createFSub(LastVal, V); 643 644 LastValNeedNeg = false; 645 } 646 647 if (LastValNeedNeg) { 648 LastVal = createFNeg(LastVal); 649 } 650 651 #ifndef NDEBUG 652 assert(CreateInstrNum == InstrNeeded && 653 "Inconsistent in instruction numbers"); 654 #endif 655 656 return LastVal; 657 } 658 659 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 660 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 661 if (Instruction *I = dyn_cast<Instruction>(V)) 662 createInstPostProc(I); 663 return V; 664 } 665 666 Value *FAddCombine::createFNeg(Value *V) { 667 Value *NewV = Builder.CreateFNeg(V); 668 if (Instruction *I = dyn_cast<Instruction>(NewV)) 669 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 670 return NewV; 671 } 672 673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 674 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 675 if (Instruction *I = dyn_cast<Instruction>(V)) 676 createInstPostProc(I); 677 return V; 678 } 679 680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 681 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 682 if (Instruction *I = dyn_cast<Instruction>(V)) 683 createInstPostProc(I); 684 return V; 685 } 686 687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 688 NewInstr->setDebugLoc(Instr->getDebugLoc()); 689 690 // Keep track of the number of instruction created. 691 if (!NoNumber) 692 incCreateInstNum(); 693 694 // Propagate fast-math flags 695 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 696 } 697 698 // Return the number of instruction needed to emit the N-ary addition. 699 // NOTE: Keep this function in sync with createAddendVal(). 700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 701 unsigned OpndNum = Opnds.size(); 702 unsigned InstrNeeded = OpndNum - 1; 703 704 // The number of addends in the form of "(-1)*x". 705 unsigned NegOpndNum = 0; 706 707 // Adjust the number of instructions needed to emit the N-ary add. 708 for (const FAddend *Opnd : Opnds) { 709 if (Opnd->isConstant()) 710 continue; 711 712 // The constant check above is really for a few special constant 713 // coefficients. 714 if (isa<UndefValue>(Opnd->getSymVal())) 715 continue; 716 717 const FAddendCoef &CE = Opnd->getCoef(); 718 if (CE.isMinusOne() || CE.isMinusTwo()) 719 NegOpndNum++; 720 721 // Let the addend be "c * x". If "c == +/-1", the value of the addend 722 // is immediately available; otherwise, it needs exactly one instruction 723 // to evaluate the value. 724 if (!CE.isMinusOne() && !CE.isOne()) 725 InstrNeeded++; 726 } 727 return InstrNeeded; 728 } 729 730 // Input Addend Value NeedNeg(output) 731 // ================================================================ 732 // Constant C C false 733 // <+/-1, V> V coefficient is -1 734 // <2/-2, V> "fadd V, V" coefficient is -2 735 // <C, V> "fmul V, C" false 736 // 737 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 738 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 739 const FAddendCoef &Coeff = Opnd.getCoef(); 740 741 if (Opnd.isConstant()) { 742 NeedNeg = false; 743 return Coeff.getValue(Instr->getType()); 744 } 745 746 Value *OpndVal = Opnd.getSymVal(); 747 748 if (Coeff.isMinusOne() || Coeff.isOne()) { 749 NeedNeg = Coeff.isMinusOne(); 750 return OpndVal; 751 } 752 753 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 754 NeedNeg = Coeff.isMinusTwo(); 755 return createFAdd(OpndVal, OpndVal); 756 } 757 758 NeedNeg = false; 759 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 760 } 761 762 // Checks if any operand is negative and we can convert add to sub. 763 // This function checks for following negative patterns 764 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 765 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 766 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 767 static Value *checkForNegativeOperand(BinaryOperator &I, 768 InstCombiner::BuilderTy &Builder) { 769 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 770 771 // This function creates 2 instructions to replace ADD, we need at least one 772 // of LHS or RHS to have one use to ensure benefit in transform. 773 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 774 return nullptr; 775 776 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 777 const APInt *C1 = nullptr, *C2 = nullptr; 778 779 // if ONE is on other side, swap 780 if (match(RHS, m_Add(m_Value(X), m_One()))) 781 std::swap(LHS, RHS); 782 783 if (match(LHS, m_Add(m_Value(X), m_One()))) { 784 // if XOR on other side, swap 785 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 786 std::swap(X, RHS); 787 788 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 789 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 790 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 791 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 792 Value *NewAnd = Builder.CreateAnd(Z, *C1); 793 return Builder.CreateSub(RHS, NewAnd, "sub"); 794 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 795 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 796 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 797 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 798 return Builder.CreateSub(RHS, NewOr, "sub"); 799 } 800 } 801 } 802 803 // Restore LHS and RHS 804 LHS = I.getOperand(0); 805 RHS = I.getOperand(1); 806 807 // if XOR is on other side, swap 808 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 809 std::swap(LHS, RHS); 810 811 // C2 is ODD 812 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 813 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 814 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 815 if (C1->countTrailingZeros() == 0) 816 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 817 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 818 return Builder.CreateSub(RHS, NewOr, "sub"); 819 } 820 return nullptr; 821 } 822 823 /// Wrapping flags may allow combining constants separated by an extend. 824 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 825 InstCombiner::BuilderTy &Builder) { 826 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 827 Type *Ty = Add.getType(); 828 Constant *Op1C; 829 if (!match(Op1, m_Constant(Op1C))) 830 return nullptr; 831 832 // Try this match first because it results in an add in the narrow type. 833 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 834 Value *X; 835 const APInt *C1, *C2; 836 if (match(Op1, m_APInt(C1)) && 837 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 838 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 839 Constant *NewC = 840 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 841 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 842 } 843 844 // More general combining of constants in the wide type. 845 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 846 Constant *NarrowC; 847 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 848 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 849 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 850 Value *WideX = Builder.CreateSExt(X, Ty); 851 return BinaryOperator::CreateAdd(WideX, NewC); 852 } 853 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 854 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 855 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 856 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 857 Value *WideX = Builder.CreateZExt(X, Ty); 858 return BinaryOperator::CreateAdd(WideX, NewC); 859 } 860 861 return nullptr; 862 } 863 864 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 865 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 866 Constant *Op1C; 867 if (!match(Op1, m_Constant(Op1C))) 868 return nullptr; 869 870 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 871 return NV; 872 873 Value *X; 874 Constant *Op00C; 875 876 // add (sub C1, X), C2 --> sub (add C1, C2), X 877 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 878 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 879 880 Value *Y; 881 882 // add (sub X, Y), -1 --> add (not Y), X 883 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 884 match(Op1, m_AllOnes())) 885 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 886 887 // zext(bool) + C -> bool ? C + 1 : C 888 if (match(Op0, m_ZExt(m_Value(X))) && 889 X->getType()->getScalarSizeInBits() == 1) 890 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 891 // sext(bool) + C -> bool ? C - 1 : C 892 if (match(Op0, m_SExt(m_Value(X))) && 893 X->getType()->getScalarSizeInBits() == 1) 894 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 895 896 // ~X + C --> (C-1) - X 897 if (match(Op0, m_Not(m_Value(X)))) 898 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); 899 900 const APInt *C; 901 if (!match(Op1, m_APInt(C))) 902 return nullptr; 903 904 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 905 const APInt *C2; 906 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 907 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 908 909 if (C->isSignMask()) { 910 // If wrapping is not allowed, then the addition must set the sign bit: 911 // X + (signmask) --> X | signmask 912 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 913 return BinaryOperator::CreateOr(Op0, Op1); 914 915 // If wrapping is allowed, then the addition flips the sign bit of LHS: 916 // X + (signmask) --> X ^ signmask 917 return BinaryOperator::CreateXor(Op0, Op1); 918 } 919 920 // Is this add the last step in a convoluted sext? 921 // add(zext(xor i16 X, -32768), -32768) --> sext X 922 Type *Ty = Add.getType(); 923 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 924 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 925 return CastInst::Create(Instruction::SExt, X, Ty); 926 927 if (C->isOneValue() && Op0->hasOneUse()) { 928 // add (sext i1 X), 1 --> zext (not X) 929 // TODO: The smallest IR representation is (select X, 0, 1), and that would 930 // not require the one-use check. But we need to remove a transform in 931 // visitSelect and make sure that IR value tracking for select is equal or 932 // better than for these ops. 933 if (match(Op0, m_SExt(m_Value(X))) && 934 X->getType()->getScalarSizeInBits() == 1) 935 return new ZExtInst(Builder.CreateNot(X), Ty); 936 937 // Shifts and add used to flip and mask off the low bit: 938 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 939 const APInt *C3; 940 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 941 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 942 Value *NotX = Builder.CreateNot(X); 943 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 944 } 945 } 946 947 return nullptr; 948 } 949 950 // Matches multiplication expression Op * C where C is a constant. Returns the 951 // constant value in C and the other operand in Op. Returns true if such a 952 // match is found. 953 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 954 const APInt *AI; 955 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 956 C = *AI; 957 return true; 958 } 959 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 960 C = APInt(AI->getBitWidth(), 1); 961 C <<= *AI; 962 return true; 963 } 964 return false; 965 } 966 967 // Matches remainder expression Op % C where C is a constant. Returns the 968 // constant value in C and the other operand in Op. Returns the signedness of 969 // the remainder operation in IsSigned. Returns true if such a match is 970 // found. 971 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 972 const APInt *AI; 973 IsSigned = false; 974 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 975 IsSigned = true; 976 C = *AI; 977 return true; 978 } 979 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 980 C = *AI; 981 return true; 982 } 983 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 984 C = *AI + 1; 985 return true; 986 } 987 return false; 988 } 989 990 // Matches division expression Op / C with the given signedness as indicated 991 // by IsSigned, where C is a constant. Returns the constant value in C and the 992 // other operand in Op. Returns true if such a match is found. 993 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 994 const APInt *AI; 995 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 996 C = *AI; 997 return true; 998 } 999 if (!IsSigned) { 1000 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1001 C = *AI; 1002 return true; 1003 } 1004 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1005 C = APInt(AI->getBitWidth(), 1); 1006 C <<= *AI; 1007 return true; 1008 } 1009 } 1010 return false; 1011 } 1012 1013 // Returns whether C0 * C1 with the given signedness overflows. 1014 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1015 bool overflow; 1016 if (IsSigned) 1017 (void)C0.smul_ov(C1, overflow); 1018 else 1019 (void)C0.umul_ov(C1, overflow); 1020 return overflow; 1021 } 1022 1023 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1024 // does not overflow. 1025 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1026 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1027 Value *X, *MulOpV; 1028 APInt C0, MulOpC; 1029 bool IsSigned; 1030 // Match I = X % C0 + MulOpV * C0 1031 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1032 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1033 C0 == MulOpC) { 1034 Value *RemOpV; 1035 APInt C1; 1036 bool Rem2IsSigned; 1037 // Match MulOpC = RemOpV % C1 1038 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1039 IsSigned == Rem2IsSigned) { 1040 Value *DivOpV; 1041 APInt DivOpC; 1042 // Match RemOpV = X / C0 1043 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1044 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1045 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1046 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1047 : Builder.CreateURem(X, NewDivisor, "urem"); 1048 } 1049 } 1050 } 1051 1052 return nullptr; 1053 } 1054 1055 /// Fold 1056 /// (1 << NBits) - 1 1057 /// Into: 1058 /// ~(-(1 << NBits)) 1059 /// Because a 'not' is better for bit-tracking analysis and other transforms 1060 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1061 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1062 InstCombiner::BuilderTy &Builder) { 1063 Value *NBits; 1064 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1065 return nullptr; 1066 1067 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1068 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1069 // Be wary of constant folding. 1070 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1071 // Always NSW. But NUW propagates from `add`. 1072 BOp->setHasNoSignedWrap(); 1073 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1074 } 1075 1076 return BinaryOperator::CreateNot(NotMask, I.getName()); 1077 } 1078 1079 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1080 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1081 Type *Ty = I.getType(); 1082 auto getUAddSat = [&]() { 1083 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1084 }; 1085 1086 // add (umin X, ~Y), Y --> uaddsat X, Y 1087 Value *X, *Y; 1088 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1089 m_Deferred(Y)))) 1090 return CallInst::Create(getUAddSat(), { X, Y }); 1091 1092 // add (umin X, ~C), C --> uaddsat X, C 1093 const APInt *C, *NotC; 1094 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1095 *C == ~*NotC) 1096 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1097 1098 return nullptr; 1099 } 1100 1101 Instruction *InstCombinerImpl:: 1102 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1103 BinaryOperator &I) { 1104 assert((I.getOpcode() == Instruction::Add || 1105 I.getOpcode() == Instruction::Or || 1106 I.getOpcode() == Instruction::Sub) && 1107 "Expecting add/or/sub instruction"); 1108 1109 // We have a subtraction/addition between a (potentially truncated) *logical* 1110 // right-shift of X and a "select". 1111 Value *X, *Select; 1112 Instruction *LowBitsToSkip, *Extract; 1113 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1114 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1115 m_Instruction(Extract))), 1116 m_Value(Select)))) 1117 return nullptr; 1118 1119 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1120 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1121 return nullptr; 1122 1123 Type *XTy = X->getType(); 1124 bool HadTrunc = I.getType() != XTy; 1125 1126 // If there was a truncation of extracted value, then we'll need to produce 1127 // one extra instruction, so we need to ensure one instruction will go away. 1128 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1129 return nullptr; 1130 1131 // Extraction should extract high NBits bits, with shift amount calculated as: 1132 // low bits to skip = shift bitwidth - high bits to extract 1133 // The shift amount itself may be extended, and we need to look past zero-ext 1134 // when matching NBits, that will matter for matching later. 1135 Constant *C; 1136 Value *NBits; 1137 if (!match( 1138 LowBitsToSkip, 1139 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1140 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1141 APInt(C->getType()->getScalarSizeInBits(), 1142 X->getType()->getScalarSizeInBits())))) 1143 return nullptr; 1144 1145 // Sign-extending value can be zero-extended if we `sub`tract it, 1146 // or sign-extended otherwise. 1147 auto SkipExtInMagic = [&I](Value *&V) { 1148 if (I.getOpcode() == Instruction::Sub) 1149 match(V, m_ZExtOrSelf(m_Value(V))); 1150 else 1151 match(V, m_SExtOrSelf(m_Value(V))); 1152 }; 1153 1154 // Now, finally validate the sign-extending magic. 1155 // `select` itself may be appropriately extended, look past that. 1156 SkipExtInMagic(Select); 1157 1158 ICmpInst::Predicate Pred; 1159 const APInt *Thr; 1160 Value *SignExtendingValue, *Zero; 1161 bool ShouldSignext; 1162 // It must be a select between two values we will later establish to be a 1163 // sign-extending value and a zero constant. The condition guarding the 1164 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1165 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1166 m_Value(SignExtendingValue), m_Value(Zero))) || 1167 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1168 return nullptr; 1169 1170 // icmp-select pair is commutative. 1171 if (!ShouldSignext) 1172 std::swap(SignExtendingValue, Zero); 1173 1174 // If we should not perform sign-extension then we must add/or/subtract zero. 1175 if (!match(Zero, m_Zero())) 1176 return nullptr; 1177 // Otherwise, it should be some constant, left-shifted by the same NBits we 1178 // had in `lshr`. Said left-shift can also be appropriately extended. 1179 // Again, we must look past zero-ext when looking for NBits. 1180 SkipExtInMagic(SignExtendingValue); 1181 Constant *SignExtendingValueBaseConstant; 1182 if (!match(SignExtendingValue, 1183 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1184 m_ZExtOrSelf(m_Specific(NBits))))) 1185 return nullptr; 1186 // If we `sub`, then the constant should be one, else it should be all-ones. 1187 if (I.getOpcode() == Instruction::Sub 1188 ? !match(SignExtendingValueBaseConstant, m_One()) 1189 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1190 return nullptr; 1191 1192 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1193 Extract->getName() + ".sext"); 1194 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1195 if (!HadTrunc) 1196 return NewAShr; 1197 1198 Builder.Insert(NewAShr); 1199 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1200 } 1201 1202 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1203 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1204 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1205 SQ.getWithInstruction(&I))) 1206 return replaceInstUsesWith(I, V); 1207 1208 if (SimplifyAssociativeOrCommutative(I)) 1209 return &I; 1210 1211 if (Instruction *X = foldVectorBinop(I)) 1212 return X; 1213 1214 // (A*B)+(A*C) -> A*(B+C) etc 1215 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1216 return replaceInstUsesWith(I, V); 1217 1218 if (Instruction *X = foldAddWithConstant(I)) 1219 return X; 1220 1221 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1222 return X; 1223 1224 // FIXME: This should be moved into the above helper function to allow these 1225 // transforms for general constant or constant splat vectors. 1226 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1227 Type *Ty = I.getType(); 1228 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1229 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1230 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1231 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1232 const APInt &RHSVal = CI->getValue(); 1233 unsigned ExtendAmt = 0; 1234 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1235 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1236 if (XorRHS->getValue() == -RHSVal) { 1237 if (RHSVal.isPowerOf2()) 1238 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1239 else if (XorRHS->getValue().isPowerOf2()) 1240 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1241 } 1242 1243 if (ExtendAmt) { 1244 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1245 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1246 ExtendAmt = 0; 1247 } 1248 1249 if (ExtendAmt) { 1250 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1251 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1252 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1253 } 1254 1255 // If this is a xor that was canonicalized from a sub, turn it back into 1256 // a sub and fuse this add with it. 1257 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1258 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1259 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1260 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1261 XorLHS); 1262 } 1263 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1264 // transform them into (X + (signmask ^ C)) 1265 if (XorRHS->getValue().isSignMask()) 1266 return BinaryOperator::CreateAdd(XorLHS, 1267 ConstantExpr::getXor(XorRHS, CI)); 1268 } 1269 } 1270 1271 if (Ty->isIntOrIntVectorTy(1)) 1272 return BinaryOperator::CreateXor(LHS, RHS); 1273 1274 // X + X --> X << 1 1275 if (LHS == RHS) { 1276 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1277 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1278 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1279 return Shl; 1280 } 1281 1282 Value *A, *B; 1283 if (match(LHS, m_Neg(m_Value(A)))) { 1284 // -A + -B --> -(A + B) 1285 if (match(RHS, m_Neg(m_Value(B)))) 1286 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1287 1288 // -A + B --> B - A 1289 return BinaryOperator::CreateSub(RHS, A); 1290 } 1291 1292 // A + -B --> A - B 1293 if (match(RHS, m_Neg(m_Value(B)))) 1294 return BinaryOperator::CreateSub(LHS, B); 1295 1296 if (Value *V = checkForNegativeOperand(I, Builder)) 1297 return replaceInstUsesWith(I, V); 1298 1299 // (A + 1) + ~B --> A - B 1300 // ~B + (A + 1) --> A - B 1301 // (~B + A) + 1 --> A - B 1302 // (A + ~B) + 1 --> A - B 1303 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1304 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1305 return BinaryOperator::CreateSub(A, B); 1306 1307 // (A + RHS) + RHS --> A + (RHS << 1) 1308 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1309 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1310 1311 // LHS + (A + LHS) --> A + (LHS << 1) 1312 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1313 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1314 1315 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1316 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1317 1318 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1319 const APInt *C1, *C2; 1320 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1321 APInt one(C2->getBitWidth(), 1); 1322 APInt minusC1 = -(*C1); 1323 if (minusC1 == (one << *C2)) { 1324 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1325 return BinaryOperator::CreateSRem(RHS, NewRHS); 1326 } 1327 } 1328 1329 // A+B --> A|B iff A and B have no bits set in common. 1330 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1331 return BinaryOperator::CreateOr(LHS, RHS); 1332 1333 // FIXME: We already did a check for ConstantInt RHS above this. 1334 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1335 // removal. 1336 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1337 // (X & FF00) + xx00 -> (X+xx00) & FF00 1338 Value *X; 1339 ConstantInt *C2; 1340 if (LHS->hasOneUse() && 1341 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1342 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1343 // See if all bits from the first bit set in the Add RHS up are included 1344 // in the mask. First, get the rightmost bit. 1345 const APInt &AddRHSV = CRHS->getValue(); 1346 1347 // Form a mask of all bits from the lowest bit added through the top. 1348 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1349 1350 // See if the and mask includes all of these bits. 1351 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1352 1353 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1354 // Okay, the xform is safe. Insert the new add pronto. 1355 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1356 return BinaryOperator::CreateAnd(NewAdd, C2); 1357 } 1358 } 1359 } 1360 1361 // add (select X 0 (sub n A)) A --> select X A n 1362 { 1363 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1364 Value *A = RHS; 1365 if (!SI) { 1366 SI = dyn_cast<SelectInst>(RHS); 1367 A = LHS; 1368 } 1369 if (SI && SI->hasOneUse()) { 1370 Value *TV = SI->getTrueValue(); 1371 Value *FV = SI->getFalseValue(); 1372 Value *N; 1373 1374 // Can we fold the add into the argument of the select? 1375 // We check both true and false select arguments for a matching subtract. 1376 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1377 // Fold the add into the true select value. 1378 return SelectInst::Create(SI->getCondition(), N, A); 1379 1380 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1381 // Fold the add into the false select value. 1382 return SelectInst::Create(SI->getCondition(), A, N); 1383 } 1384 } 1385 1386 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1387 return Ext; 1388 1389 // (add (xor A, B) (and A, B)) --> (or A, B) 1390 // (add (and A, B) (xor A, B)) --> (or A, B) 1391 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1392 m_c_And(m_Deferred(A), m_Deferred(B))))) 1393 return BinaryOperator::CreateOr(A, B); 1394 1395 // (add (or A, B) (and A, B)) --> (add A, B) 1396 // (add (and A, B) (or A, B)) --> (add A, B) 1397 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1398 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1399 // Replacing operands in-place to preserve nuw/nsw flags. 1400 replaceOperand(I, 0, A); 1401 replaceOperand(I, 1, B); 1402 return &I; 1403 } 1404 1405 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1406 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1407 // computeKnownBits. 1408 bool Changed = false; 1409 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1410 Changed = true; 1411 I.setHasNoSignedWrap(true); 1412 } 1413 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1414 Changed = true; 1415 I.setHasNoUnsignedWrap(true); 1416 } 1417 1418 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1419 return V; 1420 1421 if (Instruction *V = 1422 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1423 return V; 1424 1425 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1426 return SatAdd; 1427 1428 // usub.sat(A, B) + B => umax(A, B) 1429 if (match(&I, m_c_BinOp( 1430 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1431 m_Deferred(B)))) { 1432 return replaceInstUsesWith(I, 1433 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1434 } 1435 1436 return Changed ? &I : nullptr; 1437 } 1438 1439 /// Eliminate an op from a linear interpolation (lerp) pattern. 1440 static Instruction *factorizeLerp(BinaryOperator &I, 1441 InstCombiner::BuilderTy &Builder) { 1442 Value *X, *Y, *Z; 1443 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1444 m_OneUse(m_FSub(m_FPOne(), 1445 m_Value(Z))))), 1446 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1447 return nullptr; 1448 1449 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1450 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1451 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1452 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1453 } 1454 1455 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1456 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1457 InstCombiner::BuilderTy &Builder) { 1458 assert((I.getOpcode() == Instruction::FAdd || 1459 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1460 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1461 "FP factorization requires FMF"); 1462 1463 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1464 return Lerp; 1465 1466 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1467 Value *X, *Y, *Z; 1468 bool IsFMul; 1469 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && 1470 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || 1471 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && 1472 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) 1473 IsFMul = true; 1474 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && 1475 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) 1476 IsFMul = false; 1477 else 1478 return nullptr; 1479 1480 // (X * Z) + (Y * Z) --> (X + Y) * Z 1481 // (X * Z) - (Y * Z) --> (X - Y) * Z 1482 // (X / Z) + (Y / Z) --> (X + Y) / Z 1483 // (X / Z) - (Y / Z) --> (X - Y) / Z 1484 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1485 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1486 : Builder.CreateFSubFMF(X, Y, &I); 1487 1488 // Bail out if we just created a denormal constant. 1489 // TODO: This is copied from a previous implementation. Is it necessary? 1490 const APFloat *C; 1491 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1492 return nullptr; 1493 1494 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1495 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1496 } 1497 1498 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1499 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1500 I.getFastMathFlags(), 1501 SQ.getWithInstruction(&I))) 1502 return replaceInstUsesWith(I, V); 1503 1504 if (SimplifyAssociativeOrCommutative(I)) 1505 return &I; 1506 1507 if (Instruction *X = foldVectorBinop(I)) 1508 return X; 1509 1510 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1511 return FoldedFAdd; 1512 1513 // (-X) + Y --> Y - X 1514 Value *X, *Y; 1515 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1516 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1517 1518 // Similar to above, but look through fmul/fdiv for the negated term. 1519 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1520 Value *Z; 1521 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1522 m_Value(Z)))) { 1523 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1524 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1525 } 1526 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1527 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1528 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1529 m_Value(Z))) || 1530 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1531 m_Value(Z)))) { 1532 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1533 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1534 } 1535 1536 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1537 // integer add followed by a promotion. 1538 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1539 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1540 Value *LHSIntVal = LHSConv->getOperand(0); 1541 Type *FPType = LHSConv->getType(); 1542 1543 // TODO: This check is overly conservative. In many cases known bits 1544 // analysis can tell us that the result of the addition has less significant 1545 // bits than the integer type can hold. 1546 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1547 Type *FScalarTy = FTy->getScalarType(); 1548 Type *IScalarTy = ITy->getScalarType(); 1549 1550 // Do we have enough bits in the significand to represent the result of 1551 // the integer addition? 1552 unsigned MaxRepresentableBits = 1553 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1554 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1555 }; 1556 1557 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1558 // ... if the constant fits in the integer value. This is useful for things 1559 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1560 // requires a constant pool load, and generally allows the add to be better 1561 // instcombined. 1562 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1563 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1564 Constant *CI = 1565 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1566 if (LHSConv->hasOneUse() && 1567 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1568 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1569 // Insert the new integer add. 1570 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1571 return new SIToFPInst(NewAdd, I.getType()); 1572 } 1573 } 1574 1575 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1576 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1577 Value *RHSIntVal = RHSConv->getOperand(0); 1578 // It's enough to check LHS types only because we require int types to 1579 // be the same for this transform. 1580 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1581 // Only do this if x/y have the same type, if at least one of them has a 1582 // single use (so we don't increase the number of int->fp conversions), 1583 // and if the integer add will not overflow. 1584 if (LHSIntVal->getType() == RHSIntVal->getType() && 1585 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1586 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1587 // Insert the new integer add. 1588 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1589 return new SIToFPInst(NewAdd, I.getType()); 1590 } 1591 } 1592 } 1593 } 1594 1595 // Handle specials cases for FAdd with selects feeding the operation 1596 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1597 return replaceInstUsesWith(I, V); 1598 1599 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1600 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1601 return F; 1602 if (Value *V = FAddCombine(Builder).simplify(&I)) 1603 return replaceInstUsesWith(I, V); 1604 } 1605 1606 return nullptr; 1607 } 1608 1609 /// Optimize pointer differences into the same array into a size. Consider: 1610 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1611 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1612 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1613 Type *Ty, bool IsNUW) { 1614 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1615 // this. 1616 bool Swapped = false; 1617 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1618 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1619 std::swap(LHS, RHS); 1620 Swapped = true; 1621 } 1622 1623 // Require at least one GEP with a common base pointer on both sides. 1624 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1625 // (gep X, ...) - X 1626 if (LHSGEP->getOperand(0) == RHS) { 1627 GEP1 = LHSGEP; 1628 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1629 // (gep X, ...) - (gep X, ...) 1630 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1631 RHSGEP->getOperand(0)->stripPointerCasts()) { 1632 GEP1 = LHSGEP; 1633 GEP2 = RHSGEP; 1634 } 1635 } 1636 } 1637 1638 if (!GEP1) 1639 return nullptr; 1640 1641 if (GEP2) { 1642 // (gep X, ...) - (gep X, ...) 1643 // 1644 // Avoid duplicating the arithmetic if there are more than one non-constant 1645 // indices between the two GEPs and either GEP has a non-constant index and 1646 // multiple users. If zero non-constant index, the result is a constant and 1647 // there is no duplication. If one non-constant index, the result is an add 1648 // or sub with a constant, which is no larger than the original code, and 1649 // there's no duplicated arithmetic, even if either GEP has multiple 1650 // users. If more than one non-constant indices combined, as long as the GEP 1651 // with at least one non-constant index doesn't have multiple users, there 1652 // is no duplication. 1653 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1654 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1655 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1656 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1657 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1658 return nullptr; 1659 } 1660 } 1661 1662 // Emit the offset of the GEP and an intptr_t. 1663 Value *Result = EmitGEPOffset(GEP1); 1664 1665 // If this is a single inbounds GEP and the original sub was nuw, 1666 // then the final multiplication is also nuw. We match an extra add zero 1667 // here, because that's what EmitGEPOffset() generates. 1668 Instruction *I; 1669 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1670 match(Result, m_Add(m_Instruction(I), m_Zero())) && 1671 I->getOpcode() == Instruction::Mul) 1672 I->setHasNoUnsignedWrap(); 1673 1674 // If we had a constant expression GEP on the other side offsetting the 1675 // pointer, subtract it from the offset we have. 1676 if (GEP2) { 1677 Value *Offset = EmitGEPOffset(GEP2); 1678 Result = Builder.CreateSub(Result, Offset, "gepdiff"); 1679 } 1680 1681 // If we have p - gep(p, ...) then we have to negate the result. 1682 if (Swapped) 1683 Result = Builder.CreateNeg(Result, "diff.neg"); 1684 1685 return Builder.CreateIntCast(Result, Ty, true); 1686 } 1687 1688 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1689 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1690 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1691 SQ.getWithInstruction(&I))) 1692 return replaceInstUsesWith(I, V); 1693 1694 if (Instruction *X = foldVectorBinop(I)) 1695 return X; 1696 1697 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1698 1699 // If this is a 'B = x-(-A)', change to B = x+A. 1700 // We deal with this without involving Negator to preserve NSW flag. 1701 if (Value *V = dyn_castNegVal(Op1)) { 1702 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1703 1704 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1705 assert(BO->getOpcode() == Instruction::Sub && 1706 "Expected a subtraction operator!"); 1707 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1708 Res->setHasNoSignedWrap(true); 1709 } else { 1710 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1711 Res->setHasNoSignedWrap(true); 1712 } 1713 1714 return Res; 1715 } 1716 1717 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 1718 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1719 return Ext; 1720 1721 bool Changed = false; 1722 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1723 Changed = true; 1724 I.setHasNoSignedWrap(true); 1725 } 1726 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1727 Changed = true; 1728 I.setHasNoUnsignedWrap(true); 1729 } 1730 1731 return Changed ? &I : nullptr; 1732 }; 1733 1734 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 1735 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 1736 // a pure negation used by a select that looks like abs/nabs. 1737 bool IsNegation = match(Op0, m_ZeroInt()); 1738 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 1739 const Instruction *UI = dyn_cast<Instruction>(U); 1740 if (!UI) 1741 return false; 1742 return match(UI, 1743 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 1744 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 1745 })) { 1746 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 1747 return BinaryOperator::CreateAdd(NegOp1, Op0); 1748 } 1749 if (IsNegation) 1750 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 1751 1752 // (A*B)-(A*C) -> A*(B-C) etc 1753 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1754 return replaceInstUsesWith(I, V); 1755 1756 if (I.getType()->isIntOrIntVectorTy(1)) 1757 return BinaryOperator::CreateXor(Op0, Op1); 1758 1759 // Replace (-1 - A) with (~A). 1760 if (match(Op0, m_AllOnes())) 1761 return BinaryOperator::CreateNot(Op1); 1762 1763 // (~X) - (~Y) --> Y - X 1764 Value *X, *Y; 1765 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1766 return BinaryOperator::CreateSub(Y, X); 1767 1768 // (X + -1) - Y --> ~Y + X 1769 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1770 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1771 1772 // Reassociate sub/add sequences to create more add instructions and 1773 // reduce dependency chains: 1774 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 1775 Value *Z; 1776 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 1777 m_Value(Z))))) { 1778 Value *XZ = Builder.CreateAdd(X, Z); 1779 Value *YW = Builder.CreateAdd(Y, Op1); 1780 return BinaryOperator::CreateSub(XZ, YW); 1781 } 1782 1783 auto m_AddRdx = [](Value *&Vec) { 1784 return m_OneUse( 1785 m_Intrinsic<Intrinsic::experimental_vector_reduce_add>(m_Value(Vec))); 1786 }; 1787 Value *V0, *V1; 1788 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 1789 V0->getType() == V1->getType()) { 1790 // Difference of sums is sum of differences: 1791 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 1792 Value *Sub = Builder.CreateSub(V0, V1); 1793 Value *Rdx = Builder.CreateIntrinsic( 1794 Intrinsic::experimental_vector_reduce_add, {Sub->getType()}, {Sub}); 1795 return replaceInstUsesWith(I, Rdx); 1796 } 1797 1798 if (Constant *C = dyn_cast<Constant>(Op0)) { 1799 Value *X; 1800 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1801 // C - (zext bool) --> bool ? C - 1 : C 1802 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 1803 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1804 // C - (sext bool) --> bool ? C + 1 : C 1805 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 1806 1807 // C - ~X == X + (1+C) 1808 if (match(Op1, m_Not(m_Value(X)))) 1809 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 1810 1811 // Try to fold constant sub into select arguments. 1812 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1813 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1814 return R; 1815 1816 // Try to fold constant sub into PHI values. 1817 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1818 if (Instruction *R = foldOpIntoPhi(I, PN)) 1819 return R; 1820 1821 Constant *C2; 1822 1823 // C-(C2-X) --> X+(C-C2) 1824 if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))) && !isa<ConstantExpr>(C2)) 1825 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1826 1827 // C-(X+C2) --> (C-C2)-X 1828 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1829 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1830 } 1831 1832 const APInt *Op0C; 1833 if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) { 1834 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1835 // zero. 1836 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1837 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1838 return BinaryOperator::CreateXor(Op1, Op0); 1839 } 1840 1841 { 1842 Value *Y; 1843 // X-(X+Y) == -Y X-(Y+X) == -Y 1844 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1845 return BinaryOperator::CreateNeg(Y); 1846 1847 // (X-Y)-X == -Y 1848 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1849 return BinaryOperator::CreateNeg(Y); 1850 } 1851 1852 // (sub (or A, B) (and A, B)) --> (xor A, B) 1853 { 1854 Value *A, *B; 1855 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1856 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1857 return BinaryOperator::CreateXor(A, B); 1858 } 1859 1860 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 1861 { 1862 Value *A, *B; 1863 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1864 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1865 (Op0->hasOneUse() || Op1->hasOneUse())) 1866 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 1867 } 1868 1869 // (sub (or A, B), (xor A, B)) --> (and A, B) 1870 { 1871 Value *A, *B; 1872 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1873 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1874 return BinaryOperator::CreateAnd(A, B); 1875 } 1876 1877 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 1878 { 1879 Value *A, *B; 1880 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1881 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1882 (Op0->hasOneUse() || Op1->hasOneUse())) 1883 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 1884 } 1885 1886 { 1887 Value *Y; 1888 // ((X | Y) - X) --> (~X & Y) 1889 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1890 return BinaryOperator::CreateAnd( 1891 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1892 } 1893 1894 { 1895 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 1896 Value *X; 1897 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 1898 m_OneUse(m_Neg(m_Value(X))))))) { 1899 return BinaryOperator::CreateNeg(Builder.CreateAnd( 1900 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 1901 } 1902 } 1903 1904 { 1905 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 1906 Constant *C; 1907 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 1908 return BinaryOperator::CreateNeg( 1909 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 1910 } 1911 } 1912 1913 { 1914 // If we have a subtraction between some value and a select between 1915 // said value and something else, sink subtraction into select hands, i.e.: 1916 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 1917 // -> 1918 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 1919 // or 1920 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 1921 // -> 1922 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 1923 // This will result in select between new subtraction and 0. 1924 auto SinkSubIntoSelect = 1925 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 1926 auto SubBuilder) -> Instruction * { 1927 Value *Cond, *TrueVal, *FalseVal; 1928 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 1929 m_Value(FalseVal))))) 1930 return nullptr; 1931 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 1932 return nullptr; 1933 // While it is really tempting to just create two subtractions and let 1934 // InstCombine fold one of those to 0, it isn't possible to do so 1935 // because of worklist visitation order. So ugly it is. 1936 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 1937 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 1938 Constant *Zero = Constant::getNullValue(Ty); 1939 SelectInst *NewSel = 1940 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 1941 OtherHandOfSubIsTrueVal ? NewSub : Zero); 1942 // Preserve prof metadata if any. 1943 NewSel->copyMetadata(cast<Instruction>(*Select)); 1944 return NewSel; 1945 }; 1946 if (Instruction *NewSel = SinkSubIntoSelect( 1947 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 1948 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 1949 return Builder->CreateSub(OtherHandOfSelect, 1950 /*OtherHandOfSub=*/Op1); 1951 })) 1952 return NewSel; 1953 if (Instruction *NewSel = SinkSubIntoSelect( 1954 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 1955 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 1956 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 1957 OtherHandOfSelect); 1958 })) 1959 return NewSel; 1960 } 1961 1962 // (X - (X & Y)) --> (X & ~Y) 1963 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 1964 (Op1->hasOneUse() || isa<Constant>(Y))) 1965 return BinaryOperator::CreateAnd( 1966 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 1967 1968 { 1969 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A 1970 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A 1971 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O) 1972 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O) 1973 // So long as O here is freely invertible, this will be neutral or a win. 1974 Value *LHS, *RHS, *A; 1975 Value *NotA = Op0, *MinMax = Op1; 1976 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 1977 if (!SelectPatternResult::isMinOrMax(SPF)) { 1978 NotA = Op1; 1979 MinMax = Op0; 1980 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 1981 } 1982 if (SelectPatternResult::isMinOrMax(SPF) && 1983 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { 1984 if (NotA == LHS) 1985 std::swap(LHS, RHS); 1986 // LHS is now O above and expected to have at least 2 uses (the min/max) 1987 // NotA is epected to have 2 uses from the min/max and 1 from the sub. 1988 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 1989 !NotA->hasNUsesOrMore(4)) { 1990 // Note: We don't generate the inverse max/min, just create the not of 1991 // it and let other folds do the rest. 1992 Value *Not = Builder.CreateNot(MinMax); 1993 if (NotA == Op0) 1994 return BinaryOperator::CreateSub(Not, A); 1995 else 1996 return BinaryOperator::CreateSub(A, Not); 1997 } 1998 } 1999 } 2000 2001 // Optimize pointer differences into the same array into a size. Consider: 2002 // &A[10] - &A[0]: we should compile this to "10". 2003 Value *LHSOp, *RHSOp; 2004 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2005 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2006 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2007 I.hasNoUnsignedWrap())) 2008 return replaceInstUsesWith(I, Res); 2009 2010 // trunc(p)-trunc(q) -> trunc(p-q) 2011 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2012 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2013 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2014 /* IsNUW */ false)) 2015 return replaceInstUsesWith(I, Res); 2016 2017 // Canonicalize a shifty way to code absolute value to the common pattern. 2018 // There are 2 potential commuted variants. 2019 // We're relying on the fact that we only do this transform when the shift has 2020 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2021 // instructions). 2022 Value *A; 2023 const APInt *ShAmt; 2024 Type *Ty = I.getType(); 2025 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2026 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 2027 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2028 // B = ashr i32 A, 31 ; smear the sign bit 2029 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2030 // --> (A < 0) ? -A : A 2031 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 2032 // Copy the nuw/nsw flags from the sub to the negate. 2033 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2034 I.hasNoSignedWrap()); 2035 return SelectInst::Create(Cmp, Neg, A); 2036 } 2037 2038 if (Instruction *V = 2039 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2040 return V; 2041 2042 return TryToNarrowDeduceFlags(); 2043 } 2044 2045 /// This eliminates floating-point negation in either 'fneg(X)' or 2046 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2047 static Instruction *foldFNegIntoConstant(Instruction &I) { 2048 Value *X; 2049 Constant *C; 2050 2051 // Fold negation into constant operand. This is limited with one-use because 2052 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. 2053 // -(X * C) --> X * (-C) 2054 // FIXME: It's arguable whether these should be m_OneUse or not. The current 2055 // belief is that the FNeg allows for better reassociation opportunities. 2056 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) 2057 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 2058 // -(X / C) --> X / (-C) 2059 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) 2060 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 2061 // -(C / X) --> (-C) / X 2062 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) 2063 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 2064 2065 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2066 // -(X + C) --> -X + -C --> -C - X 2067 if (I.hasNoSignedZeros() && 2068 match(&I, m_FNeg(m_OneUse(m_FAdd(m_Value(X), m_Constant(C)))))) 2069 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I); 2070 2071 return nullptr; 2072 } 2073 2074 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2075 InstCombiner::BuilderTy &Builder) { 2076 Value *FNeg; 2077 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2078 return nullptr; 2079 2080 Value *X, *Y; 2081 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2082 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2083 2084 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2085 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2086 2087 return nullptr; 2088 } 2089 2090 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2091 Value *Op = I.getOperand(0); 2092 2093 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), 2094 getSimplifyQuery().getWithInstruction(&I))) 2095 return replaceInstUsesWith(I, V); 2096 2097 if (Instruction *X = foldFNegIntoConstant(I)) 2098 return X; 2099 2100 Value *X, *Y; 2101 2102 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2103 if (I.hasNoSignedZeros() && 2104 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2105 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2106 2107 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2108 return R; 2109 2110 return nullptr; 2111 } 2112 2113 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2114 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 2115 I.getFastMathFlags(), 2116 getSimplifyQuery().getWithInstruction(&I))) 2117 return replaceInstUsesWith(I, V); 2118 2119 if (Instruction *X = foldVectorBinop(I)) 2120 return X; 2121 2122 // Subtraction from -0.0 is the canonical form of fneg. 2123 // fsub -0.0, X ==> fneg X 2124 // fsub nsz 0.0, X ==> fneg nsz X 2125 // 2126 // FIXME This matcher does not respect FTZ or DAZ yet: 2127 // fsub -0.0, Denorm ==> +-0 2128 // fneg Denorm ==> -Denorm 2129 Value *Op; 2130 if (match(&I, m_FNeg(m_Value(Op)))) 2131 return UnaryOperator::CreateFNegFMF(Op, &I); 2132 2133 if (Instruction *X = foldFNegIntoConstant(I)) 2134 return X; 2135 2136 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2137 return R; 2138 2139 Value *X, *Y; 2140 Constant *C; 2141 2142 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2143 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2144 // Canonicalize to fadd to make analysis easier. 2145 // This can also help codegen because fadd is commutative. 2146 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2147 // killed later. We still limit that particular transform with 'hasOneUse' 2148 // because an fneg is assumed better/cheaper than a generic fsub. 2149 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2150 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2151 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2152 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2153 } 2154 } 2155 2156 // (-X) - Op1 --> -(X + Op1) 2157 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2158 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2159 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2160 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2161 } 2162 2163 if (isa<Constant>(Op0)) 2164 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2165 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2166 return NV; 2167 2168 // X - C --> X + (-C) 2169 // But don't transform constant expressions because there's an inverse fold 2170 // for X + (-Y) --> X - Y. 2171 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) 2172 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 2173 2174 // X - (-Y) --> X + Y 2175 if (match(Op1, m_FNeg(m_Value(Y)))) 2176 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2177 2178 // Similar to above, but look through a cast of the negated value: 2179 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2180 Type *Ty = I.getType(); 2181 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2182 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2183 2184 // X - (fpext(-Y)) --> X + fpext(Y) 2185 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2186 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2187 2188 // Similar to above, but look through fmul/fdiv of the negated value: 2189 // Op0 - (-X * Y) --> Op0 + (X * Y) 2190 // Op0 - (Y * -X) --> Op0 + (X * Y) 2191 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2192 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2193 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2194 } 2195 // Op0 - (-X / Y) --> Op0 + (X / Y) 2196 // Op0 - (X / -Y) --> Op0 + (X / Y) 2197 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2198 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2199 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2200 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2201 } 2202 2203 // Handle special cases for FSub with selects feeding the operation 2204 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2205 return replaceInstUsesWith(I, V); 2206 2207 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2208 // (Y - X) - Y --> -X 2209 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2210 return UnaryOperator::CreateFNegFMF(X, &I); 2211 2212 // Y - (X + Y) --> -X 2213 // Y - (Y + X) --> -X 2214 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2215 return UnaryOperator::CreateFNegFMF(X, &I); 2216 2217 // (X * C) - X --> X * (C - 1.0) 2218 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2219 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 2220 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2221 } 2222 // X - (X * C) --> X * (1.0 - C) 2223 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2224 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 2225 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2226 } 2227 2228 // Reassociate fsub/fadd sequences to create more fadd instructions and 2229 // reduce dependency chains: 2230 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2231 Value *Z; 2232 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2233 m_Value(Z))))) { 2234 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2235 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2236 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2237 } 2238 2239 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2240 return m_OneUse( 2241 m_Intrinsic<Intrinsic::experimental_vector_reduce_v2_fadd>( 2242 m_Value(Sum), m_Value(Vec))); 2243 }; 2244 Value *A0, *A1, *V0, *V1; 2245 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2246 V0->getType() == V1->getType()) { 2247 // Difference of sums is sum of differences: 2248 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2249 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2250 Value *Rdx = Builder.CreateIntrinsic( 2251 Intrinsic::experimental_vector_reduce_v2_fadd, 2252 {A0->getType(), Sub->getType()}, {A0, Sub}, &I); 2253 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2254 } 2255 2256 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2257 return F; 2258 2259 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2260 // functionality has been subsumed by simple pattern matching here and in 2261 // InstSimplify. We should let a dedicated reassociation pass handle more 2262 // complex pattern matching and remove this from InstCombine. 2263 if (Value *V = FAddCombine(Builder).simplify(&I)) 2264 return replaceInstUsesWith(I, V); 2265 2266 // (X - Y) - Op1 --> X - (Y + Op1) 2267 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2268 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2269 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2270 } 2271 } 2272 2273 return nullptr; 2274 } 2275