1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 namespace {
28 
29   /// Class representing coefficient of floating-point addend.
30   /// This class needs to be highly efficient, which is especially true for
31   /// the constructor. As of I write this comment, the cost of the default
32   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
33   /// perform write-merging).
34   ///
35   class FAddendCoef {
36   public:
37     // The constructor has to initialize a APFloat, which is unnecessary for
38     // most addends which have coefficient either 1 or -1. So, the constructor
39     // is expensive. In order to avoid the cost of the constructor, we should
40     // reuse some instances whenever possible. The pre-created instances
41     // FAddCombine::Add[0-5] embodies this idea.
42     //
43     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
44     ~FAddendCoef();
45 
46     void set(short C) {
47       assert(!insaneIntVal(C) && "Insane coefficient");
48       IsFp = false; IntVal = C;
49     }
50 
51     void set(const APFloat& C);
52 
53     void negate();
54 
55     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
56     Value *getValue(Type *) const;
57 
58     // If possible, don't define operator+/operator- etc because these
59     // operators inevitably call FAddendCoef's constructor which is not cheap.
60     void operator=(const FAddendCoef &A);
61     void operator+=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63 
64     bool isOne() const { return isInt() && IntVal == 1; }
65     bool isTwo() const { return isInt() && IntVal == 2; }
66     bool isMinusOne() const { return isInt() && IntVal == -1; }
67     bool isMinusTwo() const { return isInt() && IntVal == -2; }
68 
69   private:
70     bool insaneIntVal(int V) { return V > 4 || V < -4; }
71     APFloat *getFpValPtr()
72       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
73     const APFloat *getFpValPtr() const
74       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
75 
76     const APFloat &getFpVal() const {
77       assert(IsFp && BufHasFpVal && "Incorret state");
78       return *getFpValPtr();
79     }
80 
81     APFloat &getFpVal() {
82       assert(IsFp && BufHasFpVal && "Incorret state");
83       return *getFpValPtr();
84     }
85 
86     bool isInt() const { return !IsFp; }
87 
88     // If the coefficient is represented by an integer, promote it to a
89     // floating point.
90     void convertToFpType(const fltSemantics &Sem);
91 
92     // Construct an APFloat from a signed integer.
93     // TODO: We should get rid of this function when APFloat can be constructed
94     //       from an *SIGNED* integer.
95     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
96 
97   private:
98     bool IsFp;
99 
100     // True iff FpValBuf contains an instance of APFloat.
101     bool BufHasFpVal;
102 
103     // The integer coefficient of an individual addend is either 1 or -1,
104     // and we try to simplify at most 4 addends from neighboring at most
105     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
106     // is overkill of this end.
107     short IntVal;
108 
109     AlignedCharArrayUnion<APFloat> FpValBuf;
110   };
111 
112   /// FAddend is used to represent floating-point addend. An addend is
113   /// represented as <C, V>, where the V is a symbolic value, and C is a
114   /// constant coefficient. A constant addend is represented as <C, 0>.
115   ///
116   class FAddend {
117   public:
118     FAddend() : Val(nullptr) {}
119 
120     Value *getSymVal() const { return Val; }
121     const FAddendCoef &getCoef() const { return Coeff; }
122 
123     bool isConstant() const { return Val == nullptr; }
124     bool isZero() const { return Coeff.isZero(); }
125 
126     void set(short Coefficient, Value *V) {
127       Coeff.set(Coefficient);
128       Val = V;
129     }
130     void set(const APFloat &Coefficient, Value *V) {
131       Coeff.set(Coefficient);
132       Val = V;
133     }
134     void set(const ConstantFP *Coefficient, Value *V) {
135       Coeff.set(Coefficient->getValueAPF());
136       Val = V;
137     }
138 
139     void negate() { Coeff.negate(); }
140 
141     /// Drill down the U-D chain one step to find the definition of V, and
142     /// try to break the definition into one or two addends.
143     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
144 
145     /// Similar to FAddend::drillDownOneStep() except that the value being
146     /// splitted is the addend itself.
147     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
148 
149     void operator+=(const FAddend &T) {
150       assert((Val == T.Val) && "Symbolic-values disagree");
151       Coeff += T.Coeff;
152     }
153 
154   private:
155     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
156 
157     // This addend has the value of "Coeff * Val".
158     Value *Val;
159     FAddendCoef Coeff;
160   };
161 
162   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
163   /// with its neighboring at most two instructions.
164   ///
165   class FAddCombine {
166   public:
167     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
168     Value *simplify(Instruction *FAdd);
169 
170   private:
171     typedef SmallVector<const FAddend*, 4> AddendVect;
172 
173     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
174 
175     Value *performFactorization(Instruction *I);
176 
177     /// Convert given addend to a Value
178     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
179 
180     /// Return the number of instructions needed to emit the N-ary addition.
181     unsigned calcInstrNumber(const AddendVect& Vect);
182     Value *createFSub(Value *Opnd0, Value *Opnd1);
183     Value *createFAdd(Value *Opnd0, Value *Opnd1);
184     Value *createFMul(Value *Opnd0, Value *Opnd1);
185     Value *createFDiv(Value *Opnd0, Value *Opnd1);
186     Value *createFNeg(Value *V);
187     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
188     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
189 
190     InstCombiner::BuilderTy *Builder;
191     Instruction *Instr;
192 
193      // Debugging stuff are clustered here.
194     #ifndef NDEBUG
195       unsigned CreateInstrNum;
196       void initCreateInstNum() { CreateInstrNum = 0; }
197       void incCreateInstNum() { CreateInstrNum++; }
198     #else
199       void initCreateInstNum() {}
200       void incCreateInstNum() {}
201     #endif
202   };
203 
204 } // anonymous namespace
205 
206 //===----------------------------------------------------------------------===//
207 //
208 // Implementation of
209 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
210 //
211 //===----------------------------------------------------------------------===//
212 FAddendCoef::~FAddendCoef() {
213   if (BufHasFpVal)
214     getFpValPtr()->~APFloat();
215 }
216 
217 void FAddendCoef::set(const APFloat& C) {
218   APFloat *P = getFpValPtr();
219 
220   if (isInt()) {
221     // As the buffer is meanless byte stream, we cannot call
222     // APFloat::operator=().
223     new(P) APFloat(C);
224   } else
225     *P = C;
226 
227   IsFp = BufHasFpVal = true;
228 }
229 
230 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
231   if (!isInt())
232     return;
233 
234   APFloat *P = getFpValPtr();
235   if (IntVal > 0)
236     new(P) APFloat(Sem, IntVal);
237   else {
238     new(P) APFloat(Sem, 0 - IntVal);
239     P->changeSign();
240   }
241   IsFp = BufHasFpVal = true;
242 }
243 
244 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
245   if (Val >= 0)
246     return APFloat(Sem, Val);
247 
248   APFloat T(Sem, 0 - Val);
249   T.changeSign();
250 
251   return T;
252 }
253 
254 void FAddendCoef::operator=(const FAddendCoef &That) {
255   if (That.isInt())
256     set(That.IntVal);
257   else
258     set(That.getFpVal());
259 }
260 
261 void FAddendCoef::operator+=(const FAddendCoef &That) {
262   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
263   if (isInt() == That.isInt()) {
264     if (isInt())
265       IntVal += That.IntVal;
266     else
267       getFpVal().add(That.getFpVal(), RndMode);
268     return;
269   }
270 
271   if (isInt()) {
272     const APFloat &T = That.getFpVal();
273     convertToFpType(T.getSemantics());
274     getFpVal().add(T, RndMode);
275     return;
276   }
277 
278   APFloat &T = getFpVal();
279   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
280 }
281 
282 void FAddendCoef::operator*=(const FAddendCoef &That) {
283   if (That.isOne())
284     return;
285 
286   if (That.isMinusOne()) {
287     negate();
288     return;
289   }
290 
291   if (isInt() && That.isInt()) {
292     int Res = IntVal * (int)That.IntVal;
293     assert(!insaneIntVal(Res) && "Insane int value");
294     IntVal = Res;
295     return;
296   }
297 
298   const fltSemantics &Semantic =
299     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
300 
301   if (isInt())
302     convertToFpType(Semantic);
303   APFloat &F0 = getFpVal();
304 
305   if (That.isInt())
306     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
307                 APFloat::rmNearestTiesToEven);
308   else
309     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
310 }
311 
312 void FAddendCoef::negate() {
313   if (isInt())
314     IntVal = 0 - IntVal;
315   else
316     getFpVal().changeSign();
317 }
318 
319 Value *FAddendCoef::getValue(Type *Ty) const {
320   return isInt() ?
321     ConstantFP::get(Ty, float(IntVal)) :
322     ConstantFP::get(Ty->getContext(), getFpVal());
323 }
324 
325 // The definition of <Val>     Addends
326 // =========================================
327 //  A + B                     <1, A>, <1,B>
328 //  A - B                     <1, A>, <1,B>
329 //  0 - B                     <-1, B>
330 //  C * A,                    <C, A>
331 //  A + C                     <1, A> <C, NULL>
332 //  0 +/- 0                   <0, NULL> (corner case)
333 //
334 // Legend: A and B are not constant, C is constant
335 //
336 unsigned FAddend::drillValueDownOneStep
337   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
338   Instruction *I = nullptr;
339   if (!Val || !(I = dyn_cast<Instruction>(Val)))
340     return 0;
341 
342   unsigned Opcode = I->getOpcode();
343 
344   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
345     ConstantFP *C0, *C1;
346     Value *Opnd0 = I->getOperand(0);
347     Value *Opnd1 = I->getOperand(1);
348     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
349       Opnd0 = nullptr;
350 
351     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
352       Opnd1 = nullptr;
353 
354     if (Opnd0) {
355       if (!C0)
356         Addend0.set(1, Opnd0);
357       else
358         Addend0.set(C0, nullptr);
359     }
360 
361     if (Opnd1) {
362       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
363       if (!C1)
364         Addend.set(1, Opnd1);
365       else
366         Addend.set(C1, nullptr);
367       if (Opcode == Instruction::FSub)
368         Addend.negate();
369     }
370 
371     if (Opnd0 || Opnd1)
372       return Opnd0 && Opnd1 ? 2 : 1;
373 
374     // Both operands are zero. Weird!
375     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
376     return 1;
377   }
378 
379   if (I->getOpcode() == Instruction::FMul) {
380     Value *V0 = I->getOperand(0);
381     Value *V1 = I->getOperand(1);
382     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
383       Addend0.set(C, V1);
384       return 1;
385     }
386 
387     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
388       Addend0.set(C, V0);
389       return 1;
390     }
391   }
392 
393   return 0;
394 }
395 
396 // Try to break *this* addend into two addends. e.g. Suppose this addend is
397 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
398 // i.e. <2.3, X> and <2.3, Y>.
399 //
400 unsigned FAddend::drillAddendDownOneStep
401   (FAddend &Addend0, FAddend &Addend1) const {
402   if (isConstant())
403     return 0;
404 
405   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
406   if (!BreakNum || Coeff.isOne())
407     return BreakNum;
408 
409   Addend0.Scale(Coeff);
410 
411   if (BreakNum == 2)
412     Addend1.Scale(Coeff);
413 
414   return BreakNum;
415 }
416 
417 // Try to perform following optimization on the input instruction I. Return the
418 // simplified expression if was successful; otherwise, return 0.
419 //
420 //   Instruction "I" is                Simplified into
421 // -------------------------------------------------------
422 //   (x * y) +/- (x * z)               x * (y +/- z)
423 //   (y / x) +/- (z / x)               (y +/- z) / x
424 //
425 Value *FAddCombine::performFactorization(Instruction *I) {
426   assert((I->getOpcode() == Instruction::FAdd ||
427           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
428 
429   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
430   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
431 
432   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
433     return nullptr;
434 
435   bool isMpy = false;
436   if (I0->getOpcode() == Instruction::FMul)
437     isMpy = true;
438   else if (I0->getOpcode() != Instruction::FDiv)
439     return nullptr;
440 
441   Value *Opnd0_0 = I0->getOperand(0);
442   Value *Opnd0_1 = I0->getOperand(1);
443   Value *Opnd1_0 = I1->getOperand(0);
444   Value *Opnd1_1 = I1->getOperand(1);
445 
446   //  Input Instr I       Factor   AddSub0  AddSub1
447   //  ----------------------------------------------
448   // (x*y) +/- (x*z)        x        y         z
449   // (y/x) +/- (z/x)        x        y         z
450   //
451   Value *Factor = nullptr;
452   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
453 
454   if (isMpy) {
455     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
456       Factor = Opnd0_0;
457     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
458       Factor = Opnd0_1;
459 
460     if (Factor) {
461       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
462       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
463     }
464   } else if (Opnd0_1 == Opnd1_1) {
465     Factor = Opnd0_1;
466     AddSub0 = Opnd0_0;
467     AddSub1 = Opnd1_0;
468   }
469 
470   if (!Factor)
471     return nullptr;
472 
473   FastMathFlags Flags;
474   Flags.setUnsafeAlgebra();
475   if (I0) Flags &= I->getFastMathFlags();
476   if (I1) Flags &= I->getFastMathFlags();
477 
478   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
479   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
480                       createFAdd(AddSub0, AddSub1) :
481                       createFSub(AddSub0, AddSub1);
482   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
483     const APFloat &F = CFP->getValueAPF();
484     if (!F.isNormal())
485       return nullptr;
486   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
487     II->setFastMathFlags(Flags);
488 
489   if (isMpy) {
490     Value *RI = createFMul(Factor, NewAddSub);
491     if (Instruction *II = dyn_cast<Instruction>(RI))
492       II->setFastMathFlags(Flags);
493     return RI;
494   }
495 
496   Value *RI = createFDiv(NewAddSub, Factor);
497   if (Instruction *II = dyn_cast<Instruction>(RI))
498     II->setFastMathFlags(Flags);
499   return RI;
500 }
501 
502 Value *FAddCombine::simplify(Instruction *I) {
503   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
504 
505   // Currently we are not able to handle vector type.
506   if (I->getType()->isVectorTy())
507     return nullptr;
508 
509   assert((I->getOpcode() == Instruction::FAdd ||
510           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
511 
512   // Save the instruction before calling other member-functions.
513   Instr = I;
514 
515   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
516 
517   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
518 
519   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
520   unsigned Opnd0_ExpNum = 0;
521   unsigned Opnd1_ExpNum = 0;
522 
523   if (!Opnd0.isConstant())
524     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
525 
526   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
527   if (OpndNum == 2 && !Opnd1.isConstant())
528     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
529 
530   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
531   if (Opnd0_ExpNum && Opnd1_ExpNum) {
532     AddendVect AllOpnds;
533     AllOpnds.push_back(&Opnd0_0);
534     AllOpnds.push_back(&Opnd1_0);
535     if (Opnd0_ExpNum == 2)
536       AllOpnds.push_back(&Opnd0_1);
537     if (Opnd1_ExpNum == 2)
538       AllOpnds.push_back(&Opnd1_1);
539 
540     // Compute instruction quota. We should save at least one instruction.
541     unsigned InstQuota = 0;
542 
543     Value *V0 = I->getOperand(0);
544     Value *V1 = I->getOperand(1);
545     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
546                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
547 
548     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
549       return R;
550   }
551 
552   if (OpndNum != 2) {
553     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
554     // splitted into two addends, say "V = X - Y", the instruction would have
555     // been optimized into "I = Y - X" in the previous steps.
556     //
557     const FAddendCoef &CE = Opnd0.getCoef();
558     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
559   }
560 
561   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
562   if (Opnd1_ExpNum) {
563     AddendVect AllOpnds;
564     AllOpnds.push_back(&Opnd0);
565     AllOpnds.push_back(&Opnd1_0);
566     if (Opnd1_ExpNum == 2)
567       AllOpnds.push_back(&Opnd1_1);
568 
569     if (Value *R = simplifyFAdd(AllOpnds, 1))
570       return R;
571   }
572 
573   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
574   if (Opnd0_ExpNum) {
575     AddendVect AllOpnds;
576     AllOpnds.push_back(&Opnd1);
577     AllOpnds.push_back(&Opnd0_0);
578     if (Opnd0_ExpNum == 2)
579       AllOpnds.push_back(&Opnd0_1);
580 
581     if (Value *R = simplifyFAdd(AllOpnds, 1))
582       return R;
583   }
584 
585   // step 6: Try factorization as the last resort,
586   return performFactorization(I);
587 }
588 
589 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
590   unsigned AddendNum = Addends.size();
591   assert(AddendNum <= 4 && "Too many addends");
592 
593   // For saving intermediate results;
594   unsigned NextTmpIdx = 0;
595   FAddend TmpResult[3];
596 
597   // Points to the constant addend of the resulting simplified expression.
598   // If the resulting expr has constant-addend, this constant-addend is
599   // desirable to reside at the top of the resulting expression tree. Placing
600   // constant close to supper-expr(s) will potentially reveal some optimization
601   // opportunities in super-expr(s).
602   //
603   const FAddend *ConstAdd = nullptr;
604 
605   // Simplified addends are placed <SimpVect>.
606   AddendVect SimpVect;
607 
608   // The outer loop works on one symbolic-value at a time. Suppose the input
609   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
610   // The symbolic-values will be processed in this order: x, y, z.
611   //
612   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
613 
614     const FAddend *ThisAddend = Addends[SymIdx];
615     if (!ThisAddend) {
616       // This addend was processed before.
617       continue;
618     }
619 
620     Value *Val = ThisAddend->getSymVal();
621     unsigned StartIdx = SimpVect.size();
622     SimpVect.push_back(ThisAddend);
623 
624     // The inner loop collects addends sharing same symbolic-value, and these
625     // addends will be later on folded into a single addend. Following above
626     // example, if the symbolic value "y" is being processed, the inner loop
627     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
628     // be later on folded into "<b1+b2, y>".
629     //
630     for (unsigned SameSymIdx = SymIdx + 1;
631          SameSymIdx < AddendNum; SameSymIdx++) {
632       const FAddend *T = Addends[SameSymIdx];
633       if (T && T->getSymVal() == Val) {
634         // Set null such that next iteration of the outer loop will not process
635         // this addend again.
636         Addends[SameSymIdx] = nullptr;
637         SimpVect.push_back(T);
638       }
639     }
640 
641     // If multiple addends share same symbolic value, fold them together.
642     if (StartIdx + 1 != SimpVect.size()) {
643       FAddend &R = TmpResult[NextTmpIdx ++];
644       R = *SimpVect[StartIdx];
645       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
646         R += *SimpVect[Idx];
647 
648       // Pop all addends being folded and push the resulting folded addend.
649       SimpVect.resize(StartIdx);
650       if (Val) {
651         if (!R.isZero()) {
652           SimpVect.push_back(&R);
653         }
654       } else {
655         // Don't push constant addend at this time. It will be the last element
656         // of <SimpVect>.
657         ConstAdd = &R;
658       }
659     }
660   }
661 
662   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
663          "out-of-bound access");
664 
665   if (ConstAdd)
666     SimpVect.push_back(ConstAdd);
667 
668   Value *Result;
669   if (!SimpVect.empty())
670     Result = createNaryFAdd(SimpVect, InstrQuota);
671   else {
672     // The addition is folded to 0.0.
673     Result = ConstantFP::get(Instr->getType(), 0.0);
674   }
675 
676   return Result;
677 }
678 
679 Value *FAddCombine::createNaryFAdd
680   (const AddendVect &Opnds, unsigned InstrQuota) {
681   assert(!Opnds.empty() && "Expect at least one addend");
682 
683   // Step 1: Check if the # of instructions needed exceeds the quota.
684   //
685   unsigned InstrNeeded = calcInstrNumber(Opnds);
686   if (InstrNeeded > InstrQuota)
687     return nullptr;
688 
689   initCreateInstNum();
690 
691   // step 2: Emit the N-ary addition.
692   // Note that at most three instructions are involved in Fadd-InstCombine: the
693   // addition in question, and at most two neighboring instructions.
694   // The resulting optimized addition should have at least one less instruction
695   // than the original addition expression tree. This implies that the resulting
696   // N-ary addition has at most two instructions, and we don't need to worry
697   // about tree-height when constructing the N-ary addition.
698 
699   Value *LastVal = nullptr;
700   bool LastValNeedNeg = false;
701 
702   // Iterate the addends, creating fadd/fsub using adjacent two addends.
703   for (const FAddend *Opnd : Opnds) {
704     bool NeedNeg;
705     Value *V = createAddendVal(*Opnd, NeedNeg);
706     if (!LastVal) {
707       LastVal = V;
708       LastValNeedNeg = NeedNeg;
709       continue;
710     }
711 
712     if (LastValNeedNeg == NeedNeg) {
713       LastVal = createFAdd(LastVal, V);
714       continue;
715     }
716 
717     if (LastValNeedNeg)
718       LastVal = createFSub(V, LastVal);
719     else
720       LastVal = createFSub(LastVal, V);
721 
722     LastValNeedNeg = false;
723   }
724 
725   if (LastValNeedNeg) {
726     LastVal = createFNeg(LastVal);
727   }
728 
729   #ifndef NDEBUG
730     assert(CreateInstrNum == InstrNeeded &&
731            "Inconsistent in instruction numbers");
732   #endif
733 
734   return LastVal;
735 }
736 
737 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
738   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
739   if (Instruction *I = dyn_cast<Instruction>(V))
740     createInstPostProc(I);
741   return V;
742 }
743 
744 Value *FAddCombine::createFNeg(Value *V) {
745   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
746   Value *NewV = createFSub(Zero, V);
747   if (Instruction *I = dyn_cast<Instruction>(NewV))
748     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
749   return NewV;
750 }
751 
752 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
753   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
754   if (Instruction *I = dyn_cast<Instruction>(V))
755     createInstPostProc(I);
756   return V;
757 }
758 
759 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
760   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
761   if (Instruction *I = dyn_cast<Instruction>(V))
762     createInstPostProc(I);
763   return V;
764 }
765 
766 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
767   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
768   if (Instruction *I = dyn_cast<Instruction>(V))
769     createInstPostProc(I);
770   return V;
771 }
772 
773 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
774   NewInstr->setDebugLoc(Instr->getDebugLoc());
775 
776   // Keep track of the number of instruction created.
777   if (!NoNumber)
778     incCreateInstNum();
779 
780   // Propagate fast-math flags
781   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
782 }
783 
784 // Return the number of instruction needed to emit the N-ary addition.
785 // NOTE: Keep this function in sync with createAddendVal().
786 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
787   unsigned OpndNum = Opnds.size();
788   unsigned InstrNeeded = OpndNum - 1;
789 
790   // The number of addends in the form of "(-1)*x".
791   unsigned NegOpndNum = 0;
792 
793   // Adjust the number of instructions needed to emit the N-ary add.
794   for (const FAddend *Opnd : Opnds) {
795     if (Opnd->isConstant())
796       continue;
797 
798     // The constant check above is really for a few special constant
799     // coefficients.
800     if (isa<UndefValue>(Opnd->getSymVal()))
801       continue;
802 
803     const FAddendCoef &CE = Opnd->getCoef();
804     if (CE.isMinusOne() || CE.isMinusTwo())
805       NegOpndNum++;
806 
807     // Let the addend be "c * x". If "c == +/-1", the value of the addend
808     // is immediately available; otherwise, it needs exactly one instruction
809     // to evaluate the value.
810     if (!CE.isMinusOne() && !CE.isOne())
811       InstrNeeded++;
812   }
813   if (NegOpndNum == OpndNum)
814     InstrNeeded++;
815   return InstrNeeded;
816 }
817 
818 // Input Addend        Value           NeedNeg(output)
819 // ================================================================
820 // Constant C          C               false
821 // <+/-1, V>           V               coefficient is -1
822 // <2/-2, V>          "fadd V, V"      coefficient is -2
823 // <C, V>             "fmul V, C"      false
824 //
825 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
826 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
827   const FAddendCoef &Coeff = Opnd.getCoef();
828 
829   if (Opnd.isConstant()) {
830     NeedNeg = false;
831     return Coeff.getValue(Instr->getType());
832   }
833 
834   Value *OpndVal = Opnd.getSymVal();
835 
836   if (Coeff.isMinusOne() || Coeff.isOne()) {
837     NeedNeg = Coeff.isMinusOne();
838     return OpndVal;
839   }
840 
841   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
842     NeedNeg = Coeff.isMinusTwo();
843     return createFAdd(OpndVal, OpndVal);
844   }
845 
846   NeedNeg = false;
847   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
848 }
849 
850 /// \brief Return true if we can prove that adding the two values of the
851 /// knownbits will not overflow.
852 /// Otherwise return false.
853 static bool checkRippleForAdd(const KnownBits &LHSKnown,
854                               const KnownBits &RHSKnown) {
855   // Addition of two 2's complement numbers having opposite signs will never
856   // overflow.
857   if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
858       (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
859     return true;
860 
861   // If either of the values is known to be non-negative, adding them can only
862   // overflow if the second is also non-negative, so we can assume that.
863   // Two non-negative numbers will only overflow if there is a carry to the
864   // sign bit, so we can check if even when the values are as big as possible
865   // there is no overflow to the sign bit.
866   if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
867     APInt MaxLHS = ~LHSKnown.Zero;
868     MaxLHS.clearSignBit();
869     APInt MaxRHS = ~RHSKnown.Zero;
870     MaxRHS.clearSignBit();
871     APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
872     return Result.isSignBitClear();
873   }
874 
875   // If either of the values is known to be negative, adding them can only
876   // overflow if the second is also negative, so we can assume that.
877   // Two negative number will only overflow if there is no carry to the sign
878   // bit, so we can check if even when the values are as small as possible
879   // there is overflow to the sign bit.
880   if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
881     APInt MinLHS = LHSKnown.One;
882     MinLHS.clearSignBit();
883     APInt MinRHS = RHSKnown.One;
884     MinRHS.clearSignBit();
885     APInt Result = std::move(MinLHS) + std::move(MinRHS);
886     return Result.isSignBitSet();
887   }
888 
889   // If we reached here it means that we know nothing about the sign bits.
890   // In this case we can't know if there will be an overflow, since by
891   // changing the sign bits any two values can be made to overflow.
892   return false;
893 }
894 
895 /// Return true if we can prove that:
896 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
897 /// This basically requires proving that the add in the original type would not
898 /// overflow to change the sign bit or have a carry out.
899 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
900                                             Instruction &CxtI) {
901   // There are different heuristics we can use for this.  Here are some simple
902   // ones.
903 
904   // If LHS and RHS each have at least two sign bits, the addition will look
905   // like
906   //
907   // XX..... +
908   // YY.....
909   //
910   // If the carry into the most significant position is 0, X and Y can't both
911   // be 1 and therefore the carry out of the addition is also 0.
912   //
913   // If the carry into the most significant position is 1, X and Y can't both
914   // be 0 and therefore the carry out of the addition is also 1.
915   //
916   // Since the carry into the most significant position is always equal to
917   // the carry out of the addition, there is no signed overflow.
918   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
919       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
920     return true;
921 
922   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
923   KnownBits LHSKnown(BitWidth);
924   computeKnownBits(LHS, LHSKnown, 0, &CxtI);
925 
926   KnownBits RHSKnown(BitWidth);
927   computeKnownBits(RHS, RHSKnown, 0, &CxtI);
928 
929   // Check if carry bit of addition will not cause overflow.
930   if (checkRippleForAdd(LHSKnown, RHSKnown))
931     return true;
932 
933   return false;
934 }
935 
936 /// \brief Return true if we can prove that:
937 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
938 /// This basically requires proving that the add in the original type would not
939 /// overflow to change the sign bit or have a carry out.
940 /// TODO: Handle this for Vectors.
941 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
942                                             Instruction &CxtI) {
943   // If LHS and RHS each have at least two sign bits, the subtraction
944   // cannot overflow.
945   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
946       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
947     return true;
948 
949   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
950   KnownBits LHSKnown(BitWidth);
951   computeKnownBits(LHS, LHSKnown, 0, &CxtI);
952 
953   KnownBits RHSKnown(BitWidth);
954   computeKnownBits(RHS, RHSKnown, 0, &CxtI);
955 
956   // Subtraction of two 2's complement numbers having identical signs will
957   // never overflow.
958   if ((LHSKnown.One[BitWidth - 1] && RHSKnown.One[BitWidth - 1]) ||
959       (LHSKnown.Zero[BitWidth - 1] && RHSKnown.Zero[BitWidth - 1]))
960     return true;
961 
962   // TODO: implement logic similar to checkRippleForAdd
963   return false;
964 }
965 
966 /// \brief Return true if we can prove that:
967 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
968 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
969                                               Instruction &CxtI) {
970   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
971   bool LHSKnownNonNegative, LHSKnownNegative;
972   bool RHSKnownNonNegative, RHSKnownNegative;
973   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
974                  &CxtI);
975   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
976                  &CxtI);
977   if (LHSKnownNegative && RHSKnownNonNegative)
978     return true;
979 
980   return false;
981 }
982 
983 // Checks if any operand is negative and we can convert add to sub.
984 // This function checks for following negative patterns
985 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
986 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
987 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
988 static Value *checkForNegativeOperand(BinaryOperator &I,
989                                       InstCombiner::BuilderTy *Builder) {
990   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
991 
992   // This function creates 2 instructions to replace ADD, we need at least one
993   // of LHS or RHS to have one use to ensure benefit in transform.
994   if (!LHS->hasOneUse() && !RHS->hasOneUse())
995     return nullptr;
996 
997   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
998   const APInt *C1 = nullptr, *C2 = nullptr;
999 
1000   // if ONE is on other side, swap
1001   if (match(RHS, m_Add(m_Value(X), m_One())))
1002     std::swap(LHS, RHS);
1003 
1004   if (match(LHS, m_Add(m_Value(X), m_One()))) {
1005     // if XOR on other side, swap
1006     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1007       std::swap(X, RHS);
1008 
1009     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
1010       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
1011       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
1012       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
1013         Value *NewAnd = Builder->CreateAnd(Z, *C1);
1014         return Builder->CreateSub(RHS, NewAnd, "sub");
1015       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
1016         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1017         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1018         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1019         return Builder->CreateSub(RHS, NewOr, "sub");
1020       }
1021     }
1022   }
1023 
1024   // Restore LHS and RHS
1025   LHS = I.getOperand(0);
1026   RHS = I.getOperand(1);
1027 
1028   // if XOR is on other side, swap
1029   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1030     std::swap(LHS, RHS);
1031 
1032   // C2 is ODD
1033   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1034   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1035   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1036     if (C1->countTrailingZeros() == 0)
1037       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1038         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1039         return Builder->CreateSub(RHS, NewOr, "sub");
1040       }
1041   return nullptr;
1042 }
1043 
1044 static Instruction *foldAddWithConstant(BinaryOperator &Add,
1045                                         InstCombiner::BuilderTy &Builder) {
1046   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
1047   const APInt *C;
1048   if (!match(Op1, m_APInt(C)))
1049     return nullptr;
1050 
1051   if (C->isSignMask()) {
1052     // If wrapping is not allowed, then the addition must set the sign bit:
1053     // X + (signmask) --> X | signmask
1054     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
1055       return BinaryOperator::CreateOr(Op0, Op1);
1056 
1057     // If wrapping is allowed, then the addition flips the sign bit of LHS:
1058     // X + (signmask) --> X ^ signmask
1059     return BinaryOperator::CreateXor(Op0, Op1);
1060   }
1061 
1062   Value *X;
1063   const APInt *C2;
1064   Type *Ty = Add.getType();
1065 
1066   // Is this add the last step in a convoluted sext?
1067   // add(zext(xor i16 X, -32768), -32768) --> sext X
1068   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
1069       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
1070     return CastInst::Create(Instruction::SExt, X, Ty);
1071 
1072   // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
1073   // FIXME: This should check hasOneUse to not increase the instruction count?
1074   if (C->isNegative() &&
1075       match(Op0, m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2)))) &&
1076       C->sge(-C2->sext(C->getBitWidth()))) {
1077     Constant *NewC =
1078         ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
1079     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
1080   }
1081 
1082   // Shifts and add used to flip and mask off the low bit:
1083   // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
1084   const APInt *C3;
1085   if (*C == 1 && match(Op0, m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C2)),
1086                                             m_APInt(C3)))) &&
1087       C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
1088     Value *NotX = Builder.CreateNot(X);
1089     return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
1090   }
1091 
1092   return nullptr;
1093 }
1094 
1095 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1096   bool Changed = SimplifyAssociativeOrCommutative(I);
1097   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1098 
1099   if (Value *V = SimplifyVectorOp(I))
1100     return replaceInstUsesWith(I, V);
1101 
1102   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1103                                  I.hasNoUnsignedWrap(), SQ))
1104     return replaceInstUsesWith(I, V);
1105 
1106    // (A*B)+(A*C) -> A*(B+C) etc
1107   if (Value *V = SimplifyUsingDistributiveLaws(I))
1108     return replaceInstUsesWith(I, V);
1109 
1110   if (Instruction *X = foldAddWithConstant(I, *Builder))
1111     return X;
1112 
1113   // FIXME: This should be moved into the above helper function to allow these
1114   // transforms for splat vectors.
1115   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1116     // zext(bool) + C -> bool ? C + 1 : C
1117     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1118       if (ZI->getSrcTy()->isIntegerTy(1))
1119         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1120 
1121     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1122     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1123       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1124       const APInt &RHSVal = CI->getValue();
1125       unsigned ExtendAmt = 0;
1126       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1127       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1128       if (XorRHS->getValue() == -RHSVal) {
1129         if (RHSVal.isPowerOf2())
1130           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1131         else if (XorRHS->getValue().isPowerOf2())
1132           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1133       }
1134 
1135       if (ExtendAmt) {
1136         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1137         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1138           ExtendAmt = 0;
1139       }
1140 
1141       if (ExtendAmt) {
1142         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1143         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1144         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1145       }
1146 
1147       // If this is a xor that was canonicalized from a sub, turn it back into
1148       // a sub and fuse this add with it.
1149       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1150         IntegerType *IT = cast<IntegerType>(I.getType());
1151         KnownBits LHSKnown(IT->getBitWidth());
1152         computeKnownBits(XorLHS, LHSKnown, 0, &I);
1153         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1154           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1155                                            XorLHS);
1156       }
1157       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1158       // transform them into (X + (signmask ^ C))
1159       if (XorRHS->getValue().isSignMask())
1160         return BinaryOperator::CreateAdd(XorLHS,
1161                                          ConstantExpr::getXor(XorRHS, CI));
1162     }
1163   }
1164 
1165   if (isa<Constant>(RHS))
1166     if (Instruction *NV = foldOpWithConstantIntoOperand(I))
1167       return NV;
1168 
1169   if (I.getType()->getScalarType()->isIntegerTy(1))
1170     return BinaryOperator::CreateXor(LHS, RHS);
1171 
1172   // X + X --> X << 1
1173   if (LHS == RHS) {
1174     BinaryOperator *New =
1175       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1176     New->setHasNoSignedWrap(I.hasNoSignedWrap());
1177     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1178     return New;
1179   }
1180 
1181   // -A + B  -->  B - A
1182   // -A + -B  -->  -(A + B)
1183   if (Value *LHSV = dyn_castNegVal(LHS)) {
1184     if (!isa<Constant>(RHS))
1185       if (Value *RHSV = dyn_castNegVal(RHS)) {
1186         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1187         return BinaryOperator::CreateNeg(NewAdd);
1188       }
1189 
1190     return BinaryOperator::CreateSub(RHS, LHSV);
1191   }
1192 
1193   // A + -B  -->  A - B
1194   if (!isa<Constant>(RHS))
1195     if (Value *V = dyn_castNegVal(RHS))
1196       return BinaryOperator::CreateSub(LHS, V);
1197 
1198   if (Value *V = checkForNegativeOperand(I, Builder))
1199     return replaceInstUsesWith(I, V);
1200 
1201   // A+B --> A|B iff A and B have no bits set in common.
1202   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1203     return BinaryOperator::CreateOr(LHS, RHS);
1204 
1205   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1206     Value *X;
1207     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1208       return BinaryOperator::CreateSub(SubOne(CRHS), X);
1209   }
1210 
1211   // FIXME: We already did a check for ConstantInt RHS above this.
1212   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1213   // removal.
1214   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1215     // (X & FF00) + xx00  -> (X+xx00) & FF00
1216     Value *X;
1217     ConstantInt *C2;
1218     if (LHS->hasOneUse() &&
1219         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1220         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1221       // See if all bits from the first bit set in the Add RHS up are included
1222       // in the mask.  First, get the rightmost bit.
1223       const APInt &AddRHSV = CRHS->getValue();
1224 
1225       // Form a mask of all bits from the lowest bit added through the top.
1226       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1227 
1228       // See if the and mask includes all of these bits.
1229       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1230 
1231       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1232         // Okay, the xform is safe.  Insert the new add pronto.
1233         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1234         return BinaryOperator::CreateAnd(NewAdd, C2);
1235       }
1236     }
1237   }
1238 
1239   // add (select X 0 (sub n A)) A  -->  select X A n
1240   {
1241     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1242     Value *A = RHS;
1243     if (!SI) {
1244       SI = dyn_cast<SelectInst>(RHS);
1245       A = LHS;
1246     }
1247     if (SI && SI->hasOneUse()) {
1248       Value *TV = SI->getTrueValue();
1249       Value *FV = SI->getFalseValue();
1250       Value *N;
1251 
1252       // Can we fold the add into the argument of the select?
1253       // We check both true and false select arguments for a matching subtract.
1254       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1255         // Fold the add into the true select value.
1256         return SelectInst::Create(SI->getCondition(), N, A);
1257 
1258       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1259         // Fold the add into the false select value.
1260         return SelectInst::Create(SI->getCondition(), A, N);
1261     }
1262   }
1263 
1264   // Check for (add (sext x), y), see if we can merge this into an
1265   // integer add followed by a sext.
1266   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1267     // (add (sext x), cst) --> (sext (add x, cst'))
1268     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1269       if (LHSConv->hasOneUse()) {
1270         Constant *CI =
1271             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1272         if (ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1273             WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1274           // Insert the new, smaller add.
1275           Value *NewAdd =
1276               Builder->CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1277           return new SExtInst(NewAdd, I.getType());
1278         }
1279       }
1280     }
1281 
1282     // (add (sext x), (sext y)) --> (sext (add int x, y))
1283     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1284       // Only do this if x/y have the same type, if at least one of them has a
1285       // single use (so we don't increase the number of sexts), and if the
1286       // integer add will not overflow.
1287       if (LHSConv->getOperand(0)->getType() ==
1288               RHSConv->getOperand(0)->getType() &&
1289           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1290           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1291                                    RHSConv->getOperand(0), I)) {
1292         // Insert the new integer add.
1293         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1294                                              RHSConv->getOperand(0), "addconv");
1295         return new SExtInst(NewAdd, I.getType());
1296       }
1297     }
1298   }
1299 
1300   // Check for (add (zext x), y), see if we can merge this into an
1301   // integer add followed by a zext.
1302   if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1303     // (add (zext x), cst) --> (zext (add x, cst'))
1304     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1305       if (LHSConv->hasOneUse()) {
1306         Constant *CI =
1307             ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1308         if (ConstantExpr::getZExt(CI, I.getType()) == RHSC &&
1309             computeOverflowForUnsignedAdd(LHSConv->getOperand(0), CI, &I) ==
1310                 OverflowResult::NeverOverflows) {
1311           // Insert the new, smaller add.
1312           Value *NewAdd =
1313               Builder->CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1314           return new ZExtInst(NewAdd, I.getType());
1315         }
1316       }
1317     }
1318 
1319     // (add (zext x), (zext y)) --> (zext (add int x, y))
1320     if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1321       // Only do this if x/y have the same type, if at least one of them has a
1322       // single use (so we don't increase the number of zexts), and if the
1323       // integer add will not overflow.
1324       if (LHSConv->getOperand(0)->getType() ==
1325               RHSConv->getOperand(0)->getType() &&
1326           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1327           computeOverflowForUnsignedAdd(LHSConv->getOperand(0),
1328                                         RHSConv->getOperand(0),
1329                                         &I) == OverflowResult::NeverOverflows) {
1330         // Insert the new integer add.
1331         Value *NewAdd = Builder->CreateNUWAdd(
1332             LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1333         return new ZExtInst(NewAdd, I.getType());
1334       }
1335     }
1336   }
1337 
1338   // (add (xor A, B) (and A, B)) --> (or A, B)
1339   {
1340     Value *A = nullptr, *B = nullptr;
1341     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1342         match(LHS, m_c_And(m_Specific(A), m_Specific(B))))
1343       return BinaryOperator::CreateOr(A, B);
1344 
1345     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1346         match(RHS, m_c_And(m_Specific(A), m_Specific(B))))
1347       return BinaryOperator::CreateOr(A, B);
1348   }
1349 
1350   // (add (or A, B) (and A, B)) --> (add A, B)
1351   {
1352     Value *A = nullptr, *B = nullptr;
1353     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1354         match(LHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1355       auto *New = BinaryOperator::CreateAdd(A, B);
1356       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1357       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1358       return New;
1359     }
1360 
1361     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1362         match(RHS, m_c_And(m_Specific(A), m_Specific(B)))) {
1363       auto *New = BinaryOperator::CreateAdd(A, B);
1364       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1365       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1366       return New;
1367     }
1368   }
1369 
1370   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1371   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1372   // computeKnownBits.
1373   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1374     Changed = true;
1375     I.setHasNoSignedWrap(true);
1376   }
1377   if (!I.hasNoUnsignedWrap() &&
1378       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1379           OverflowResult::NeverOverflows) {
1380     Changed = true;
1381     I.setHasNoUnsignedWrap(true);
1382   }
1383 
1384   return Changed ? &I : nullptr;
1385 }
1386 
1387 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1388   bool Changed = SimplifyAssociativeOrCommutative(I);
1389   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1390 
1391   if (Value *V = SimplifyVectorOp(I))
1392     return replaceInstUsesWith(I, V);
1393 
1394   if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), SQ))
1395     return replaceInstUsesWith(I, V);
1396 
1397   if (isa<Constant>(RHS))
1398     if (Instruction *FoldedFAdd = foldOpWithConstantIntoOperand(I))
1399       return FoldedFAdd;
1400 
1401   // -A + B  -->  B - A
1402   // -A + -B  -->  -(A + B)
1403   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1404     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1405     RI->copyFastMathFlags(&I);
1406     return RI;
1407   }
1408 
1409   // A + -B  -->  A - B
1410   if (!isa<Constant>(RHS))
1411     if (Value *V = dyn_castFNegVal(RHS)) {
1412       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1413       RI->copyFastMathFlags(&I);
1414       return RI;
1415     }
1416 
1417   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1418   // integer add followed by a promotion.
1419   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1420     Value *LHSIntVal = LHSConv->getOperand(0);
1421     Type *FPType = LHSConv->getType();
1422 
1423     // TODO: This check is overly conservative. In many cases known bits
1424     // analysis can tell us that the result of the addition has less significant
1425     // bits than the integer type can hold.
1426     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1427       Type *FScalarTy = FTy->getScalarType();
1428       Type *IScalarTy = ITy->getScalarType();
1429 
1430       // Do we have enough bits in the significand to represent the result of
1431       // the integer addition?
1432       unsigned MaxRepresentableBits =
1433           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1434       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1435     };
1436 
1437     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1438     // ... if the constant fits in the integer value.  This is useful for things
1439     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1440     // requires a constant pool load, and generally allows the add to be better
1441     // instcombined.
1442     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1443       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1444         Constant *CI =
1445           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1446         if (LHSConv->hasOneUse() &&
1447             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1448             WillNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1449           // Insert the new integer add.
1450           Value *NewAdd = Builder->CreateNSWAdd(LHSIntVal,
1451                                                 CI, "addconv");
1452           return new SIToFPInst(NewAdd, I.getType());
1453         }
1454       }
1455 
1456     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1457     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1458       Value *RHSIntVal = RHSConv->getOperand(0);
1459       // It's enough to check LHS types only because we require int types to
1460       // be the same for this transform.
1461       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1462         // Only do this if x/y have the same type, if at least one of them has a
1463         // single use (so we don't increase the number of int->fp conversions),
1464         // and if the integer add will not overflow.
1465         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1466             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1467             WillNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1468           // Insert the new integer add.
1469           Value *NewAdd = Builder->CreateNSWAdd(LHSIntVal,
1470                                                 RHSIntVal, "addconv");
1471           return new SIToFPInst(NewAdd, I.getType());
1472         }
1473       }
1474     }
1475   }
1476 
1477   // select C, 0, B + select C, A, 0 -> select C, A, B
1478   {
1479     Value *A1, *B1, *C1, *A2, *B2, *C2;
1480     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1481         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1482       if (C1 == C2) {
1483         Constant *Z1=nullptr, *Z2=nullptr;
1484         Value *A, *B, *C=C1;
1485         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1486             Z1 = dyn_cast<Constant>(A1); A = A2;
1487             Z2 = dyn_cast<Constant>(B2); B = B1;
1488         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1489             Z1 = dyn_cast<Constant>(B1); B = B2;
1490             Z2 = dyn_cast<Constant>(A2); A = A1;
1491         }
1492 
1493         if (Z1 && Z2 &&
1494             (I.hasNoSignedZeros() ||
1495              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1496           return SelectInst::Create(C, A, B);
1497         }
1498       }
1499     }
1500   }
1501 
1502   if (I.hasUnsafeAlgebra()) {
1503     if (Value *V = FAddCombine(Builder).simplify(&I))
1504       return replaceInstUsesWith(I, V);
1505   }
1506 
1507   return Changed ? &I : nullptr;
1508 }
1509 
1510 /// Optimize pointer differences into the same array into a size.  Consider:
1511 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1512 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1513 ///
1514 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1515                                                Type *Ty) {
1516   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1517   // this.
1518   bool Swapped = false;
1519   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1520 
1521   // For now we require one side to be the base pointer "A" or a constant
1522   // GEP derived from it.
1523   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1524     // (gep X, ...) - X
1525     if (LHSGEP->getOperand(0) == RHS) {
1526       GEP1 = LHSGEP;
1527       Swapped = false;
1528     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1529       // (gep X, ...) - (gep X, ...)
1530       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1531             RHSGEP->getOperand(0)->stripPointerCasts()) {
1532         GEP2 = RHSGEP;
1533         GEP1 = LHSGEP;
1534         Swapped = false;
1535       }
1536     }
1537   }
1538 
1539   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1540     // X - (gep X, ...)
1541     if (RHSGEP->getOperand(0) == LHS) {
1542       GEP1 = RHSGEP;
1543       Swapped = true;
1544     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1545       // (gep X, ...) - (gep X, ...)
1546       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1547             LHSGEP->getOperand(0)->stripPointerCasts()) {
1548         GEP2 = LHSGEP;
1549         GEP1 = RHSGEP;
1550         Swapped = true;
1551       }
1552     }
1553   }
1554 
1555   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1556   // multiple users.
1557   if (!GEP1 ||
1558       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1559     return nullptr;
1560 
1561   // Emit the offset of the GEP and an intptr_t.
1562   Value *Result = EmitGEPOffset(GEP1);
1563 
1564   // If we had a constant expression GEP on the other side offsetting the
1565   // pointer, subtract it from the offset we have.
1566   if (GEP2) {
1567     Value *Offset = EmitGEPOffset(GEP2);
1568     Result = Builder->CreateSub(Result, Offset);
1569   }
1570 
1571   // If we have p - gep(p, ...)  then we have to negate the result.
1572   if (Swapped)
1573     Result = Builder->CreateNeg(Result, "diff.neg");
1574 
1575   return Builder->CreateIntCast(Result, Ty, true);
1576 }
1577 
1578 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1579   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1580 
1581   if (Value *V = SimplifyVectorOp(I))
1582     return replaceInstUsesWith(I, V);
1583 
1584   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1585                                  I.hasNoUnsignedWrap(), SQ))
1586     return replaceInstUsesWith(I, V);
1587 
1588   // (A*B)-(A*C) -> A*(B-C) etc
1589   if (Value *V = SimplifyUsingDistributiveLaws(I))
1590     return replaceInstUsesWith(I, V);
1591 
1592   // If this is a 'B = x-(-A)', change to B = x+A.
1593   if (Value *V = dyn_castNegVal(Op1)) {
1594     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1595 
1596     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1597       assert(BO->getOpcode() == Instruction::Sub &&
1598              "Expected a subtraction operator!");
1599       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1600         Res->setHasNoSignedWrap(true);
1601     } else {
1602       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1603         Res->setHasNoSignedWrap(true);
1604     }
1605 
1606     return Res;
1607   }
1608 
1609   if (I.getType()->getScalarType()->isIntegerTy(1))
1610     return BinaryOperator::CreateXor(Op0, Op1);
1611 
1612   // Replace (-1 - A) with (~A).
1613   if (match(Op0, m_AllOnes()))
1614     return BinaryOperator::CreateNot(Op1);
1615 
1616   if (Constant *C = dyn_cast<Constant>(Op0)) {
1617     // C - ~X == X + (1+C)
1618     Value *X = nullptr;
1619     if (match(Op1, m_Not(m_Value(X))))
1620       return BinaryOperator::CreateAdd(X, AddOne(C));
1621 
1622     // Try to fold constant sub into select arguments.
1623     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1624       if (Instruction *R = FoldOpIntoSelect(I, SI))
1625         return R;
1626 
1627     // Try to fold constant sub into PHI values.
1628     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1629       if (Instruction *R = foldOpIntoPhi(I, PN))
1630         return R;
1631 
1632     // C-(X+C2) --> (C-C2)-X
1633     Constant *C2;
1634     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1635       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1636 
1637     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1638     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1639       if (X->getType()->getScalarType()->isIntegerTy(1))
1640         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1641 
1642     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1643     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1644       if (X->getType()->getScalarType()->isIntegerTy(1))
1645         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1646   }
1647 
1648   const APInt *Op0C;
1649   if (match(Op0, m_APInt(Op0C))) {
1650     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1651 
1652     // -(X >>u 31) -> (X >>s 31)
1653     // -(X >>s 31) -> (X >>u 31)
1654     if (*Op0C == 0) {
1655       Value *X;
1656       const APInt *ShAmt;
1657       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1658           *ShAmt == BitWidth - 1) {
1659         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1660         return BinaryOperator::CreateAShr(X, ShAmtOp);
1661       }
1662       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1663           *ShAmt == BitWidth - 1) {
1664         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1665         return BinaryOperator::CreateLShr(X, ShAmtOp);
1666       }
1667     }
1668 
1669     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1670     // zero.
1671     if (Op0C->isMask()) {
1672       KnownBits RHSKnown(BitWidth);
1673       computeKnownBits(Op1, RHSKnown, 0, &I);
1674       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1675         return BinaryOperator::CreateXor(Op1, Op0);
1676     }
1677   }
1678 
1679   {
1680     Value *Y;
1681     // X-(X+Y) == -Y    X-(Y+X) == -Y
1682     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1683       return BinaryOperator::CreateNeg(Y);
1684 
1685     // (X-Y)-X == -Y
1686     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1687       return BinaryOperator::CreateNeg(Y);
1688   }
1689 
1690   // (sub (or A, B) (xor A, B)) --> (and A, B)
1691   {
1692     Value *A, *B;
1693     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1694         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1695       return BinaryOperator::CreateAnd(A, B);
1696   }
1697 
1698   {
1699     Value *Y;
1700     // ((X | Y) - X) --> (~X & Y)
1701     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1702       return BinaryOperator::CreateAnd(
1703           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1704   }
1705 
1706   if (Op1->hasOneUse()) {
1707     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1708     Constant *C = nullptr;
1709 
1710     // (X - (Y - Z))  -->  (X + (Z - Y)).
1711     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1712       return BinaryOperator::CreateAdd(Op0,
1713                                       Builder->CreateSub(Z, Y, Op1->getName()));
1714 
1715     // (X - (X & Y))   -->   (X & ~Y)
1716     //
1717     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1718       return BinaryOperator::CreateAnd(Op0,
1719                                   Builder->CreateNot(Y, Y->getName() + ".not"));
1720 
1721     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1722     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1723         C->isNotMinSignedValue() && !C->isOneValue())
1724       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1725 
1726     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1727     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1728       if (Value *XNeg = dyn_castNegVal(X))
1729         return BinaryOperator::CreateShl(XNeg, Y);
1730 
1731     // Subtracting -1/0 is the same as adding 1/0:
1732     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1733     // 'nuw' is dropped in favor of the canonical form.
1734     if (match(Op1, m_SExt(m_Value(Y))) &&
1735         Y->getType()->getScalarSizeInBits() == 1) {
1736       Value *Zext = Builder->CreateZExt(Y, I.getType());
1737       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1738       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1739       return Add;
1740     }
1741 
1742     // X - A*-B -> X + A*B
1743     // X - -A*B -> X + A*B
1744     Value *A, *B;
1745     Constant *CI;
1746     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1747       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1748 
1749     // X - A*CI -> X + A*-CI
1750     // No need to handle commuted multiply because multiply handling will
1751     // ensure constant will be move to the right hand side.
1752     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1753       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1754       return BinaryOperator::CreateAdd(Op0, NewMul);
1755     }
1756   }
1757 
1758   // Optimize pointer differences into the same array into a size.  Consider:
1759   //  &A[10] - &A[0]: we should compile this to "10".
1760   Value *LHSOp, *RHSOp;
1761   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1762       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1763     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1764       return replaceInstUsesWith(I, Res);
1765 
1766   // trunc(p)-trunc(q) -> trunc(p-q)
1767   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1768       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1769     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1770       return replaceInstUsesWith(I, Res);
1771 
1772   bool Changed = false;
1773   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1774     Changed = true;
1775     I.setHasNoSignedWrap(true);
1776   }
1777   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1778     Changed = true;
1779     I.setHasNoUnsignedWrap(true);
1780   }
1781 
1782   return Changed ? &I : nullptr;
1783 }
1784 
1785 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1786   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1787 
1788   if (Value *V = SimplifyVectorOp(I))
1789     return replaceInstUsesWith(I, V);
1790 
1791   if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), SQ))
1792     return replaceInstUsesWith(I, V);
1793 
1794   // fsub nsz 0, X ==> fsub nsz -0.0, X
1795   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1796     // Subtraction from -0.0 is the canonical form of fneg.
1797     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1798     NewI->copyFastMathFlags(&I);
1799     return NewI;
1800   }
1801 
1802   if (isa<Constant>(Op0))
1803     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1804       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1805         return NV;
1806 
1807   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1808   // through FP extensions/truncations along the way.
1809   if (Value *V = dyn_castFNegVal(Op1)) {
1810     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1811     NewI->copyFastMathFlags(&I);
1812     return NewI;
1813   }
1814   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1815     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1816       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1817       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1818       NewI->copyFastMathFlags(&I);
1819       return NewI;
1820     }
1821   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1822     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1823       Value *NewExt = Builder->CreateFPExt(V, I.getType());
1824       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1825       NewI->copyFastMathFlags(&I);
1826       return NewI;
1827     }
1828   }
1829 
1830   if (I.hasUnsafeAlgebra()) {
1831     if (Value *V = FAddCombine(Builder).simplify(&I))
1832       return replaceInstUsesWith(I, V);
1833   }
1834 
1835   return nullptr;
1836 }
1837